Daniel Berwick Evans.

Maxwell's equations and classical electromagentism.

Fields: E, B: time dependent vector fields on \mathbf{R}^3 . $\div E = \rho/\epsilon_0$, curl $E = -\partial B/\partial t$, $\div B = 0$, c^2 curl B = $j/\epsilon_0 + \partial E/\partial t$. ρ is "charge density" (coulombs per cubic meter), j is "current" (coulombs per second per square meter).

Gauß' law is an application of Stokes' theorem: $q/\epsilon_0 = \int_U \rho/\epsilon_0 = \int_U \div E = \int_{\partial U} E \cdot n$. Ampere's law: $-\int_D \partial B/\partial t = -d\Phi_B/dt = \int_D \operatorname{curl} E = \int_{\partial D} E \cdot ds$. No magenetic charges (monopoles): $\operatorname{curl} B = 0$. If $\rho = j = 0$ then we get a symmetry between E and B. Charge conservation: $\div j/\epsilon_0 = -\div (\partial E/\partial t) = -(\partial/\partial t) \div E = -(\partial/\partial t)\rho/\epsilon_0$, hence $\div j = -\partial \rho/\partial t$. Static examples: $\partial B/\partial t = \partial E/\partial t = 0$.

Point charge: If $\rho = \delta(x)$ and j = 0, then $E = \pm (4\pi\epsilon_0)^{-1}r/|r|^3$ and B = 0.

Wave solutions: $\rho = j = 0$. $E = (0, E_y, E_z)$, $B = (0, B_y, B_z)$. $E_y = f(x - ct) + g(x + ct)$, $E_z = F(x - ct) + G(x + ct)$, $cB_z = f(x - ct) - g(x + ct)$, $cB_y = -F(x - ct) + G(x + ct)$. Wave with speed of propogation c.

Solenoid solution: E = 0 outside some cylinder, $\rho = 0$ everywhere, B is pointing upwards, j goes around the cylinder.

 $\int B \cdot ds = |B|h = j/(\epsilon_0 c^2) = jnh/(\epsilon_0 c^2)$. $|B| = jn/(\epsilon_0 c^2)$. n is the number of turns per length.