Mathematics 5365 (Analysis of Algorithms)

Midterm 2
You may use any algorithm from the lectures without reimplementing it, provided that you cite it
correctly (i.e., state what it does exactly, and cite the correct running time). There is no guarantee that any
problem can benefit from these algorithms, though.
Solve as many problems as you can. Choose problems that are easiest to solve for you.

1. Input data: S:Order, n: N, x: S[n]. Output data: ¢,j: N such that 4,5 € [0,n), i # j, z[i] < x[k] for
any k € [0,n), x[j] < z[k] for any k € [0,n) \ {¢}. Thus, z[i] is the smallest element of x and z[j] is the
second-smallest element of x. Running time O(n). The total number of comparisons of elements of z must
be n+O(logn), i.e., for all n > ny we must have at most n+ C'logn comparisons for some real C' and ng: N.
Thus, you must find the smallest and the second-smallest element of x using only n + O(logn) comparisons,
and no other operations on elements of x are permitted, i.e., you know nothing about its internal structure.
You may assume, if you want, that all elements of x are distinct.

2. Consider the following algorithm. Input data: S:0xded, n: N, z: S[n], all elements of x are distinct.
Output data: x rearranged in the increasing order. Algorithm:

sort(i, j: N)
ifj—i<?2
return
k « split(z[i], 1, j)
sort(i, k)
sort(k +1,7)
Here split(a, i, j) rearranges the elements of x[i, j) and returns k € [i, j] such that all elements of z[i, k) are
at most a, z[k] = a, and all elements of x(k, j) are at least a. In our case, a = x[i], and split requires j —i —1
comparisons, namely, comparing a = x[i] to the elements x[i + 1], ..., z[j — 1], of which there are j —i — 1.
Compute the average number of comparisons performed by this algorithm. Hint: prove that any pair
of distinct elements in z can be compared at most once in the entire algorithm. What is the probability
that a given pair of elements will be compared at any point in the algorithm? (You may want to express
the answer using a formula that involves the positions of these elements in the final array.) Compute the
average number of comparisons using these probabilities.

3. Input data: n:N, a:R[n][3]. Output data: m: N, p: R[m][2], where p[0], ..., p[m — 1] are the vertices of
the convex polygon {(z,y) € R? | Vi € [0,n): a[i][0] + a[i][1] -z + a[i][2] - y > 0} taken in the counterclockwise
order starting from an arbitrary vertex. (Assume, for simplicity, that the intersection is a bounded nonempty
subset of R2.) Running time O(nlogn). In other words, you must intersect n half-planes and compute the
vertices of the resulting convex polygon in O(nlogn) time.

4. Input data: S:Set, n:N, z:S[n]. Output data: m:N, where m is the cardinality of the set {a €
S* | Ji,j € [0,n):i < jAa = z[i,j)}. Running time: O(n?). Extra bonus points (equivalent to one
additional problem): running time O(n). Thus, you have to compute the number of distinct substrings
of xz, where repeating substrings are only counted once. For example, if x = banana, then the above
set is {0, a, b, n, ba, an, na, ban, ana, nan, bana, anan, nana, banan, anana, banana}, and its cardinality is 16.
Another example: m € [n+ 1,1+ n(n + 1)/2], where m = n + 1 corresponds to the case when all elements
of z are the same and m = 1+ n(n + 1)2/ corresponds to the case when all elements of x are different.

5. Consider the following algorithm. Input data: p: N, pis an odd prime, s: F,,. Output data: z: F, such that

x? = s, if such an x exists at all. Algorithm: choose a random element a € F, and terminate if a’-s ¢ (Fy )2,

otherwise keep choosing a new random element until found. Then compute z = (a + Va2 — s)(p“)/ 2in the
field Fp,(vVa2 — s) = Fply]/(y* — (a® — 8)), i.e., the splitting field of the polynomial y* — (a® — 5). If z € F,,
then z is the answer, otherwise s has no square root.

e Prove that this algorithm is correct. Make sure to prove that if € F,, then 2? = s and that if z ¢ F,,,
then s has no square root. Also make sure to prove (with details of probabilistic arguments) that the
algorithm terminates with probability 1.

e How would you implement this algorithm? More precisely: (1) How would you verify that an element
of F, is not a square? (2) How would you perform the computation of z in the splitting field?

e Compute the average running time. (As usual, you may cite algorithms discussed in the lectures with
their running times.)



