Peter Teichner.

Hamiltonian approach to classical field theory.

Data for a classical Lagrangian field theory: (1) Smooth (oriented) manifold M (spacetime); (2) A smooth fiber bundle $E \to M$ (fields on M are $\Gamma(M, E)$); (3) Lagrangian density $\lambda \in \Omega^{n,0}(JE)$.

Note: Get an action $S: \Phi \to \mathbf{R}: M \times \Phi \to JE$ is the jet map. We have $\Omega^{n,0}(JE) \supset \Omega^n(JE) \to \Omega^n(M \times \Phi) \to C^{\infty}(\Phi) \ni S.$

Goal for today: Filtration on the space of jets, Euler-Lagrange equations, derive a Hamiltonian field theory picture.

Example: (Riemannian sigma-model.) M and N are Riemannian, $E = M \times N \to M$, $\Phi = C^{\infty}(M, N)$, $\lambda(\phi) = \|T\phi(x)\|^2 d\operatorname{vol}_M$.

Definition: $J^{\infty}E = \{(x, \phi) \mid x \in M \land \phi \text{ is a local section of } E \text{ near } x\} / \sim$. Here $(x, \phi_1) \sim (x, \phi_2)$ iff ϕ_1 has k-contact with ϕ_2 at x for all k.

Lemma: In coordinates this means that derivatives of ϕ_i coincide at point x.

So we have a sequence of bundles $M \leftarrow J^0 E = E \leftarrow J^1 E = TE \leftarrow J^2 E \leftarrow \cdots$. $JE = \lim_k J^k E$.

Define $C^{\infty}(JE) := \operatorname{colim} C^{\infty}(J^k E)$ and $\Omega^*(JE) := \operatorname{colim} \Omega^*(J^k E)$.

For any bundle $J \to M$ we have sub-dga of $\Omega^*(J)$ constructed as follows. $\Omega^*_H(J) = C^{\infty}(J) \otimes_{C^{\infty}M} \pi^*\Omega^*M$. This leads to the Serre spectral sequence for de Rham cohomology. Key geometric fact about JE: it is the differential ideal of "contact form". Jet bundle has a canonical flat connection: $\Omega^1(JE) = \Omega_H(JE) \oplus C^1(JE)$. Here $C^*(JE) = \{\omega \in \Omega^*JE \mid j^*(\omega)(\phi_u) = 0 \text{ for all local sections } \phi_u\}$. Note that this works only for infinite jets.