Daniel Berwick Evans.
Maxwell's equations and classical electromagentism.
Fields: E, B : time dependent vector fields on $\mathbf{R}^{3} . \div E=\rho / \epsilon_{0}$, curl $E=-\partial B / \partial t, \div B=0, c^{2}$ curl $B=$ $j / \epsilon_{0}+\partial E / \partial t . \rho$ is "charge density" (coulombs per cubic meter), j is "current" (coulombs per second per square meter).

Gauß' law is an application of Stokes' theorem: $q / \epsilon_{0}=\int_{U} \rho / \epsilon_{0}=\int_{U} \div E=\int_{\partial U} E \cdot n$.
Ampere's law: $-\int_{D} \partial B / \partial t=-d \Phi_{B} / d t=\int_{D} \operatorname{curl} E=\int_{\partial D} E \cdot d s$.
No magenetic charges (monopoles): curl $B=0$. If $\rho=j=0$ then we get a symmetry between E and B.
Charge conservation: $\div j / \epsilon_{0}=-\div(\partial E / \partial t)=-(\partial / \partial t) \div E=-(\partial / \partial t) \rho / \epsilon_{0}$, hence $\div j=-\partial \rho / \partial t$.
Static examples: $\partial B / \partial t=\partial E / \partial t=0$.
Point charge: If $\rho=\delta(x)$ and $j=0$, then $E= \pm\left(4 \pi \epsilon_{0}\right)^{-1} r /|r|^{3}$ and $B=0$.
Wave solutions: $\rho=j=0 . E=\left(0, E_{y}, E_{z}\right), B=\left(0, B_{y}, B_{z}\right) . E_{y}=f(x-c t)+g(x+c t), E_{z}=$ $F(x-c t)+G(x+c t), c B_{z}=f(x-c t)-g(x+c t), c B_{y}=-F(x-c t)+G(x+c t)$. Wave with speed of propogation c.

Solenoid solution: $E=0$ outside some cylinder, $\rho=0$ everywhere, B is pointing upwards, j goes around the cylinder.
$\int B \cdot d s=|B| h=j /\left(\epsilon_{0} c^{2}\right)=j n h /\left(\epsilon_{0} c^{2}\right) .|B|=j n /\left(\epsilon_{0} c^{2}\right) . n$ is the number of turns per length.

