Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 6

First submission due October 20, 2020.

Recall that the *free group* F(S) on a set S is the coproduct $\coprod_{s \in S} \mathbf{Z}$. Accordingly, it has the following universal property: group homomorphisms $F(S) \to G$ are in a canonical bijective correspondence with maps of sets $S \to U(G)$.

A system of generators and relations for a group is a pair (S,R), where S is a set and R is a subset of $F(S) \times F(S)$, where F(S) denotes the free group on the set S. The group generated by this system is a group $\langle S|R \rangle$ together with a map of sets $f: S \to \mathsf{U}(\langle S|R \rangle)$ such that the homomorphism of groups $g: F(S) \to \langle S|R \rangle$ induced by f (see the previous paragraph) satisfies $g(r_1) = g(r_2)$ for any $(r_1, r_2) \in R$ and for any other group G with a map $f': S \to \mathsf{U}(G)$ satisfying the same property there is a unique homomorphism $h: \langle S|R \rangle \to G$ such that $\mathsf{U}(h)f = f'$.

1. Prove that $\langle S|R\rangle$ exists and is unique up to a unique isomorphism.

The typical application of the above universal property is to construct a homomorphism $\langle S|R\rangle \to G$ by constructing a map of sets $S \to U(G)$ and verifying that its compatible with the given relations.

- **2.** Prove that the dihedral group D_n as defined in Homework 4, Problem 6, is isomorphic to the group $\langle x, y | r^n = s^2 = (sr)^2 = 1 \rangle$.
- **3.** Suppose G is a group and $m: G \times G \to G$ is a homomorphism of groups.
- (a) Show that if m(u,g) = g = m(g,u) for all $g \in G$ and some fixed $u \in G$, then u = 1 and U(G) with the multiplication operation m is a group.
- (b) Assuming (a), show that m(g,h) = gh, i.e., the resulting group coincides with G, and G is abelian.

A groupoid is a category in which all morphisms are isomorphisms. Below, we assume groupoids to be small, i.e., their objects will always form sets, not proper classes.

- **4.** Suppose a group G acts on a set X.
- (a) Show that there is a groupoid whose set of objects is X and the set of morphisms is $X \times U(G)$, with the source and target of (x, g) being x and $g \cdot x$ respectively.
- (b) A groupoid is *connected* if it has at least one object and any two objects are isomorphic. Prove that if the action of G on X is transitive, then the resulting groupoid is connected.
- **5.** Suppose X is a G-set for some group G.
- (a) For a subgroup H < G, compute the set of morphisms of G-sets $hom(G/H, X) := \{G/H \to X\}$, where G/H is equipped with the standard left action of G.
- (b) For subgroups $H_1 < G$, $H_2 < G$, and an element $[g] \in G/H_2$ that defines a morphism of G-sets $h: G/H_1 \to G/H_2$ such that $[g] = h(H_1)$, compute the induced map of sets

$$hom(G/H_2, X) \rightarrow hom(G/H_1, X)$$

that sends $f: G/H_2 \to X$ to $fh: G/H_1 \to X$.

Recall that a sequence of homomorphisms of abelian groups

$$A \to B \to C$$

is exact if $A \to B$ is the kernel of $B \to C$ and $B \to C$ is surjective. Equivalently, $A \to B$ is injective and $B \to C$ is the cokernel of $A \to B$. Another equivalent characterization is that $A \to B$ is injective, $B \to C$ is surjective, and the image of $A \to B$ coincides with the kernel of $B \to C$.

- **6.** Recall the group Hom(G, A) from Homework 2, Problem 7.
- (a) Show that if $C \to D$ is the cokernel (quotient) of $B \to C$ (i.e., D = C/B), then $\mathsf{Hom}(D,A) \to \mathsf{Hom}(C,A)$ is the kernel of $\mathsf{Hom}(C,A) \to \mathsf{Hom}(B,A)$.
- (b) Show that if $B \to C$ is the kernel of $C \to D$, then $\mathsf{Hom}(C,A) \to \mathsf{Hom}(B,A)$ need not be the cokernel of $\mathsf{Hom}(D,A) \to \mathsf{Hom}(C,A)$.
- 7. A group G is finitely generated if it has a finite subset S such that the only subgroup of G that contains S is G itself.
- (a) Show that any finitely generated group has a maximal proper subgroup.
- (b) Show that the additive group \mathbf{Q} of rational numbers is not finitely generated.
- **8.** Suppose a group G has a trivial center and every automorphism of G is inner. If $G \triangleleft H$, show that H is isomorphic to the product of G and another group.
- **9.** Suppose $n \geq 2$ and $\sigma \in \Sigma_n$. Show that if σ commutes with a permutation in Σ_n of sign -1, then the conjugacy classes of σ in Σ_n and A_n are the same. (The *conjugacy class* of σ is $\{\tau \sigma \tau^{-1}\}$.)
- 10. Denote by G the free group on a set $\{a,b\}$. Denote by N the *normal* subgroup of G generated by aba and $a^{16}b^5$ (i.e., the intersection of all normal subgroups of G containing these two elements). Show that G/N is abelian.