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1

Preface

These notes offer an elementary introduction to topology. Why bother writing a new text when so many

exist already? Two main features distinguish this text from all others known to the author:
e The selection of material is governed by its applications outside of topology proper. In particular,

we cover topics such as and fheal cohomology], which are typically omitted from the more
traditional expositions.

e We do not hesitate to use modern machinery when it enhances clarity and simplifies the exposition. In

particular, the following modern tools are used.
° are used because they provide the most rapidly accessible introduction to homald

pzw, Eohomology], and fundamental groupd. In particular, computations can be made once basic
definitions are given, unlike for pingular homology. Additionally, we can omit the rather intricate
subtleties of general topology, such as the fact that typical categories of topological spaces (e.g.,
compactly generated weakly Hausdorff topological spaces) are neither locally presentable nor locally
cartesian closed, which becomes troublesome when performing many common constructions, such
as the small object argument, constructing the space of sections of a bundle, etc.

e Homofopy limitd and homotopy colimity are already omnipresent in classical treatments in their

specific incarnations, such as constructions with [mapping cylinderd, [mapping path spaced, [napping
Eelescoped, etc. We give a systematic treatment, which simplifies the presentation and makes it
easier to organize the acquired knowledge. Additionally, it allows for a simplified treatment of
topics such as Eeneralized homology theories.

o [Model cafegoried make it easier to systematically treat the numerous derived constructions such

as the homotopy (co)limits mentioned above, Herived mapping spaced, homological algebra con-
structions, etc. In particular, they eliminate many repetitive technical arguments with resolutions.
Additionally, they make it easy to set up higher algebra in gpaces and Epectra.

1.1. Applications

To illustrate the power of the subject, we state several theorems that will be proved using the machinery

developed below:
e (Analysis.) The metric spaces R™ and R" are homeomorphic if and only if m = n.
o (Differential equations.) A differential equation with continuous bounded coefficients in a bounded

region always has a solution.

e (Partial differential equations.) If @ C R™ is open and bounded, 91 is smooth, and f:R — R is a

bounded continuous function, then the boundary value problem

—Au=fou on);
u=0 on 0f);

has a weak solution u € W3 ?(Q), i.e.,

/QVU~V<pdx:/Q(fou)-godx

for all p € WH2(Q).

(Differential geometry.) There are 2° + 8d — 1 linearly independent vector fields on an n-dimensional
sphere, and no more. Here n + 1 = (2a + 1)2°, b= c + 4d, 0 < ¢ < 4. In particular, a vector field on a
sphere must vanish.

(Complex analysis.) The vector space of meromorphic functions on a compact Riemann surface of
genus g > 2 that have a single pole of order at most p > 3 has dimension p — 1.

(Complex analysis.) A complex polynomial of positive degree has a complex root.

(Algebra.) The algebras of real numbers, complex numbers, and quaternions are the only real algebras
with division.

(Algebra.) Subgroups of free groups are free. Moreover, index e subgroups of free groups of rank n are
free of rank 1+ e(n — 1).



1.2. Hyperlinks

As one might have noticed already, terms that are defined in the text, such as “[nodel categoryl’ or
“Bssociafivd” are hyperlinked to their definition. Likewise for numbered items, such as Cemma XT4. This
allows one to easily recall definitions and statements of results.

Furthermore, every such numbered item contains a list of back references at the end (beginning with
“Used in”). This allows one to see where a particular concept, such as Bimplicial sefl, or a result such as
Cemma RT4, is used.

Likewise, bibliographic references like [BHTg]] take one to the relevant bibliographic entry, which con-
tains a list of back references at the end.

1.3. Table of notation

(a,b) ordered pair

[ X =Y fisa (e.g., function) with Homaml X and tadamam YV
XY a pair of morphisms X — Y (used for (co)equalizers)

idy the [dentity morphisn] on X

gof Eomposttion: first apply f, then g; for functions: (go f)(z) = g(f(x))
yX the set of all functions X — Y

{a<b<e< -} an brdered sefl with elements a, b, ¢, ..., with the induced order
U(-) the underlying object (e.g., the underlying set of a group)

m, n Smplices

|m]| Eeometric realization of a simpley

0 m the dimension of a simplex

2 Supplementary sources

The most accessible texts on elementary simplicial homotopy theory are expository articles by Greg
Friedman [EIISS| and Francis Sergeraert [[CHTI).

A set of notes from 2008 by Joyal and Tierney [[NSHT] is a good exposition of the topics that it
covers, namely, the elementary theory of fimplicial setd, operations on them, [Kan complexed, Ebrafiond and
Cofibrafiond, and Eimplicial weak equivalenced. A 1999 book by Goerss and Jardine [BHTg]| is the only
modern printed book on simplicial homotopy theory. Both of these sources require that one is familiar with
e]ementary category theory, see Definifion 1T 1. Definifion T2 1. Dehnifion T4 9

Four classical expositions of simplicial homotopy theory appeared between 1967 and 1971: Gabriel and
Zisman [CEHT|, May [EOAT], Curtis [EHId|, Lamotke [EAT]. These may be more difficult to read due to
their extensive manual manipulation of face and degeneracy maps.

Once we construct the geometric realization and pingular simplicial sef] lancfard and show they form an
equivalence of homotopy theories, the traditional expositions that use topological spaces become accessible.
The books by May [CCAT]| (1999), Hatcher [BTH] (2001), and tom Dieck [BTd] (2008) are the current
textbooks. Among the more classical textbooks, we single out Spanier [BETH| (1966), Dold [EET] (1972),
Switzer [ETHH] (1975). Munkres [EZT] (1984) offers a treatment using fimplicial complexed, which is closer
in spirit to our approach. Fulton [BTH] (1995) presents a more geometric approach. Davis and Kirk [CNAT]
(2001) also cover more advanced topics.




3 Timeline of early homotopy theory

e 1847: Listing, “Vorstudien zur Topologie”: introduced the term “topology”.

e 1857: Riemann, “Theorie der Abel’schen Funktionen”: semirigorous definition of the rank of H!(S,Z/2)
for a surface S and Poincaré duality for it.

e 1871: Betti, “Sopra gli glazi di un numero qualunque di dimensioni”: semirigorous definition of the rank
of H*(M,Z/2) for a manifold M.

e 1895: Poincaré, “Analysis Situs”: definition of the rank of H™(M,Z) using embedded submanifolds.
Semirigorous proof of Poincaré duality.

e 1899: Poincaré, “Complément & 1’Analysis situs”: simplicial homology of triangulated manifolds. First
appearance of chain complexes and the Euler characteristic.

e 1900: Poincaré, “Second complément a ’analysis situs”: torsion in homology.

e 1913: Veblen and Alexander, “Manifolds of n dimensions”: proof of Poincaré duality for mod 2 Betti
numbers.

e 1915: Alexander, “A proof of the invariance of certain constants of analysis situs”: topological invariance
of Betti numbers and torsion coefficients.

e 1923: Kiinneth, “Uber die Bettischen Zahlen einer Produktmannigfaltigkeit”: Kiinneth formula.

e 1925: Emmy Noether, “Ableitung der Elementarteilertheorie aus der Gruppentheorie”: homology
groups.

e 1929: Mayer, “Uber abstrakte Topologie”: definitions of chain complexes and their homology.

e 1935: Hurewicz: higher homotopy groups, Hurewicz homomorphism.

e 1938: Whitney, “Tensor products of abelian groups”: definition of tensor products.

Elementary theory of simplicial sets

4  Simplices

Supplementary sources: [EIISS, §2, §3], [[CHM, §2, §3.1].

are geometric shapes assembled of that stick together like blocks in a construc-
tion toy. The goal of this section and the next two sections is to explain what are. This knowledge

will then be used to define fImplicial setd.
In this section we formalize the following pictures:

1 1
£
° —>—eo

0 0 1 0 2 0 2

Such objects are known as fimpliced. An n-dimensional has n + 1 vertices, typically numbered
from 0 to n. We only record the combinatorial information about Bimpliced, which in this case amounts to
recording the set of vertices and their ordering. In the above picture, the ordering is indicated by drawing an
arrow from a vertex with a smaller number to a vertex with a larger number. The numbers of vertices can
be reconstructed from the arrows, starting with the lowest numbers: the vertex 0 only has outgoing arrows
and no incoming arrows; the vertex 1 has a single incoming arrow from the vertex 0, all other arrows are
outgoing; and so on up to the vertex n, which has no outgoing arrows. Accordingly, we do not record the
numbers of vertices below, but only their ordering.

Recall that a (totally) ordered set is a pair (S, <), where S is a set and < is a binary relation on S
(i.e., a subset of S x S) such that a < b and b < a implies a = b, a < b and b < ¢ implies a < ¢, and
a <borb<ais true for any a and b. We define a < b to mean a < b and a # b. A morphism of ordered
sets f:A=(S,<4) = B = (T,<p) is an order-preserving (alias nondecreasing) map of sets g: S — T, i.e.,
a < b implies f(a) < f(b). Any finite ordered set is isomorphic to an initial segment of natural numbers,
ie, {0<1<---<n—1}. Thus, its elements can be compared by comparing their numbers.

Definition 4.1. A simplex is a finite nonempty ordered set, whose elements are known as vertices. A mor-
phism of simplices (alias map of simplices) is a [morphism ol ordered Sety. Used in =1, I, I3, £=3, =3, 2, =3, &=,




T3, =23, 23, 3, o, T, o—m, =8, ==, A, oo, 5053, 33, o9, T, o=, 227, 7, ee=2s, =29, 253, 25501, 252, 23, e,

Up to an [somorphism of simpliceq (defined below), the only are {0<1<2<---<n} forall
n > 0. We often stress this fact by using the bold letter n for such a Eimplex, and by abuse of notation also
for any whose underlying set has n + 1 elements.

Remark 4.2. One may wonder why we defined as finite nonempty ordered sets instead of simply
saying that a isaset {0,1,...,n} and a map of simplices is a map of sets. The principal
reason for the above definition is that we want to be able to remove a vertex or several vertices from a
and obtain a new fimplex. For instance, removing vertices 2 and 4 from the {0,1,2,3,4,5} yields the
{0,1,3,5}. The naive definition would force us to renumber the vertices of this as {0,1,2,3}.
Such renumberings would in general be quite difficult to keep track of. However, we only really need the
relative ordering of vertices and not their numbers, which motivates the above definition.

Exercise 4.3. Prove the following properties of maps of simplices.
e The map id,,: m — m is a [morphism of simpliced.
e If f:1 - m and g:m — n are [morphisms of simpliced, then their composition g o f:1 — n is also a
morphism ot simplices.

e The property is satisfied: ho (go f) = (hog) o f for any [morphisms of simplicey f:k — 1,
g:l—>m, hhm — n.
e The property is satisfied: Idy of = f oldy = f for any [map of simpliceqd f:k — 1.

Used in [TIA, =mm.

These properties imply that the composition of finitely many morphisms of simplice§ does not depend
on the order of composition and is again a [morphism of simpliceq, so we can simply denote it by f,o---o fi.

Definition 4.4. An isomorphism of simplices is a [morphism of simpliced f: m — n for which there is a
morphism ¢g:n — m such that go f =d,, and fog =[d,. vsed in =, &=, =n.

Definition 4.5. If m = (V, <) is a fimplex, we set U(m) = V and refer to it as the underlying set of a
simplex m. Likewise, if f:m — n is a [morphism of simpliceq from m = (Vi, <) to n = (Vy, <), then we

set U(f): U(m) — U(n) to the underlying map of sets Vi — Vi, and refer to it as the underlying map of a
morphism of simplices f. vsed in ==,

Exercise 4.6. Show that a [map of simpliced is an [Somorphism of simpliced if and only if its underlying
map of sets is a bijection.

From the definition of U we immediately see that U(go f) = U(g) o U(f) and U(dy,) = Iy (m)-
The figures of simplices above indicate that an n-dimensional simplex has n + 1 vertices, e.g., a triangle
is 2-dimensional and has 3 vertices.

Definition 4.7. The dimension of a simpler m is an integer number, denoted by dim m and defined to be
#U(m) — 1, where # denotes cardinality. vsed in =21, =, &=, =, =, T, 553, =9, =, o=, 07, C27m, wo, w3,
| imew:i

Remark 4.8. It may be unclear why one would want an ordering on the set of vertices of a fimplex. After
all, the geometric pictures do not seem to indicate the existence of such an ordering. Indeed, one could drop
the data of an ordering altogether, obtaining symmetric simplices, which give rise to symmetric simplicial
sets. The homotopy theory of symmetric simplicial sets is equivalent (in the sense defined later) to the
homotopy theory of simplicial sets, so from an abstract point of view there is no difference between the two
notions. However, there is a substantial practical difference, which is manifested in the fact that for any
simplex m there is exactly one isomorphism m — m, namely, id,,, whereas if m was a symmetric simplex,
any permutation of U(m) would give such an isomorphism. Taken together, such isomorphisms would form
a symmetric group of order imdm + 1, a nontrivial group. Having a trivial group of automorphisms makes
the exposition considerably simpler, which is why we do not use symmetric simplices. The idea of using
ordered simplices was introduced by Eilenberg in 1943 [EHTH|. His paper discusses the historical context of
this definition.



Remark 4.9. If we allow the empty ordered set as a fimplex, we get augmented simplices. These give rise
to augmented simplicial sets, which are an important ingredient in many constructions, but their homotopy
theory is not equivalent to that of fimplicial setd.

Warning 4.10. One must remember that not every picture that looks like a simplex specifies a simplex.
The picture below does not correspond to any simplex because the arrows do not specify an antisymmetric
relation.

5 Geometric realization of simplices

Supplementary sources: [EIISS, §2, §3], [[CHD, §2].
Recall that the vector space R® can be thought of as the set of functions {0, 1,2, 3,4} — R. Below, the
set {0,1,2,3,4} is replaced by the finite set U(m).

Definition 5.1. The geometric realization of a simplez m is the set [m| = {z: U(m) = R0 | X cym) Ts =
1}. The geometric realization of a map of simplices f:m — n is the map of sets |f|: |m| — |n| that sends
z € |m| to y € [n| such that yr = 3" i (m).f(s)=¢ Ts: Used in C2, £, &0, £, =, 9, T,

Observe that 3, ym) ¥t = D scui(n) 2osel(m): f(s)=t Ts = Dscli(m) Ts = 1, s0 the above formula indeed
defines a map |m| — |n|.

We examine the low-dimensional cases of m={0<1< - < m}form <2 The set
0| = {1} ¢ R! is a point. In particular, maps 0 — m pick some vertex of m and their geometric
realization is a map |0] — |m)|, i.e., a point in |m|, which we refer to as a geometric vertex of lm|. We
have |1| = {(z,1 — ) | € [0,1]} and the two vertices of |1| are ¢g = (1,0) and e; = (0,1). Finally,
12| = {(z,y,1 —2x—y) | z,y,x+y € [0,1]} and the vertices are ey = (1,0,0), e; = (0,1,0), e = (0,0,1). We
record these observations in the following pictures, where labels denote the vertices of m and each geometric
vertex has coordinate 1 on the corresponding axis:

1 1
2
—————
0 0 0

Thus, the geometric idea behind the definition of geometric realization is clear by now: an m-dimensional
with vertices {0 < 1 <2 < --- < m} is realized as a subset of R™1. Any vertex i € U(m) is realized
by the ¢th unit vector e; (the ith coordinate is 1 and the others are 0). Furthermore, any point in |m| is
a unique convex combination of vertices. (A convex combination is a linear combination with nonnegative
coefficients that sum to 1.) Given a [norphism of simpliced f: m — n, it gives rise to a unique linear map
R7:R™*! — R"*! that sends the unit vector e; € R™*! corresponding to a vertex i € U(m) to the unit
vector ey(;) € R"1. We have R/(|/m|) C |n| and the (co)restriction of R/ to |m| and |n| is precisely |f|.

Remark 5.2. We have |[idy| = id|y, and [go f| = |g] o | f| for any f:m — n and g:n — p. For the latter
relation, observe that evaluating both sides on some z € |m| and taking the uth component (v € U(p))

yields
Y o oa- Y0¥ ow

seU(m):g(f(s))=u teU(n):g(t)=u seU(m):f(s)=t
which holds because s runs over identical sets in both cases. uvsecd in e==a.
Remark 5.3. Depending on the situation at hand, one may want to equip the set |m| with a structure

of a topological space, smooth manifold, etc. In algebraic geometry R>o does not make sense, so one uses
instead A, the affine line. vsed in e=a.

Exercise 5.4. Suppose f:m — n is a [map of simplice§. Show that U(f) is injective if and only if |f]| is.
Show that U(f) is surjective if and only if |f| is. vsed in ==



6 Maps of simplices

Supplementary sources: [EIISS, §2, §3], [[CH, §2, §3.1].
We now examine in more detail the notion of a [nap of simpliced and its geomefric realization.

Definition 6.1. We say that a f:m — n is injective respectively surjective if U(f) is. The
relative dimension of f is defined as Him f = Himdm — dimn and the relative codimension of f is defined as
codim f = —0d f = 0mdn — @@ m. A face inclusion (alias coface map) is an [njective map of simplicey
of relative codimension 1. A degenerate map (alias edge collapse, codegeneracy map) is a furjective map ol
of relative dimension 1. used in &=, =2, B2, &=, o0, 53, =5, 9, EW, c=o, CM, £, =, CIX, @, £, €239, 0, e,

Example 6.2. The {0 <1} — {0 < 1 < 2} that sends 0 — 0 and 0 — 2 is an [ijective maf
pfstmpliceq of kelafive codimension 1, hence a Eacenelnsion. Geometrically, it is a map from an interval to a
triangle that covers the side opposite of the vertex 1. The map of simpliced {0 < 1 < 2 < 3} — {0 < 1} that
sends 0,1 — 0 and 2,3 — 1 is a purjective map of simpliceq of kelafive dimension 2, hence not a
D).

Definition 6.3. A factorization of a map (of objects of any type) f: X — Z is a triple (Y, g, h), where Y is
an object of the same type as X and Z and ¢: X — Y and h:Y — Z are maps such that f = hog.

Y
/N
XT)Z

Lemma 6.4. Any [map of simpliced f: m — p admits a unique [acforizafiod (n, g, k), where n is a
and g:m — n and h:n — p are [naps of simpliced such that f = h o g, g is surjective and h is injective.

n

Proof. For existence, construct a n by setting its underlying set to the image of U(f) and equipping
it with the ordering induced from p. The map g: m — n is obtained by restricting the codomain of f:m — p
to n. The map h:n — p is the inclusion map. By construction, f = h o g, the map g is surjective, and h is
injective.

For uniqueness, suppose that (n’, ¢’, h’) is another such factorization. We claim that there is a unique
u:n — n’ that makes the following triangles commute:

Used in 6=, =23

Used in B3, XA,

The requirement that w is unique is the precise sense in which the factorization is unique. A posteriori, the
map u will turn out to be an isomorphism. We claim that i and h’ have the same image in p, which allows
us to construct an isomorphism u between their sources. Indeed, the image of h coincides with the image
of hog = f because g is surjective. Likewise for h'. If we corestrict the Eadomaind of h and h’ to their
images in p, the resulting maps H and H' are isomorphisms because h and h’ are injective. Thus, we can
take u = (H')~! o H, which makes the right triangle commute automatically. It remains to verify that the
left triangle commutes. Indeed, since A’ is an injection, we have uo g = ¢’ if and only if A ouog="h"og'.
We have hY ouog=hog= fand h' og = f, as desired. |

8



There is a counterpart of the above lemma that we will not need: any [map ol simplice§ f:m — p
admits a [actorizaiion (n, g, h), where n is a and ¢g:m — n and h:n — p are [maps of simpliceqd such
that f = hog, g is injective and h is surjective. (Surjective and injective are exchanged, and uniqueness is
dropped compared to the previous lemma.)

For a fixed n, injective maps f:m — n can be identified with nonempty subsets of U(n). Indeed,
the image of U(f) is a nonempty subset of U(n). Different injective maps yield different subsets, and any
nonempty subset of U(n) can be equipped with the induced order thereby giving rise to an injective map of
simplices. Thus, an n-dimensional admits exactly 2"+ — 1 injective maps into it, which correspond
to the 2" —1 nonempty subsets of the set U(n), where #U(n) = n+ 1. Of these maps, exactly (Zﬂ) maps
have domain of dimension k because the image of such a map must be a subset of U(n) of cardinality k + 1,
and there are (Zﬁ) such subsets. For instance, a O-simplex 0 has a single injective map with image {0}
(itself), a 1-simplex 1 = {0 < 1} has maps with images {0}, {1}, and {0 < 1}, a 2-simplex 2 = {0 < 1 < 2}
has maps with images {0}, {1}, {2}, {0 < 1}, {0 < 2}, {1 < 2}, and {0 < 1 < 2}. Here are the three [acd

mchosiond for 2:
1 1 1
A LA
o 3 0 2 P 0 2

1
/ S
0
The images of 0-simplices can be identified with vertices, depicted by dots in our pictures. The images of
1-simplices are given by pairs of vertices vg < v; and are depicted by arrows. The images of 2-simplices are

specified by a triple vertices vy < v; < w9 and are depicted by shaded triangles. We have no good way to
depict simplices of dimension 3 and higher, so this information must be inferred from the context.

0 2

Exercise 6.5. Prove that an injective map of simplices of codimension d > 0 can be presented as a compo-
sition of d laceinclusiond. Is such a presentation unique? used in ez

Example 6.6. By Exercise 54 the geometric realization of a purjective map of simpliceq is also surjective.
The easiest examples are given by maps m — 0 that send all vertices of m to the only vertex of 0. The next

easiest example are given by two maps f,¢:2 — 1 that send 0 — 0, 2 — 1, and 1 — 0 respectively 1 — 1.
These maps can be depicted by the following horizontal projection maps:

2 1 1 2 1
- | - |
— —

Used in Z=12.

Exercise 6.7. Prove that any purjective map of simpliced f:m — n of relative dimension d > 0 can be
presented as a composition of degenerate mapd. Is such a presentation unique? uvsed in .

Exercise 6.8. Suppose f:m — n is a [nap of simpliced. Prove that f is if and only if there is a
map of simplices g:n — m such that f o g =Id,,. Prove that f is if and only if there is a map of
simplices g:n — m such that go f = Idy,. vsed in =2,

Remark 6.9. One may question the desirability of having [fegenerafe mapg in the first place. Indeed, one
can allow only [njective maps of simpliced as morphisms, which give rise to semisimplicial sets. The homotopy
theory of semisimplicial sets is equivalent (in the sense defined later) to the homotopy theory of
EEIS, so from an abstract point of view there is no difference between the two notions. However, there is a
substantial practical difference, which is manifested in the fact that the (to be defined later)
on semisimplicial sets is not fight propei, and a semisimplicial set that is not fweakly contractiblg in this
must have infinitely many Bimpliced, which makes computations difficult. vsed in =

We finish this section by introducing notation for Eace Tnclusiond and Hegenerate mapd and establishing
some identities between them.




Definition 6.10. Suppose m is a and i € U(m) is a E2Ftex of m. Denote by d™%:m \ i — m the
Eacenclnsion that includes the simplex m \ ¢ obtained by removing the Eerfed ¢ from m (so that we have
e <i—2<i—1<i+1<i+2<--) into the simplex m, retaining the relative ordering of vertices.
Denote by s™%:m LIi — m the that sends the simplex m LI ¢ obtained by repeating the
EeTted ¢ in m (so that we have --- <i—1 <4 <4’ <i+1 < ---) into the simplex m, sending both i’ and
7" Into 7. Used in =,

Notation 6.11. The traditional notation for d™% and s™7 is d* and s’. In the traditional notation, m
must be inferred from the context. Furthermore, in the traditional notation ¢ and j are no longer elements
of U(m), but rather integer numbers in [0, @@ m]. Thus, d° = d™"i  where v; denotes the ith element of m,
with the smallest element being the Oth element. uvsed in e=a.

Example and warning 6.12. Suppose m = 3 (hence m = {0 < 1 < 2 < 3}) and 4 = 2. Then d™%: {0 <
1 <3} = {0 <1 < 2 < 3} is the inclusion map. Notice how the source no longer has the standard
numbering. We can renumber it and obtain a map {0 < 1 < 2} — {0 < 1 < 2 < 3} that sends 0 — 0,
1+~ 1, 2 = 3. In particular, d> = d{0<?<3}3 hecause the vertex 3 has number 2 in {0 < 1 < 3}.
Likewise, s™%{0 < 1 < 2 < 2" < 3} — {0 < 1 < 2 < 3} is the obvious map, which sends 2’ and
2" to 2. Again, the numbering of the source is nonstandard, and if we renumber it, we get the map
{0<1<2<3<4}—-{0<1<2<3}thatsends0—0,1— 1,22 32,4+ 3.

Example 6.13. Suppose m is a and 4,7 € U(m) are two different vertices. We have the following
commutative diagram of fimpliced and maps of simpliced, where all maps are inclusions:

m\ i}~ mo\ (i)

dm\{]},ll J{dm)l

m\ {j} — . m

Thus, d™J o d™\5}i = gm-i o gm\{i}.J | In the traditional notation, we must omit the Fimplex. Furthermore,
vertices must be replaced by their numbers (the numbering starts from 0). In the simplex m = {0,...,m}
vertices coincide with their numbers, so d™ ¢ = d? and d™7J = d’. Suppose without the loss of generality that
1 < j (we could always exchange them if i > j). Then in the m\{j}={0,....7—Lj+1,...,m}
the vertex ¢ has number i because 0 < i < j — 1, so d™\{i}* = d?. However, in the m\ {i} =
{0,...,i—1,i+1,...,m} the vertex j has number j — 1 because i + 1 < j < m and the vertex i has been
removed, so the numbers of vertices following it are shifted by 1. Thus, d™\{?h7 = d7=1. Accordingly, in
the traditional notation the commutativity of the above diagram is expressed as d’d’ = d*d’~!, which may
obscure the fact that both sides work with the same pair of vertices in m.

Exercise 6.14. Verify the following cosimplicial identities by expanding the definitions of d? and s’:
dd'=d'dt (i< )
s’ =8t (<))
o disf=1 i<
gd'=qMd,  i=jori=j+1
di=lsd, P>+ 1.

Here i and j are assumed to refer to vertices using the standard numbering, i.e., for a simplex of dimension n
we take all integers between 0 and n inclusive. In particular, one must take into account the above warning
about the renumbering of sources of s and d. vsed in 3, =22,

The significance of these identities lies in the fact that any map ol simpliced can be presented as a
composition of maps of the form d’ and s7, as shown in Cemma 6.4, Exercise 64, and Exercise 6. One can
show that the Eosimplicial identitieg generate all possible equalities between formal compositions of maps d’
and s7, i.e., if the compositions of two different chains of such maps are equal, then we can transform one
chain into another by applying some sequence of simplicial identities. This fact can be used to give a very
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different definition of a fimplicial sefl (and fimplicial mapy) than the one given below: a is given
by a sequence of sets X, for all integer n > 0 together with maps d;: X, = X,,—1 for all0 < i <n (n > 0)
and s;: X;, =& X,41 for all 0 < j < n (n > 0) such that the simplicial identities are satisfied, which are
obtained from the Eosimplicial idenftitied by reversing the order of composition and replacing superscripts by
subscripts. This definition was in fact commonly used during the early period of development of simplicial
methods, which obscured their geometric nature to newcomers.

7 Simplicial sets

Supplementary sources: [EIISS, §2, §3], [[CHM, §2, §3, §4].
Our goal in this section is to formalize pictures like this:

Namely, we have a bunch of simplices that may overlap only if their intersection is again a simplex, and the
ordering of vertices is respected, i.e., we cannot glue edges with opposite orientations. We only record the
combinatorial discrete data that shows how simplices stick together to each other, not their spatial position
or orientation. Such objects are known as simplicial sets.

Likewise, maps of simplicial sets (alias simplicial maps) can be thought of as piecewise-linear continuous
maps that map simplices to simplices just like in the definition of a geomeftric realization. However, once
again we only record the combinatorial discrete data (i.e., what simplex maps to what simplex), and not the
actual continuous map. This is entirely analogous to how we talk about [maps ol simpliced instead of their
geometric realizationd.

In particular, for any m we expect to have an associated fimplicial sefl, denoted by O™, which
“looks” just like m. Likewise, any [map of simplice§ f: m — n should give rise to a [map of simplicial setd,
denoted by @/: 3™ — @™, Furthermore, we expect that any [iap of simplicial setg of the form O™ — A" is
equal to O for some f:m — n. Thus, while fimpliced and fimplicial sefd are objects of a different type, we
could consider to be a special case of fimplicial sety: the set of [maps of simplicial sety A — A"
can be identified with the set of maps of simpliced m — n.

Suppose now that somebody else has managed to construct and as
described above. This means, specifically, that we are given a collection of things, called simplicial sets,
and for any pair of simplicial sets X, Y we are given a set Boml(X,Y") of maps X — Y. We have no way
of examining the internal structure of simplicial sets or maps between them. (For instance, we know the
cardinality of Baml(X,Y"), but if we pick a particular element of Baml(.X,Y"), we have no way to say anything
specific about this element.) We also assume that we are given all compositions of fimplicial mapd, namely,
for any X,Y, Z, we have a map Boml(Y, Z) x baml(X,Y) — Boml(X, Z) that performs the
role of composition. (Again, this map is a black box: we put in an element of Bom(Y, Z) and hoaml(X,Y)
and it spits out an element of Baml(X, Z) for us.)

Additionally, we assume that we are given simplicial sets ™ that behave as described above, in par-
ticular, we have bijective maps {m — n} — Eom(A™ "), where {m — n} denotes the set of all
m — n.

Even though we do not yet know what simplicial sets are, we could look at the set of
of the form ™ — X, which we denote by Xp,. For instance, for the above picture, Xo has 6 elements,
corresponding to the 6 vertices in the picture. The set X7 has 647 elements, where the 6 elements correspond
to the 6 maps ' — X that are given by the compositions B — B° — X for each of the 6 possible maps
O° — X, whereas the other 7 elements correspond to the 7 edges in the picture. The set X has 6 +7+ 742
elements, where the 6 elements correspond to the 6 maps given by the compositions 8% — % — X for each
of the 6 possible maps B° — X, the 7 + 7 elements correspond to the 7 - 2 maps given by the compositions
B2 — @ — X for each of the 7 possible maps B — X and 2 possible surjective maps B8% — @', and the
remaining 2 elements correspond to the 2 solid triangles in the picture.

Notice how we managed to extract quite a bit of information about the above picture just by looking
at the cardinalities of sets Xy, for various m. For instance, we already know that our picture must contain
6 vertices, 7 edges, and 2 triangles. What we do not know yet is how these vertices, edges, and triangles
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stick together. This is where the ability to compose comes in. Suppose f:m — n is a o=

pf_simpliced. An element of X,,, i.e., a A" — X, can be composed with the simplicial map
n @™ — I, yielding a of the form ™ — X. This gives us a map of sets X;: X;, = Xpm,

which is known as a fimplicial structure mapg. For instance, take f to be the only [map of simpliced 1 — O.
The associated pimplicial structure map X ¢: Xo — X3 sends the 6 elements of X¢ to their 6 counterparts
in X1, as we already described above. Likewise, the 6 + 7+ 7 out of the 6 + 7+ 7+ 2 elements of X5 can be
obtained via the map B8% — I@° and the two maps 8% — ',

The information about the endpoints of edges and faces of triangles can be extracted in a similar
manner, using [Mjective maps of simplice§ f:m — n. For instance, the two maps d!,d%: 0 — 1 yields two
maps dj,do: X3 — Xp. The visual meaning is as follows: an edge e € X; is depicted by an arrow that goes
from the vertex dj(e) to the vertex do(e). (Here the index of d denotes the vertex that is removed from the
edge, i.e., d; removes the 1st vertex and leaves the Oth vertex.) Similarly, the three maps dg, dy,d2: X2 — X3
send an element of X» (depicted by a triangle) to its edge that is opposite to the initial, middle, or terminal
vertex respectively.

Thus, we see that the collection of sets X, for all simplices m and maps of sets Xy for any
f:m — n captures pretty much everything we want to know about a pimplicial sefl: we know what
the simplices in the picture are and how they stick together. Since we are not concerned with a particular
embedding or orientation of a simplex in any kind of ambient space, this is really all we want to know. Thus,
we could say that a could be reconstructed from Xy, and X;. “Reconstructed” does not mean
that we can recover the original fimplicial sefl, but rather something isomorphic to it.

Not every collection of sets Xm and maps of sets Xy could possibly come from a simplicial set X.
For instance, given [maps of simpliced f:m — n and ¢g:n — p, we could compose the resulting maps
Xp:Xn = Xm and Xg: Xp — Xy, obtaining a map Xy o X4: X, — X,,,. When applied to an element of
Xp, le., a a:BP — X, we get

(X5 o Xg)(a) = Xf(Xy(a)) = Xf(aog) = (aog)o f=aoc(gof)=Xgp(a).

Thus, X5 o X, = X,or. Analogously, for any § € X, we have X@m,, (8) = foldm = 8 = (Wx,,)(5), so
Xm,, =ldx,_ . These two properties taken together are referred to as the property.

Thus, in order for a collection of sets X and maps of sets Xy to come from an actual Fimplicial sef,
they must satisfy the property given above. The definition of a below relies on
two insights:

e The data of X, and Xy is sufficient to reconstruct X;
e The properties of X, and X can be formulated without any reference to the nature of elements of X,

e.g., we do not have to assume that elements of X,,, are maps of any sort.

Definition 7.1. A simplicial set X is specified as follows. For any m we specify a set of m-
simplices of X, denoted by X,,. For any map of simpliced f:m — n we specify a simplicial structure
map X¢: Xy — Xm. We require that the following functoriality property for simplicial sets is satisfied:
(1) Xm@,, = WMx,, for any simplex m and (2) X4y = Xy o X, for any maps of simplices f:m — n and

g:n — P. Used in I3, =23, 3, 013, £, 69, B3, 7, £, £93, £, =3, &0, 5, 3, 63, 59, 00, 039, ET3, o, 323, =9, 53, 53, 53,

ET1, 3, 3, BT, s, W, B, B2n, 23, 23, T, =2, =3, 3, 03, o, o, O, oo, o, A, oo, oo, o013, O3, oS, o2,
A, =8, ==m, ==, oA, 2, e=n, 20T, 3209, o===3, o==a, 37050, =2m, ==, ==2u, OO0, e, B3, 0, o=, 03, o=, o5,

=8, o, o, [, e, 0, A, o3, 2733, o, 763, 0, 0, o, 2T, o=, 3, =1, =3, =37, O3, O, o, 23, &S,

BSC23, oI, ooed, oo, geera, 00T, o3, B2, o2, B3, oS, o, o3, B3, o, omm, IS, 52

Remark 7.2. The Fimplicial structure mapg X ¢: Xy, — X, reverses the order of m and n in comparison to
the f:m — n. We express this by saying that X is contravariant with respect to f. If such
a reversal did not happen, we would say that X is covariant with respect to f. Later these observations
will be formalized in the concept of covariant and contravariant uncford.

Remark 7.3. Notice how this definition completely eliminated all references to the original intuition behind
Xm and X;: for us Xy, is an “abstract” set and Xy is a map of “abstract” sets. In particular, we do not
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assume that elements of X, are maps of the form B™ — X. This is necessary: after all, we have not

defined what a is yet, nor have we defined the ™. This will be done below.
We certainly could not define without defining first, so in order to break the
vicious circle, we must not assume that elements of X, are fimplicial mapy. However, the above does not

mean that we throw away the original intuition. Rather, it will be brought back to us by the Yoneda Temma
(Cemma==T4), which uses the definition of Fimplicial setd A™ in Definifion 710 and fimplicial mapy given
below to prove that Xy, is isomorphic (not equal!) to the set of O™ — X. Used in =2, £,

Remark 7.4. If f:m — n is a degenerate map of fimpliced, we refer to Xy as a degeneracy map. Likewise
for Eacencsiond, which yield face maps. In Defniiion 610 we introduced a specific notation for Eacd
cmsiond and fegenerate mapg, namely, d™% and s™7 respectively, or simply d’ and s’, where m must be
deduced from the context. The associated Bimplicial structure mapg for a fimplicial sef] X are denoted by
dx . m, and sx m, or simply d; and s;, where X and m must be deduced from the context and ¢ and j are
now numbers whose meaning is explained in Nofafion G TTl. uvsed in =, ==, ===.

Remark 7.5. were defined in 1949 by Eilenberg and Zilber in [ESCTSH, §8|, where they are
called complete semi-simplicial complexes. This terminology is no longer in use, but the word “complex”
survives in many derivative names of constructions involving Bimplicial setd, such as ‘/Kan compley”’ and
“function compley”’. The adjective “complete” refers to the presence of degeneracy mapd; a semi-simplicial
complex (modern name: pemisimplicial sef], but here “semi” refers to the absence of Hegeneracy mapd, not to
the condition on vertices below) is defined just like a fimplicial sefl, but requiring all [norphisms of simplicey
to be [miectivd, without any Hegeneracy mapg. “Semi” refers to the fact that two different n-simplices can
have the same (n+1)-tuple of vertices. An overview of the relationship between Eimplicial setq and fimplicial
can be found in RI7. used in &=,

Remark 7.6. The advantages of over topological spaces in homotopy theory became clear
soon after their introduction. In his review of Kan’s 1957 paper [EanCSd] John C. Moore (of Borel-Moore
homology, Eilenberg-Moore spectral sequence, and the Milnor-Moore theorem) writes “In recent years it
has become evident that for most purposes in homotopy theory it is more convenient to use
instead of topological spaces.”

We proceed to define two interesting classes of examples of Fimplicial setd.

Definition 7.7. Any set S gives rise to a discrete simplicial set dis S such that (0ES), = S for any
m and (04 S)f = [ds for any [map of simplicey f. uvsed in =, £, &=, &1, E=9, m, =, ==, ©==m, ==, T2,

=3 CT=S. cI3.

The 0id.S can be visualized as a bunch of isolated points indexed by the elements of S.

Definition 7.8. The empty simplicial set (alias initial simplicial set) is defined as EI(). We abuse notation
and denote this again by (). The point simplicial set (alias terminal simplicial set) is defined
as @31, where 1 denotes any singleton set. Again we abuse notion and denote this by 1. uvsea

in B2, =9,

Remark 7.9. Below, we will define maps of simplicial setd, and will see that the 0 has a
universal property: there is exactly one ) — X for any X. Likewise, there is
exactly one X — 1 for any X. Later, we will define [nitial objectd and Eerminal

in any Eategoryl, and the initial and terminal simplicial sets will turn out to be initial and terminal
objects in the Eafegory of simplicial setq.

Definition 7.10. (The Yoneda embedding.) Given a simplex p, we define a AP as follows:
(@)1 is the set of morphisms of simpliced m — p and (AP): (AP), — (AP)yy, for a [morphism of simplicey
f:m — nis a map that sends an element g € (B@P),, (i.e., a morphism g: n — p) to the element go f € (BP),y,.

Used in 203, £, B=T0, £33, ©=I3, £=I3, I3, 3, 59, EI0, I3, £, B, K00, T3, 50, KI5, 53, BT, 0, 520, 523, £23, 03, o=, 2, [,

O, o2, o, o3, O, oS, o, 02, 0308, ==, 2207, ==e, O3, T3 059, 059, 0610, o0, o=, D27 er—=s. ez, B2, =S, =29,
I, e, 23, 23, 259, 252, =3, X, s, CX 5, e, 59, U7, g, e, BT, 623, 623, 62, B2 5T, ez, B3, B3, B0, ez, o232,
B, e, B, g, 553, B, BE T, B, e8, B3, B, Boa, Bod, B, BXoO, B0, B, B3, oo, KO, B, oorw, RO, escrm, BT,

3. . B2, 029, B=3. oo, 55T, oo, I3, I, oS,
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Example 7.11. The AP can be visualized in the same way that we previously visualized the
p. We now show how the internal structure of a can be visualized. First, we introduce
a notation for individual simplices of BP: such an m-simplex is given by a [map ol simpliced f: m — p, and
assuming m = {0 <1< ---<m}and p={0 < --- < p} are standard simplices, we denote f by its values
on all vertices of m, taken in their given order. For instance, the map f:[2] — [3] that sends 0 +— 1, 1 — 1,
2 — 3 is denoted by 113. We now use this notation to illustrate the low-dimensional examples of mfsimpliced
and pimplicial structure mapg.

e The I is visualized as a point 0. The only m-simplex of B° is denoted by a string of
(m + 1) zeros and can be visualized as a map that collapses the entire simplex m to the point 0. The
Bimplicial structure mapg are trivial in this case: a simplex collapsed to 0 is again mapped to a simplex
collapsed to 0, both of which are represented by strings of zeros.

e The ' is visualized as a line segment:

—>—e
0 1

The O-simplices are {0,1}, visualized as the dotted points in the above picture. The only
for 0-simplices are degeneracy maps: applying the degeneracy map s several times to a
0-simplex 0 or 1 yields a string of several 0’s or 1’s, which represents an m-simplex crushed to a point
and mapped to the same vertex. The 1-simplices are {00, 01,11}, where 00 and 11 should be visualized
as 1-simplices crushed to points 0 and 1 respectively, whereas 01 is the interval in between. The
d; takes the initial character: d;(00) = d;(01) =0, d;(11) = 1. Likewise, do takes the last character:
do(00) = 0, dp(01) = do(11) = 1. The Hegeneracy mapd duplicate the corresponding characters. For
example, s¢(01) = 001, s1(01) = 011. The 2-simplices are {000,001,011,111}, where 000 and 111 are
visualized as 2-simplices crushed to points 0 and 1 respectively, whereas 001 and 011 are visualized
by the same pictures as in [Example 6.0. The [ace mapy throw away one character (corresponding
to the vertex given by the subscript) and the Hegeneracy mapg duplicate a character: do(011) = 11,
d;(011) = d2(011) = 01, sp(011) = 0011, s7(011) = s9(011) = 0111.
e The O3 is visualized as a triangle:

2

£

0 1

The 0-simplices are {0, 1,2}, corresponding to three vertices in the picture. The 1-simplices are
{00,01,02,11,12, 22},

where 00, 11, 22 correspond to 1-simplices crushed to a point and mapped to the corresponding vertex,
whereas 01, 02, and 12 correspond to the three edges of the triangle. The 2-simplices are

{000,001, 002, 011,012,022, 111, 112, 122, 222},

where 000, 111, 222 are visualized by 2-simplices crushed to a point and mapped to the corresponding
vertex, 001, 002, 011, 022, 112, 122 are visualized by 2-simplices crushed to a 1-simplex as in [Example 6.9,
and then mapped to the corresponding edge of the triangle, and 012 represents the interior of the triangle.

Used in B==23.

Remark 7.12. In this definition one can see the ideology of Bemark 73 applied quite literally: (B),, was
defined as the set of maps m — p. The property follows immediately from the
and properties for naps of simpliceq.

Exercise 7.13. Compute the cardinality of (AP ),, in terms of MM p and Cd m.

We now define a nontrivial fimplicial sef], the fimplicial spherd S™. An n-dimensional sphere is A" with
its boundary (to be defined precisely below) “collapsed” to a point. We illustrate this with the
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AN

0 1

In this case, the boundary consists of the three vertices and edges between them. Imagine that the entire
boundary is gradually folded and then glued together. The result looks like a xidoléongbao dumpling without
a filling, or a sphere with a distinguished point, namely, the vertex to which the boundary was collapsed.

Soon we will define what it means to collapse the boundary in a completely general fashion, but for
now we resort to an ad hoc definition. Thus, we should have (defined in the next section)
O — S and B° — S, where the latter map picks the single vertex to which the boundary was collapsed.
Any map B8 — S" should factor through the collapsing map B — B® — S, All maps f:@8 — @™ that
are not land inside the boundary of B® and therefore denote the same map B8 — S™.

Definition 7.14. The simplicial sphere S* € ESell of dimension k (k > —1) is defined as follows. If k = —1,
we set S1 = ). Otherwise k > 0 and we set S¥, = {x} U Motiy(m, K)grreetmg, where the subscript surjective
means we only take the furjective maps of simpliced. The pimplicial structure map S’}: Sk — Sk for a map

of simplices f:m — n is defined as follows: S%(x) =  and for « € MaTgy(n, K)greereg we set

Sk (a) = ao f € Madm(m, k), «o f is a purjective map ol simpliced
S *, otherwise.

Used in =T33, =12, B, 02, I3, 013, =23, I

This definition is quite verbose. Below we develop a much more efficient way to specify such
Eets.

Exercise 7.15. Formalize the following picture as a X, ie., give an explicit definition of
sets Xm and simplicial structure maps Xy and prove that the functoriality propertied in the definition of

Eimplicial sef] are satisfied.

Used in =21
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8 Simplicial maps
Supplementary sources: [EIISS, §2, §3], [[CH, §2, §3].
Definition 8.1. A map of simplicial sets (alias morphism of simplicial sets or simplicial map) f: X — Y is

a family of maps of sets fu: Xm — Ym (indexed by a simplex m) such that the following naturality property
for simplicial maps is satisfied: for any map of simpliced g: m — n the following diagram commutes:

X, 2 X,

W |

Yo 2 Y,

Used in B3, I3, £, £=9, ZI31, £32, £3, E3, E0, £, E3, B0, B, B9, B3, B, B, 0, 0, 9, 23, 23, X, moa, O, o3, o=,

B, e, seem, BT, s, s, suom, 5T, o, ooy, oo, B

Definition 8.2. The set of all jnorphisms of simplicial setd X — Y is known as the hams=sefl (hom for homo-
morphism) and is denoted by Baml(X,Y") (another notation: Mo1(X,Y"), where Mad stands for morphisms).
If X is a and f:Y — Z is a fimplicial maf, then hom(X, f):bom(X,Y) — ham(X, Z)
(9 — fog) and boml(f, X):Eoml(Z, X) — Bam(Y, X) (g — g o f) denote the maps of sets induced by
composing a given element of the hom=sefl with the I

Warning 8.3. should not be confused with [maps of simplice. The former are between
Bimplicial setd, the latter are between Bimplices.

Definition 8.4. The identity map of a simplicial set X is the map idyx: X — X such that ([dx ), = dx
The composition of simplicial maps f: X —Y and ¢:Y — Z is the map go f: X — Z such that (go f)m

dm © fm Used in =3

m’

Remark 8.5. The ssociativity and unilalily properties are satisfied for fompositiong and [dentity mapg:
idyof = folldx = fand (go f)oe=go (foe) for all fimplicial mapg e:W — X, f: X =Y, ¢:Y — Z.

Used in T3

Example 8.6. A f:8 = T induces a 09 f:@dS — HEE97. Indeed,
(0 f)y: (@S)y, — (ET)m

should be a of the form S — T, for which we can simply take f. We have Hid(go f) = Bidgold f
and Eﬂ(ms) = %s.

Example 8.7. Recall the definitions of () and 1 from Definifion 78. From the definition of a
we immediately deduce that for any X there is exactly one map ) — X and exactly one map
X — 1. The proof boils down to observing that for any set A there is exactly one function ) — A and
exactly one function A — 1 (here ) and 1 denote the empty respectively singleton set).

Definition 8.8. Given a [map of simpliced f: m — n, we define a o R N by setting
@) p: (B™), — (@), to the that sends an element a: p — m to the element f oa:p — n.

Remark 8.9. The order of m and n in B : @™ — @ is the same as in fim — n. We say that i depends
covariantly on f. Later, we will formalize this using the notion of a covariant unctod.

Exercise 8.10. Verify that the above formula indeed gives a and show that B%°/ =9 o 8/
and O™ = [dggm.

Example 8.11. We construct a B:O™ — S™. Given a of @A™, ie., a
a:k — m, we must construct a of S™, which according to [Definifion 7 T4 can be either
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* or a furjective map of simpliced k — m. If a is surjective, we take 8(a) = a. If a is not surjective, we take
Bla) = .
Exercise 8.12. Verify that the above formulas indeed give a Fimplicial mag.

Example 8.13. Any f:S* — S2 must factor through the base point b:8° — S2 of S2, i.e.,
the following diagram must commute:

where ¢: ST — B° denotes the unique map. Indeed, both 1[Simpliced (degenerate and not) of S* must map to
the only (degenerate) 1[STmpley of S2, and the value of f on all higher-dimensional simplices is determined
by its value on 1fsimpliced by the haturality property for simplicial mapy. used in &=z

Lemma 8.14. (The Yoneda lemma.) Consider a X and a simplex m. The canonical map of
sets

Ym: LOm(A™, X) — Xy,
that sends a [map of stmphicial setd f: @™ — X t0 ym(f) := fm(lBm) € Xy is an isomorphism. uvsed in =2, =,

. A =0, =23, XA =3, A, o, BT, BT, o,

In other words, elements of X, can be canonically identified with [maps ol simplicial sety O™ — X,
which yields a formal justification of Remark73.

Proof. To establish injectivity, suppose that f,g:l8™ — X are such that ym(f) = fm([@m) = gm([{[dm) =
ym(g). To show that f = g, we must demonstrate that fx = gx: (@) — Xi for any k. To this
end, we pick an arbitrary element h € (B@™)y, i.e., h:k — m and verify that fx(h) = gk(h). By definition of
@™, we have h = @y, oh = (B@™),([dy,), so fk(h) = fi((@™), (M, )). The [aturality property for simplicia
applied to ™ — X says that for any [map of simpliceq 7: p — q the square

@) 2 @),

| |4

Xp 2 Xq

commutes. If we take r = h above (so p = k and q = m), then

Si(@)p (@) = Xp(fm (@) = Xn(ym(f))-
Since Ym(f) = ym(g), we have (by the same argument with g instead of f)

Xn(ym(f)) = Xn(ym(9)) = Xn(gm ([ dm)) = g1 (@) ([(m)) = gx(h),

so fx(h) = gk(h) as required.

To establish surjectivity, suppose that a € X,,. We want to construct a [map of simplicial sety f: O™ — X
such that ym(f) = a. Thus, given a simplex k, we must construct a Ji: (@) — Xy. By
definition, (™)), = Eoml(k, m), so the map reads fi:Bom(k, m) — Xj. Given h: k — m, we must construct
fx(h) € Xx. We set fx(h) = Xp(a), where X},: X — Xx is a fimplicial structure map of X. We have
fm([[@dy,) = X@,, (a) = a, so the image of f under yy, is indeed a.

To show that the Ji: (@) — Xx constructed above assemble into a
f:@™ — X, we must verify the paturality propertyl, exhibited by the above commutative square, for an

arbitrary [map of simpliceg 7: p — q. Expanding the definition of B3™, the diagram reads

EGw(p, m) Baw(q, m)

n 5

Xp 2 X,

Given b € (@™)q, i.e., b:q — m, we evaluate both compositions on b and verify that the results are equal.
Indeed, fo (@), (5)) = fo(bo 1) = Xpor(a) and X, (fq(b)) = X,(Xp(a)) = Xpor (). |
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Example 8.15. Consider the following X (a lasso):

1
S
0 6 2

We have Xo = {0,1,2}, and Xy = {00,11,22,, 5,7},
X2 = {sps0(0) = 000,s0s0(1) = 111,080(2) = 222,802, 810,800, 815, S0y = 221,817 = 211}.

The corresponding can be described as follows:
e For Xy, the fimplicial mapg B° — X send the only element of B2, = {0...0} t00...0,1...1,0r 2...2
respectively. In particular, evaluating at the only element of Iﬂg = {0} gives back the original vertex 0,
1, or 2 respectively.

e For X7, the ' — X corresponding to 00, 11, and 22 send all elements of ﬂ}n to0...0,
1...1, or 2...2, respectively. In particular, evaluating at the element 01 of 7 = {00, 11,01} gives
back the original 1-simplex 00, 11, or 22 respectively. The @' — X corresponding to 21
sends an element 0...01...1 of IN:n to 2...21...1, with the same lengths of digit strings. In particular,
evaluating at the element 01 of B3 = {00, 11,01} gives back the 1-simplex 21. The

@' — X corresponding to o and 3 send an element 0...01...1 = sfs’(01) (with k zeros and [ ones,
k+1+1=m) to the element sks () (respectively 3) of Xu. In particular, evaluating at the element 01
of Iﬂi gives back the 1-simplex « respectively S.

Used in &===x3.

Corollary 8.16. Suppose f:m — nisa and X is a fimplicial sefl. The fimplicial structurd
prap X7: X — X is isomorphic to the map

Eom(B, X ): Bom(”, X) — Eom(B™, X)

given by precomposing with the simplicial map B8/: 8™ — [".

Proof. The following diagram commutes for any [map of simpliced f: m — n:

Ecm(@f, X)
_—

Eam(@”, X) Eam(0™, X)

fon(Bn)l Jerfm(Em)
Xp —— s Xp.
Indeed, if a: 8" — X is an arbitrary element of the upper-left corner, then we have

Eom(@, X)(a) = a o : O™ — X,

Ym(a wa) = («a wa)m(mm) = am(w{n(mm)) = am(f oldm) = am(f),

while
yn(a) = an(mn>7

Xp(an(@n)) = am (@ () = am([@n of) = am(f),

which proves that both compositions are equal. By the Yoneda Temmd the vertical maps y,, and y, are
isomorphisms, which proves the claim. |
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Corollary 8.17. Suppose m is and r: X — Y is a fimplicial may. The [map of setd rm: Xm — Ym
is isomorphic to the map

hom(O™, r): Fom(A™, X ) — Eom(@™,Y)
given by postcomposing with the simplicial map 7.
Proof. The following diagram commutes:

Eem(@m™, ) o®r,

Eom(B3™,Y)
P fo @) | [ 7+ )
X — 2 Vi
By the Yoneda Temmal, the vertical maps are isomorphisms, which proves the claim. |

Exercise 8.18. Prove that the last diagram commutes.

Example 8.19. If S is a singleton, then 1 = EE .S is isomorphic to B°. In general, the ms s
can be depicted by a collection of points, e.g., for Ei3{0, 1,2} we would have

o 1 3

A map of sets f: S — T yields a map of simplicial setd Hd f:MdS — d7T. We have HdId,, = idgm, and
Md(go f) =ddgo M f.

Exercise 8.20. The pimplicial sefl X in Exercise 711 has five 1fsimpliced, i.e., the set X; has cardinality 5.
For each of those five 1[Simpliceg describe the map B — X produced by the Yoneda Temma explicitly,
indicating where each simplex goes.

Summary 8.21. (The Yoneda yoga.) We summarize the yoga of the YonedaTemmd in the following table,

where f:m — n is a [map of simplice§ and g: X — Y is a fimplicial may):
m ™
fim—n o/ .@™ — @n
o€ Xy o™ — X
Xi(a) € Xm aol:@™ — X, ie., the composition O™ — O — X
gm(@) € Yin goa:@" — Y, ie., the composition A" — X — Y
functoriality property tor simplicial setq
Xgoy = X5o0X, Bssociativity] of the Eomposition A™ — A" — AP — X
X@,, =Mdx,, [mitality] of the fomposition A™ — @™ — X
paturality property for simplicial mapy
fmoXy=Y 0 fu Bssociativity of the Eomposition A™ — A" — X — Y

The left column indicates the state before moksha, whereas the right column is the enlightened version,
where everything is translated in the abstract language (with no access to the internal structure of these

objects) of fimplicial setd, fimplicial mapd, and their properties of fSsociativity] and Enitality]. used in s=.

Remark 8.22. The point of the is that one can for the most part forget about the internal
structure of fimplicial setd and fimplicial mapg as exhibited by the left column and use exclusively
like ™ — O™ — X — Y in an abstract fashion as exhibited by the right column. This also applies
to Fimpliced and [maps ol simplices: for the most part, one can just use B™ and ¥ and not mention m
and f. Notice that maps of simpliced m — n are in canonical bijection with A" — A", so
this does not create ambiguities. In particular, terminology, notation, and definitions we made for
and [maps of simpliceq can be extended to their images under the [Yoneda embedding. For instance, we could
talk about Hegenerate mapd ™ — O" (instead of m — n), and likewise for EaceInclusiond, etc.
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9 Generators and relations for simplicial sets

An n-dimensional simplex has 2"*! — 1 [ondegenerate simplice§ and the number of its k-simplices
(degenerate or not) grows exponentially with k. Spelling out the details of such constructions is cumbersome,
especially if more than one simplex is involved. In this section we introduce a mechanism that allows us to
specify by listing their pondegenerate simpliced and how they glue together.

To illustrate this idea, consider the following picture:

J\/B M
Q@
Specifying the of such a directly would be cumbersome and error-prone. What

we would like to say instead is that the above is obtained by gluing two 2fsimpliced o and
along the diagonal 1fsimpled, which happens to be the 1st face of both 2-simplices (i.e., the face opposite to
the middle vertex). The following definition formalizes this idea.

Definition 9.1. A system of generators and relations for a simplicial set is specified as follows. For any
m we specify a set of generating m-simplices Gy,. For any [maps of simpliced f:m — n and g:m — p
we specify a subset Ry, C Gy X Gp. Used in o=, .

Example 9.2. For the depicted above, a Eystem of generators and relationg can be specified
as follows: G2 = {«, 8} and Ryp1a g0 = {(, )}, whereas all the other sets are empty.

Remark 9.3. The pair (G, R) in the previous example means that the resulting should have

2Fsimpliceq labeled a and 8 and they should satisfy d;(«) = d;(3), which refers to the diagonal 1[sImplex.
In practice, this type of description is used instead of the more formal description above.

Informally, the X generated by (G, R) can be described as follows. Any element x € Gy
should yield a pimplicial mag u(x): @™ — X, equivalently by the Yoneda Temma, an element u(z) € Xpm.

The subset Ry, indicates pairs of simplices that should be identified. More precisely, if (z,y) € Ry g, then
in the resulting X the simplices u(z) ol and u(y) o should be equal (both are maps of the
form @™ — X). We formalize this as follows (using the Yoneda lemma to identify o™ - X
with elements of X,y).

Definition 9.4. A pair (X,u), where X € ESell and v is a family of maps of sets um:Gm — Xm for
every simplex m, is a solution for a system of generators and relations (G, R) if for any f:m — n, s € Gy,
g:m — p, t € Gp such that (s,t) € Ry, we have X¢(un(s)) = X4(up(t)), which is expressed by the following
commutative square, where uy(s) and up(t) were converted by the Yoneda Temma:

f
o %, po

o o

e Y x,

A morphism of solutions (or a solution-preserving map) (X,u) — (X', u’) is a simplicial map w: X — X’
such that for any simplex m and z € Gy, we have wpy (um(x)) = u, (z). Using the NYonedaTemma, we can

reformulate this relation as follows: Am
u(a% \u'(z)

XT)X’.

Used in 023, 223,

A Polufion for a system ol generators and relationy is highly nonunique. For instance, if (X,u) is a
solution for (G, R), then we could add some junk to X using a disjoint union construction and get another
solution. A related problem is that the solution can be trivial: for instance, for any (G, R) the pair (B@°,u),
where u is the only possible map, is always a solution. To address this problem, we must ensure that X is
not too big (e.g., does not have any additional junk in it like in the first example above) and not too small
(e.g., does not collapse everything to a point like in the second example). The uniqueness condition in the
definition below achieves the former and the existence achieves the latter.
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Definition 9.5. The simplicial set generated by a system of generators and relations (G, R) is a solution
(X, u) for (G, R) such that for any other solution (X', u’) there is exactly one morphism of solutions (X, u) —
(X,, u'). Used in ICEA, 00, =22, ©==22.

Below we will prove the existence of such a solution. On the other hand, uniqueness is almost trivial.

Lemma 9.6. If (X;,u;) and (X3, uz2) both satisfy the above definition, then there is a unique isomor-
phism between them, i.e., there are unique morphisms of solutions f: (Xy,u1) — (X2, u2) and g: (Xa, us) —
(X1,u1), and, furthermore, go f =W x, ) and fog = x, yu,)- Used in =1, =,

Proof. The existence and uniqueness of f and g is a part of the definition of a fimplicial set generated by
R svstem of generators and relationd. Observe now that g o f and id(x, .,) are both morphisms of solutions
(X1,u1) — (X1,u1). By the same property, there is exactly one such morphism, therefore g o f =i (x, u,)
and likewise f o g = x, u,)- 1

We now illustrate this definition with several examples.

Example 9.7. The pimplicial spherd S™ of dimension n > —1 that we defined in Defmifion 7 T4 explicitly
can be now given the following alternative definition: S™! = () and for n > 0 the S™ has a
generating O-simplex v and a generating n-simplex s. The relations are d;(s) = s~ ' (v) for all i € U(n). veea

in E===23.

Example 9.8. The 2-dimensional torus, Klein bottle, and real projective plane are specified using the fol-
lowing schematic diagrams.

b b b
> < <
az\ﬂ A Q a/;\/B A Q az\ﬂ Y a
(0% (% «
> > >
b b b

In all three cases we have a pair of 2-simplices o and 3 with some relations between them. In particular, we
have:

e Torus: d;(«) =d;(B) (the diagonal), dg(a) = d2(8) (a), da(«) = do(B) (b);

e Klein bottle: d;(a) = da(8) (the diagonal), do(a) = d1(B) (a), d2(a) = d1(8) (b).

Used in ©0m, 503, £2000, 6599, 09, ==,

Exercise 9.9. Write down the generators and relations of the real projective plane (the third picture above).

We now illustrate the point that a pondegenerate simplex can be identified with a degenerate simplex.

Example 9.10. Consider the generated by a single 2[stmplex « with relations dg(a) = da(«)
and di (o)) = sp(d1(d1())). The first relation identifies the Oth and 2nd edges of a, as depicted below by the
letter a. The second relation collapses the bottom edge to a point: d;(«) is the bottom edge, d;(d;(«)) is
the bottom left vertex, and sg(d;(d;(a))) denotes the degenerate 1-simplex based on the bottom left vertex.
The second relation therefore collapses the bottom edge to the bottom left vertex.

A

So

Once we define fimplicial weak equivalencesd, this fimplicial sef] will be shown to be weakly equivalent to the
feal projective pland defined in Example 9.3. This only has a single nondegenerate 2-simplex,
whereas the defined in has two nondegenerate 2-simplices.

Exercise 9.11. Write down the generators and relations of the following with infinitely many
simplices, the infinite grid (the picture extends indefinitely in all directions, only the shaded triangles depict
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the Fimplicial sefl, whereas the unshaded triangles depict holes):

Used in E==33.

Exercise 9.12. Write down the generators and relations for the orientable surface of genus g. (For g =0

one should take the S2, but here we assume g > 1.) It is given by a self-gluing of a polygon
with 4g sides, which are identified as depicted below for g =2 and g = 3. uvsed in =3, e==.

a b b a

d c e’y

Exercise 9.13. Write down the generators and relations for the nonorientable surface with g crosscaps.
(The case g = 0 is excluded, because it would give the Fimplicial spherd S? (which is orientable), so we
assume g > 1.) It is given by a self-gluing of a polygon with 2¢ sides, which are identified as depicted below
fOI‘ g = 4 and g = 6. Used in oo, X

Exercise 9.14. Write down generators and relations for a triangular sopapilla and triangular empanada. A
triangular sopapilla looks like a pair of triangles glued together along their boundary. A triangular empanada
looks like a stuffed sopapilla, i.e., the space between two triangles is filled. Additional requirement: you may
only use two generating simplices for the sopapilla and a single generating simplex for the empanada. uvsed in
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10 Simplices of a simplicial set

Supplementary sources: [EIISS, §3], [[CHT, §3].

Recall that a simplex of a simplicial set X is an element of X, for some simplex n, or, equivalently by
Cemma X 14, a simplicial map B" — X. If n is fixed, we talk about nfsimpliceg of X. We can also use a
natural number n instead of a simplex n, takingn={0<1<2<--- <n}.

Warning 10.1. should not be confused with Fimplices of a simplicial sef. The latter “live”
in a given X, whereas the former are “disembodied abstract simplices” and are homeless.

A simplex n in the former sense yields a A" and the YonedaTemma tells us that maps B@" — X
can be identified with nfsimpliced of X, i.e., simplices in the latter sense. When we say “nfsimpleq of ...”
or “nfsimplexy of ...” we always use the latter meaning.

Definition 10.2. An s:@™ — X is degenerate if there is a furjective map of simpliceq f:m — n
that is not an isomorphism and an #:3" — X such that t o = s.

£y

AmT)X

Used in 03, 3, o3, oo, o2, oo, [0, T, g3, 210, 2228, 22, 2229, g, .

Remark 10.3. The term “degenerate” is motivated by the fact that the “image” of a degenerate simpley
s:@™ — X has dimension less than m. (This will be made completely precise later when we define images
of pimplicial mapd.) For instance, a degenerate 1-simplex looks like a point (vertex) inside X, a degenerate
2-simplex may look like a point or 1-simplex inside X, and a degenerate 3-simplex may look like a point,
1-simplex, or 2-simplex inside X. Thus suggests the following: any degenerate simpley s: @™ — X has as
its “image” some pondegenerate simpley t: A" — X, where n < m. Furthermore, ™ should map to A" via
some Burjective map of simpliced that may not be an isomorphism if s is degenerate. This idea is formalized
by the following proposition.

The following proposition has a simple geometric interpretation: any mfsimpleq of a fimplicial sefl X
has a well-defined “image”, which is itself a simplex of X, of dimension (termed “rank” by Eilenberg and
Zilber) at most the dimension of m. Its proof, however, is surprisingly tricky.

Proposition 10.4. (Eilenberg and Zilber [ESCSH, 8.3].) Every mfsimpley is a unique degeneration of a
unique nondegenerate simplex. In other words, for any X and for any simplex s:@™ — X
there is a surjective map of simplices f: m — n and a nondegenerate simplex ¢: " — X such that s = to¥/:

The pair (f,t) is unique up to a unique isomorphism: if (f":m — n’, ¢ o - X) is another such pair, then
there is a unique isomorphism of simplices h:n — n’ such that ho f = f’ and ¢/ o A" = ¢:

Am
J An
AR
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Used in =3, BEUA.

Proof. We claim that any pair (f,t) for which dimEadom f is as small as possible is a pair for which ¢ is
nondegenerate. Indeed, if ¢ is itself degenerate via some pair (g, u) (meaning t = uog), then the pair (go f,u)
would have the same properties and Himdkadoml g o f < dimkadom f, which contradicts minimality:

T4

AHT)AP

Suppose now that (f/,t’') is another pair with the same properties. By Exercise 68, the surjective map
f respectively f’ has a section g:@" — O™ respectively g/:ﬂn/ — O™, ie., fog =Idgs and fog =
idy. . We claim that h = f' o g:B@" — O is the desired isomorphism. Indeed, to f = s = t' o f/, so
(t'ofYog=tofog=t,ie.,t oh=t. If we factor h into a surjection a followed by an injection b using
Cemma B4, i.e., h = boa, then a must be an isomorphism because otherwise ¢t would be degenerate. Thus, h
is injective, so dmdom h < CimEadom A, i.e., Mdn < Emn’. A symmetric argument yields dimn’ < Bmdn,
so Hmn = Hdn’. Since h is injective, it must be an isomorphism.

The isomorphism h is unique because there is at most one isomorphism between any two simplices. We
have ho f = (f'og)of = f'o(gof)=f', ie, hof = f'. Toshow that hof = f'ogof = f', observe that
g can be chosen to be arbitrary as long as fog=H. If f'(g(f(:))) # f'(i) for some i € m, then choose g so
that ¢ = g(f (7)) and compute f'(z) = f'(g(f(2))) # f'(i), a contradiction. |

Exercise 10.5. Which of the simplices of S are Hegeneratd? (Give a complete proof of your claim.) For
every [degenerate simplex determine its Eilenberg—Zilber presentation, as in [Proposition 10.4. Same question
for @™ and E{.S.

11 Categories

Supplementary sources: Lawvere and Rosebrugh [EETY], especially §1. Aluffi [ZERQ, §1.3]. Also see
[CATS, §4] for examples.

One cannot but observe a certain repetitiveness in the definitions of [maps of simpliced and Eimplicial
praps: both Exercise 73 and Bemark X1 say essentially the same thing, but in a slightly different context.
Below we will see many more examples of this type, e.g., for Ehain mapd, maps of Eroupoidd, etc. Rather
than repeat these properties ad nauseam, we bring out the underlying abstract notion.

Definition 11.1. (Eilenberg, MacLane, 1945.) A category C is specified by the following data and properties.

o A Eollectiod Ob(C) of objects. We write X € C instead of X € OOBH(C).

e For any objects X,Y € OH(C) a set of morphisms (alias hom-set) Morc(X,Y) = homc(X,Y), which
can also be denoted by C(X,Y). We write f: X — Y instead of f € Moic(X,Y). We also write
dom f = X (the domain of f) and codom f =Y (the codomain of f). Morphisms are also known as
maps or arrows.

e For any objects X,Y, Z € OH(C) an operation of composition

o: M@l (Y, Z) x Madc(X,Y) — Masc (X, Z).

We write g o f instead of o(g, f).
e For any object X € OH(C) an identity morphism idx: X — X.
e Composition is associative: for any f:W — X, ¢:X = Y, h:Y — Z we have (hog)o f =ho(go f),
for which we may write h o g o f instead.
e Composition is unital: for any f: W — X we haveldx of = folldy = f.
Used in 223, =3, XA, 03, =3, 03, =3, 53, =3, 32, B0, 3, o, O, 3, 3, 69, 132, 13, 53, B3, B3, B0, B, B3, B, e, B3, 5512,
ETA, =m, =20, o, 03, 3, o=, o2, =3, 008, 000, 03, =S, 059, O, =0, o=, o=, oo, oS, oo, 5, o=, o=, o=,
o, T, ore—m, o=, 23, =3, OO, oo, 022, 023, 023, 020, 022N, om, e, O, o, O, o, 07, oo, e, =0, m=2n, 2o,
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. oS, T 2. 7. DO, e, e, T, e3. g3, O, 29 e, 3. e, eT2n. B2l B2l B2 B8, DT TR, e,
=, 53, D571, 258, 2o, e, BT, g, e, D, ero. e, B, BT, eom, enera, DT eomra, e, el e, DT ez, en2s. e,
po=m, DRSO, =, psa, Do, Do, DEm, 7, 3, D, e, e, =3, DO, D7, e, o, DA, DT, DT, ez, oo, B, ooem,
. 3. =3, 0. =0, =0, 0. 3. .3, .3, B3, 653, 650, G0, 2, O, oD, o, @D, OO0, o3, o2, o3, O o=, I,

. I, O, £S3. £, O3, 602, 3, 0213 2=, B3, =3, 3.

Remark 11.2. A collection above refers to a set-like entity that can be too large to be a set. For instance,
there is no set of all sets by Russell’s paradox, but there is a collection of all sets. In the Zermelo—Fraenkel
set theory such “large” sets are known as classes. A proper class is a Easd that is not a set. A small category
is a whose Elasd of is a set (as opposed to a proper class), which implies that the EIasd of
all is also a set. A finite category is a whose EIasd of jmorphismg is a finite set, whcih
implies that the Elasd of is also a finite set. vsed in ==, ==, ==, ==, =9, =@, e, =, Eem, =, T, e,

o1, B3, BN, BTh, oD, I, oD, 62, 63, o3

Remark 11.3. Occasionally, a variation of the above definition is used: instead of specifying the set of
MModc (X, Y) individually for all X and Y, we specify the Eallection of all norphismd, denoted by
Ma1(C), together with two maps of collections, the domain map Homd: Maod(C) — OH(C) and codomain map
Eadom: Mo1d(C) — OH(C). is then defined for all pairs (g, f) such that Homlg = Eodom f. In
this case, Homl(go f) = o f and Eodom(go f) = tadomd g. Likewise, Homl(idx ) = X = Eodond(Edy ). In this
definition, we must additionally require that Moic(X,Y) := {f € Mod(C) |Hom f = X Abodomd f =Y} is
a set and not a proper class. Some authors do not impose this condition and refer to our variant as locally
small categories.

Remark 11.4. Morphisms are composed from right to left: if f: X — Y and ¢:Y — Z, then go f: X — Z.
This is to accommodate Euler’s notation f(z) for the value of a f at an element x. Thus,
(go f)(z) = g(f(x)). If we wrote composition from left to right, we would have to write (fog)(z) = g(f(x)),
reversing the order of morphisms, which is error-prone.

Another way to see why morphisms should be composed from right to left is to fix a singleton set 1,
e.g., 1 = {0}. 1 — X can be identified with elements of X: given a map 1 — X, its image
is a singleton subset of X, i.e., an element of X; vice versa, an element z € X gives rise to a unique map
z:1 — X whose image is a singleton subset {z} C X. We have f(z) = f o, as long as morphisms are
composed from right to left. Otherwise we would have f(z) = Z o f, which is annoying.

Example 11.5. The primordial is the category of sets Set.
e OH(B=D) is the Easd of all sets.
Mot (X, Y) is the set of all functions from X to Y.
The operation of is the standard composition of functions.
The [dentity morphismy of a set X is the identity function on X.
As established in elementary set theory, the composition of functions is again a function, and the
operation of composition is associative and unital.

Used in 029, 09, t=3, [0, 023, 023, 029, 09, 029, 0200, 00, 7, 008, 050, 00, 003, 0T, 0, o, O, o=, I, o3, T2,

XM, =1, g0, A, 28, =3, 253, 2oy, o2, D25, eoe=T, B, GO, B3, B3, BIIm, 623, B2, B, =8, B, 623, X3, o3, 63

Warning 11.6. In the above example, the word “function” is used in the modern sense, which is synonymous
with the word “map” (of sets). In particular, a function always “knows” not only its Homaid, but also its
Eodomaim, which stands in contrast to more archaic meanings of the word “function”. Additionally, the
composition g o f only makes sense if g = f, which is once again very different from the archaic
usage. See for more information.

Definition 11.7. A f: X — Y in a category C is an isomorphism if there is a morphism g: Y — X
in C such that go f = EX and f o0g = my. Used in £, CI=9, CZ=T0, =3, B3, 2303,

Example 11.8. In the Y are precisely pijective maps of setg.

Example 11.9. The category of abelian groups Ab is defined as follows.
e OH(BD) is the Easd of all abelian groups.
o DMotyp(X,Y) is the set of all homomorphisms from X to Y.
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e The operation of is given by the composition of underlying maps of sets.

e The [dentity morphisny of a set X is the identity homomorphism on X.

e As established in elementary algebra, the composition of homomorphisms is again a homomorphism and
the resulting operation is associative and unital.

Used in =9, [T, =32, =23, 203, m, oo, O, O, e, Em, S, e, =23, X, oo, 03, DO, e, 2on, 2o, 2erm, 23, 22,

The category of groups Group and the category of monoids Monoid (groups without inverses) are defined
analogously. Likewise for the category of rings Ring as well as the category of modules Modg over a ring R.

Example 11.10. The category of simplices A is defined as follows.
e OH(I) is the Elasd of all fimpliced.
e DMoty(m, n) is the set of all naps of simpliced m — n.
e The operation of is given by the composition of [naps of stmpliceq.

e The [denfify morphism of a fimplex m is the identity map of m.
e [Associativity] and fnitality] were shown in Exercise 273.

Used in =23, =0, CI9, 29, 020, 029, 029, 0=, X070, o, e, 5, o5, oS, O, 020, T2l, TS0, 2oerd, Boos, DEUE, o==1, o=, 2==3,

=3, 2=, X537, s, =3, B, =08, oS, 2SIm, BN, B3, B2, B3, B3, e, BTm, BETEA, Bz, B, e=mm, .

Warning 11.11. The letter [N, which denotes a Eategory], should not be confused with the letter B, which
denotes a bmcton (defined below), which sends an object m of N to a ™. The typographic
distinction between N and @ is admittedly subtle, but many sources make no distinction whatsoever. Goerss
and Jardine use A and A instead of ¥ and B, whereas we follow our established notational conventions for
Eategoried and Eunctord respectively.

Example 11.12. The category of simplicial sets sSet is defined as follows.
e [OH(ESed) is the Easd of all fimplicial sets.

o DMoteem(X,Y) is the set of fimplicial mapy X — Y, also denoted by haml(X,Y").
e The operation of is given by the composition of pimplicial map4.
e The [denfity morphism of a fimplicial sef] X is the identity of X.

e [ASsociativity and fmitality] were verified after Delinifion X4,

Used in 9, =3, £33, 2, O3, 023, 29, 2, IS, o, A, o, =m0, e, oo, O, oo, [T, e, oo, 03, o039, o,
[ B o = R = O == R e e R = R e = o s Y . e Y . i . e . I - e N m e s R v a2 I v i N m <= R e R = R . B e N e vz P v e
X3, o3, eozn, DEDET, eo=u, 23, 253, =9, X530, =0, XX, =58, 2559, 3Im, Xeem, B3, B, B3, B3, B3, B3, BETE3, ez, ezm, BT, g2,

Remark 11.13. In many typical examples the definition of fomposition] and [denfity] morphisms, as well as
the verification of pssociativity] and [anitality properties is a fairly routine task (as can be seen from the above
examples), and is often omitted. Accordingly, one often specifies categories by saying what their objects and
morphisms are. For instance, one could say that ESedl is the category of fimplicial setd and Fimplicial maps.
Sometimes the definition of morphisms is also clear from the context, and in this case one simply specifies
the objects. For instance, one could say that ESefl is the category of fimplicial set§. However, one must
keep in mind that one can encounter in practice categories with the same collection of objects, but different
morphisms. For instance, one has three very different notions of a morphism between metric spaces:
e contractive maps: f: X — Y is contractive if d(f(x), f(2')) < d(z,2’) for any points z,z’ € X.
e uniformly continuous maps: f: X — Y is uniformly continuous if for any € > 0 there is § > 0 such that
d(z,z') < ¢ implies d(f(z), f(2')) <.
e continuous maps: f: X — Y is continuous if for any « € X and € > 0 there is § > 0 such that d(z,2’) < ¢
implies d(f(xz), f(2')) <e.
These three types of maps give rise to three different categories of metric spaces:
e the category of metric spaces and contractive maps;
e the category of metric spaces and uniformly continuous maps;
e the category of metric spaces and continuous maps.

Example 11.14. The category of graphs Graph is defined as follows.
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e OH([Graph) is the Easd of quadruples (V| E, s,t), where V and E are sets (of vertices respectively edges)
and s: F -V and t: E — V are (the source and target map respectively).

o Made=—r((V, E, s,t),(V',E’,s',t')) is the set of pairs (v,e), where v:V — V' and e: E — E’ are
Bseid such that ' oe=vot and s'ce=wvos.

. is pairwise: (v/,€’) o (v,e) = (v ow,e oe).

e The [dentity morphisn] of a graph (V, E, s, t) is (idy,idg).

e [Associativity] and nitality] of fomposition follow from the same properties of Bed.

Used in B2, T==23.

For example, discarding the data of Eomposition and [dentitv morphismg from a category C produces
the underlying graph of C, denoted by U(C). Another example of a graph is a path of length n: [n] :=
({0,...,n}{0,...,n — 1}, s,t), where s(n) = n and ¢(n) = n+ 1. This graph can be depicted by 0 — 1 —
2 — .-+ = n. Given a morphism of graphs p: [n] — U(C), its composition can be defined in the obvious way,
resulting in a morphism py — p,, in C, where py and p,, denotes the images of 0 € V and n € V under p.
The composition is well-defined by Bssociativity and nitality] properties.

Definition 11.15. (Eduard Study, 1891.) A simple diagram in a C is a morphism of graphs
D: G — U(C), where G is a graph. A commutative diagram is a D: G — U(C) such that for
any p:[m] — G and ¢: [n] = G with py = qo and p,,, = gy, the compositions of D op and D o g coincide. Here
U(C) denotes the inderlying graph] of C defined above. vsed in m=m, m==, tz=m, o=, oo,

Informally, a is commutative if composing any two paths between the same pair of
results in identical morphismg. We have seen multiple examples of fommutative diagramg above,
e.g., when we defined Ehain mapd in Definifion T53.

We conclude this section by giving some examples that should dispel the idea that in a
are “sets with structures” and are “functions that preserve structures” (as one could guess from
the above examples).

Our first example explores the familiar notion of a measurable space from real analysis, while carefully
incorporating the notion of equality almost everywhere, which is omnipresent in measure theory.

Example 11.16. The category EMS of enhanced measurable spaces is defined as follows. Objects are triples
(X, M, N), where X is a set, M is a o-algebra on X (a collection of subsets of X closed under complements
and countable unions), and N C M is a o-ideal of X (a collection of subsets of X closed under passage to
subsets and countable unions). Morphisms (X, M, N) — (X', M’, N') are equivalence classes of measurable
maps of sets f: X — X', which are defined as such that for any m € M’ we have f~1(m) € M
and for any n € N’ we have f~!(n) € N. Two [ncasurable maps of set§ f,g: X — X’ are equivalent if
{z € X | f(z) # g(z)} € N. Composition of [measurable maps ol setd respects this Equivalence relation,
therefore we can talk about pquivalence classed of [measurable maps of setd and their compositiong. These
Equivalence classed are also known as maps of measurable spaces or simply measurable maps, not to be
confused with measurable maps of setd, which are mere representatives of these Equivalence classed. A
t:(X,M,N) — (X',M',N’) is not a [map of setd: given a point x € X, there is no way
to “evaluate” t on x: if we choose some representative f of ¢t and compute f(x), the result depends on the

ChOiCG Of f Used in =IO, C=I3, C=X3, C=3.

The next two examples come from algebra.

Example 11.17. The Poset has (S, <) as objects, whereas (5,<) = (T,<) are
f:8 — T such that s < & implies f(s) < f(s') for all s,s" € S. The Order and
Preorder of brdered sefd and [preordered setq are defined analogously. used in ==

Example 11.18. Suppose (P, <) is a posed. We construct a C as follows: OH(C) = P and if
x,y € P then Mol (x,y) is a singleton respectively empty set if < y respectively x £ y. There is exactly
one way to define Eompositiond and [dentity morphismg. The resulting is very special: there is
at most one between any pair of pbjecty. Such categories are known as thin categories. In fact,
every is induced by the above construction from a preordered sef], defined in the same way as
a poset, but without the antisymmetry condition. uvsed in e=s, ===
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Example 11.19. Suppose G is a group or a monoid (defined like a group, but without inverses). We define
the delooping category BG as follows: OH(C) = {«} is a singleton set and IMaac (x, *) = U(G). The operation
of is given by multiplication: Mo1(x, ) x Mod(x,*) = G x G — G = Mo1(x, *). The
of *x is given by the identity element of G. vscd in =, ===,

Notice how in the last example G can be extracted from BG as BMad(x, *) with the operation of compo-
sition.

Example 11.20. The empty category () has OB(C) = (). (There is no other data left to specify.)
Our final example is abstract and may be particularly difficult to comprehend for newbies.

Example 11.21. Suppose C is a gategoryl. The opposite category of C is denoted by C°P and is defined as
follows: the set OH(C®) equals OB(C) (via the identity map, denoted by X — X®) and Mollca (X2, Y22)
equals Mai (Y, X) (via the identity map denoted by f +— f&). The is defined by ¢g®¥ o fER =
(f 0 g)™ and dxm = Y. (We use to denote both the opposite category C2? as well as and
in it.) Used in EE23, 0523, 023, 2, [0, 020, 0203, 20, e, 520, o5, 0o, 0=, DD, e, 2o, 2ood, 2D, oD,

oo, . o=, =, . Do, OO, oo, BOEE. oo, 6. B0, oo, O, o, o0, 60D, GO, 6030, 603

Remark 11.22. The (C=R)EB equals the category C. (Reversing the direction of morphisms twice
amounts to not doing anything.) Thus, (X®2)® = X and (f20)= = f,

Exercise 11.23. For each of the sets of data given below, determine whether the missing elements (e.g.,
Eomposition, [denfity morphismd) can be specified as to yield a Eategory, or prove that such an extension
is impossible. The data is listed in the following order: objects, morphisms, composition (if given), identity
morphisms (if given).

e Sets, injective maps of sets, the standard composition.

e Sets, maps of sets that are not surjective, the standard composition.

e Given a pair (S, R), where S is a set and R C S x S is a reflexive transitive relation on S, objects are

elements of S, morphisms from s to s’ are pairs (s,s") € R.
e Objects are sets, morphisms from S to S’ are elements in the intersection S N .S’.
e Objects are sets, morphisms from S to S’ are elements in the union S U S’.

e Objects are sets, morphisms from S to S’ are maps f: S — 25" that send different elements of S to
disjoint subsets of S” and such that | J, 4 f(s) = 5"

Exercise 11.24. Given a monoid G, is (BG)® = BH for some monoid H?
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12 Functors

Supplementary sources: Lawvere and Rosebrugh [EETY], especially §10.2. Aluffi [ZERQ, §VIIIL.1]. Also
see [CATY, §6] for examples.

We have already encountered many constructions that preserve Eomposition] of norphismg and fdentity
[morphismy. Rather than to continue repeating these properties indefinitely, we elect to formalize them using
the previously defined notion of Eategories.

Definition 12.1. (Eilenberg, MacLane, 1945.) Suppose C and D are fategoried. A functor F from C to D,
denoted by F: C — D, is specified by the following data and properties.
e A map of collections OB(F):OB(C) — OBH(D). (We write F(X) or FX instead of OH(F)(X).)
e A collection of maps of sets Moty (X, Y): Modc (X,Y) — Maap (F(X), F(Y)), one for each pair of
X,Y € C. (We write F(f) or Ff instead of Moty (X,Y)(f), where f: X — Y is a in C.)
. is preserved: if f: X — Y and g:Y — Z are in C, then F(go f) = F(g) o F(f).
e [dentity morphismg are preserved: if X € C, then F(idx) = idr(x).

The last two properties taken together are known as functoriality properties. vsed in m, e, =, £, =2, =3, =,

Our first two examples of categories were Bell and BH, so we start by exhibiting some functors between
them.

Example 12.2. The forgetful functor U: BB — Befl is defined as follows.

e For an abelian group A = (5, +, —,0) we set U(A) = S, the underlying set of A.

e A homomorphism of abelian groups f: A = (S,+4,—4,04) = B = (T,+5,—5,05) is by definition a
map of sets g: S — T that satisfies some additional properties. We set U(f) = g, the underlying map of
sets of f.

° is preserved because the composition of two homomorphisms of abelian groups is by defi-
nition the composition of the underlying maps of sets.

o [dentity morphismy are preserved for the same reason.

Example 12.3. The free abelian group functor Free = Z[—]:Bell — BB is defined as follows.

o For a set S we set Exed(S) = Z[S] = {c: S = Z | #{s € 5| ¢(s) # 0} < oo}, i.e., the abelian group of
finitely supported functions S — Z equipped with the pointwise operations induced from the abelian
group Z.

e For a map of sets f: S — T we set Ezed(f) = Z[f]: Z[S] — Z[T] to the homomorphism of abelian groups
that sends any c: S — Z to the map 7' — Z that sends ¢ = > . 5. 4 ().

e As shown in elementary algebra, fomposition] and [dentity morphismg are preserved by Z[—].

Used in ==, 523, X3, ©==0, B2

We will use the lnctad Z[—] when we define using certain of Z[X,] in
Defnifion T54.

Example 12.4. The empty functor idy:® — 0 is defined by OB(idy) = Edy:® — 0. (Recall that maps of
sets ) — () can be identified with subsets of () x () possessing a certain property. The only subset of ) x ) = )
is the empty set (), which has this property.)

Example 12.5. Delinifion 43 is nothing else than a definition of a forgetful functor U:IN — Bel. (Any
Eonctal that “forgets” structure like abelian group operations or a total ordering can be referred to as a
forgetful functor and denoted by U.)

Example 12.6. Defnifion 51 combined with Bemark 53 defines a fonctal |—|: [N — Bpacd, where Space
denotes any of the of “geometric spaces” mentioned in Definition T7 8. The [functoriality propertied
are Veriﬁed in Em Used in =2, =3, 00, 00, 703, T8, 23, 2T, e,

Example 12.7. The [Yoneda embedding of Definifion 710 is a fnciod MN: N — ESel. (Here A and N are
typeset in different fonts, so denote different entities: a functor and a category respectively.)
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Example 12.8. A is nothing else than a Eonctod IN®® — Bell. Here the superscript pg denotes
the ppposite category of N defined in [Example TT.21. Indeed, expanding the definitions, we see that such a
Eincfod X assigns a set Xy, to any m, a map of sets X, — Xy, to any m — n (the
direction of the map is reversed because of the Ppposite categoryl), and the [unctoriality conditiony demand
that X@_ = dx,_, for any m and X4 = Xyo0X, for any maps of simpliced f:m — n and g:n — p.
This is precisely Defintfion 71. (One may wonder how fit into this picture. These turn out
to be precisely hafural fransformationd of Encfard, to be defined later.) used in m=, m=.

Example 12.9. The Hiscrete simplicial sef] (Defnifion 774) construction is a Emctod HiS: Befl — ESed.

Example 12.10. Cafegoried and Eonctord themselves can be organized into a Eategory, the category of
categories, commonly denoted by Cat or CAT. (These two choices correspond to requiring the Eollection of
all objects in a to form a set respectively a class in the Zermelo—Fraenkel set theory, a technical
issue that can be ignored for the time being.) More precisely,
e OH(A1) is the Lollection of all Eategoried whose Eollection of objects is a set.
o Maod—(X,Y) is the set of Emcford F: X — Y.
. is defined as follows: (GoF)(A) = G(F(A)) for any A eHomdX; (GoF)(f) = G(F(f))
for any morphism] f in Haml X.
e The [dentity morphism of a Eategory X is the identity functor: Kx(A) = A for any A e X
By (f) = f for any fin X.
e Composition of lunciord is associative and unital because composition of maps of sets is associative and
unital.

Used in =z=m, [OCTEA, CTOA, ©7=2m, =20, 233, 2509, D, Bm, B, B[, RS, o3, 6o, 63, 63

Remark 12.11. A functor of the form C®® — D is sometimes referred to as a contravariant functor C — D
(without pg). The adjective “contravariant” refers to the following: if f: X — Y and ¢: Y — Z are morphisms
in C, then F(¢® o @) = F(f®) o F(¢=), i.e., contravariant functors exchange the order of composition.
“Traditional” functors are then referred to as covariant functors. vsed in ==a.

We illustrate the important difference between covariant and contravariant functors by a familiar ex-
ample of LP-spaces from analysis.

Example 12.12. We specify a (covariant) Emctad [': EMY — BanacH as follows. Banach is the category of
(complex) Banach spaces and continuous linear maps. A w: M — C is countably additive if for
any countable family {m;};cs of elements of M such that m; N'm; = () we have u (Uiel mi) =D icr i(my).
We set L}(X, M, N) to the set of all countably additive maps of sets u: M — C such that u|y = 0. This
set can be equipped with a structure of a Banach space: the vector space operations are induced from C
and the norm is p — [[ul| = sup|s<; [ fdu, where [ denotes the Lebesgue integral. Given a morphism
F1(X,M,N) = (X', M',N"), we define L}(f):L}(X, M, N) — LY(X’, M’,N") by sending p € L}(X, M, N)
to fo(u) € LL(X',M', N') such that f.(u)(m’) = u(g~1(m')). Here g is a representative of f. A different
choice of ¢ gives the same answer because f~! sends elements of N’ to N. This assignment is Einctorial:
Li(go f)(w)(m") = p((go f)~H(m")) = u(f~ (g~ (m"))) = (L' (/) () (g~ (m")) = L (g)(L(f))(m"), so
L(go f) =LYg) o LX(f). vsed in ==, ==

Example 12.13. We specify a fmnctod [°°: EMS® — Banach (i.e., a Confravariant functol EMY — Banach)
as follows. We set L°°(X, M, N) to the set of morphisms {s: (X, M,N) — (C, Cgzam, {0}) (here Cporel
denotes the Borel o-algebra of C) that are bounded, i.e., one of their representatives factors through a
bounded subset of C. Given a morphism f: (X, M, N) — (X', M', N'), we define L>°(f): L>°(X’',M',N’) —
L°>°(X, M, N) by sending s: (X', M', N') — (C, Cgzm, {0}) to s o f. This assignment is lnctarial: L*>°(g o
(s)=s0(gof)=(sog)of=L%(f)(sog) =L>=(f)(L>(g)(s)), so L=(go f) = L=(f) o L*(g). vsea inz=a.

Exercise 12.14. Are there categories C and D such that there are no functors C — D? Are there categories
C and D such that there are no functors C — D and no functors D — C?

Exercise 12.15. For each of the sets of data given below, determine whether the missing elements (e.g.,
the values on pbiectd or norphismg) can be specified as to yield a bmcIol, or prove that such an extension is
impossible. (If there are no missing elements, you must prove or disprove that the data specifies a [mcton.)
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The data is listed in the following order: source Eategoryl, target Eategory, values on (if given), values
on (if given).
e Source BG, target BH, sends a g:*x — x in BG to the morphism f(g):* — x in BH, where
f:G — H is a homomorphism of monoids.
e Source (BG)®, target BG, a morphism g:* — * is sent to the morphism g~
arbitrary group.
e Source BG, target Bel, the object * is sent to the set U(G), a morphism g¢: x — * is sent to the
U(G) — U(G) such that h — hg. Here G is an arbitrary group.
e Same setting as the previous item, but h — gh.
e Source Bell, target [Groug, a set S is sent to the symmetric group Xg, i.e., the group of bijections S — §
with the operation of composition.
e Source ESell, target Bed, a X is sent to the of Xy, for all standard simplices
m={0<1<2<---<m}.
e Source @, target M, a fimpled m = (V, <) is sent to the simplex (V, <#), where v; <FB vy if vy < vy,
i.e., the order is reversed.

L.y« — %. Here G is an

13 Coproducts and coequalizers of simplicial sets

Supplementary sources: Lawvere and Rosebrugh [EETS, §2.1, §4.4]. Aluffi [ZERQ, §I.5]. Also see
[CATS, §12, §14] for examples.

The aim of this section is to show that a fimplicial set generated by a system oI generators and relationy
exists and is unique. This gives us a convenient reason to introduce a few constructions with fimplicial setd:
Eoproducty and Eoequalizers.

The first notion, foproducy of fimplicial setd, has a very simple geometric interpretation: we assemble
two pictures side by side, without intersections, like a disjoint union of sets.

We define in an arbitrary C and then instantiate to C = ES&dl.

Definition 13.1. The coproduct of X and Y in a category C (if it exists) is a triple (X UY,tx: X —
XUY,ty:Y - XUY), where X UY € C and tx, ty are in C (the injection maps or
[morphismy) such that the following universal property of coproducts is satisfied: for any Z € C the map
(bom(ix, Z),haml(iy, Z)):Bom(X UY, Z) — Bom(X, Z) x Bam(Y, Z) that sends f: X UY — Z to (f o

Lx, f o Ly) is a bijeCtiOIl. Used in 200, =2, [T, £=9, 039, 000, 03003, X279, 250, D, DE2, e, PoTs, 2=, B3y, 023, o33, o=,

Notation 13.2. Given f: X — Z and ¢:Y — Z, the inverse image of (f,g) under the above map is known
as the copairing of f and g and is denoted by [f,¢]: X UY — Z.
Notation 13.3. Given f1: X; — Y7 and fo: Xo — Y5, we define the map fi U fo: X7 U Xo — Y1 UY5 as
[ty, © f1, Ly, © fal.

Informally, we say that a map h: X UY — Z is the “same thing” as a pair of maps f: X — Z and
g:Y — Z. Given h, we recover f and g as f = hotx and g = hoty. Given f and g, we recover h as

h=1f. gl
The following uniqueness lemma is entirely analogous to Cemma 90.

Lemma 13.4. If X and Y are objects in a category C and (X UY,tx: X = X UY,iy:Y —» X UY),
XUY, /e X - XUY, Y - XUY) are coproducts of X and Y, then there is a unique map
h: X UY — X UY that makes the following commute:

XuYy .
Lx Y
/ lh\
LN L
T XxXuy 7

Furthermore, h is an isomorphism. uvsed in ==, z=m.

X

Proof. The set of morphisms h: X UY — X W'Y can be identified with the set of pairs of morphisms
X > XUY,Y = XUY bysending h+— (hotx,hoty). The commutativity of the requires that
the latter pair equals (¢, ¢} ). This shows that h exists and is unique.
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The above argument can be used with two triples exchanged, yielding a unique morphism h": X /'Y —
X UY that makes the two triangles with the same morphisms as above commute.

The morphism W' o h: X UY — X UY as well as the morphism dyx yv: X UY — X UY both make
the above commute when the second triple equals the first triple. By the uniqueness statement
in the universal property of coproducts, h’ o h = iy y. Likewise, h o ' = idx_yy. Thus, h and I’ are
isomorphisms. ||

Remark 13.5. Although coproducts are always unique, their existence depends on a particular choice of C.

Example 13.6. Recall from E5Y that coproducts in the category C = Ball are characterized by the property
that tx and ¢y are injective maps with disjoint images whose union is X LY. Thus, the coproduct of X
and Y is simply the disjoint union of X and Y, with ¢x and ¢y the two injection maps.

Proposition 13.7. In the ESefl, the of X and Y exists. uvsed in oz, e,

Proof. Define (X UY )y = X U Y and (X UY)y = X, UY: X, UY, — X UYy,. We now verify the
[funcforiality property. We have

Likewise,
(XUY)gor =Xgos UYpor = X0 X UY;oY, = (X;UYp) o (X UY,) =(XUY)so(XUY),,

which completes the construction of X LY.

We construct the tx: X - X UY and »y:Y — X UY as follows. Set (tx)m to
tx: Xm = Xm UYy = (X UY)y, and likewise for Y. The paturality property ol simplicial mapy is verified
by the following Eommuftative diagrany for any [map of simpliced f: m — n:

Xy —2m oy X U Yo,

XfT TXquf

X, —2n & X, UY,.

It remains to show the finiversal property of coproductd. If 7 € ESell and f: X — Z, ¢:Y — Z are

Bimplicial mapd, we must show that there is a unique h: X UY — Z such that hotx = f and hoty = g.
Pick an arbitrary simplex m and consider the corresponding components of the above pimplicial mapd:

hm © (tx)m = fm and hm © (ty)m = gm. By definition, (tx)m = tx,,: Xm — Xm U Ym and likewise for
(ty )m, so by the [amiversal property ol coproductd in the category Bell, we see that hp: Xm U Ym — Zm is
forced to be equal to [fm, gm]. Furthermore, such choice of hy, indeed defines a h: XUY — Z,
as one sees by substituting into the paturality property of simplicial mapd the definition of X 1Y, obtaining
the following commutative diagram for any [map of simplice§ e: m — n:

X Uy, =2 x Uy,

[ o [ om

Zn — 2 7.

Indeed, the top-right composition equals [fm © Xc, gm © Ye] and the bottom-left composition equals [Z, o
fm, Ze © gm]. The two maps coincide by the [iafurality property of simplicial mapg f and g. |

Example 13.8. The @s{0,1} is the of Hi3{0} and Hid{1}, both of which are iso-
morphic to B°.

Remark 13.9. The of an arbitrary family {X,};er of in C is defined in a completely
analogous way, yielding an |l;c; Xi together with ti: Xy = ey Xio If 1 is a set (as
opposed to a proper clasg), we talk about small coproducts. vsed in =,

32



Definition 13.10. A is connected if it is not empty (i.e., not isomorphic to the empty simplicial
set @30) and is not isomorphic to AU B for any A and B that are not empty. uvsed in ==z, ==,

| zasmm o W cas mmns [ ooz N conam m n ) corom o N c oo s I cox o I coxw- i <t rwm 1

Exercise 13.11. Prove that any can be presented as the of a (possibly infinite)
family of connected simplicial sets. What is the indexing set of this coproduct? Formulate an appropriate
notion of uniqueness for such a decomposition and prove it.

Exercise 13.12. Demonstrate that it is misleading to think of exclusively as disjoint unions
by proving that the coproduct of abelian groups A and B is isomorphic to their direct sum A & B. In
particular, show that the underlying set U(A @ B) of the coproduct of A and B is isomorphic to the product
of underlying sets U(A) x U(B).

The second notion, Eoequalizel of Bimplicial setd, is a typical quotient construction that occurs often in
mathematics. Given two f,9: X — Y, one should think of the of f and g as a
quotient of Y, more precisely, we identify some simplices of Y: for any simplex s € X, the two simplices
f(s) and g(s) in Yy, must be identified. This is what allows us to implement various gluing constructions.

Definition 13.13. A coequalizer fork of f,9: X — Y in a category C is a Y —Q
such that go f =qog:

f
X—y —2150Q.
g

If ¢ and ¢’ are Eoequalizer Torkg of f and g, then a morphism of coequalizer forks is a morphism r: Q — Q'
such that the following diagram commutes:
e
f«

q Q/
Used in ==, ==, e=T2.
Definition 13.14. The coequalizer of [norphismy f, g: X — Y in a category Cis a Y = Q
such that the following universal property of coequalizers holds: for any q:Y — Q' there is
a unique morphism ol coequalizer T0TKY ¢ — ¢'. Used in CXm, ., mem, o, mom, CETm, w2, o=, D22, me=, BT,

3, g3, oo, oIS

Notation 13.15. We denote @ by coeq(f, g). By abuse of notation, @ is often denoted by Y/X especially
if the map ¢ is “canonical” or “implied”.

Informally, we say that a map ) — Z is the “same thing” as a map Y — Z such that the compositions
X =Y — Z (for both choices of the map X — Y') are equal.

Exercise 13.16. Formulate and prove a uniqueness result for in analogy with Cemma T34.

Remark 13.17. Once again, although coequalizers are always unique, they need not exist and existence
must be proved separately.

Example 13.18. Recall from EbY that for C = Bell the of f and g exists and can be computed as
the quotient of Y by the equivalence relation R on Y generated by all pairs of the form (f(x), g(z)), where
x € X. In particular, if X € Ball and R C X x X is an equivalence relation on X, then the coequalizer of
two projection maps R — X is the quotient map X — X/R.

Proposition 13.19. In the category ESell, the of any fifX—>YandgX =Y

exists. Used in =, e=3.

Proof. We define the map ¢um: Y — Qm as the coequalizer of the maps fm, gm: Xm — Ym. Given fim — n,
the pimplicial structure map @s: @n — Qm is constructed using the universal property of of
sets: a map Qn — @m is induced by a map Y;, — @Qu such that the two compositions X, — Yy, — Qun are
equal. The map Y;, — Qu is constructed as the composition Y, — Vi, — Qm- 1
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Exercise 13.20. Complete the proof by proving the [functoriality property for simplicial sety for @, the
paturality property for ¢, and the iniversal property of coequalizery for (Q,¢) in the ESedl.

Exercise 13.21. Draw a picture (with an explanation) of the of two maps

[tood® 11 0d%, [ty 0d!,pod @ LA 2@ LA,

With these tools now available to us, we can now easily prove the existence of generated
by a Bystem of generafors and relationd.

Proposition 13.22. The Fimplicial set generated by a system ol generators and relation exists (and is
unique by m) Used in 323, £==22, C=I0.

Proof. Given (G, R), we construct the X generated by (G, R) as the q of two

P> P PS:
| ] 2 || B4 X
f:m%ni‘;zaier?rGRfyg k,gGGk
The two are constructed using the universal property of Eoproducty. Given m, n, p, f:m —
n, g:m — p, and r = (s,t) € Ry 4, we must construct two o™ — |, 9€Ch O¥*. For the first

map we take i s o @ and for the second map we take 1p; o ¥, This yields a solution (X,u) for (G, R),
where for any m and g € Gy, the map uy: @™ — X is the composition ¢ o iy 4.

We now show that if (X', ') is another solution for (G, R), then there is a unique [norphism of solutiong
(X,u) = (X',u’). By the universal property of foequalizerd, a Bimplicial mag X — X’ can be rewritten
as |_|k7 e O — X’ that makes the two compositions equal. By the universal property of

Eoproducty, the latter map can be rewritten as a family of maps B8 — X’ for each k and ¢ € Gi. By the
definition of a [morphism of solutiond, the latter maps must be equal to ug. This establishes uniqueness of
morphisms (X,u) — (X',u’). For existence, observe that the two compositions are indeed equal because
(X', ') is a solution. Thus, we constructed a X — X', and this fimplicial map is a [morphism
bBfsolifiond by construction. |

Example 13.23. We explain how to apply [Proposition 13.29 to construct fimplicial mapg. Consider, for
instance, S™, the fimplicial spherd of dimension n > 0. According to [Example 9.1, it has a generating Os
v and a generating n-simplex s with relations d;(s) = s~ '(v) for all i. A S™ — X for

any X can be identified with the following data: a OFSImplex v’ € X and an nfsimpleq s’ € X,
such that d;(s") = sj~*(v') for all 4. Typically, it is much easier to construct v and s than to construct the

entire totality of the data associated with a S"™ — X, i.e., the components S5 — X}, for any
simplex p. [Proposition 13.27 justifies this by showing that S™ — X are in bijection with

pairs (v, s) that satisfy the above property.

Example 13.24. The proof of [Proposition 3.2 shows how to explicitly compute the Fimplicial set gen]
Erated Dy a system ol generators and relationd, meaning that we compute the sets of nfsimpliceq for all n
and values of fimplicial structure mapg on these simplices. Indeed, the proof of Proposition 13.24 computes
the pimplicial sefl as a Eoequalizel, and [Proposition 13.19 gives an explicit way to compute of
Bimplicial setd. We illustrate this by the following example: take a single generating 3-simplex « and impose
a single relation, do(a) = so(d1(do(cr))). Recall from that an nfstmpley of « can be repre-
sented by a string of n + 1 digits 0, 1, 2, 3, in this order, which enumerates the vertices of a touched by this
n-simplex. The ith d; applied to such a simplex removes the ith digit, whereas the ith
prp duplicates the ith digit. So v = 0123, do(a) = 123, dp(a) = 123, dy(do()) = 13, so(d1(do(e))) = 113.
The relation dg(«) = sp(dq(do())) forces us to identify the 2fsimplice§ 123 and 113. This means, in par-
ticular, that (say) the vertex do(d2(123)) = 2 should be identified with the vertex do(d2(113)) = 1. We
emphasize that identifying the vertices 1 and 2 does not force us to identify the 1-simplices (say) 01 and 02
(as one could naively assume by looking at their representations). Indeed, there is no way to identify 01 and
02 the vertex 0 cannot appear after applying face or degeneracy maps to 123 or 113. With this remark in
mind, we write down the identifications performed on simplices, with degenerate simplices listed first:
e O-simplices: 0, 1 ~ 2, 3;
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e l-simplices: 00, 11 ~ 12 ~ 22, 33; 01, 02, 03, 13 ~ 23;
e 2-simplices: 000, 111 ~ 112 ~ 122 ~ 222, 333, 001, 011, 002, 022, 003, 033, 113 ~ 123, 133, 223, 233;
012, 013, 023;
e 3-simplices: degenerations of 2-simplices; 0123.
e n-simplices for n > 3: all are degenerate.
Notice how a simplex that was previously nondegenerate (like 12) can become degenerate after identification.
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The resulting object is a “trihedron”:

03 13 ~ 23

02
As described above, it has three O-simplices, four nondegenerate 1-simplices, three nondegenerate 2-simplices
(the back face 023 is obscured from our view), and a single nondegenerate 3-simplex 0123 that corresponds
to the interior.

Example 13.25. It is instructive to see what happens when in the previous example we replace sy with s;.
The relation now reads do(a) = s1(d;(dp(x))). As before, a = 0123, dg(«) = 123, dp(a) = 123, d1(do()) =
13. Now we have s1(dq(do(e))) = 133. Thus, 123 is identified with 133. This exchanges the role of 1 and 3

in the above example:
1

01 12~ 13

02
The back face 013 is obscured from our view.

We illustrate some of the ideas behind coproducts and coequalizers by developing the notion of Eannected
of a pimplicial seil.

Definition 13.26. The set of connected components of a X connected component is a set wo(X)
equipped with a map ¢: X — M38mo(X) such that for set S equipped with a map r: X — &S there is a
unique map of sets s:mp(X) — S such that (Hids) o g = 7. vsed in ==, =, Ezm, ==, =9, ===, ==, ==, EIT,
e, T, s, e, O, e, pee2m, B3, B, Bn, TR, B2, 6293, 23, B2, B2, 28, BT, Bz, B, e, BT, e, BT,

BT, gz, Ea, BT, =, B3, B3, B9, B3, e=om, B, B2, I, o2

The idea behind the map X — Hdm((X) is that it collapses every connected component of X to a single
point in Bdmg(X). The universal property guarantees that different components are collapsed to different
points.

Exercise 13.27. Show that mo(X) can be computed as the coequalizer of X; =X X, where the two maps
are d; and dy. (Geometrically, we identify those vertices of X that are connected by a chain of 1-simplices
going in any direction.)

Recall the definition of a fonnected simplicial sefl from [Definition T3 T0.
Exercise 13.28. Prove that a X is connected if and only if my(X) is a singleton set.

Example 13.29. We compute 7y for some simple pimplicial setd.
e my(dEdS) =5, so HidS is connected if and only if the set S is a singleton.
o mo(A™) = {x}, so @™ is always connected.

Exercise 13.30. Define mo(f) for a simplicial map f: X — Y. Prove that this yields a functor mq: ESell —
Bedl.
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14 Natural transformations

Example 14.1. Consider the 1, with a single object 0 and a single morphism 0 — 0, which is
the identity morphism on 0. There is only one way to define composition. Given an arbitrary category C,
there is a canonical bijection between the class of functors of the form 1 — C and the class of objects of C.
This bijection is constructed as follows. Given a functor F:1 — C, we send it to the object F(0). To define
a map going in the opposite direction, given an object X € C, we send it to the functor F: 1 — C such that
F(0) = X and F(idy) = i, which preserves composition.

This example demonstrates that it would be unreasonable to talk about equal Eonctord in the same way
that it is unreasonable to talk about equal groups in algebra, where we recognize that isomorphism, not
equality, is the reasonable notion for groups. Thus, we expect that Banctard may turn out to be isomorphic,
but typically not equal. Moreover, we expect noninvertible between Inctord in the same way
that we have noninvertible between pbjectd in a Eategory. In other words, banctord C — D should
themselves form a Eategory], which we denote EIm(C, D) or simply D¢ in analogy with sets (see below). To
figure out the correct definition of a [morphism ol Tunctory, we examine another example.

Example 14.2. Consider the 2, with 0 and 1 and a single nonidentity a:0— 1.
There is only one way to define fomposition and identified. Given an arbitrary C, there is a canonical
bijection between the class of functors of the form 2 — C and the class of all morphisms of C. This bijection
is constructed as follows. Given a lomcfod F: 2 — C, we send it to the morphism F(«). To define a map going
in the opposite direction, given a f: X =Y (where X,Y € C), we send it to the functor F:2 — C
such that F(0) = X, F(1) =Y, and F(«) = f, which preserves composition.

Example 14.3. Continuing the previous example, we explain how to recover sources and targets of
phismg. If 2 — C represents some f in C, then the two compositions 1 =X 2 — C yield two functors
1 — C, which represent the Homam and Eadamaid of f. Here 1o, 21:1 =X 2 denote the two Einctard 1 — 2
that send the only object of the 1 to the object 0 respectively 1 of the 2.

Example 14.4. Continuing the previous example, we explain how to recover [dentity morphismg and comm
posifiond. If 1 — C represents some X in C, then the composition 2 — 1 — C represents the
morphism Iy in C. If a:2 — C and b: 2 — C represent some ffX—=>Yand g:Y - Zin C (so
that a ot =boyy), then the data in a and b can be combined into a functor ¢: 3 — C, where the category 3
has objects {0, 1,2} and three nonidentity morphisms, namely, 0 — 1, 1 — 2, and their composition 0 — 2,
which by the above example correspond to three functors 2 — 3, denoted by to1, t12, and tgs.
and Idenfified of 3 are unquely defined. The functor ¢:3 — C is unquely determined by the conditions
cotg; = a and corya = b. Then the functor coige: 2 — C represents the morphism go f, i.e., the
of f and g.

To summarize, looking at the sets of functors of the form 1 — C, 2 — C, and 3 — C as well as the maps
between these sets given by compositions with various lunctord between 1, 2, and 3 allows us to completely
reconstruct the C without ever looking at its individual pbjectd or morphismg. (This should remind
you of fimplicial setd: a fimplicial se] X can be completely reconstructed by looking at the sets of
@™ — X for any simplex m as well as the maps between these sets given by compositions with various
@™ — @".) This will become handy when we take C = EP, where it is easier to say what
the above Bancford from 1, 2, and 3 are thanks to the following analogy with sets.

Example 14.5. If X|Y,Z € B&l, then X x Y and Z¥ = {f:Y — Z} = BEomeg(Y, Z) are also sets. Maps
of sets X x Y — Z are in canonical bijective correspondence with maps of sets X — ZV, i.e., we have an
isomorphism Eomgg(X x Y, Z) — BEomgg(X, ZY). Indeed, given f: X x Y — Z, we construct g: X — Z¥
as follows. For any x € X we have to define g(x) € ZY, i.e., g(z):Y — Z. This means that for any y € Y’
we have to define g(z)(y) € Z. We set g(z)(y) = f(x,y). Vice versa, given g: X — ZY¥, we construct
f: X XY — Z by setting f(z,y) = g(x)(y).

Definition 14.6. If C and D are Eategoriey, then C x D is another Eategory, defined as follows: OBA(C x D) =
OH(C) x OB(D) and Modc«p((X,Y), (X', Y")) = Madc (X, X’) x Madp (Y,Y”). Compositiod and [dentified
are defined pairwise.

For any category C we have a canonical functor 1 x C — C, which is an isomorphism.
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We now act by analogy with sets. Suppose D and E are fafegoried. If there is a category of functors
Em@(D, E) = EP, then by the above example it makes sense to ask that the set of functors C — EP is in
bijection with the set of functors C x D — E for any category C. Substituting C = 2, functors 2 — EP, i.e.,
of the EP, should be in bijection with functors 2 x D — E.

Definition 14.7. If C and D are and F,G:C — D are Euncfard, then a morphism of functors
t:F — G is a functor t:2 x C — D such that the two compositions C — 1 x C X2 x C — D are F and G
respectively. uUsed in I, ==,

Definition 14.8. If C and D are Eafegoried, then the Eafegory of tunctory FTm(C,D) = D€ is defined as
follows. Its pbiectd are bunctord C — D. Morphisms were defined above. The fomposition of morphismg
t: F — G and u: G — H given by two Euncfard ¢, u: 2 x C — D is defined by assembling them into a functor
v:3 x C — D such that vo (1p1 X d¢c) = F and vo (112 x idc) = G. Then uwot is defined as the composition
v 0 (tp2 X Idc). Finally, the [dentity morphism] on F: C — D is the composition 2 x C — 1 x C — D.

While the above definition of [morphism of tunctorq is fairly well-motivated, it is also rather cumbersome
to use in practice, because specifying a functor 2 x C — D involves a lot of additional work. As it turns out,
almost all information encoded in a Eanctail ¢:2 x C — D is predetermined by the definition of a
bfincford. What remains can be extracted by evaluating ¢ on morphisms of the form (0 — 1,idx) for
all objects X € C, which yields a morphism F(X) — G(X), commonly denoted by ¢x. Indeed, the value
of t on objects of 2 x C as well as morphisms of the form (id;, f: X — Y') is prescribed by the conditions
to(xidc)=F and to (1 xdp) = G. Any morphism (a:¢ — j, f: X — Y) of 2 x C is the composition
of morphisms (id;, f) and («,idy), by definition of 2 x C, which shows that knowing ¢x suffices to recover
the entire functor ¢. This allows us to restate the definition of morphism of Tunctord in a much more concise
form, which is commonly referred to as a natural transformation.

Definition 14.9. If C and D are and F,G:C — D are Enctord, then a natural transformation
t: F — G is a family {tx}xec of in C such that the following naturality property is satisfied for
all morphisms f: X — Y in C: the square

Fx) 295 Ry

S
ax) Y% a).

commutes. Used in M, £, ETM, r=S, m==m, ©m, [, mem, e, e, e, DETS, Do, 0, 2R, B, e, DR, e, D,

We restate the definition of the Eategory of Tunctor in the new language.

Definition 14.10. If C and D are Eafegoried, then the category of functors Fun(C,D) = D¢ is defined as
follows. Its pbiectd are lunctaord C — D. Morphisms from F: C — D to G: C — D are haluralfransformationd
t:F — G. The pomposition of hafural Transformafiond ¢: FF — G and w:G — H is defined by setting
(uot)x = ux oty for any X € C. Finally, the [dentity morphism on F: C — D is the hafural Transformation
idr such that (EF)X = EF(X) Used in [0, [I5A, =S, I, e, OIS0, o=, ©==3, D575, o==, GO, GIS, So=rm, GI=1, B3, =3,

B, B3, B0, B3, B2, B3, B3, I, I, oo, 6.

Notation 14.11. A natural map is a in some Eategory of functory, i.e., a haifuralTranstormation.
More precisely, a hafuralTransformation /' — G of functors C — D induces a F(X)— G(X) for
an object X € C. A natural isomorphism is an in some Eategory ol tunctorq, i.e., an invertible
bafuralTranstormation. This amounts to saying that a [fatural isomorphisn is a patural maf F(X) — G(X)
that is an isomorphism. vsed in ==, ==, e=m, ez, =2,

Exercise 14.12. Prove or disprove: a hafuralTransformafion ¢: F' — G is an (in the category
of banctord C — D) if and only if tx is an in C for any X € C, where F,G: C — D are arbitrary
Eanctord.

Example 14.13. In | we saw that Bimplicial setq are nothing else than functors [¥®® — Bed.
Comparing the definition of a bafural transformafiod and fimplicial may, we see that fimplicial mapd are
nothing else than Dafnral Transtormationd of functors ¥ — B&d.
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Exercise 14.14. Previously we discussed a concrete interpretation of lunctard of the form 1 — Cand 2 — C
as objects respectively morphisms of C. Explain, in similar concrete terms, what it means to give a haiural
of such bluncfard. Give a simple criterion for such a hafuralfransformafion to be a hafural
fsomorphism.

Exercise 14.15. Given a group G, recall the BG with one object * and Mad(*,*) = G. Show

that functors BG — B&ll coincide with a familiar concept from elementary algebra. Show that hainral
Eransformafiond of such Eoncford coincide with a certain related concept. (Prove your claims.) uvsed in m=a.

We conclude this section by discussing how to compose bhafural Transformafiond with Encford. In
we discussed how to compose two EmcEard, i.e., defined a map of sets

Bomies (D, E) x Bomegn(C, D) — Bomien(C, E).

Recall that Bomeg (A, B) denotes the set of lmcard of the form A — B. Now that BEomeg(A, B) became
a better version of itself (no doubt by following one of the many self-improvement books available on the
market), it is only natural to ask for a Imctod

Em@(D, E) x Bm(C, D) — BEm(C, E).

Since OH(EmI(A, B)) = Bomg(A, B), on objects this Emciod should be given by the first displayed map
above. The interesting new part is what to do with morphisms, which in our case are pairs (u,t) of natural
transformations u: P — @ and ¢: F — G, where F,G:C — D and P,Q:D — E are luncford. The result
should be a balmralTransformalion u o t: P o F' — @ o GG, where both functors are of the form C — E, as
illustrated by the following diagram (double arrows denote natural transformations):

F P
C/PD/WE.
— \Q/

That is, for every X € C we should have a in E of the form P(F(X)) — Q(G(X)). Such a
can produced by taking either composition in the following diagram:

PF(x)) =20 pra(x))

uF(X)l luc(x)

QF(X)) —2, Qrax)).

This diagram is obtained from the paturality property of haiural Transformation v applied to the
tx: F(X) — G(X), and therefore is commutative by definition of hainral fransformafion.

Of particular importance are the two special cases when either u or ¢ is the [dentity] hafural transford
mafiod. If w = idp, we write P ¢t instead of idp ¢ ¢. This is known as the whiskering of P and t. Likewise,
we write u ¢ F' instead of u ¢ dp.

Example 14.16. The category ES&ll is the category Exml(*® B&fl). Previously we constructed a functor
Z[|—]:Bell — BB, i.e., an object in Exml(8ell, BH). Substituting this object into

[Erm(523, BB) x [Eml(5°9, 6a8) — Eiml(3%°, BH) — EAR,

we get a functor (denoted by the same notation)
Z]—] o —:ESell — EAR,

which is again denoted by Z[—]. The category sAb is known as the category of simplicial abelian groups. usea
in Z=Tm, .

Exercise 14.17. Continuing the previous exercise, suppose f:G — H is a homomorphism of groups and
Bf:BG — BH is the induced lanctal. Given a functor F: BH — Bell, how can we describe the functor Fo B f
in familiar terms? If ¢t: F — G is a hafural fransformafion of such Enciord, how can we describe the hafural
Eransformation ¢ o Bf in familiar terms?
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Simplicial homology and cohomology

Homology and fohomology groupd are one of the simplest, yet very powerful, invariants of
Eefs.

15 Simplicial chains

Informally, a of dimension n (or simply an n-Ehaid) on a fimplicial sefl X can be thought
of as a map K — X, where K is an n-dimensional “shape”. This map need not be injective or surjective,
and the dimension of X need not have any relation to n. Furthermore, this map can “cover” some parts
of X several times. In particular, n-Ehaind can be added: if K — X and L — X are n-chains, then so is
K UL — X. This operations turns the set of n-chains into an abelian group. The additive inverse of an
n-chai can be thought of as the same n-Ehaid, but “traversed” in the opposite direction.

An n-Ehamd has a boundary, which is an (n — 1)-Ehamd. Informally, we restrict a given map K — X
along 0K — K (the boundary of K), obtaining an (n — 1)-chain 0K — X. For instance, the boundary
of a 1-Ehaid e: @' — X is a formal difference of two vertices: de = dge — dye, so that the boundary of an
embedded circle e: S — X is empty: Oe = 0.

Additionally, we expect that the boundary of a boundary is empty: 9(9(c)) = 0 for all chains ¢. For
example, the boundary HA? of B3 is a formal sum do(a) — dj(a) + dz(a) of three edges of the 2-simplex
o =dy € B2, and the boundary of BA? is IA? = (vy — v1) — (v2 — vg) 4 (v1 — vp) = 0, where v; € B33 are
the three vertices of B¥%. This is illustrated by the following picture:

ii 0 0
— -1 1 —

1 0 0

To summarize, we expect the following structure: for each n > 0 we have an abelian group C,, of
n-chains and a homomorphism of abelian groups 9,: C,, — C,_1 such that 9,,_190, = 0:C,, — C,,_o.

Definition 15.1. (Mayer, 1929.) A chain complez (of abelian groups) is a pair (C, 9), where C: Z — OB(BB)
is a sequence of abelian groups and 9:Z — DMod(BB) is a sequence of homomorphisms of abelian groups
(differentials):

6n2 Cn — Cn—l

for all n € Z. We require that the map 0,,_1 o 0,,: C,, — C,,_o is the zero homomorphism for all n € Z. A
chain complex is nonnegatively graded if C,, is the zero abelian group for all n < 0. In this case we often
suppress the mention of C,, for n < 0 and 9,, for n < 0 altogether. The number n is known as the chain
degree. Used in 503, o=, ==, 530, o=, 059, 09, 059, ©500, 053, =9, T, e, DO, DO, e, 223, B3, B8, D, =3, T, exx=3,

I3, e=—m. B, B3, oo, oorm, oo, oo

The data of a ponnegatively graded chain complex is often written from right to left as follows:

o1 02 O3

Co

Cq Cs

Warning 15.2. The word “complex” here has a different meaning than in “simplicial complex”. As we
will see later, the two notions are closely related: the [Dold—Kan correspondencq establishes an equivalence
between ponnegatively graded chain complexes and pimplicial abelian groupd, which are defined in the same
way as pimplicial sefd, but using abelian groups instead of sets.

In our informal framework for chains, if X — Y is a pimplicial mag, then an n-chain K — X can
be composed with X — Y, yielding an n-chain K — Y in Y. Furthermore, this type of construction is
compatible with boundary maps: the boundary of K — Y is the composition 0K — K — Y, which is also
the image of the chain K — X — Y. We formalize these observations in the following definition.
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Definition 15.3. Suppose C' and D are fhain complexed. A chain map f:C — D is a sequence f of
homomorphisms of abelian groups f,: C,, — D,, such that the following square commutes for all n:

9¢
Cpho1 ——— C,

S

aP
D, 1 «—"— D,.

Used in [, CTTEA, E53, o, A, oo, o, oo, oo, B, o, 23, 2200, 220, 22m, 2203, 2, 2203, 2222, 2o, o3, ezem, B,

o= corms ) corumuars: B commm = N ez WY o=

The data of a Ehain_map of ponnegatively graded chain complexes is often written as follows:

¢ s s
Co ! 4 2 Cy 2
lfo lf1 lfz
ab ab ap
Dy ! Dy 2 Do 3

Exercise 15.4. Define the composition of chain maps and prove that Ehain complexed and Ehain mapg form
a , denoted by Ch Used in 523, ===, [, ©==03, 050, 052, 053, o0, 553, o=, ©==2, C==9, B3, B3, B30, B2, B3, B2==3,

A, o, 53

The category of nonnegatively graded chain complezes CBy is defined analogously.

Recall that in we discovered that simplicial sets are nothing else than functors ¥ — Bed.
Recall that in we constructed a functor Ered = Z[—]: Bl — BB that sends a set S to the free
abelian group Z[S] on S, whose elements are finitely supported functions S — Z and group operations are
defined pointwise. Thus, any X: @ — Bal gives rise to a [mctod Z[X|: 3 — BEH. In concrete
terms, Z[X |y is the free abelian group on the set Xy, and Z[X];: Z[X], — Z[X];y, is the homomorphism of
free abelian groups induced by the map of sets X¢: X;; = Xy,. Such a homomorphism sends a basis element
of Z[X], corresponding to some o € X, to the basis element of Z[X]y, corresponding to X¢(a) € Xm.

Definition 15.5. Given a X: O — Bed, its C(X) of (normalized) simplicial
chains (or simply chains) is defined as follows. The abelian group C, (X) is the quotient of the free abelian
group on X, by the subgroup generated by degenerate n-simplices. (Equivalently, one could take the free
abelian group on the set of nondegenerate n-simplices of X.) The Hiferentiald d,,: C,(X) — C,,—1(X) are
induced by the fmiversal property ol quotients ol abelian groupd from the map of sets X, — U(C,—1(X))
that sends an n-simplex ¢ € X, (equivalently, a Eimplicial map o:@" — X) to the alternating sum
> o<icn(—1)'di(c), where d;(0) € Cp—1(X) via the map Xn\ iy & Xpo1 — Z[X,—1] = Cpo1(X). uvsea

in 223, T3, 57, 59, 5, oo, oo, T3, [, oo, oo, oo, X0, [XEd, 3, 200, 228, 2223, e, 23, DX, e, e, e,

I, =3, B, BT, B, B, B3

Remark 15.6. The above definition should be adjusted in a subtle way: instead of taking X, for a fixed n
(typically the standard simplex {0 < 1 < --- < n}), we should take [, Xy for all n of some fixed dimen-
sion n > 0 and quotient by the equivalence relation that identifies two o€ Xyand o/ € Xy if
X¢(o) = o', where f:n" — n is the unique [somorphism of simpliced. This is used implicitly when we say
that d;(0) € C,—1(X) because d;(0) € Xy, where m = n \ {i} is obtained from n by removing the ith
vertex.

Remark 15.7. The adjective “normalized” refers to the fact that Hegenerate simplice§ are modded out.
One could also look at the nonnormalized simplicial chains, defined without such modding out. Later, we will
show that the nonnormalized chains are Fhain homotopy equivaleni (to be defined later) to the normalized
Ehaind. However, the normalized Ehand are far more convenient because many have finitely
many pondegenerate simpliced, but infinitely many degenerate ones.

Lemma 15.8. (The boundary map is a chain differential.) For any X and n > 2 we have
Op—1 00, = 0, so the above definition indeed defines a (ponnegafively graded) chain complex C(X). used in
=13

We give two proofs: one is conceptual, whereas the other one just blindly applies the definitions. Both
proofs ultimately explore the same idea.
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Conceptual proof. Fix a simplex n and some n-chain ¢ € Cgman(X). Also fix some simplices m and 1 such
that dmMm = Hmn — 1 and @] = B m — 1. The coefficient of p € Xy, in the expression for 9, (c) is
the sum of (—1)’c(c) over all injections a:m — n and n-simplices o € X,, such that X, (o) = p, where i
is the index of the only element of n \ a(m) inside n (the indexing starts from 0). Likewise, the coefficient
of 7 € Xj in the expression for 9,,_1(d,(c)) is the sum of (—1)7(—1)ic(o) over all injections 3:1 — m and
a:m — n and n-simplices 0 € Xy, such that X,o5(0) = 7, where ¢ is the index of the only element of
n\ a(m) inside n and j is the index of the only element of m\ 5(1) inside m. We group together pairs (a, 3)
that have the same set n \ a(8(1)) (consisting of 2 elements). Each group contains exactly 2 pairs, which
add these 2 elements in the different orders. The terms (—1)7(—1)% have opposite signs because removing
the smaller elements decreases the index of the larger element by 1, and this happens for exactly one of the
two pairs. |

Computational proof. By the universal property of free abelian groups, it suffices to verify this identity on a
o € Xn. We have

On-1(0n(0)) = 01 | D (=1)'di(0)

[
—
|
AN
=

>
i
L
=

o,
£
=

)
S~—
SN—

0<i<n

23D Y (-1)7dj(di(o))

0<i<n 0<j<n—1

=203 CDHG0) Y (-1 d(di(o)
0<i<j<n—1 0<j<i<n

2N (D) Hdigal)+ Y (-1 dj(o)
0<i<j<n—1 0<j<i<n

N )@+ Y (<) (o)
0<i<j<n 0<i<j<n

LS (~1) (o) + (=) di (o)) = 0.
0<i<j<n

The first equality expanded 9,,(o) using the definition of 9,,. The second equality used the fact that 9,1 is
a homomorphism of abelian groups. The third equality expanded 0,,—1(d;(c)) using the definition of 9,,_1.
The fourth equality split the resulting double sum into two sums with ¢ < j and i > j respectively. The
fifth equality used the fosimplicial identitied of Exercise GT4. The sixth equality replaced j by j — 1 in the
first sum and exchanged ¢ and j in the second sum. The seventh equality observed that both sums are now
indexed in the same way and the summation terms differ only by a sign, so their sum is zero. |

Example 15.9. We compute the complexes of A™ when @™ m € [0, 2].
e For B° we get C(@°)y = Z and C(B°),, = 0 for n # 0. This is denoted by Z[0].
e For O we get

—1p1
Z(o) © Zg1y < Zon).-

The angle brackets denote the vertices corresponding to the given copy of Z.

e For I3 we get
-1 -1 0
10 -1
o 1 1 10101

Zoy ® L1y D Ly Zo1) © Zoz) © Lrg) «—— Zyorz)-

Used in o=t

Example 15.10. We compute the complexes of S™ when I m € [0,2]. Recall that S™
has exactly two pondegenerate simpliceq, in degrees 0 and i m. This, C(S™) has exactly two copies of Z,
in chain degrees 0 (denoted by *) and Hmm.
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e For S° we get
Z<*> @ 7.
e For S! we get
Ziw 7.
e For S? we get
Ziw ¢ 02— Z.
e For S™ Himdm > 2, we get a similar with k — 1 zeros between Z, and Z.

Used in o=,

Example 15.11. We compute the complex of simplicial square

3, , 2
0o 7 1
as
1 0
-1 -1 -1 0 0 -1 -1
1 0 0 —1
0 1 0 1 1 0
0 0 1 0 —1 0 1
Z0yDZ1) DLy DLy Z01)DZ(02) DZ03) DZ12) D30y Z012)DZ(032)-

Used in B33, 22232
Example 15.12. Consider the following X:
€1 €0 e1 €9
V_1 Vo V1 Vo V3
The set of Ofstmpliced {...,v_1,v9,v1,...} is isomorphic to Z, the set of 1fsimpliced {...,e_1,€0,€1,...} is
also isomorphic to Z. The boundary map sends e; to v;+1 — v;. We compute Bo(X) = 9. That is, we
must find all }, a;v; € Co(X) such that there is ), fie; € C1(X) so that

> v =0 (Z 5i€i> = Bidei =Y Bi(vig1 —vi) =Y _(Bio1 — Bi)vi.

(3

The coefficients before v; on both sides must be equal, so we get

a; = Bi—1 — Bi.

Zai = (Bi-1—Bi) =0.

2

Thus,

(Recall that all sums are finite because an element of a free abelian group is a finite linear combination
of generators.) In other words, the subgroup Bo(X) C Co(X) is the kernel of the map Co(X) — Z that
sends ), a;v; — >, ;. The latter map is surjective, therefore it is the quotient map for the inclusion
Bo(X) — CQ(X) Thus Ho(X) =7Z.

We now compute Hy(X) = Z;(X) = kad0;. As computed above,

9 (Z BM) = Z(,@iq — Bi)vi.

Thus, >, fie; € kel 0, if and only if §;_1 = ; for all 4, i.e., 3; = v for some v € Z. Since only finitely many
coefficients can be nonzero in a simplicial chain, we have v = 0 and H;(X) = 0.

Exercise 15.13. Compute the complexes for the following simplicial sets. (a) The Eeal
projective pland. (b) The [nfinite grid of Exercise O T1. (c¢) The brienfable surfacd of genus g and (d) the

bhonorientable surfacd with g crosscaps. (e) The and (f) the popapilld of Exercise U T4. (g) The
[assd of Example 8.17. Used in w3, =2, e, oo, o, o=, e, o

As it turns out, a induces a between Bimplicial chaing.
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Proposition 15.14. Any f: X — Y induces a C(f): C(X) — C(Y). These maps
organize into a simplicial chain functor C:ESel — Chg. used in =23, e=ma

Proof. Below, we will give a conceptual proof by turning the normalization construction into a functor
N:EBB — [H, so the functor C:ESel — KA can be defined as the composition of Z[—]:ESel — EAB and
N:EAH — [H. Right now we give a simple hands-on description. We start by constructing homomorphisms
of abelian groups C(f)m: C(X)m — C(Y)m. The functor Z[—]:Bell — BH sends the map of sets fm: Xm — Ym
to the homomorphism Z[fm]: Z[Xm] — Z[Ym], which then descends to the quotients by the abelian subgroup
generated by degenerate simplices because the map of sets X,,, — Y, preserves degenerate simpliced. |

Exercise 15.15. Prove that this construction defines a fhain may. Prove that C is a functor C:ESell — Chg.

Example 15.16. Consider the following simplicial map:

B
GQb — )
o
We map a,b — ¢ and «, 5 — v so that the source circle wraps around the target circle twice. By
Bon T3 279, this indeed defines a because the source is a defined using generators
{a,b} in degree 0 and {a, B} in degree 1 and relations a = d;(a) = do(8) and b = do(a) = d1(3). After

mapping to the target these relations become ¢ = di(y) = dg(v) and ¢ = do(y) = di(7), which indeed hold
in the target. We now compute the induced as follows. uscd in o=, ez=m.

()

Zd7Z 737 0 0 0
lu 1) lu 1) lo
A / 0 0 0

Example 15.17. Consider the projection of a prism onto its top/bottom face:

221
o~ = Ju .~
, 2
// f -/
% [ A 0 -
0" 10

We now compute the induced as follows.

ZG Z12 Zlo Z3 0
| | | o
73 73 V/ 0 0 0

Since we do not want to write down matrices of size 3 x 12, we will describe the induced chain map more
conceptually.

On 0-chains, the map Z% = Z3 ® Z® — Z3 is given by the identity map Z> — Z3 on each of the two
direct summands corresponding to the three vertices in the bottom respectively top face.

On 1-chains, the map Z'? = Z3 © Z3 ® Z® ® Z*> — Z3 is given by the identity map Z3 — Z3 on each
of the first three direct summands, which correspond to the edges of the bottom face, the top face, and the
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diagonal edges on each of the three square faces. On the fourth direct summand, which corresponds to the
three vertical edges, the map is zero because the vertical edges project to degenerate 1-simplices.

On 2-chains, the map Z'° = Z* ¢ Z® — Z is given by the identity map Z — Z on each of the four
summands Z of the first direct summand Z*, which corresponds to the top and bottom faces and the two
interior triangles 00 — 10 — 21 and 00 — 11 — 21. On the second direct summand Z% the map vanishes
because each of the six triangles located on one of the square sides projects to a degenerate 1-simplex.

Exercise 15.18. Compute the induced chain maps for each of the three pimplicial mapg in [Example 3.13.

Used in I3, =22, 2T

16 Homology

Supplementary sources: Boltyanskil and Efremovich [[CT], Fomenko [MCI].

that we can consider to be the “same” (to be formalized later using the notion of
[reak_equivalencd) can have different (i.e., nonisomorphic) complexes of fimplicial chamg.

However, we can extract a graded abelian group that is invariant under fimplicial weak equivalences.

In the following definition one should think of C' = C(X) for some X € ESedl.

Definition 16.1. (Poincaré, 1899.) Suppose C € CH and ¢ € C,, for some n € Z.
e The n-chain ¢ is a cycle if dc = 0. Cycles form an abelian group kedd,,, denoted by Z,(C), where Z
stands for the German word Zykel.
e The n-chain c is a boundary if there is b € C,,41(C) such that 9b = ¢. Boundaries form an abelian group
9,11, denoted by B,,(C).

Used in BEET2A.
Lemma 16.2. For any C € CH and n € Z the group B,,(C) is a subgroup of Z,,(C).
Proof. If ¢ € B,,(C), then there is b € C,,11(C) such that 9b = ¢, so dc = J(9(b)) =0, i.e., c € Z,(C). 1

Definition 16.3. (Mayer, 1929.) The nth homology group of C' € A is the H,(C) =
Z,(C)/B,(C). Elements of H,(C) are known as homology classes in degree n. vsed in ==, m=m, m=, &=, ez=m.

Definition 16.4. Suppose X € ESall. We define Z,,(X) = Z,(C(X)), B,(X) = B,(C(X)), Ho(X) =
H,,(C(X)). Elements of these groups are referred to as simplicial cycles, simplicial boundaries, and simplicial
homology classes.

Sometimes it makes sense to manipulate the entire collection of the above groups for all n as a single
whole. This can be formalized as follows.

Definition 16.5. Suppose [ is a set. An I-graded abelian group is a family of abelian groups indexed by I.
If A and B are I-graded abelian groups, then a homomorphism from A to B is a family of
pf_abelian groupd A; — B; for all i € I. Thus, I-graded abelian groups form a category BB’ . vsed in w3, =,

=3, g=a.

Proposition 16.6. We have functors Z:CH — BB, B:CH — BBZ, H:CH — BB%. The Emctod H is known
as the homology functor. vsed in e, e==a.

Proof. We defined these Eunctard on pbjecty of CH above. It remains to define them on and
verify the [unctoriality propertied. Given a f:C — D, observe that f(Z,(C)) C Z,(D) because
Op(f(c)) = f(Oc(c)) = f(0) = 0 for any ¢ € Z,(C). Likewise, f(B,(C)) C B, (D) because f(0c(c)) =
Op(f(e)) for any ¢ € Cp41. Thus Z(f) and B(f) can be defined as the Eestriction/Eorestriction of C(f) to
the appropriate domaimd /Eodomaind. The funcforiality properfied are satisfied for Z and B because Eestriction
and Earesfriction operations are compatible with fompositiong and fdenfity maps.

To define H,,(f): H,(C) — H,(D), we use the [miversal property ol quotient groupy for H,(C) =
Z,(C)/B,(C): homomorphisms of the form H,(C) — H,(D) are in correspondence with homo-
morphisms Z,,(C') = H, (D) whose Eestrictiod to B, (C) vanishes. Take the homomorphism Z,,(C) — H,, (D)
given by the composition of Z,(f): Z,(C) — Z,(D) and the quotient map ¢: Z,,(D) — H, (D). This comm=
vanishes on B, (C) because Z,(f)(B,(C)) C B, (D) and ¢ vanishes on B, (D). Thus, we defined a
map H,(f): H,(C) = H,(D).
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The [unctoriality propertied for H,, is satisfied: given f: C'— D and g: D — E, the morphisms H,(go f)
and H,(g) o H,(f) are both induced from maps Z,(C) — H,(F) that vanish on B, (C) by construction.
Thus, it remains to show that

Z,(go
(gof)

Z,(C) Z,(E) = H,(E)

and
z,(0) =5,

compose to the same map. Indeed, by the finiversal property of quotient groupd the latter composition can
be rewritten as

Z,(D) - H,(D) 2%, 1, (E)

Zn(f) Z,(9)

Z,(C) Z,(D) Z,(E) = Ha(E). I
Remark 16.7. The word “homology”, when used in isolation and not as a part of “fhomology groud”,
typically refers to the graded abelian group defined above. Sometimes it is also used informally to refer to
the Ehain compley of Fimplicial chaing. used in T, £, ro=, ©==a, £o=, T, o=, B, B3T3, B3,

Definition 16.8. (Riemann 1857; Betti, 1871; Poincaré, 1895, 1899, 1900; E. Noether, 1925.) The simplicial
homology is the lonciol H o C: ESell — iv; Abusing notation, we denote this functor also by H. vsed in m=m,

3. I3, —=0. B3

Remark 16.9. Below we will introduce several other homology lunctord and all of them will be denoted
by H. The particular choice of a functor must be deduced from the type of its arguments.

Example 16.10. We compute the Eimplicial homology] groups of B3 when EmMm € [0, 2] using
Ehaind computed in Example 15.9.

e For B° we get Hy(B°) = Z and H,,(B°) = 0 for n # 0.

e For @' we get the Fimplicial chain complex]

CE) = Zy ® Zpyy <2 Zjgy.

The groups Ho(B") and H; (@) are given by the cokernel and kernel of 9,:Z — Z @ Z. The latter
is 0, whereas the former is the codomain of the quotient map Z ® Z — Z that sends a® b € Z@ Z to
a+b € Z. Indeed, this map is surjective and its kernel is the image of 07, which guarantees that the
map is the cokernel of 9. Thus Ho(B") 2 Z and the other fomology groupy are zero.

e For I3 we get the Fimplicial chamn complex]

-1 -1 0
1 0o -1
0 1 1 16—161

Zoy ® L1y D Ly Zo1) © Zoz) ® Lz« Zyorz)-

We compute Hy (INZ). The image of 01 does not change under elementary column operations. Column-
reducing the matrix produces

-1 0 0
1 -1 0
0 10

The quotient map is Z®ZPZ - Z (aBbPc— a+ b+ c¢). It is surjective and its kernel is precisely
the image of the above matrix, which is {—a ®a —b® b | a,b,c € Z}. By inspection, the kernel of 9,
coincides with the image of da, so Ha (%) 2 0.

Example 16.11. We compute the fimplicial homology of S™. All boundary maps vanish by [Example 15.10.
Thus, for m > 0 we have Hip(S™) 2 Z if £ = 0 or kK = m, and Hy(S™) = 0 otherwise. We also have
Ho(S?) 2 0, with all other fomology groupy vanishing.

Example 16.12. In we computed the complex of a square
3. 2
(S|
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as

1 0
-1 -1 -1 o0 -1 -1
0 —1 1
0 1 0
0 0 1 0 —1 0 1
Z0yDZ1)DZ2) DLy Z01) DZ(02) DZ03) DZ12) D32y Z012)DZ(032)-

We now compute Hg as the cokernel of 9;. Column-reducing the corresponding matrix yields

-1 0 0 0 0
0 -1 0 0 O
0 0 -1 00
1 1 1 0 0

The three nonzero columns constitute a basis of By = Z3. We claim that the quotient map is Z* — Z
(a®b®c®d— a+b+c+d). Indeed, its composition with 9;: Z> — Z* vanishes and its kernel coincides
with the image of 91, namely, {—a® —-b® —c® (a+b+c¢) | a,b,c € Z}.

We now compute Z; as the kernel of 0. Row-reducing the corresponding matrix yields

100 -1 O
01 0 1 1
001 0 -1
00 0 O 0

The three nonzero rows allow us to read off a basis of Z; = Z2:

This coincides with the matrix of 02, so H; = 0. Finally, Zo = 0, so Hy = 0.
Exercise 16.13. For each of the listed in Exercise Th T3, compute its homology.
Example 16.14. Consider the following simplicial map f: A — B from [Example 15.10:

B
i
«

We map a, b+ ¢ and a, 5 — 7 so that the source circle wraps around the target circle twice. We computed
the induced as follows:

—1 1
Z97Z <——<—1—*1)— ZdZ

0
J(l y J(l y lo

7 2 7z 0

Its homology is computed as follows. We have Zy(A) = Co(A) and Bo(4) = {a ® —a | a € Z}. The
surjective map Zg(A) — Z (a ® b — a + b) has Bg(A) as its kernel, therefore Hy(A) = Z. Likewise,
Z;(A) ={a®a | ae€Z} and Bi(A) = 0, so H1(4) & Z;(A) & Z The computation for B is easy:
Ho(A) = Zo(B)/Bo(B) = Z/0 = Z, Hy(B) = Z1(B)/B1(B) = Z/0 =

[=)

0

B)
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of W(Zy(A)) = ZxZ — UMH(A)) 2 Z, eg,, Z - Z xZ (a — (a,0)) and postcompose it with
W(Zo(f)): W(Zo(A)) — U(Zo(B)), which yields the map a — a + 0 = a, i.e., the identity map Z — Z.
Thus, Ho(f) = [yz.

Likewise, C1(f): C1(A) — C1(B) sends a @ b+~ a + b. Since B1(f) = 0, we have H;(f) = Z,(f), which
initstunis {a®a|a€Z} —Z (a®a— a+a = 2a), which is isomorphic to Z — Z (a — 2a). We
summarize this as follows.

The map Co(f): Co(A) — Co(B) sends a b — a + b. To compute Hy(f), we choose a section
X 0
)

Z Z 0
| |2 |o
Z Z 0
Exercise 16.15. For each of the listed in Exercise Th T8, compute the induced map on

homology.

17 Examples of simplicial sets in mathematics

17.1. Simplicial complexes vsed in =

Bimplicial complexed are a formalism very closely related to Bimplicial setd. There are two primary
distinctions between pimplicial complexed and fimplicial setq:
e Individual simplices of a Fimplicial compley are no longer ordered;
e There can be at most one simplex with a given set of vertices.

Given the vastly superior formal properties of fimplicial setd, today Fimplicial complexeq are used mostly
for historical reasons. However, it is important to be acquainted with them in order to be able to use the
vast body of literature that uses pimplicial complexes.

Definition 17.2. A simplicial complex is a pair (V,S), where V € B&ll is a set of vertices and S € 2V is a
set of simplices. We require that ) ¢ S, all singleton subsets belong to S, and S is closed under passage to
nonempty subsets. A map of simplicial complezes (V,S) — (V’,5’) is a function f:V — V' such that for
any s € S we have f.(s) € S. The gategory of fimplicial complexeq is denoted by SimpComp. used in e, &=,

A, o=, 23, o3, ==, o, 53

We now discuss two ways to turn a pimplicial compley into a fimplicial sefl.

Definition 17.3. We define a lnctod F: fimpCompg — ESell as follows. Given a pimplicial complex (V,.5),
we define a F(V,S) = X by setting Xy, to the set of maps s: U(m) — V such that @m@s € S,
whereas the pimplicial structure mapg X, send s to s o U(f). Likewise, a map of simplicial complexeq
g: (V,8) — (V',5") yields a F(V,S) — F(V',S") by sending s to g o s.

The resulting is much bigger than the original simplicial complex (V,S): for any simplex
s € S we have many simplices in F(V,.S), obtained by ordering the vertices of s in all possible ways. In many
cases we can do better: the vertices of simplices often already possess a canonical ordering.

Definition 17.4. A locally ordered simplicial complez is a pair (V, S, <), where (V, S) is a Bimplicial compley
and <: 5 — 2V*V gends each s € S to a subset of V x V that is contained in s x s and defines an ordering
on s. Furthermore, we require that if s C ¢, then the ordering of s is induced by the ordering of t. A map
of locally ordered simplicial complexes (V,S,<) — (V',5',<) is a [map ol simplicial complexeq f:V — V'
such that if we restrict f to any s € S and corestrict it to f.(s), the resulting map is order-preserving. The

of [ocally ordered simplicial complexeq is denoted by LocOrdSimpComp. uvsed in ==, =2, ==n.

Definition 17.5. We define a blunciod F:[CocOrdSimpComg — ESefl as follows. Given a
Bimplicial_compleq (V, S, <), we define a F(V,S) = X by setting X;, to the set of maps
s:U(m) — V such that s € S and the induced map U(m) — [s is order-preserving, whereas the
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FImplicial structure mapy Xy send s to s o U(f). Likewise, a [map of locally ordered simplicial complexeq
f:(vV,8,<) = (V',5,<) yields a F(V,S) = F(V’',S) by sending s to f o s.

Example 17.6. An ordered simplicial complez is a triple (V, S, <), where (V, S) is a fimplicial complex and
(V,<) is an brdered"sell. Such a data canonically induces a [ocally ordered simplicial complex by inducing
an ordering of each simplex from the given global ordering on V.

We finish this section with a comparison of fimplicial sefd and pimplicial complexed. Jungerman and
Ringel proved that the minimal number of 2-simplices in a Bimplicial compley that represents an orientable
surface of genus g is precisely 4g —4 + 2| (7 + (1 +489)'/?)/2] if g # 2 and 24 if g = 2. For the nonorientable
surface with g crosscaps it is 2g — 4 + 2[(7 + (1 + 249)/?)/2] if g ¢ {2,3}, 16 if g = 2, and 20 if g = 3.
For we gave generic presentations with 4¢g respectively 2¢g 2fsimpliceq if ¢ > 0 and a single
2fsimpley if g = 0, and also gave smaller presentations when g < 2. This makes a large difference for small g:
a Klein bottle needs 16 2fsimpliceq if it is encoded as a pmmplicial complex, but only 2 if it is encoded as a
Bimplicial sef.

As another example of efficiency of pumplicial sety, we cite the fact that an n-sphere needs at least n + 2
nfstmpliced to be encoded as a Bimplicial complex, but only a single n-simplex if encoded as a fimplicial seil.

Additionally, have much better theoretical properties: they form a cartesian combinatorial
[model category, which provides for a large number of standard tools, whereas fimplicial complexed require
ad hoc constructions. Some constructions, like products, are much easier to implement in
than in fimplicial complexeq.

17.7. Singular simplicial sets
Supplementary sources: [EIISS, §3].

Definition 17.8. A category of geometric spaces, denoted by Bpacd, is a Eategory equipped with a functor
|—|: N — Bpacd. Its objects and will be referred to as geometric spaces and geometric map. vsea

in =@, =3, o=, =0, =3, T

Thus, |m| is a for any Fimplex m, |f] is a for any jmap of simpliceq
f:m — n, for any [maps of simpliced f and g we have |go f| = |g] o |f|, and for any m we have
[ | = -

Example 17.9. Each of the following constitutes a Eategory ol geometric spaces.
e metric spaces and contractive maps;

metric spaces and continuous maps;

topological spaces and continuous maps;

uniform spaces and uniform maps;

smooth manifolds and smooth maps;

real analytic spaces and real analytic maps;

Enhanced measurable spaced and [neasurable maps;

algebraic varieties over a field k and regular maps;

For all of the above examples, the functor |—| is constructed using essentially the same construction as for
the Eeometric realization of a simpley. We recall it briefly here. First, we fix |1]; in the first four examples
we can take the real interval [0, 1] with the appropriate structure; for smooth manifolds, real analytic spaces,
and fnhianced measurable spaced we take |1| = R equipped with the appropriate structure; and for algebraic
varieties we take |1| = A}. The we set |m| to the subspace of |1|™ (i.e., the product of m+1 copies of |1])
cut out by the equation xg + -+ - + z,, = 1, where z; denotes the projection map to the ith factor. Finally,
given a [map of simplice§ f:m — n, we set |f|: |m| — |n| to the map induced by the map [1|™ — [1|*+!
whose jth component (0 < j < n) is the map that takes the sum of all coordinates with indices in f~1(3).

Definition 17.10. The singular simplicial set Sing(M) of a M is defined by setting
Bind(M)m to the set of m| — M (known as singular simplices) and

STg(M ) p:BG(M ) — BTG(M )m

49



to the map of sets that sends a: |n| - M to ao f:|m| — M. Given a r: M — N, the induced
map Find(r): Bind(M) — Bind(V) is defined by setting Btnd(r)m: Bind(M)m — Ed(N)m to the map of
sets that sends a: jm| — M to roa:|m| = N. Used in £m, =m, =, 2, =, T, o=, oo, =3, o=, o0, BT,

Exercise 17.11. Verify that the fingular stmplicial sef] construction is a Emctol Fing: Fpacd — ESell, where
Ppacq is one of the categories of Eeometric spaceq of Definifion T78. (The nature of Eeometric spaceq is
irrelevant here, only the fact that is a category equipped with the functor |—|:@¥ — from

matters.)

The idea behind the Eingular simplicial sef] is that we “probe” a M by mapping all
possible Eeometric realizations of simpliceq into it, and record the resulting information in a fimplicial sefl.

Bingular simplicial setq are important in theoretical considerations, but direct computations with them
are impractical due to the huge number of simplices involved. For instance, if M = {(z,y) | 22 +y? = 1}, i.e.,
a circle, then Fing(M) has uncountably many in every dimension, e.g., one vertex for every point,
and even more higher-dimensional fimpliced. On the other hand, the fimplhicial circld of Defimifion 714 has
a single fhondegenerate simplex in dimensions 0 and 1 and is much easier to work with in practice.

Definition 17.12. (Eilenberg, 1944.) The singular homology is the fonctod H:Ppacd — BB~ given by the
composition of Fing: — ESefl and H:ESel — BHZ. veed i mm, e, oo, o=, 5=,

Exercise 17.13. Suppose is the of metric spaces and continuous maps. Compute the
homology groupy of the metric space R™ for every n > 0.

17.14. Nerves of covers and Vietoris simplicial sets

In this section we introduce two classical constructions of pimplicial setg: nerves and Vietoris complexes.
Both were introduced in 1927, the former by Paul Alexandroff [Epprod, §13] and the latter by Leopold
Vietoris [ZH].

The input data to both of these constructions is a triple (X, Y, R), where X and Y are sets and R C X xY
is a relation from X to Y.

In typical applications X is the underlying set of some space, whereas Y is a cover of that space, i.e., a
family of subspaces of that space, whose union is X. We define (z,y) € R if z € y, i.e., a point = belongs to
the element gy of the cover.

Definition 17.15. (Paul Alexandroff, 1927.) The nerve of a cover of (X,Y,R) is the
N(X,Y, R) defined by setting N(X,Y, R)m to the set of maps f:U(m) — Y for which there is an element
x € X such that (z,y) € R for any y € i f. For a map of simpliced f: m — n the structure map

N(X,Y,R);:N(X,Y,R)n = N(X,Y,R)m

sends f:U(n) — Y to f o U(f). vsed in =z

Definition 17.16. The Vietoris complex V(X,Y, R) of (X,Y, R) is defined as N(Y, X, R®), where R®? is
the image of R under the isomorphism X XY — Y X X. uvsed in =, e, =,

Thus, an m-simplex of the [Vieforis compley is a family of elements of X indexed by the vertices of m,
for which there is an element y € Y such that (x,y) € R for all x in the family.

Remark 17.17. If the set Y is ordered, we may also consider the ordered variant of N(X,Y, R), which
requires the map f to be order-preserving. This also applies to the [Vietoris complex.

It is useful to interpret the above definitions when X is the underlying set of some metric or topological
space, Y is an open cover of that space, and R(z,y) holds if and only if € y. In this case, we write N(X,Y)
and V(X,Y). An m-simplex of the herve ol'a coved is a family of Eimlm + 1 elements of the open cover that
have a nonempty intersection. An m-simplex of the [Vietoris compley is a family of i m + 1 points in X
that together form a subset of some element of the open cover.

A remarkable theorem due to Dowker [HGR)| shows that the V(X,Y,R) and N(X,Y, R)

are fveakly equivalenf (to be defined later).
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Later, we will prove the following very important result, known as the nerve theorem: if any finite
interesection of elements of an open cover of a topological space X is empty or contractible (to be defined
later), then the nerve of this open cover is weakly equivalent (to be defined later) to the pingular simplicial
E&l of X. This result will allow us to reduce problems about topological spaces to problems about
E&Ed. For now, we illustrate this idea with a simple exercise.

Exercise 17.18. Suppose is the of metric spaces and continuous maps. Consider the open
cover of the 2-dimensional sphere S? = {(x,y,2) € R?® | 22 + y? + 22 = 1} by the six hemispheres centered
at each of the points (£1,0,0), (0,41,0), (0,0,+£1). Compute the fimplicial homology] of the nerve of this
open cover.

17.19. Nerves of categories and classifying simplicial sets of groups and monoids

Supplementary sources: [EIISS, §6].

We now move on to very different examples that do not have any obvious geometric underpinnings at
all.

Recall that &l denotes the of Emall cafegoried and bonctord, and a isa
whose form a set as opposed to a proper clasg.

Definition 17.20. The functor [—]: [N — &1 is the composition of the forgetful fomctod N — Posedl and the
Enctod Posell — CAdl constructed in Example T1.19.

For example, if n > 0, then [n] is the category with objects {0,1,...,n} and the set of morphisms i — j
is empty if ¢ > j and is a singleton set if ¢ < j. There is exactly one way to define Eomposition] and [denfity]
inorphismsg.

Definition 17.21. The nerve of a I is the NI, defined by applying [Defind
Eon T710 to the functor [—]: N — &l Thus,

(NI), = Bm([n], I)

and the pimplicial structure mag for f: m — n is
(NI); =BEm([f], 1),

where
[f]:[m] = [n]
is induced by f Used in =2, ==, 2==1.

Recall that a monoid is a set equipped with an associative operation. Formally, a monoid is a triple
(S,+,1), where S € Bell, -: Sx.S — S is a binary operation, 1 € S is the identity element, and z-(y-z) = (z-y)-2
and 1-x =z -1 =z for all z,y,z € S. In particular, any group is a monoid. Other simple examples of
monoids include (N, +,0) (natural numbers with addition and zero) and (N, -, 1) (natural numbers with
multiplication and one). The multiplication operation need not be commutative. For instance, given a set X
we can consider the noncommutative monoid (S, 0,idg), whose elements are maps S — S, multiplication
is given by the composition of maps, and the identity element is given by the identity map.

Definition 17.22. The classifying simplicial set of a monoid M is the merwa of the category BM. By abuse
of notation, it is also denoted by BM. uvsed in o=, =

Thus, BM is the that sends a m to U(M)™™ and a [map of simpliced f: m — n
to the map W(M)E=n — U(M)™=™ whose ith component (0 < i < EIm@m) is the product of components
with indices in [f (%), f(i + 1)).

Exercise 17.23. Verify that the Elassifving simplicial sefl construction is a nciol B: — ES=l.

Many important invariants of groups and other algebraic structures are defined in terms of BM. For
instance, the homologyv of a grouf G is defined as the homology of BM. Likewise for Eohomology of groupsd.
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Definition 17.24. (Hurewicz, 1936.) The homology of a group G is the fomology] of the Elassifying simplicial

Ecl BG. used in mzm, =, oo,

Exercise 17.25. Compute the [fiomology of the grouf Z/2.

Exercise 17.26. Compute the fimplicial homology of the classifying simplicial set of the monoid with two
elements 1 and e, where 1 is the unit and e = e.

Exercise 17.27. The word “nerve” is used for two different constructions: one with open covers, another
one with categories. Find a nontrivial connection between these two notions. Formulate a precise claim and
prove it.

18 Homology with coefficients
Recall that the construction of crucially relied on a free_abelian group functoi]

[Exed: Bedl — BR.

Concretely, we have Eed(S) = [[¢Z = @ g Z, whereas Exed(f, A):Exed(S, A) — Eed(T, A) for a
EeE f: S — T sends a basis element s of Exed(S) to the basis element f(s) of Exed(7"). This construction
can be generalized as follows: given an abelian group A, we have a functor Exed(—, A):Bel — BH such that
Exed(S, A) = [ [ A and Ezed(f, A):Exed(S, A) — Exed(T, A) sends direct summands to direct summands as
prescribed by f.

Definition 18.1. Given an abelian group A (henceforth the abelian group of coefficients), we define a
functor C(—, A):ESell — O, known as the (normalized) simplicial chains with coefficients in A, by sending a
X, i.e., a functor X:@* — Bell, to the composition Exed(—, A) o X: @™ — BR, and a
g f: X — Y, ie., a halural Transformafion of functors, to the Exed(—, A) o f. Used in ==, e

Definition 18.2. The functors Z(—, A),B(—, A), H(—, A):E5al — BB” are defined by composing the func-
tors Z, B, H:CH — BBH% with the functor C(—, A):ESel — CH. The Emctad H(—, A) is known as simplicial
homology with coefficients in A. Used in ==a.

Example 18.3. We compute the fimplicial homology with coefficientd of a real projective plane represented
via two 2-simplices:

Yy li T
a Aﬁ Ya
«
:C 7
b )

The Bimplicial chains with coelicienty in A are
1 -1
-1 -1 0 (1 1 )
( 11 o) 11
Afa) © Agyy s Aa) D Ap) ® Aq) " A(a) © Ay

The matrix reduction algorithm works as before. We have Bg = {a @ —a | a € A}. The quotient map
Zy — Zo/By = A can be taken to be z @y — x + y, so Hy & A.
Weget Z; ={a®b®d|a+b=0}. Likewise, By is the image of the column-reduced matrix

1 0
-1 0
1 2

The quotient map Z = Z; /By = A/2A sends a®b® d — [d — a]. Indeed, the composition By — Z; — A/2A
sends a @ — a® —a® (a+28) — [20] = 0. The kernel of the quotient map is a subgroup of Z; =
{a®b®d|a+b=0} defined by [d—a] =0, i.e., d—a € 24, or d —a = 23 for some § € A. But this means
that c @b D d=a® —a® (a®28) € @ I,.
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Finally, we get Zo ={a® B |a+8=0ANa—- 3 =0} = {a € A|2a =0}, a group that is known as the
2-torsion of A, denoted by Mod(Z/2, A). Thus, Hy = [od(Z/2, A).

Thus, the sequence of homology groups is A, A/2A >~ Z/2® A, [ald(Z/2, A). If A = Z, we recover the
previously computed Z, Z/2, and 0. However, other groups yield different results. For instance, if we take
A =17/2, we get Z/2, Z/2, and Z/2, which makes the second homology group nonzero, i.e., A = Z/2 can
see something that A = Z cannot. For A = Q, we get Q, 0, 0, i.e., A = Q sees less than A = Z.

Proposition 18.4. For any family of {X;}ier (I is an arbitrary set) we have an isomorphism

@ H(X;,A) = H (]_[ Xi,A> )

el icl
Used in X5, EXX3.

Proof. We observe that C(][,c; Xi, A) = @,.; C(Xy, A). Indeed, C(]],c; Xi, A)n is the free abelian group
on the set of nondegenerate n-simplices of [ [, X;, which is the disjoint union of the sets of nondegenerate
n-simplices of X; for all ¢ € I. The free abelian group functors sends disjoint unions of sets to direct sums
of abelian groups.

Cemma T3 completes the proof. |1
Lemma 18.5. If C; e is a for all 7 € I, then the canonical map

PHci) —H (@ ci>

i€l i€l

is an isomorphism. used in m=m.

Proof. The canonical map is constructed using the iniversal property of coproductd from individual maps

H(e): H(Cy) — H (@ Ci> :

iel

where 1;: C; — [[,c; C is the for a coproduct.
We construct a map in the opposite direction:

H (@ ci> — EPH(C),
iel i€l
which is induced by the map

z (@ C’i> - Pz

iel i€l

Indeed, ¢ € Z,, (,; C;) is a collection of elements of C,,(C;) that are nonzero for finitely many i € I and
whose differentials vanish. This is by definition an element of the right side. In the same way, we have an

induced map
iel icl
These two maps induce a quotient map
H (EB cy) - P H(C).
iel iel

By construction, the maps in both directions are inverse to each other. |
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Proposition 18.6. If X < ESed is Eannected, then the canonical map
Ho (X, A) — A
is an isomorphism. For an arbitrary X, the canonical map

Ho(X,4) - € 4
mo(X)

is an isomorphism. used in ee=.

Proof. The second claim follows from the first claim and [Proposition 18.4. The canonical map

Ho(X,A) = Co(X7A)/B()(X, A) — A

is induced by the homomorphism

D 1Co(X,A) — A

that takes the sum of coefficients of all O-simplices. It remains to verify that the kernel of this map equals
Bo(X, A). Indeed, > vanishes on By(X, A), so it suffices to show that any ¢ in the kernel
of ¥ is a boundary. We prove this by induction on the number n of nonzero coefficients in c¢. If n = 0,
then ¢ = 0 is a boundary. If n > 0, pick any vertex v € Xy whose coefficient ¢, € A in ¢ is nonzero. Since
> w Cw = 0, there is another vertex u # v with a nonzero coefficient ¢, € A.

If there is a 1-chain L such that L = ¢,u — ¢,v, the O-chain ¢ 4+ L has n — 1 or n — 2 nonvanishing
coeflicients because the coefficient of v is now zero and the coefficient of v may also vanish. By induction,
there is a 1-chain W such that ¢ + L = OW. Hence, ¢ = 9(W — L), which proves the statement.

In order to prove that such a 1-chain exists, recall that X is connected, i.e., mo(X) is a singleton. This
means that any two elements of Xy (such as u and v in our case) can be connected by a chain of vertices
such that every consecutive pair forms the endpoints of some 1-simplex, in either order. The chain L will
now be assembled of all 1-simplices that occur in such a chain, taken with coefficient ¢, or —c¢, depending on
its orientation. The boundary L will see all interior vertices annihilated because of our choice of coefficients.
Only the endpoints of L survive, so 0L = c,u — c,v. |

Exercise 18.7. For each of the listed in Exercise THh T3, compute its homology with coefficients
in an arbitrary abelian group A. For each of the listed in Exercise To T8, compute the induced
map on homology with coefficients in an aribtrary abelian group A.
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19 The Euler characteristic

Definition 19.1. The rank of an abelian group A, denoted by rank A, is the cardinality of a maximal linear
independent subset of A, i.e., a subset S C A such that ) _¢a,-s =0 implies a; = 0 for all s € S, where
a: S — Z is a system of integer coefficients with finite support. The cardinality can be finite or infinite (in
which case it is a cardinal number). Equivalently, one can compute Eanl A = H(A ®z Q). used in m==, wx=,

3.

Definition 19.2. The Fuler characteristic of a X that satisfies the finiteness condition given
below is defined as

X(X) = (~1)"EnEH,(X).

n>0
The finiteness condition requires that all ranks are finite and only finitely many terms in this sum are nonzero.

Lemma 19.3. We have EanlH,,(X) = EmH, (X, Q), so

X(X) =) (-1)"EmH,(X, Q).

n>0

Proof. A linearly independent subset of H,,(X) is equivalently a subset S of Z,,(X) such that ) s, -5 €
B, (X) implies agy = 0 for all s € S. Furthermore, if oy € Q, we can multiply them by their common
denominator, which makes ag € Z. Thus a subset of Z,,(X) that is linearly independent over Z remains
linearly independent over Q once we embed it using Z,,(X,Z) — Z,(X, Q).

Vice versa, if we have a subset of Z, (X, Q) linearly independent over Q, we can multiply each of its
elements by the product of the denominators of coefficients that occur in any of the chains under considera-
tion. Thus a linearly independent subset of Z,,(X, Q) gives rise to a linearly independent subset of Z,,(X,Z)
of the same cardinality. |

Proposition 19.4. If a X has only finitely many nondegenerate simplices, then x(X) =
Yonso(—1)"#X],, where X, denotes the set of nondegenerate n-simplices of X.

Proof. In linear algebra, this statement is known as the “rank-nullity theorem” or the “first isomorphism
theorem”. We have

- é(_nn(mzn(x, Q) - HEmB,(X,Q)

— é(—l)"(ﬂﬁzn()(, Q) — (A Cr11(X, Q) — MW Z,41(X, Q)))
- ;(1)n(ﬁmzn(x, Q) +EmZ,,1(X,Q) -EdC,y1(X,Q))
- ;_EZO(X, Q) + Z;O(—l)”(—EEECnH(X, Q)

= ;)(—1)"EEC71(X7Q). |

Later we will show how the Euler characteristic behave under operations such as gluing (homotopy
pushouts).

Exercise 19.5. For each of the listed in Exercise Th T3, compute its Euler characteristic or
prove that it is undefined.

Exercise 19.6. If x(X) exists (and is finite), does this imply that X has only finitely many nondegenerate
simplices?
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20 Cohomology

Recall for any abelian group A there is a linctod Hom(—, A): BB®™ — BB (the internal hom of abelian
groups) that sends an abelian group X to Homl(X, A), the whose elements are homomard
phisms of abelian groupd X — A and operations are defined pointwise. The functor Homl(—, A) sends a
homomorphism of abelian groups f: X — Y to the homomorphism Homl(f, A): Homl(Y, A) — Homl(X, A)
that sends a homomorphism Y — A to its precomposition with f. This construction can be generalized to
Eham complexes.

Definition 20.1. Given an abelian group A, we define a inctod Homl(—, A): CH®™® — CH by sending a Eham
X to the chain complex Homl(X, A) such that Homl(X, A),, = Hom(X_,, A) and the differential
0":Homl(X, A),, — Homl(X, A),,—1 is the map Homl(0,, 11, A): Hom(X,,, A) — Homl(X,,41, A).

In practice, if X is ponnegatively graded, then Homl(X, A) will be concentrated in nonpositive degrees,
which is inconvenient. To mitigate this, we introduce a dual notion of Eochain complex.

Definition 20.2. The category coCh of cochain complezes is defined as follows. Objects are families {X; }icz
of abelian groups indexed by integer numbers equipped with a family {9°};cz of differentials 8%: X; — X, 1
(homomorphisms of abelian groups) such that 9t o &* = 0 for all i € Z. Morphisms X — Y are cochain
maps, i.e., families {f;};ez of homomorphisms f;: X; — Y; such that f;1 o 8}} = 8@ o f; foralli € Z. vsed in

O3, 23, g3, e, 23, Bom, 2T, ===z, 23, =, D25, 253, e

Thus, the only difference between Eham complexed and fochain complexed is the direction of differentials:
chain differentials decrease the degree by 1, whereas cochain differentials increase the degree by 1. We now
redefine the hom-functor to land in cochain complexes, using the same notation.

Definition 20.3. Given an abelian group A, we define a Imctol Homl(—, A): CH®™® — EaCH by sending a
X to the chain complex Homl(X, A) such that Homl(X, A),, = Homl(X,,, A) and the differ-
ential 0™:Homl(X, A),, — Homl(X, A),+1 is the map Homl(0,, 41, A): Homl(X,,, A) — Homl(X, 41, A4). A
f:X = Y is sent to the Homl(f, A): Homl(Y, A) — Homl(X, A) with components
Homl(f,,, A): Ham(Y,,, A) — Hom(X,,, A).

Definition 20.4. The functors Z*, B*, H*: EalH — BHZ (cocycles, coboundaries, and cohomology) send a
Eochain complexy X to the graded abelian groups whose components in degree n are Z"(X) = kedo™,
B"(X) = mo" !, and H*(X) = Z"(X)/B™(X). The latter groups are known as the cohomology groups
of X and their elements are known as cohomology classes. The values on morphisms are defined analogously
to the case of lomology] in [PTOpPOSTTIon 16.9. Used in [, £, e, T, £=0, EZ0T, &5, &=, B0,

Definition 20.5. Given an abelian group of coefficients A, the functor C*(—, A):ESel®™ — EaCH (known
as the (normalized) simplicial cochains with coefficients in A, or simply as simplicial cochains if A = Z,
and sometimes simply as cochains) is defined as (Homl(—, A) o C(—))®. In other words, C*(X,A) =
Homl(C(X), A) and f: X — Y is sent to C*(f, A) = Hoam(C(f), A): C* (Y, 4A) — C*(X, A). used in oo, oo, e,
=M, =, =3, =X, 229, e, s, A, e, e

Definition 20.6. The functors Z*(—, A), B*(—, A), H*(—, A):ESef® — BB” are defined by composing the
functors Z*, B*, H*: EGCH — BB with the functor C*(—, A): ES&#® — EaCH. The Emctad H(—, A) is known
as the simplicial cohomology with coefficients in A. Used in o, zom, po, =, =m.

Lemma 20.7. Given a pimplicial sef X, pbelian grouy A, cochain degree n > 0, and a pimplicial cochain]
u € C*(X, A), its coboundary du € C"*!(X, A) can be computed as o — Y ;.1 (—1)"u(d;o), where o is
a n-simplex of X.

Proof. This follows immediately from the definition of fimplicial cochaing in Definifion 203 as the dual of
and the definition of the boundary map for fimplicial chaing in Definition TH 3. |

Example 20.8. We compute the fimplicial cohomology with coefficienty of a real projective plane repre-
sented via two 2-simplices:

Y li T

a ,\6 Ya
@
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The pimplicial cochains with coefficientd in A are, by definition, obtained from Bimplicial chains with coeffi]

Eentd in A by replacing direct sums with direct products and transposing all matrices of differentials:

-1 1
(—1 1) (1 -1 1)
0 0 —1 1 1
Ay X Ay — > Ay x Ay X Ag) ———

Ay X Agy-

Recall that finite direct sums of abelian groups are isomorphic to finite direct products, so the cochain groups
turn out to be isomorphic to chain groups in this case. This is false for infinite fimplicial setd. Thus, below
we use the notation with direct sums, since in our case all products are finite.

After row-reducing the matrix of 9° we have H* 2 7% = {a ®a|a € A} = A.

Column-reducing the same matrix yields B! = {a®a ® 0 | a € A} =2 A. Row-reducing the matrix of
O produces Z! = {(b—d) DbDdd | 2d = 0} =2 ApIai(Z/2, A). The quotient map Z'/B* — Mad(Z/2, A)
sends (b —d) @ b® d — d. Indeed, this homomorphism is clearly surjective. Furthermore, its kernel is
{b—d)y@b®d|2d=0Ad=0} ={bdb® 0} = B!, as required. Thus, H' = [al(Z/2, A).

Finally, column-reducing the matrix of ' produces B = {(a+2d) ® (—a) | a,d € A}. We have 2% = C>
and the quotient map is Z? — A/2A 2 Z/2®z A (a® 8 — [a + B] € A/2A). Indeed, this map is clearly
surjective and its kernel is {a ® 8 | a+ B € 24} = {a® B | a+ B = 2d} = {(2d — B) ® 8} = B2. Thus,
H2 = A/2A.

Altogether, H® = A H! =~ DaA(Z/2,A), H? = Z/2 ®z A = A/2A. This looks quite similar to the
sequence of homology groups for the same that we previously computed: Hy = A, H; =
AJ2A 2 7/2 ®z7 A, Hy = [Mald(Z/2, A). Notice how torsion groups moved one degree up, whereas tensor
products moved one degree down. That something like this should happen can be easily seen as follows.
Consider the chain complex concentrated in degrees 0 and 1 with the differential that multiplies by 2:

A2 A

Its homology groups are A/2A and Madl(Z/2, A) in degrees 0 and 1. Consider now the dual cochain complex,
concentrated in cochain degrees 0 and 1, with the dual differential that also multiplies by 2:

A5 A

Its cohomology groups are [ad(Z/2, A) and A/2A in cochain degrees 0 and 1. This explains the phenomenon
of groups moving up and down that we observed above. The Lmniversal"coefficient theoreml, which we will
study later, will express this more precisely and allow us to compute cohomology using homology as an
input. used in e==m.

Remark 20.9. The above example may mislead one into thinking that there is not much benefit to study-
ing cohomology since it seems to compute similar invariants. However, cohomology enjoys vastly superior
theoretical properties and admits a much richer set of tools. In particular, the Eup producl, studied below,
is defined in cohomology, not homology. Although there is a formal dual analog in homology, the coproduct
of a chain, it is far more esoteric and difficult to study for the same reason that coalgebras are more esoteric
than algebras and rings.

Example 20.10. Consider the following simplicial map f:.S — T from [Example 15.10:

B
v
«

We map a,b +— c and «, 8 — v so that the source circle wraps around the target circle twice. We compute
the induced as follows:

()

0

[0 I 5
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Its cohomology is computed as follows. We have H?(S) 2 Z°(S) = {a®a | a € A} = A. Also Z!(S) = C}(S)
and B1(S) = {a® —a | a € A}. The quotient map Z'(S) — A sends a @ 8 — a + (. Indeed, it is surjective
and its kernel is precisely B(S). Thus, H!(S) = A.

We read off the cohomology of T' as H(T") = HY(T) = A.

The map CO(f): C%(T) — C°(S) sends a — a @® a. The map Z°(f): Z°(T) — Z°(S) is a restriction of
this map, and under the above identifications it becomes id4: A — A.

To compute H!(f), we compose Z}(T) — Z'(S) — H!(S), which yields the map A — A that sends
a— a+a,ie., a— 2a. We summarize this as follows.

A A 0
[ [ o
A A 0

Exercise 20.11. Prove that for any family of {X.}icr (I is an arbitrary set) we have an

isomorphism
H* (H Xi,A> = [[H (X, 4).
il il
Prove that the canonical map
A 5 HO(X, A)

is an isomorphism. (See for an analogous statement in homology.)
Exercise 20.12. For each of the listed in Exercise Th T3, compute its cohomology with
coefficients in an arbitrary abelian group A. For each of the listed in [Exercise Th T8, compute

the induced map on cohomology with coefficients in an aribtrary abelian group A.

We conclude this section by extending the notions of fingular homology and Eroup homology] to coho-
mology.

Definition 20.13. The singular cohomology is the composition of the pingular simplicial sefl functor
Smg™: N

and the Fmplicial cohomologyl functor H*(—, A):ESef® — BB, Thus, fingular cohomology is a functor
— BBZ. As usual, can mean any category equipped with a functor N — Bpacd, but most
commonly the category of topological spaces and continuous maps is used. Other important cases include
smooth manifolds and smooth maps, as well as more abstract examples, such as the category of small
categories and functors, which is important for the nerve construction. uvsed in ee=, o=, .

Except for some cases, singular cohomology is very hard to compute directly.

Exercise 20.14. Suppose is the of metric spaces and continuous maps. Compute the
Eohomology groupq of the metric space R"™ for every n > 0.

Later we will develop powerful tools such as the Mayer—Vietoris sequence and nerve theorem, which will
allow us to compute singular cohomology efficiently. As a preview of things to come, we indicate how one
could compute the pingular cohomology] of a 2-sphere using the nerve theorem that we prove below.

Exercise 20.15. Suppose is the of metric spaces and continuous maps. Consider the open
cover of the 2-dimensional sphere S? = {(x,y,2) € R? | 22 + y? + 22 = 1} by the six hemispheres centered
at each of the points (+1,0,0), (0,£1,0), (0,0,+1). Compute the fimplicial conomology of the nerve of this
open cover.

The following definition lies at the core of modern number theory (Galois cohomology is nothing else
than the study of Eroup cohomology] of Galois groups).

Definition 20.16. The cohomology of a group G is defined as the composition of the functors B=2: —
ESel™ and H*:ESel™® — BBZ, applied to the group G. Thus, group cohomology is a functor of the form
— EEZ. Used in 222, DIETSA, BITa.

Exercise 20.17. Compute the fohomology of the group Z/2.
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21 Products and equalizers of simplicial sets

Supplementary sources: Lawvere and Rosebrugh [EETS, §3.3, §3.4]. Aluffi [ZERQ, §I.4]. Also see
[CATS, §11, §13] for examples.

This sections introduce producty and pqualizery of fimplicial setd. The development is parallel to that
of coproducts and coequalizers. This is not a coincidence: products are coproducts in the opposite category.

The first notion, produci of fimplicial setd, has a very simple geometric interpretation: we assemble two
pictures side by side, without intersections, like a disjoint union of sets.

We define in an arbitrary C and then instantiate to C = ES&dl.

Definition 21.1. The product of pbjectd X and Y in a category C (if it exists) is a triple (X XY, 7x: X xY —
X,my: X XY —Y), where X xY € C and 7x, 7wy are in C such that the following universal
property of products is satisfied: for any Z € C the map (ham(Z, 7x),hom(Z, my)):Bam(Z, X x V) —
boml(Z, X) x Bam(Z,Y) that sends f: Z — X XY to (mx o f, 7y o f) is a bijection. vsed in orm, =2, o=, =,

Notation 21.2. Given f:Z — X and g: Z — Y, the inverse image of (f,g) under the above map is known
as the pairing of f and g and is denoted by (f,9): Z - X x Y.

Notation 21.3. Given f1: X7 — Y7 and fo: Xo — Y5, we define the map f1 X fo: X7 X Xo = Y] X Y5 as
(g1omx,,9207x,)-

Informally, we say that a map h: Z — X X Y is the “same thing” as a pair of maps f: Z — X and
g:Z — Y. Given h, we recover f and g as f = mx oh and g = my o h. Given f and g, we recover h as

h=(f,g)

Lemma 21.4. If X and Y are objects in a category C and (X xYV,7x: X XY = X, mp: X xY = Y),
(X XY, XX'Y = X, 70,: X XY — Y) are products of X and Y, then there is a unique map h: X xY —
X x'Y that makes the following diagram commute:

X xY
TX Ty
X/ lh\
ﬂ‘/\ /ﬂ/
T Xx'y 7

Y.

Furthermore, h is an isomorphism.
Proof. Apply Cemma T34 to the category C&. |
Remark 21.5. Although products are always unique, their existence depends on a particular choice of C.

Example 21.6. Recall from E5d that products in the category C = Bell are characterized by the property
that 7x: X XY — X and 7y: X X Y — Y are maps of sets such that for any x € X and y € Y the set

' ({zh) Nyt ({yh)
is a singleton set. Thus, the product of X and Y is simply the set of ordered pairs (z,y), where z € X and
y € Y. The maps mx and my extract the first respectively second component.
The following proposition is analogous to [Proposition 13.1.
Proposition 21.7. In the ESedl, the of X and Y exists. used in e=a, ==,

Proof. Define (X XY )m = Xy X Y and (X xY); = Xy x Y1 Xy X ¥y = X X Yin. We now verify the
[funcforiality property. We have

(X x Y@, = Xm,, X Y@, =dx,,xv, -
Likewise,
(X XY)gos = Xgog X Ygor = (Xyo0Xg) x (Yyo¥y) = (Xg xYy)o(XgxYy)=(XxY)so(X xY)y,
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which completes the construction of X x Y.

We construct the x: X XY — X and my: X x Y — Y as follows. Set (7x)m to
Tx: (X XY)m = Xm X Y — Xm and likewise for Y. The paturality property of simplicial mapy is verified

by the following commutative diagram for any [map of simplice§ f: m — n:
Xem 62— X X Y

XfT TXfXYf

X, X2 X, xY,.

It remains to show the [miversal property of producty. If Z € ESell and f: X — Z, ¢:Y — Z are

pimplicial mapd, we must show that there is a unique h: Z — X x Y such that 71x oh = f and 7y o h = g.
Pick an arbitrary simplex m and consider the component m of the above fimplicial mapg: (7x )m©hm =

fm and (Ty )m © Am = gm. By definition, (7x)m = 7x,,: Xm X Ym — Xm and likewise for (7y )m, so by the
imiversal property of productd in the category Bell, we see that hy: Zy, — Xm X Y is forced to be equal
t0 (fm,9gm). Furthermore, such choice of hy, indeed defines a h:Z — X x Y, as one sees by
substituting into the paturality property of simplicial mapg the definition of X x Y, obtaining the following

commutative diagram for any [map of simpliced e: m — n:

XeXYe
Xy XYy —22% X X Yo

e

Zy — 2 s 7.

Indeed, the top-left composition equals [X, o fm, Ye © gm] and the bottom-right composition equals [fy, o
Ze,gm © Ze). The two maps coincide by the paturality property of simplicial mapy f and g. |

Example 21.8. If S, T € Ball, then HI(S) x Ei3(7T) = dHE(S x T).

Remark 21.9. The of an arbitrary family {X;};e; of in C is defined in a completely
analogous way, yielding an [I;c; Xi together with i [ [er Xo = X

Example 21.10. Consider the X x Y, where X =Y =R, We have

e (X xY)o=XoxYy={0,1} x{0,1} = {0.0,0.1,1.0,1.1};

e (X xY); =X, xY; =1{00,01,11}2 = {00.00, 00.01,00.11,01.00,01.01,01.11, 11.00, 11.01, 11.11};

e (X xY)y =X, x Yy =1{000,001,011,111}* = {001.011,011.001, .. .}.
Bach n-simplex is a pair of n-simplices of B, separated by a period. The simplex before the period is
the horizontal projection, whereas the simplex after the period is the vertical projection. The face and
degeneracy maps acts on both parts simultaneously. Thus 01.00 denotes the 1-simplex whose vertices are 0.0
and 1.0. In dimension 1, five 1-simplices are nondegenerate and are depicted below, whereas the other four 1-
simplices are degenerate and correspond to the four vertices of the square. In dimension 2, two 2-simplices are
nondegenerate and are depicted below as triangles, ten 2-simplices are degenerations of five nondegenerate
1-simplices (two different degenerations for each), and four 2-simplices are double degenerations of four
vertices. In dimension 3 and higher, all simplices are degenerate. We depict the resulting as
follows.

01 0Ll 4y

001.011
00.01 4 4 11.01

011.001

\

0.0° o100 LO

Used in 223

Exercise 21.11. Compute the number of fondegenerate simplicey in every dimension and draw pictures of
the simplicial sets B x (3% and @' x @ x @',

Exercise 21.12. Suppose o = (z,¥) € (X XY )m = Xm X Y, is an m-simplex of X x Y, where XY € ES&l.
Prove or disprove:
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e If z and y are degenerate, then so is a.
e If x or y is nondegenerate, then so is a.
e If x or y is degenerate, then so is a.

Exercise 21.13. Given two objects X,Y € C in an arbitrary C, construct a canonical
XUY — X xY using the universal properties of products and coproducts. For the cases C = ES&all and
C =B, prove or disprove that this map is an for any X,Y € C.

The second notion, Equalizel] of fimplicial setd, allows one to “solve equations” with pimplicial maps.
Given two f,9: X — Y, one should think of the of f and g as a subobject of X
where f and g coincide.

Definition 21.14. An equalizer fork of f,9: X = Y in a category Cis a s:8 - X
such that fos=gos:
f
[ G —
g

If s and s are of f and g, then a morphism of equalizer forks is a morphism r: S — S’ such
that the following diagram commutes:

S/

Used in 2=, 213, 2o

Definition 21.15. The equalizer of f,9: X — Y in a category C is an s:8 = X
such that the following universal property of equalizers holds: for any s':8" — X there is a
unique morphism ol equalizer Torkg s’ — 8. Used in ozm, CTTm, orws, £em, or=, T3, e,

Notation 21.16. We denote S by eq(f,g). By abuse of notation, the object S is often used instead of the
pair (5, s), especially if the map s is “canonical” or “implied”.

Informally, we say that a map Z — S is the “same thing” as a map Z — X such that the compositions
Z — X — Y (for both choices of the map X — Y) are equal.

Remark 21.17. Once again, although equalizers are always unique, they need not exist and existence must
be proved separately.

Example 21.18. Recall from EbY that for C = Bell the of f and g exists and can be computed as
the subset {z € X | f(z) = g(z)} of X, with the map s: S — X being the inclusion of sets.

Exercise 21.19. Formulate and prove an existence result for in the category ESefl in analogy with
Proposition 21.7 and [Proposition 13.19.

Exercise 21.20. For any category C and objects X,Y € C, construct a canonical map px y: X xY = Y xX
using the fmiversal property of producty. For the case C = ESell, compute the equalizer of px x and idxx x,
where X = S'. Draw a picture that illustrates the Fimplicial set§ and Fimplicial mapg involved in the
equalizer.

Exercise 21.21. For any category C and object X € C, construct a canonical map dx: X — X x X using
the [Iniversal property of producty. For the case C = ES&ll, draw a picture of dx, where X = S1.

We finish this section with a definition of a concept related to coequalizers: Bimplicial subsetd.

Definition 21.22. A simplicial subset of a fimplicial sefl X is a fimplicial sef] Y such that Yy, € X, and
these inclusions form a Y = X. Used in oo, =, =, e=m, e, e=m, e, e, e, e, s, B,

Definition 21.23. A monomorphism in a category C is a morphisi] f: X — Y such that for any g, h: W — X

with fog= foh we have g = h. vsed in o=, Tz, o, BT, =, =3, =3, =2,
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Proposition 21.24. A f:Y — X arises from a of X if and only if f is a
fnonomorphisnj.

Proof. 1t suffices to show that monomorphismg of fimplicial setq coincide with degreewise injections. Since
equality of can be checked degreewise, degreewise injections are [nonomorphismg. Vice versa,
given a f: X —=Y,if foo, = f ooy for some o1,09:@" — X, then o1 = 09, which means
that f is a degreewise injection. |

Example 21.25. The s: 8 — X of any pair of pimplicial mapg f,g: X — Y exhibits S as
of X.

Exercise 21.26. Prove that the union and intersection of an arbitrary family of Eimplicial subsefy of a
Bimplicial sef] X is again a Fimplicial subse of X.

Definition 21.27. Suppose X is a and S is a collection of simplices of X of any dimension.
Then the X \ S obtained by removing all simplices in S from X is defined as the union of all
Bimplicial subsetd of X that do not contain any simplices from S.

Example 21.28. For any m, the boundary of @™, denoted by JA™, is defined as B \ {&dy,},
where Iy, denotes the nondegenerate m-simplex of B3™. used in C=mm, e=n, =, z=3, ==, =2, B, e, v, Evew, B,

[cx=mae R cosmmman B = W~ R ncwmes M e ) v s R an s

Example 21.29. For any m and any vertex k € m, the simplicial horn A is defined as BA™ \
{dx (i)}, i.e., removing the codimension 1 face opposite of vertex k from the BA™. Used in oz,

Exercise 21.30. Prove or disprove: any Bimplicial subsefl S C X occurs as the equalizer of some pair of
maps f,g: X — Y, where Y € ESell can be aribtrary.

22 The Eilenberg—Zilber and Alexander—Whitney maps

Supplementary sources: Mac Lane [Homal, §VIIIL.g], Dold [CAT, §VII.2], tom Dieck [BETd, §9.7], Spanier
[ETY, §5.3].

If f: X - R and g:Y — R are two real functions on spaces X and Y, then f x g: X x Y — R defined
as (f x g)(z,y) = f(x)g(y) is a real function on X x Y. If we denote the vector space of real functions on X
by C(X), then the above map is a bilinear map C(X),C(Y) — C(X x Y), or, equivalently, a linear map
CX)®C(Y) — C(X xY). Similarly, if 1 is a measure on X and v is a measure on Y, then p x v is a
measure on X x Y, where (u x v)(A x B) = u(A)v(B). Bimplicial chaing are the homotopy-theoretic analog
of measures in analysis, so we can expect to have a linear map of the form C(X)® C(Y) — C(X xY) for any
X and Y. Such a map indeed exists and is known as the [Eilenberg—Zilber map for simplicia]
Chamd.

In analysis, if we complete the tensor product, then there is also a map going in the opposite direction.
This analogy extends to homotopy theory, resulting in a map C(X xY) — C(X) ® C(Y), known as the
[ATexander—Whitney map for simplicial chaing. Continuing the analogy, the composition of both maps C(X)®
CY) - C(X xY) —» C(X) ® C(Y) equals the identity map. The other composition, C(X x Y) —
C(X)®C(Y) — C(X xY) is not equal to the identity map, but its is the identity map H(X xY") —
H(X x Y'), which is sufficient for the purposes of homotopy theory.

Definition 22.1. If C, D € [H are fhain complexed, then C'® D € A is another chain complex that has a
universal property with respect to bichain maps: we have a universal bichain map C, D — C' ® D such that
composing it with any chain map C ® D — FE establishes a bijection between C®D — FE and
C,D — E. A bichain map f:C,D — E is a collection of bilinear maps fi, n: Cry Dy, — Eppin,
such that dfm n(a,b) = fmg1,n(da,b) + (—=1)™ frnti(a, db). vsed in ez, e, Tz, o, ez, ez, .

Remark 22.2. The factor of (—1)™ is necessary for the differential on the tensor product to square to zero.
We will provide extensive additional motivation later. This sign first appeared in the work of Grassmann in
the 19th century, and various names are associated with it, such as the Koszul sign convention.

Proposition 22.3. The tensor product C' ® D of any pair of exists.
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Proof. We exhibit an explicit construction. Set (C'® D) = D, n.miner Cm @ Dn. Set d(c® d) = (dc) ®@
d+ (—1)"c® (dd) for any ¢ € Cy,, and d € D,,. We verify that d is indeed a differential:

d(d(c®d)) =d((de) ® d + (—1)"c ® (dd))
=d(de)®@d+ (-1)" M de®@dd + (=1)™de ®@ dd + (—1)™(—1)"c @ d(dd)
=0—(=1)™de®dd + (=1)"dc® dd + 0 = 0. |

Exercise 22.4. Complete the proof by verifying the universal property.

Example 22.5. Consider the tensor product C(X) ® C(Y), where X,Y € ESell. By the above formula, we
have

CX)@CY)k= P CX)m&C(Y)n.
m+n=~k

The tensor product of the free abelian groups on sets A and B is the free abelian group on the set A x B.
Since C(X),, is the free abelian group on the set of nondegenerate m-simplices of X, and likewise for C(Y'),,,
the abelian group C(X),, ® C(Y),, is the free abelian group on the set of pairs (o, ), where a € X,,, and
B €Y, are hondegenerate simpliced. used in e=m.

Definition 22.6. If X,Y € ESell and A € BB, then the Eilenberg—Zilber map for simplicial chains is a thai
orap
V:iC(X)®CY)—=C(X xY)

defined as follows. Recall from that C(X)® C(Y) in degree k is the free abelian group on the
set of all pairs (a, 8), where a € X,,, and 8 € Y,, are pondegenerate simpliceq such that m +mn = k. The pair
(o, B), i€, a:@ — X and 8:@" — Y, yields a map a x S:@A™ x @™ — X x Y. The value
of V on a generator a ® 8 is an (m + n)-chain V(a ® ) on X x Y that we construct by applying the map

Crtn(a X ): Copppn (@ x O") = Cppyn (X x Y)

to a certain element o of C(B™ x @"), which we refer to as the fundamental chain. The fundamental chain o
is an (m + n)-chain on @™ x A", and as such it is a formal linear combination of nondegenerate (m + n)-
simplices of ™ x B". In our case, all coefficients are going to be either 1 or —1. The choice of signs is
determined almost uniquely by the requirement that do lies in the image of the map

Cm+n_1(mm x @ ulE™ x Bﬂn) — Cm+n—1(X X Y)

Geometrically speaking, we require that do has nonzero coefficients only for those (m + n — 1)-simplices of
™ x @™ that are contained in the outer boundary, as opposed to the interior. This condition determines
o uniquely up to a sign, which turns out to be uniquely determined by the requirement that V is a Ehaml
mmm. We fix the sign by forcing the coefficient of the simplex (p, p) to be equal to 1 for p:@™" — @™
(i + min(i,m)) and p":@ ™" — @ (5 + max(0,5 — m)). Geometrically, (p, p') is adjacent to the bottom
face ™ x 0 of O™ x @@, where 0 € B@" is the initial (bottom) vertex of A", used in czm, e==3, o=, o=, Tz, o=,

T3 ez B3

Exercise 22.7. Prove that the fundamental chain o is uniquely determined by the condition on do and the
choice of sign in the above definition. Prove that the coefficient of the fundamental chain o € C,, 4, (A™ xA™)
on an (m + n)-simplex (7,7) € (@™ x B%),, 1, =B, x B ., equals the sign of the shuffle permutation
of (r,7'), i.e., the permutation of {1,...,m + n} whose first m terms enumerate positions ¢ such that
7(i—1) < 7(i) and 7/(i — 1) = 7/(4), whereas the last n terms enumerate positions ¢ such that 7(: — 1) = 7(4)
and 7/(i — 1) < 7/(). Recall that the sign of a permutation p of the set {1,...,k} equals (—1)!, where I is
the number of inversions in p, i.e., the number of pairs (7, ) such that 1 < ¢ < j <k and p(i) > p(j).
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Example 22.8. Consider the case X = Y = ', The [Eflenberg Zilber map for simplicial chaing V: C(A) ®
C(@) — C(@" x @) can be visualized as follows.

(0) ® (1) <01k®<1> (L) ®(1) 0.1 0111 1.1
001.011
e Ok (DOl Lle©O) — Y 5 o001k L1101
011.001
(0) ® (0) mw%m> (1) ® (0) 0.0 01.00 1.0

Here the left side is not a pimplicial sef. Rather, it is a visualization of the tensor product of the chain
complex of of @' with itself. Recall that C(Iﬂl) is the

—1p1
Z(o) ® Zgyy < Zon).

The subscripts denote the nondegenerate simplices in O that correspond to the given generators. Thus,
C@') ® C(@") is the

Zy2(0) @ Zoyo(1) @ Zye0) D Zyeq) — Zoneo) D Zonea) © Zoyeo) © Zayeon < Zoneon-

Here the subscripts indicate pairs of nondegenerate simplices of B, which geometrically correspond to the
horizontal and vertical projections. The four vertices are generators in 0, the four edges are
generators in 1, and the square is a generator in 2.

The right side depicts of ! x . Recall (Example 2T:10) that a k-simplex of n x !
is a pair of k-simplices of &', which themselves are strings of k4 1 vertices of B*, i.e., 0 or 1. A pair of such
simplices is separated by a period.

We now explain how the map works. We start with the 0, som =n = 0. All four
generators work similarly, so we pick one of them, namely, (1) ® (0). Thus a:@° — B picks the vertex 1
and 5:° — O picks the vertex 0. The map a x 3:@° x @° ~ @ — @' x @ picks the vertex 1.0. The
fundamental chain o is a 0-chain on B° x B° = @°. We have (7,7') = (0,0) and the shuffle permutation is
the identity permutation, which has sign 1. Thus, o is the sole vertex of B° taken with coefficient 1. The
map a x 3 sends this vertex to the vertex 1.0. Thus, the map C(a x 3): C(@°) — C(@" x @") sends o to
the O-chain of " x A" given by the vertex 1.0 taken with coefficient 1. Thus, each generator in degree 0 of
the form (i) ® (j) is mapped by V to the generator i.j.

We proceed to the 1. Again, all four cases work similarly, so we take the generator (1)®(01).
Thus m =0, n = 1, :@° — @' picks the vertex 1, and :@" — B picks the 1-simplex 01. The fundamental
chain o is a 1-chain on @° x @' = @'. We have (7,7’) = (00,01) and the shuffle permutation is the identity
permutation, which has sign 1. Thus, o is the sole nondegenerate 1-simplex of 8" taken with coefficient 1.
The map o x 3 sends this 1-simplex to the 1-simplex 11.01. Thus, the map C(a x 8): C(@') — C(@' x @)
sends o to the 1-chain of " x A" given by the 1-simplex 11.01 taken with coefficient 1. Thus, each generator
in degree 0 of the form (i) ® (jk) is mapped by V to the generator ii.jk and (ij) ® (k) is mapped to ij.kk.

The remaining is2. Horem =n =1, a = § = @@ — @'. The fundamental chain o is
a 2-chain on A" x A@'. The 2-simplex (7,7’) is either (011,001) or (001,011). The shuffle permutations are
identity and the transposition respectively. Their signs are 1 and —1 respectively. Thus, o is the 2-chain
011.001 —001.011. We have a x 8 = id, so applying C(a x ) does nothing. Thus, (01) ® (01) is mapped by V
to the 2-chain 011.001 —001.011. An important observation to make here for the future is that the boundary
of the latter 2-chain is (11.01 — 01.01 + 01.00) — (01.11 — 01.01 4+ 00.01) = 11.01 4+ 01.00 — 01.11 — 00.01, in
particular, the diagonal 1-simplex annihilates itself. Thus, the boundary of this 2-chain is the outer square.

Used in 22213
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Example 22.9. Consider the case X = O3, Y = @'. The Eilenberg_Zilber map Jor_simplicial chain
V:C(@?) ® C(@') — C(B@* x @) can be visualized as follows.

21 21
ol i1 o™~ .~
\% 0
4) ,
A A . 20 A //// A . 20
000 10 00° 10

On the left, vertices, edges, square and triangle faces, and the prism itself denote various generators of
C*(@?) ® C*(@'). On the right, vertices, edges, triangles, and tetrahedra denote various generators of
C*(@¥? x @"). The [Eilenbers Zilber map for simplicial chaing maps each vertex and edge on the left to the
same vertex or edge on the right. It maps each triangle face to the same face on the right, and each square
face is mapped to the difference of two triangles inside, as explained in the previous example. Finally, the
prism is mapped to the alternating sum of the three fondegeneratd 3fsimpliced of (3% x ', namely, 0122.0001,
0112.0011, and 0012.0111. The shuffle permutations for these tetrahedra are (1,2,3), (1,3,2), and (2,3,1)
respectively, and their signs are 1, —1, and 1.

Lemma 22.10. The map V satisfies Vd = dV, i.e., it is indeed a Ehain mag.

Proof. Tt suffices to verify this identity separately in each degree. As observed in the definition, the Ehaid
C(X)®C(Y) is a free graded abelian group on pairs of nondegenerate simplices of X and Y. Thus,
it suffices to verify the identity individually on each such pair a« ® 8 of simplices in bidegree (m,n). We have
V(da® p)) = V(Oa® B+ (—1)"a ® 98) and dV(a ® B) can be computed by expanding the definition
of simplicial boundary maps. As can be seen from the above examples, the coefficients for simplices in the
interior of ™ x A" will vanish because of a cancellation that arises from our choice of signs for the coefficients
of the fundamental chain. |

Exercise 22.11. Complete the proof by verifying that the coefficients on both sides are equal.

We apply the above definition to define [Eilenberg—Zilber maps for simplicial chains with coefficienty.

Definition 22.12. If XY € ESell and A € BB, then the Filenberg—Zilber map for simplicial chains with
coefficients in A and B is the

C(X,A)® C(Y,B) = C(X xY,A® B)

obtained by tensoring the [Eilenberg—Zilber map for simplicial chaing with A ® B on both sides and using
the associativity, commutativity, and distributivity laws on the left side to make it isomorphic to C(X, A) ®
C(Y, B). uvsed in cz=mm.

We now define a map going in the opposite direction, the [ATexander—Whitney map for simplicial chaing.
This map will be used to define the in the next section. Its definition is somewhat less intuitive

than that of the [Eilenberg—7Zilber map for simplicial chaing.

Definition 22.13. If XY € ESell and A € BB, then the Alexander—Whitney map for simplicial chains is
the map

A:C(X x Y) = C(X) ® C(Y)

defined as follows. The generators of C(X x Y') in degree m are pairs of simplices (z € X,y € Ym). The
map A sends such a pair to

D (dipr - (@) © (do - dima ().

0<i<m
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(Some simplices in the latter formula may be degenerate. Our fimplicial chaing are normalized, which means

that the corresponding terms vanish.) uvsed in zzm, ez, e=m, ez, ez, £, £,
Proposition 22.14. The map A is a fhain map, i.e., o A = Ao J.

Proof. Given ¢ € C(X x Y'), which we can assume to be given by a single simplex ¢ = (z,y) € (X X YY),
we evaluate both sides

I(A(c)) =0 ( Z (dig1 -+ dm(z)) @ (do- dzl(y))>

0<i<m

0<i<m
= Z Odiy1 - dm(2) @ (do - di1(y) + (=1 (dig1 -+ dp (@) © O(do - - - di1 ()
0<i<m
= Z ( Z (—1)jdjdi+1"'dm($)> ® (do---di—1(y))
0<i<m \0<j<i

+(_1)i(di+1"'dm(x))®< Z (_1)kdkd0"'di1(y))

0<k<j—i

0<i<m—1 0<i<m—1
= digr-dmor | Y (=1Vdjz | @ (do---dis1(y))
0<i<m—1 0<j<i
+ > (digrdpa(@) @do-dia [ (=1 dgy
0<i<m—1 0<k<j—i

Comparing the coefficients on both sides completes the proof. |

Example 22.15. Consider the case X =Y =0, m = 2 (see for details):

0.1 0111 1.1 (0) ® (1) (1) ® (1) (1) ®(1)
001.011
00.014 101 —2 eOnl 0Dl L)oo
011.001
0.0 01.00 1.0 (0) ® (0) 1) ® (0) (1) ®(0)
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We compute

Afa-011.001+ B-001.011) = o Y (dis1---d2(011)) ® (do - - - d;—1(001))
0<i<2

+B- > (dig1---da(001)) @ (do---d;_1(011))
0<i<2
= o+ (d1d2(011) ® 001 + d(011) ® dg(001) + 011 ® dod;(001))
+ B+ (d1d2(001) ® 011 + d2(001) ® do(011) 4 001 ® dod; (011))
=a-(0®001+01®01+011®1)+ £ (0®011+00® 11+ 001 ® 1)
=a-(0401®01+0)+8-(0+0+0)=a-(01®01).

Most terms vanish because fimplicial chamg are normalized, so degenerate simplices (represented by strings
of digits where two or more consecutive digits repeat) vanish.

Remark 22.16. An astute reader has noticed already that the [Alexander—Whitney map for simplicial chaing
is asymmetric: the expression « - (7 ® 7) contains «, but does not contain . This is not a coincidence: one
can prove that it is impossible to define a symmetric map with all the desired properties. In contrast, the

[Eilenberg—Zilber map for simplicial chaing is symmetric with respect to the permutation of its arguments,
which can be seen directly from the definition.

Definition 22.17. The Alexander—Whitney map for simplicial cochains with coefficients in A is a map

C*(X,A)® C*(Y,B) —» C*(X x Y, A® B)

obtained by applying the functor Homl(—, A ® B) to the [Alexander—Whitney map for simplicial chaing,
resulting in a map

Eoml(C(X) ® C(Y),A® B) — C*(X x Y, A® B)

and composing it with the map

Hom(C(X), A) @ Ham(C(Y), B) — Ham(C(X) ® C(Y), A® B).

The latter map is defined using the iniversal property of tensor products of cochain complexed, with the
associated bichain map sending ¢ € Homl(C(X), A) and ¢ € Hom(C(Y), B) to the CX)®
C(Y) — A ® B whose associated bichain map sends u € C(X) and v € C(Y) to (—1)I*'"lp(u) @ ¢(v). veea

in 22=T9, =3,

We now examine the interaction between [Eilenberg—Zilber mapg and [Alexander— Whitney mapy.

Exercise 22.18. Prove that the composition AoV: C(X)® C(Y) — C(X)® C(Y) equals the identity map.

The other composition, V o A, is not equal to the identity map. However, as we shall see later, the
homology of this map is equal to the identity, which is hardly worse from the viewpoint of homotopy theory.
This will follow from the fact that Vo A is (to be defined later) to Ed.

We finish this section by explaining how the above maps induce maps on cohomology classes.

Definition 22.19. (Lefschetz, 1942.) Given X,Y € ESell and A € BB, the cross product in cohomology is a
collection of homomorphisms of abelian groups

x:H™(X, A) ® H*(Y, B) — H™""(X x Y, A® B)

(one for each m,n € Z) induced by the [Alexander_Whitnev map for simplicial cochaing. uvsed in &=z,
Lemma 22.20. Cross-product is well-defined.

Proof. We apply Cemma 2777 to the map X. |
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Lemma 22.21. If C, D, E € (A, then any f:C® D — F induces a map

H(C) @ H(D) — H(E).

The same is true for fochain_complexed and Fohomologyl. used in Ezom, ez, £, =2, .

Proof. The desired map is the composition of the map
H(f):H(C ® D) — H(E)

with the map
H(C) ® H(D) — H(C ® D)

induced by the graded bilinear map
H(C),H(D) - H(C ® D)

constructed as follows. Given ¢ € Z,,(C) and d € Z, (D), the tensor product ¢ ® d € Cy,, ® D,, is a cycle
in C® D because I(c®d) =0c®@d+ (-1)c®0d =0®d+ (—1)°c® 0 = 0. It remains to show that the
above map on cycles factors through the quotient map to homology groups. This means that if v and v are
replaced by homologous cycles u’ and v’, then their tensor product is also replaced by a homologous cycle,
ie., v ® v —u®wv is a boundary. Indeed,

W@V = (ut (v —w)® v+ (v —v))
= (u+0z) ® (v+ y)
=u®v+u®dy+0r v+ 0r Ry
—u@v+d(-)uey+rov+zeady).

Thus, v’ ® v" —u ® v is a boundary, as required. |

Example 22.22. Conside X =Y = S!'. Recall that C*(S!) = Z & Z. Thus we have
C*SHeC () =2Z«-ZaoZ < Z

Next, in we compute the of ' x @, so the cochains We compute the cross
product on the cohomology of a torus, denoted by X. Due to the bilinearity property of cross product,

it suffices to compute the cross product on some set of generators of cohomology groups. Recall that
HO(X) = Z, H'(X) 2 Z® Z, and H*(X) = Z.

Exercise 22.23. For each of the listed in Exercise To T3, compute the cross product on
cohomology with coefficients in Z. More precisely, if X is a fimplicial sef, compute the maps H™(X) ®
H"(X) — H™*"(X x X) by determining their values on some set of generators of cohomology groups.
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23 Cup product

Supplementary sources: Hatcher [BTH, §3.2, §3.B], tom Dieck [BTd, §17.6].
We have the following table of analogies:

topology calculus

simplicial set smooth manifold

simplicial 0-Ehaind densities (or measures)

simplicial n-Ehamd n-currents with values in densities

simplicial 0-Eochaimnd real-valued functions

simplicial n-cachaind differential n-forms

pairing of 0-Ehaind and 0-cochains integration of functions with respect to measures

pairing of n-thaind and n-Eochaind integration of forms with respect to currents
b dary de Rham differential

n-ocycles closed n-forms

n-cobonndaried exact n-forms

nth Eohomology grouf nth de Rham cohomology group

of 0-cochains product of real-valued functions

of cochains exterior product of differential forms

Our goal in this section is to explain the bottom entry, the Eup produci.

Definition 23.1. (Alexander, 1935; Kolmogoroff, 1936; Cech, 1936; Whitney, 1938.) Given a
Eel X, the cup product on Bimplicial cochaing of X is the chain map given by the composition

* * A},X * C*(d) *
U: CH(X) © CH(X) —XX (X x X) ——Dy c*(X),

where A% y is the [Alexander—Whitney map for simplicial cochaind and d: X — X x X is the diagonal map.
More generally, suppose A is a ring, i.e., an equpped with a bilinear operation of multiplication
A®A — A and a unit element 1 € A that are associatve and unital, i.e., z-(y-2) = (z-y)-zand 1-2 = z-1 = x.
Then we can define cup product with coefficients in A as the composition

*(d,AQA) C*(X,p)

A
U:C*(X,A) ® C*(X,A) —— C"(X x X, A®A) C'(X, A A) ——=5 C*"(X,A),

where the last map is induced by the homomorphism of abelian groups pu: A ® A — A given by the multipli-
cation map. We recover the original cup product when A = Z is the ring of integer numbers. uvsed in ez, zzT=m,

=M, =2, 3, =53, =9, 2=, 29, =, e,

Lemma 23.2. Suppose X is a and u € C™(X) and v € C"(X) are fimplicial cochamg on X.
The uUv € C™*T"(X) is a Fimplicial cochaid on X whose value on an (m-+n)Empled o € X4y
can be computed as follows:

(’LL U U)(a) = u(ao,...m)v(am,...,m+n) = u(dm+1 T dm+na)’l)(d0 s dmfla).

Used in =3, =3, e==3.

Proof. By definition of the fup produci,

(uUv)(a) = (C*(X, 1)(C*(d, A® A) (A x (u®v))))(a)
= p(C*(d, A® A) (A x (u®v))(a))

= (A% x (u ®v))(C(d)(a)))

= p((A% x (u ®v))(a, @)

= p((u®v)(Ax,x(a® a)))

1

u(

u(dm1 - dmn (@) @ v(do - -~ dp—1(a)))
dmgr-- dm+n(0‘))v(d0 e 'dm—l(a))- |
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Proposition 23.3. The structure of a graded A-module on H*(X, A) induced by the
A®CHX, A) = CH (X, Aw A) 5] o (x, A)
coincides with the structure of a graded A-module induced by the
A®C*(X,A) — COX,A) ® C*(X, A) —— C*(X, A),

where the constant 0-cochain map A = CO(@°, A) — C%(X, A) is induced by the terminal map X — B°,

Used in 2==9, X353

Proof. The image of a € A unded the map A — C%(X, A) is the constant Fimplicial cochair] that maps every
0-simplex of X to a. Using Cemma 239, we compute (with m = 0) (vUv)(a) = u(d; - - - dpa)v(a) = av(a),
so uUv = av, as desired. ||

We axiomatize the properties of in the following definition.

Definition 23.4. A differential graded ring is a triple (R, u, u), where R € [CH is a fochain complex (or Ehaid
fompleN), p: R® R — R is the multiplication map, and w: Z[0] — R is the unit map such that multiplication
is associative

(x-y)-z=z-(y-2), € Ry, y € Ry, 2z € R,

and unital
l-z=x-1=u, z € Ry

A morphism of differential graded rings f: (R, p,u) — (R, p/, ') is a f: R — R’ that preserves
multiplication and units:

f=1 flz-y)=[f) - fly), =€RpyeRy,.

The category of differential graded rings DGR has objects and morphisms as above. The category of graded
rings GR is defined like DGR, but with graded abelian groupd instead of fochain complexeq.

A differential graded algebra A over a ring R is a morphism of differential graded tingd ¢: R[0] — A
(known as the unit map), where R[0] is the Hiferential graded ring that has R in degree 0 and zero groups in
all other degrees. Abusing notation, differential graded algebrad are often denoted by A, with the morphism
R[0] — A being implied. A morphism of differential graded algebras f: A — A’ is a [norphism of differential
f: A — A’ that commutes with the unit maps:

R

A——r

The category of differential graded algebras DGAR over a ring R has objects and morphisms as above. The
category of graded algebras GAR is defined like DGAR, but with Eraded abelian groupd instead of Lachaim
fomplexed. used in =, o=, o=, o, =,

Proposition 23.5. For any X and ring A, the turns C*(X, A) into a differential
graded algebra over the ring A with the multiplication map given by the and the unit map
given by the tanstant T=cochain. Furthermore, this construction yields a functor

C*:ESef®® x Ring — DGR

that sends a X and a ring A to the differential graded ring C*(X, A).

Proof. This means that we have a multiplication map
U:C*(X,4) @ C*(X,A) - C*"(X,A)

70



and a unit map
1: A — CYX, A)

(abusing notation, we will often write a instead of 1(a)) such that the multiplication is associative
(uUv)Uw=uU (vUw)

and unital
1(a) Uu = au, uU1(a) = ua.

Furthermore, the Leibniz identity is satisfied
d(uUwv) = (du)Uv + (-1)*wUdv

and
d(1(a)) = 0.

The unit map 1: A — C°(X, A) sends a € A to the Eonsfant O-cocham on X, as in [PToposition 23.3, where
we prove its properties. For associativity observe that both (uUv)Uw and U(v U w) attain the same value
on an given simplex «, namely,

wdu 41 dupt o+l @)0(do - djaj 1 djultjol+1 Djul+ o)+ QW (do -+ djuj o] -19)-

The Leibniz rule follows imediately from the formula for the differential on a Fensor product of cochain
Eomplexes. 1

Proposition 23.6. We have induced cohomology functors
H*:OGR — GR
and
H*:II(EA — IEA.
Thus, the of a differential graded ring is a graded ring and likewise for algebras.
Proof. Given A € DGR, Cemma 2771 shows that the multiplication map

ARA— A

induces
H*(A4) ® H*(A) — H*(A).

As usual, denote the quotient map by
[-]: A — H*(A).

By definition of the multiplication on H*(A), we have [a][b] = [ab], so
([a][b])[e] = [ab][e] = [(ab)e] = [a(be)] = [a][be] = [al([B][c])-

Likewise,
[a][1] = [al] = [a] = [1a] = [1][a],

so the multiplication on H*(A) is associative and unital. Definiion 204 shows that H* yields a functor
EGCH — BBZ. It remains to show that this construction induces a functor DGR — GR, which boils down to
showing that H*(f) preserves multiplication and units for any morphism f: A — A’ in OGR. By definition,

H*(f)([al) = [f(a)]. Thus,
f(la][b]) = f([ad]) = [f(ab)] = [f(a) £ ()] = [f(a)][f ()]
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and
fA) =[] =[1].1

Proposition 23.7. Suppose A is an aribtrary ring, such as A = Z. The descends to Eahamall
py, yielding a morphism of graded abelian groups

U H* (X, A) @ H* (X, A) — H* (X, A).

This operation turns H*(X, A) into a graded ring, known as the cohomology ring of X with coefficients in A.
As usual, if A =Z, we omit the coefficients. Furthermore, we have a functor

H*: ESef®™ x Ring — OGR

that sends a X and a ring A to the H*(X, A). vsed in =3, =1,

Proof. The desired map is the composition of the Eross product in cohomology

x:H (X, A) @ H* (X, A) > H" (X x X, A® A),
the map on cohomology induced by the diagonal map d: X — X x X:
d"H (X x X, A® A) - H (X, A® A),
and the map
H*(X,A® A) — H* (X, A)
induced by the multiplication homomorphism A ® A — A. |

Proposition 23.8. The canonical maps

c* (HXi,A> =[] ¢ (x:,4)

icl icl
and
H* (HXi,A> - HH*(Xi,A)
i€l icl
are isomorphisms of differential graded rings respectively graded rings.

Proof. and its analog for cohomology already establish isomorphisms of Eochain complexeg
respectively graded abelian groupd. It remains to show that these isomorphisms preserve multiplications,
which follows from Cemma232: the simplices used on the right side belong to the same connected component
as the simplex «. |

Example 23.9. We compute the cohomology ring of a torus:

b
N
a,\ﬁ AQ

!

%
x

b

The Eohomology sroupd with coefficients in a ring A are H® =2 A, H! =2 A @ A, H?2 = A. Recall that a
cohomology class is an equivalence class of pimplicial cochaing, modulo the equivalence relation that identifies
two cochains when their difference is a foboundary]. In order to compute the of two cohomology
classes, we choose cochain representatives for cohomology classes, multiply them using the above explicit
formula, and then take the cohomology class of the resulting cochain. As we proved above, the result is
independent of any choices of representatives that we made.
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In order to choose such representatives, we have to construct sections of quotient maps ¢™: Z™ — H",
i.e., we have to construct maps of sets s™: U(H") — U(Z"™) such that U(¢g") o s™ = [dy». In many cases s”
will be a homomorphism of groups, but in some examples (like the real projective plane) s™ cannot be a
homomorphism.

The quotient map ¢°: Z® — HO is the identity map A — A, so s°: H® — Z% must also be the identity
map A — A. This map sends u € A to the Fimplicial cocham u - 2* € Z° (i.e., the cochain whose value on
equals u).

We have B! = 0, so Z! is isomorphic to H!, and the quotient map (in this case, an isomorphism)
q':Z' — H! is the map {v, ®vy, Bvg € ABADA | vg = vy +vp} — AP A that sends v, vy Dvg — vy B Vp.
Its inverse is the map s': H! — Z! that sends v, © vy = v4 O vy B (Ve + V) = Vg - a* +vp - b* + (Vg + vp) - d¥,
the pimplicial cochair] that takes values v, vy, and v, 4+ v, on a, b, and d respectively.

Finally, Z? = C> = A® A and B? = {v, ®vg € A® A | v, = vg}. The quotient map ¢*:Z> - H* = A
sends v, B vg > Vo — vg. Its inverse map s%: H? — Z2 (w — so(w) @ sg(w)) must satisfy w = ¢*(s*(w)) =
¢*(s2(w) @ s3(w)) = s2(w) — s3(w). Thus, s2(w) = s3(w) + w, and any pair (s, s3) that satisfies this
condition will give us a section. We take s3(w) = 0, so s2(w) = w and s*(w) = w &0 = w - a*.

Recall now the formula for cup products form Cemma 23 2:

(wUv)(y) = uldmy1 - dmgny)v(do - - - dm—17)-

If p; and p; denotes a cochain of degree 7 and r; denotes a nondegenerate simplex of dimension i, then by
specializing the above formula we get the following formulas for cup products:

(po Upp)(ro) = pol(ro)po(ro),
(po Up)(r1) = po(dir1)p)(r1), (p1Upy)(r1) = pi(ri)py(dora),
(po U ps)(r2) = po(didars)ps(ra), (p2 Upp)(r2) = p2(r2)pp(dodira),

(p1 U ) (r2) = p1(dara)pi (dora).

(The other cup products will take values in cochains of degree 3 or higher, which are all zero.) The values
of various simplicial operators on nondegenerate 1- and 2-simplices are as follows. First, there is a single
vertex, so we automatically have

d07’1 = d17"1 =, d1d27‘2 = dodl’f’g =T
for any choice of 1 and r2. The remaining values are as follows:
dea=b, dpa=a, d2f=a, doB=0

Substituting these values into the above formulas, we get

(po U pi)(a) = po(x)p}(a),
(po U p1)(b) = po(z)p)

(po Upy)(d) = po(l‘)p (d

(po Ups)(a)

(Po U P5)(B) = po

~— =
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By specializing the above formulas to the chosen representatives of cohomology classes, we compute
their fup productd. First, if one of the arguments has degree 0, then the cup product simply multiplies
coefficients:

!/ *

(u-z*)U(u - 2*) =wu 2%,
(w-2*)U (v - a™ 4+ vp - b 4 (vg + vp) - d*) = (uvg - @™ + uwy - b* + u(ve + vp) - d¥),
(Vg - a@* +vp - b* + (vg +vp) - d)U (u- ") = (vou - a* + vpu - b* + (v + vp)u - d¥),
(u-z")
(

x (w-
w - a’) x

U
U (u-
Otherwise, if one of the arguments has degree 2, then the total degree will be greater than 2, hence the cup
product vanishes. Finally, if both arguments have degree 1, we get

(Vg - a* +vp - 0" + (vg +vp) - d¥) - (V) - a* 4+ vy, - b* + (v, +vp) - d¥) = vpvl, - @ + vy - B

Passing to generating tohomology classed, we compute

[z*] U [z*] = [27],

2] U [a* +d] = [a* +d*],  [z*]U[b* +d*] = [b* +d],

[a* +d*]U[z"] = [a* +d*],  [b"+d"]U[2"] = [b" +d7],
[z*] U [e*] = [a7], [a*] U [2"] =[],

[a* + d*] U [a* +d*] = 0, [ + U b +d*] = [8*] = —[o*],
b* +dUfa* +d] =[], [0 +d]U[b* +d] =0

We can express the result of these computations concisely by saying that the H*(X, A)
is Als,t]/(s*> = 0,t* = 0, st = —ts). Here s = [a* + d*], t = [b* + d*], and st = —[a*]. veed in ez=mm.

Example 23.10. Recall from [Example 20.3 the fimplicial cohomology with coefficienty in A (assumed to

be a ring here) of a real projective plane:

Y b, T

a ,\ﬂ Ya
@

Y

We have H? = A, H! =~ M6A(Z/2,A4), H? 2 Z/2 ® A = A/2A. The map A — Z° sends u € A to
u- (z* +y*). The map Mad(Z/2, A) — Z' sends v € [ad(Z/2, A) C A to v+ (a* +d*). The map A/2A — Z?
sends w € A/2A to w' - o, where w’ € A is any element such that [w'] = w in A/2A. The last map
is not a homomorphism of groups, which is to be expected: in general, it is not possible to construct a
homomorphism H" — Z" such that the composition H” — Z® — H" is equal to the identity map, i.e.,
we cannot choose representatives for cohomology or homology classes in a linear way. We compute the
of all generators. As before, if one of the generators has degree 0, then we simply multiply
the coefficients of the other cochain by the corresponding element of A. For dimension reasons, the only
remaining nonvanishing cup product is in bidegree (1,1). If f,g € C!, then fUg = f(d)g(a)-a*+ f(d)g(b)-5*.
Thus, v - (a* +d*) UV - (a* +d*) = vv' -a* + (v-0)- 8% = vv' - a*. Thus, the cohomology ring is
Al0|@Mad(Z/2, A)[1] @ A/2A[2], where the products that involve A use the multiplication on A, the product
in bidegree (1, 1) is induced by the multiplication on A, and the other products are zero. Here B[m] denotes
the graded abelian group whose component in degree m is B and all other components are zero. In particular,
specializing to the ring A = Z/2Z, we get [al(Z/2, A) = Z/2 and A/2A = Z/2, so the entire ring can be
expressed concisely as Z/2[c]/(c?), where ¢ = [a* + d*].

Exercise 23.11. For each of the listed in Exercise Th T3, compute the cohomology ring
with coefficients in Z. More precisely, compute the cohomology groups, choose some set of generators, and
compute the cup product of each pair of generators, expressing it as a linear combination of generators.
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24 Cap product

Supplementary sources: tom Dieck [BTd, §18.1], Hatcher [BETH, §3.B].
Cap products are the analog of fiberwise integration of functions. Before we define fap productd, we
pause briefly to define the adjoint counterpart of the tensor product functor for Ehain complexeq.

Proposition 24.1. Up to an isomorphism, there is a unique functor Homl: CH™ x CH — CH equipped for
each Y € CH with a natural map Homl(Y, Z) ® Y — Z (the evaluation map) with the following universal
property: of the form X — Haml(Y,Z) are in a natural bijection with of the form
X ®Y — Z, constructed as follows. Given a fhain mag X — Homl(Y, Z), we tensor it with Y, obtaining a
map X ® Y - Hom(Y, Z) ® Y, which we compose with the evaluation map Hom(Y, Z) @ Y — Z.

Proof. We set Haml(Y, Z),, = [[, Boml(Yy, Zi+n), where the right side uses the internal hom of abelian
groups. The differential d,,: Ham(Y, Z),, — Hom(Y, Z),,—1 sends f € Ham(Y, Z),, to do f — (—1)" fod. We
verify that d,,_; od,, = 0. Indeed,

d(df) =d(do f—(~1)"fod)=dodo f—(~1)fdo fod+(~1)/do fod— fodod=0.
The evaluation map
Hom(Y,Z) QY — Z

is induced by the
Hom(Y,Z2),Y — Z

that sends f,y to f(y) for any f € Hom(Y, Z),, and y € Y,,. The universal property now follows from the
same universal property for tensor products and internal homs of abelian groups. |

Definition 24.2. The Kronecker pairing of Bimplicial cochaingd and Bimplicial chaingd with coeflicients in a
ring A on a pimplicial sef X is the Ehain maf

(=, =) C"(X,A)®C(X,A) - A

such that the induced sends f,z to f(z) if f and x have the same degree, and to 0 otherwise.
Here we turn Eimplicial cochaing into a by replacing all degrees with their additive inverses,
so that C*(X, A) lives in nonpositive chain degrees. used in zz=a

Lemma 24.3. The above map is indeed a pichain_mag.

Proof. The target is a concentrated in degree 0. For degree reasons, it suffices to show that
0-boundaries in C*(X, A) ® C(X, A) are sent to zero by the pairing. We have

(d(f @) = (@ f) @z + (-1 f © 9z) = (9" f)(2) + (~1)! f(92) = —(=1)! f(9z) + (=1)! f(9z) = 0. I

Proposition 24.4. The pairing between cochains and chains descends to the level of cohomology and

homology, producing a pairing
H* (X, A) @ H(X, A) — A,

i.e., a collection of pairings
H™(X,A) @ H, (X, A) — A,

which vanish if m # n.

Proof. Suppose f € Z™(X, A) and = € Z,,(X, A). We have to prove that f(z) = f(z + dy) = (f + 9*g)(x)
for any y € C,11(X, A) and g € C™71(X, A). Indeed,

fla+0y) = f(x) + F(0y) = f(2) + (0" )y) = f(2) + 0= f(x)
because f € Z™(X, A), i.e., 0* f = 0. Likewise,
(f+0"g)(z) = f(x) + g(9z) = f(zx) + 9(0) = f(z). I
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Definition 24.5. (Steenrod, 1953.) Given a coefficient ring A and X and Y, we define the
slant product for simplicial cochains as the composition

\: C* (X, A) ® C(Y x X, A) —» C*(X, A) @ C(Y, A) ® C(X, A) — C(V, A),

where the first arrow uses the [Alexander—Whitney map for simplicial chaing and the second arrow uses
the pairing on and cochains of X. In analysis, the analog of this construction produces a
measure i = (py )«(v-(fopx)) on Y from a function f on X and a measure v on Y x X, where px: Y x X — X
and py:Y x X — Y are projections.

The slant product for simplicial chains is the

[ C(X xY,A)®C(X,A) - C(Y,A),
defined as the composition

C*(X x Y, 4) @ C(X, A) = Ham(C(X x V), A) ® C(X) @ A
— Hom(C(X) ® C(Y), 4) @ C(X) ® A
— Ham(C(Y), A) ® A — C*(Y, A),

where the first arrow uses the [Eilenberg—Zilber map for simplicial chamg, the second arrow is adjoint to the
evaluation map, and the last arrows uses the multiplication on A. This product is analogous to the fiberwise
integration of a function on X X Y with respect to a measure on X, the result being a function on Y. uvsed in

IO, 2.

Proposition 24.6. Given a coefficient ring A and X and Y, the plant_product for simplicial
Eochaind is a Ehain_map

:C"(X,A)C(Y x X,A) —» C(Y, A),
that induces a map on homology groups:

\:H™(X, A) @ H,, (Y x X, A) — Hp_p (Y, A).

Proof. We apply Cemma 27721 to the map \. |

Definition 24.7. (Cech, 1936; Whitney, 1938.) Given a coefficient ring A and a X, the cap
product with coefficients in a ring A on a X is the map

N:C"™(X,A) ® Cp(X,A) = Cpm(X, A4)
defined as the composition
C™X,A)@Cph(X,A4) - C"™"(X,A) @ Cpr(X x X, A) = Cpimn (X, A4).
The first map is C"™(X, A) ® C,,(d, A), where d: X — X x X is the diagonal map. The second map is the

Blant product for simplicial cochamyg with X = Y. As usual, by CLemma 2771 we have an induced gan
on (co)homology groups:

N:H™ (X, A) @ Ho (X, A) — Hp_ (X, A)

Used in 23, 222, 22=3, 22=9, =10, =12,

Lemma 24.8. Suppose X is a and v € C™(X) and v € C,(X) are a pimplicial cocham
and on X, where (abusing notation) v € X, is a single simplex in X. The
uNv € Cpm(X) is the

u(vn—m,...,n)vo,...,n—my

76



where vg, .. p—m and vn_, ., denote the n —m- and m-simplices of X given by the first n —m and the last
m vertices of v. Used in .

Proof. The pimplicial cochaing of the diagonal map d: X — X x X send the singleton chain v € X, on X to
the singleton chain (v,v) € (X x X), = X,, x X,, on X x X. The Alexander—Whitney map Jor simplicial
Ehamnd sends the singleton chain (v, v) to

D (igr--dn(v) @ (do - - di1 (v)).

0<i<n

The composition of the above two maps sends u ® v to

> u®(digr- - dn(v) @ (do---di1 (v)).

0<i<n

The map K induced by the [Kronecker pairing now pairs the first and the third factor. If their dimensions are
different, i.e., m # n — 4, then the pairing is zero. Otherwise (if m = n — i) the pairing simply evaluates the
cochain on the chain. Thus only a single term in the sum (namely, the one with ¢ = n —m) is nonvanishing.
We get

K| > u® (i dn(0) @ (o dia(v) | = K(u@ (dpmyr -+ dn(v)) @ (do -+ dpm1(v)))

= (dn—m+1-+-dn(v)) - u(do -+ - dp—m—-1(v)).

The last expression is the same as the one in the statement: d,_,,+1---d, removes the last m vertices,
leaving the first n — m vertices of v, and dg - - - d,,_,—1 leaves the first n — m vertices of v. |

Proposition 24.9. For any X and ring A, the turns C(X, A) into a differential
graded module over the differential graded ring C*(X, A). This means that we have a multiplication map

N:C*(X,4) ® C(X,A) —» C(X, A)
such that the multiplication is associative
(wUv)Nw=un(vNuw)

and unital
1Nu=u.

Furthermore, the Leibniz identity is satisfied
d(unwv) = (du)Nov+ (-1)"wNdv

and
dl =0.
Thus, H(X, A) is a graded module over the graded ring H*(X, A) by Cemma 2271
Proof. To verify associativity, we can assume that w is a singleton chain and use Cemma248. Thus,

(wUv)Nw and uN (vNw) are the same frmplicial cham, namely,

W(W)ay |~ o] [ul .., w0 )V (W]es| o], [w] ) WO,.... | ] — || — -

Unitality follows from the definition of the unit cochain and Cemmaa 8. The Leibniz rule follows imediately
from the formula for the differential on a fensor product of chain complexed. |
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Example 24.10. Consider the lomology and fohomology of a torus:

b
N
a,\ﬁ AQ

o

%
x

b

The homology groupy with coefficients in a ring A are Hy &2 A, H| 2 A @ A, Hy & A, with representatives
[z]; [a], [b]; [« — B]. The Eohomology groupy with coefficients in a ring A are HY 2 A, H! &2 A® A, H? = A,
with representatives [x*]; [a* + d*], [-b* — d*]; [a*]. For any chain ¢ we have [z*] N ¢ = ¢ because m = 0 and
d; -+ d,,(v) = z in the formula for Eap producy. Next,

@ +d N =[z], [a*+d N =0, [-b*—d]n[a]=0, [-b*—d]N[b = —[a].

Also,
[a® +d* N[ =Bl =[b], [-b"—d"]N[a—p]=]a].

Finally,
("] N a = p] = [z].

The fohomology Ting of a torug was computed in as Als,t]/(s* = 0,1 = 0, st = —ts), where

s = [a* 4+ d*], t = [-b* — d*]. The above computation identifies the structure of a module over this ring on
the homology of a torus. Namely, H is the free graded module on a single generator A in degree 2. Here A
is the bondamentalclasd [a — ] (to be defined later).

Observation 24.11. If we fix the second argument of the in the previous example to [a — f],
we get maps H* — Ho_; that act as follows:

[z = la=p],  la"+d]=[o], [-0"—dT=lal,  [a7] = [a].

Thus, all these maps are isomorphisms. This is an instance of [Poincaré duality. The special chain [o — ] is
known as the indamenial clasd. In the above example, we formulated the by stating that
H(X, A) is a free graded module over the graded ring H*(X, A) on a single element in degree 2 (namely, the
fundamental class).

Exercise 24.12. For each of the listed in Exercise TH T3, compute the homology module over
the cohomology ring with coefficients in an arbitrary ring A. More precisely, compute the homology and
cohomology groups, choose some set of generators for both, compute the cup product of each pair of coho-
mological generators, expressing it as a linear combination of cohomological generators, and then compute
the of each cohomological and homological generator, expressing it as a linear combination of
homological generators.
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25 Brouwer fixed point theorem and degrees of maps

We will need a result whose validity will be established later using machinery that we have not developed
yet.

Definition 25.1. A metric space (or a topological space) X is contractible if there is a point b € X such
that there is a continuous map h: R x X — X (or h:[0,1] x X — X) with h(0,z) =z and h(1,z) = b for all
points £ € X. Used in ==

Theorem 25.2. (The nerve theorem.) Suppose {U;} is an open cover of a metric or topological space X
such that every finite intersection U;, N---NU;, (for any k > 0) is either empty or a fonfractible spacd. Here
I is a fotally ordered sefl. Then there is a Tx,y from the merva of the open cover U to the
Bingular stmplicial sef] of X:

Tx,u:N(X,U) — Bnd(X)

that is a BImplicial weak equivalencd (to be defined later). In particular, applying the functors H or H* to
this map produces isomorphisms.

Example 25.3. Consider the sphere S™ = {z € R"*! | ||z| = 1}. The open cover {U;",U; } is defined
as U = {x € 8" | 2; > 0} and U; = {z € S" | 2; < 0}. Since U N U, = 0, we never have to
consider intersections that contain both U;" and U; . Accordingly, a nondegenerate k-simplex of N(S™,U)
is an injective [map of simpliced k — n (whose image consists of those ¢ for which one of UZ-i is in the
intersection) together with a map of sets k — {+, —}, indicating whether U;" or U, is taken. In particular,
for a nondegenerate n-simplex the map n — n must be an isomorphism, hence there are exactly 271!
nondegenerate n-simplices corresponding to the 2"*! maps n — {+,—}. For example, if n = 2, we have
eight nondegenerate 2-simplices +++, ++—, +—+, +——, —++, —+—, — —+, — — —. Likewise, there are
(n+1)2™ nondegenerate (n—1)-simplices, because there are n+1 ways to choose an injective map [n—1] — [n],
and 2" ways to choose a map [n—1] — {4+, —}. We represent nondegenerate n-simplices by a sequence of n+1
elements of {4, —, x}, with exactly one “x”. For example, if n = 2, we have twelve nondegenerate 1-simplices
k+, k+— x— 4, x— —, F x4+, +x—, —*x+, —*x —, ++*, +—*, —+*, — —*. Observe now that in the
of the resulting the nth boundary map is a map of the form AT A2
The differential is easy to describe: the domain is a direct sum of copies of A indexed by a sequence of n+ 1
signs; the i¢th face map replaces the ith sign by “x+”. Thus (+ — +) = (* — +) — (+* +) + (+ — *), for
example. Accordingly, the coeflicient indexed by a nondegenerate (n — 1)-simplex given by a sequence of

Wyn

n + 1 elements of {4, —, %} with exactly one “+” will be a linear combination (with identical signs) of the

coeflicients of two nondegenerate n-simplices given by replacing “x” with either “+” or “—”. For example,
(0¢)—s4 = —(c—44++c—_1). Thus, an n-cycle is a chain ¢ such that ¢, = —cg, where o and 3 differ in exactly
one position. For example, cy4y = —cy4_ =cy__ = —Cc4_y =c__y = —Cc___ =c_4_ = —c_44. Thus,

¢o = (—1)**ta, where ay denotes the number of “+” in « and a € A is some element of A. Accordingly,
H,(S™) = Z,(S") = A.

Theorem 25.4. (The nerve theorem, relative version.) Suppose (X, U) is a space with an open cover as in
the previous theorem, and (Y, V) is another pair with the same property. Suppose f: X — Y is a continuous
map and g: I — J is a map of indexing sets with the following property: f(U;) C V() for any i € I. Then

g induces a N(f,9):N(X,U) — N(Y, V) and the simplicial maps Tx y: N(X,U) — End(X)
and Ty,y:N(Y, V) — BEind(Y') can be chosen in such a way that the following square commutes:
NX,U) 9 Ny, v)
lTX,U JVTY,V

STRg(X) SThg(Y)
Example 25.5. Consider the inclusion ¢: S™ — D" where S™ = {x € R""! | ||z|| = 1} and D" = {x €
R | ||z|| < 1}. We cover S™ by {UF} defined in the pervious example. We cover D" by a singleton
open cover consisting of D"*! itself, which is contractible. The nerve N(D"*+! {D"+1}) = A is a single
vertex. The map N(¢, g) (where g:[n] x {+,—} — {x} is the unique map of indexing sets) is the terminal
map N(S™,U) — B@°. Its nth homology H, (N(S™ U), A) = A — H,(N(D"+* {D"*1}), A) 2 0 is the same
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map as the map H, (¢, A): H, (8", A) — H, (D"*1, A) (here H denotes the singular homology functor), hence
the latter map is the zero map A — 0.

Definition 25.6. Suppose C is a and X € C. We say that a morphism s: X — Y admits a
retraction if there is a morphism 7Y — X such that r o s = idx. vsed in =2

Lemma 25.7. If a sin a C admits a kefraciiod, then so does F(s), where F':C — D is
an arbitrary functor.

Proof. 1f 7 o s = [y, then by [unctorialityl, F(r) o F'(s) = F(ros) = F(idx) = dp(x). |

Corollary 25.8. Suppose f: X — Y is a such that for some n > 0 the homomorphism
of abelian groups H,,(f): H,(X) — H,(Y) does not admit a retraction, i.e., there is no homomorphism
h:Hyp(Y) = Hy,(X) such that hoH,(f) =Edy,x). Then f does not admit a retraction either, i.e., there is
no map ¢g: Y — X such that go f =Idx.

Proof. Holds by the previous lemma because H,,:ESell — BB is a incion. |

This result is typically applied when H,(Y) = 0, while H,(X) is nontrivial. The most important
example is H,,(X) = Z, which occurs for the inclusion map S™ — D"*!  as established above.

Theorem 25.9. (L. E. J. Brouwer, 1912.) Any continuous map f: D™ — D™ has a fixed point, i.e., there
is x € D™ such that f(z) = x.

Proof. Suppose not. Consider the map g: D® — S~ ! that sends a point € D" to the point y € S”~!
given by the intersection of S?~1 with the open ray that originates at f(z) and passes through = # f(x).
This map is continuous because f(x) # z for all z € D™. The restriction of g to S~ ! is the identity map
by construction. Thus, g is a retraction of S»~! — D", which is impossible. |

Exercise 25.10. Consider the sphere S? = {z € R3 | ||z|| = 1}. We identify z with —z for any z € S2.
Use the nerve theorem to compute the singular homology of the resulting space (). Use the relative nerve
theorem to compute the map on singular homology induced by the quotient map S$? — Q. Does the map
S? — @ admit a retraction? Bonus question: what is Q7

Exercise 25.11. Consider the disk D3 = {z € R? | ||z|| < 1}. We identify z with —z for any z € S? C D3.
Use the nerve theorem to compute the singular homology of the resulting space ). Use the relative nerve
theorem to compute the map on singular homology induced by the quotient map D3 — (. Bonus question:
what is Q7

Exercise 25.12. Suppose R C D™ x D" is a closed subset such that for any @ € D™ the set S, = {y €
D™ | (xz,y) € R} is a nonempty convex subset of R™ (meaning that for any two points in this subset, the
line segment between these points is contained in the subset). Prove or disprove: there is x € D™ such that
(z,z) € R (equivalently, x € S,,).

We conclude this section by showing that dimension is a well-defined invariant of metric or topological
spaces.

Proposition 25.13. (Brouwer’s invariance of dimension theorem, 1912.) If S™ is homeomorphic to S™,
then m = n. If R™ is homeomorphic to R", then m = n.

Proof. If f: S™ — S™ is a homeomorphism, then f’: S™\ {*} — S™\ {f(x)} is also a homeomorphism. Thus,
F78™N Ly k= S™N\ {f (%), f(*x)} is also a homeomorphism. As shown above, the singular homology of
this map can be computed using nervesA as the zero map if m # n, which makes it impossible for f to be a
homeomorphism. Thus, m =n. |

The fundamental groupoid

26 Limits and colimits of simplicial sets

First, we extend the notion of a to accommodate more complicated examples:
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Definition 26.1. A diagram in a Cis abmciad D: T — C. The I is known as the indezing
category of the diagram D. A small diagram is a whose indexing category I is a pmall categoryl. A
finite diagram is a whose indexing category [ is a [inite categoryl. uvsed in ==, m, oem, ew=, ee=, e=, o,

5, 250, B3, BEIE, 5, EoId, B, EEe2n, Dl eoeza, ooe2n, DEETEd, RS, enmza, DE=n, D=, o=, =3, o=, I, B

We now generalize Eoproducty and Eoequalizery. First, we formalize the data used in the definition of
Eoproducty and Eoequalizers.

Definition 26.2. A cocone under a D:1 — Cisan A € C together with a family of injection
morphisms cp: D(P) — A for any P € I such that the following triangle commutes for an arbitrary

f:P— P'in I:
by
D(P) — D(P")
A

Used in [==0, 253, BZ5=I0, BO=Il, BET3, Eoown, DETZ, eoezn, DETS, ooz, Boe=n, 253, D, DO,

Next, we formalize the compatibility property used in the iniversal property of coproductd and foequal]
zerd.

Definition 26.3. A morphism of cocones (A,¢) — (A’,¢') under a diagram D:I — C is a
g: A — A’ in the C such that the following triangle commutes for an arbitrary Pel:

D(P)

AT)A/

Used in 253, eom, XA,

Definition 26.4. The category of cocones under a D: I — C has coromes under D as objects and
[norphisms of coconed under D as morphiSms. uUsed in ==, e, z=a.

Remark 26.5. The Eategory ol coconed under a D: I — C can be defined in a much more concise
way as the category whose are pairs (A4, c), where A € C and ¢ is a halnral Transformation D —
Eonsi A, and (A, ¢) = (A, ) are g: A — A’ in C such that the following triangle of
Eonctord and bhaiuralTransfarmationd commutes:

N

const A — = const A’

Here const A: I — C denotes the constant functor I — C, defined by (Eamsi A)(P) = A and (Eansi A)(f) =
idy for any P €T and f: P — P’. vscd ine=a.

Finally, we formulate the universal property of colimits. Before we do this, we isolate and study this
property in a more simple context.

Definition 26.6. Suppose A is an of a category C. We say that A is initial if for any object B € C

there is exactly one morphism A — B. Used in ==, ex=2, =3, e=s, eea, oo, oo, er=rv, o=, s,

Lemma 26.7. If A, A’ € C are [nifial objectd, then there is a unique isomorphism A — A’. Thus, if C has
an [nitial objeci], then it is unique up to a unique isomorphism. uvsed in z=m.

Proof. Since A is [miial, there is a unique morphism u: A — A’. Since A’ is miial, there is a unique
morphism v: A’ — A. Since A is [Imifial, there is a unique morphism A — A, and since id4: A — A is such a
morphism, the morphism v ou: A — A must be equal to Id4. Likewise, u o v must be equal to id /. Thus, u
is an isomorphism. |
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Example 26.8. The following categories have as indicated.
e Befl: the empty set;
e BA, [Groud: the group with one element;
e Ring: the ring of integers;
e [N: does not exist;
e ESefl: the Emptly simplicial seil.

Definition 26.9. The colimit of a diagram D:I — Cis an in the Eategory of coconed under D.
Ifa C admits colimitd of all pmall diagramd, then we say that C is cocomplete. Likewise, if C admits
Eolmitd of all nife diagramy, then we say that C is finitely cocomplete. uvsed in ex=a, o=, TETm, E=m, E=ma, e=x,

oI, eToIS, eoru, boen, DR, enzl, eoe2d, eo2d, eozo, DETEd, eosn, DR, e, g3, D53, oS, B, B3, e, [T, o205, =3, o3, oXm,

==

Remark 26.10. Abusing language, the object A is often referred to as the Ealimill of D. We can say “colimit
cocone” if we want to emphasize the injection maps. The universal property of colimits says that there is a
batural bijective correspondence between morphisms

coamD — A

and families of maps
cp: D(P) — A
that form a cormm under D. Used in o=, o=, oros, o=, eo=m, e, DTz, B3, BX5, o,

We automatically infer from that if a diagram admits a Eolimifl, then it is unique up to a
unique isomorphism.

Example 26.11. Consider the [ndexing categoryl I = {0, 1}, with no nonidentity morphisms. A
D:I — C is a pair of objects Dy, D; € C, a cormmm ¢ under D is a triple (A, Dy — A, D; — A). Such a
coromm is Mifial if this triple satisfied the iniversal property of coproducty. Thus, Eolimiid over {0,1} are

precisely foproducts.

Example 26.12. Consider the [ndexing category] I = {0 = 1}, with exactly two nonidentity morphisms.
A D: I — Cis a pair of objects Dy, D1 € C together with two f,9: Do — D1, a cormm ¢
under D is a morphism ¢: D; — A such that co f = cog. Such a cormomm is nifial if this triple satisfied the
[miversal property of coequalizery. Thus, EoEmits over {0 X 1} are precisely Eoequalizers.

Example 26.13. Consider the empty [ndexing category] I = (). For any C there is a unique empty
diagram D: () — C. A colimit of such a diagram is precisely an initial object of C (if it exists).

Example 26.14. Consider the [ndexing category] I = 1 consisting of a single object and the identity
morphism. A D: I — Cis an object X of C. The colimit of D is X.

Example 26.15. Consider the category I = {0 - 1 — 2 — .-} whose objects are natural numbers
and Boml(4, ) is empty if ¢ > j or consists of a single element if i < j. I-indexed Callmifd are known as
sequential colimits. An I-diagram D is a collection of objects D(¢) for each i > 0 together with morphisms
D(’L) — D(l + 1) for all 7 > 0. Used in o=z

Example 26.16. Consider the following in the BR:

1 2 3 4

Z V/ Z Z

We claim that its Eolimiicocond is Q equipped with maps ¢,,: Z — Q that multiply by 1/n!:

Z 1>Z 2>Z 3>Z
1 1
\\I\//Z/
Q
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Indeed, suppose (A, {pn}») is another coroma of the same type. By definition of a [morphism of coconed, the

triangle

Q—— 4

must commute for any n > 0. Thus, p,(m) = (fouy)(m) = f(tn(m)) = f(m/nl), so pp(m(n—1)!) = f(m/n)
for any m € Z and n > 0. Hence, there is at most one such [morphism of cocones.

To show existence, for any r € Q we define f(r) = p,(rn!), where n € Z is such that rn! € Z. The right
side is independent of the choice of n because p,(nk) = p,—1(k) for any n > 0 and k € Z. Furthermore,
f is a homomorphism of abelian _groupg because f(r + ') = p,(rn!) + pp (rn'!) = pp (rm!) + pp (F'm!) =
pm((r +7")ml) = f(r + "), where m > n and m > n'.

Proposition 26.17. Suppose a C admits tolimifd of pmall diagramd. If D:1 — C is a diagram
in C, then we can establish the following canonical bijective correspondence between cocones under D and

Eoequalizer Torkq of the following pair of morphismg:

[T o) —= ][ p@).
f:P—P! v Qer

where the top morphism u has components

D(P) —"— [] P(@)
QeI

given by the injection morphisms t¢q, whereas the bottom morphism v has components

D(f)

D(P) D(P') == [] p(@)

Qel
As a consequence, the Ealimifl of D can be computed as the of v and v.

Proof. Suppose ¢:[[oc; D(Q) — Z coequalizes u and v. We claim that Z and the family {cq = go
1Q: D(Q) — Z}; is a cormmm under D. Indeed, the triangle

*)DP’

A/

commutes because w oty = tp and v oy = tpr o D(f), so gouoty = goip = cp and gov oy =
gotproD(f) = cproD(f). Running this argument in the opposite direction shows that any cormmm (Z, {cp})
under D produces a q: HQeI D(Q) — Z (i.e., go g = cg) that coequalizes u and v. |

Corollary 26.18. If a category C admits and small Eoproductd, then it is focompletd.

Example 26.19. The following Eategoried are Eocompletd: Bel, BR, [Groud, Mady, Ring. The of
fields does not have an and so is not focompletd.

Exercise 26.20. Suppose the indexing category I has a 1 € I, as defined in Defnifion 7637
If D: I — C is a [[iagrand, prove that D(1) is the Eolimill of D. What are the [njection morphismg?

We examine another example of Ealimifd due to its importance.
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Example 26.21. Suppose I = {1+ 0 — 2}isa with three objects and two nonidentity morphisms
as depicted. A D:I — Cis a pair of B+ A — Cin C. The pushout of D:I — C is
defined as its Eolimill. The Eolimit cocond (Q,ta: A — Q,tp: B — @, tc: C — Q) is depicted by the following
diagram:

A—— B

Lo

C — Q.

An arbitrary commutative square is cocartesian if it arises as the pushout of top and left arrows. We
also characterize this situation by saying that the right morphism B — @ is the cobase change of the left
morphism A — C' along the top morphism A — B. Notice how the symmetry of pushouts is broken in this
formulation. Informally, attaches C' to B along the image of A in B. uvscd in ee=a, gom, o=, ==,

Remark 26.22. It is useful to explicitly formulate the universal property of pushouts: morphisms BlisC —
@ are in a hafural bijective correspondence with pairs of morphisms b: B — @ and ¢: C' — @ such that the
above square commutes. uvsed in I,

Example 26.23. Given a group G, consider the Helooping categoryl BG from [Example 1T.19, which has a
single whose endomorphisms form a group isomorphic to G. A D:BG — C picks an object
X € C and equips it with an action of G. The Eallmill of D, if it exists, is known as the coinvariant object
of X and is denoted by X¢g. uUsed in e=a.

Exercise 26.24. Prove that in the case C = Bell the foinvariant objecfl of a G-set X is naturally isomorphic
to the set of orbits of the action of G on X.

Proposition 26.25. Suppose C is a focompletd Eategoryl and I is an [ndexing categoryl. Then there is a
colimit functor

colim:C! — C

whose value on objects of C/, i.e., I-indexed diagrams, is given by the EQEMIH. used in ea=m, o, rrom, p==, oo,

CIS. . T3, Bz, B3 o3, oo, I3, g3, o3,

Proof. We have to define Eoliml on [morphismy of diagrams, i.e., balural Transformationd. If D, D": T — C
are and t: D — D’ is a halural Transiormation, then

Colimit: Caim D — EammD’

is defined using the universal property ol colimitg as the collection of morphisms of the form

D(P) —— EalmD),

namely, the composition
D(P) —£— D'(P) —~— EammD’.

The property shows that this family is a coromm. |

Proposition 26.26. Colmiid in the fafegory of simplicial sety exist and can be computed pointwise as
described in the proof.

Proof. A

D: I — ESe8 = Eml(™, Bed)

can be rewritten as

D: T x O — Bed,

which can be rewritten as

D: 3 — Em(/,6e8) = Baf’ .
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That is, there is a tautological functor
ESet’ — Erm(™®, Get).
We can now apply the Ealimit Tunctol
Colitlesy: Bet! — BeB
in the degreewise:
Em(O™, Ealiisy ) : EEm(0%°, 6at’ ) — Em(0P, =),

yielding the Eolmit Tunctod in the Eafegory of simplicial setd. |

Another important class of Ealimitd is given by HElfered colimiid, which generalizes Bequential colimitg
by allowing whose objects are not linearly ordered.
Definition 26.27. A I is filtered if any J — I admits a coromma in 1. vsed in ==,

ooz3, eo=3n, Brm, BT

Lemma 26.28. A I is HEIfered if and only if the following three conditions are met, which are
special cases of the above general condition for a specific J:

e [ has an object (J = 0);

e for any two objects A, B € I there is an object C € I with maps A — C and B — C (J = {0,1});

e for any two morphisms f, g: A — B in I there is a morphism h: B — C such that hf = hg (J = {0 X 1}).

Example 26.29. A induced by a poset P if and only if P is a directed poset: any finite subset
of P has an upper boundary.

Example 26.30. Consider the category I with a single object 1 and a single nonidentity morphism e: 1 — 1
such that e o e = ¢, i.e., an idempotent morphism, or simply an idempotent. (In linear algebra and related
areas, are known as projections.) A D:I — C picks a single object X € C and a
D(e): X — X such that D(e)o D(e) = D(e). If the Ealimill of D exists, we say that D(e) is a split
idempotent. In this case, the Eolimill of D is known as the retract of D(e). The category I is BIered but is
not induced by any poset. Colimifd indexed by this category compute the splitting of a given idempotent,

e., if we have an I-diagram D in C given by an object X € C with an [dempotent morphism] e: X — X,
then the Eolimifl of this is an object R € C together with an r: X — R such that
r = re and the aniversal property of colimity is satisfied. In particular, applying the universal property to
another cormmm under D given by the object X itself together with the e: X — X, we can
construct a morphism i: R — X such that ir = e. Applying the universal property to yet another coromm
under D given by the object R with the re: X — R, we see that both idr and 7i: R — R are
morphisms of coromes (R,r) — (R, re), so by the uniqueness part we have ri = idg. This, ri = idg and
ir = e is an idempotent, so r: X — R exhibits R as a retract of X, with the other composition ir = e being
the corresponding [dempotentl. vsed in e==a.

We now define the dual notion of Imifs. By definition, mitd in a C are tollmifd in C22,

Definition 26.31. A cone over a D:I — Cisan A € C together with a family of projection
morphisms pp: A — D(P) for any P € I such that the following triangle commutes for an arbitrary

f:P— P in I

*)DP’

A morphism of cones (A,p) — (A’,p’) over a dlagram D I — Cis a morphism] g: A — A’ in the C
such that the following triangle commutes for an arbitrary pbjeci P € I:

A1 a
N
D(P)
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The category of cones is defined in the obvious way. used in e=3, e=n.

Definition 26.32. Suppose A is an of a category C. We say that A is terminal if for any object
B € C there is exactly one morphism B — A. Used in &=, er=n, er==a, =, e,

Definition 26.33. The limit of a diagram D:I — C is an ferminal objeci in the Eafegory of coneq under D.
If a C admits mitd of all fmall_ diagramyd, then we say that C is complete. Likewise, if C admits
Emiid of all finite diagramq, then we say that C is finitely complete. Abusing language, the object A is often
referred to as the mifl of D. We can say “limit cone” if we want to emphasize the projection maps. The
universal property of limits says that there is a hafural bijective correspondence between morphisms

A — mmD

and families of maps
pp: A— D(P)

that form a eomm over D. used in DESM, e, Do, DEsm, DS, DESU, DEm, Do, DNEm, B, 653, BRI, cum, BUE, I, o, o=,

Proposition 26.34. Suppose a C admits mifd of fmall diagramy. If D: I — C is a diagram in C,
then we can establish the following canonical bijective correspondence between cones over D and
Eorkd of the following pair of morphismg:

[1p@ ———= ][] b
Qel v f:P—P’

where the top morphism « has components

[ @ —= p(P)
QeI

given by the projection morphisms pg, whereas the bottom morphism v has components

[1 p@ —2=— p(pr) 225 p(p).

Qelr
As a consequence, the il of D can be computed as the of u and v.
Corollary 26.35. If a category C admits and small productd, then it is completd.

Remark 26.36. Cartesian squares, base changes, and the universal property of pullbacks are defined by
reversing all arrows in the corresponding definitions. If a square

A—— B

Lo

C — D

is cartesian, we write A = B Xp C. In other words, B — D <« C is the diagram, A is the apex of a limit
cone, and A — B and A — C are projection maps. (The remaining projection map A — D can be computed
as the composition A — C' — D, equivalently, A — B — D.) We also say that the left arrow is the base
change of the right arrow along the bottom arrow. uvsed in ===, Erm, ==, ==, =3, =, £,

Exercise 26.37. Prove that in the case C = Bell the invariant object of a G-set X is naturally isomorphic
to the set of fixed points of the action of G on X.

Proposition 26.38. Suppose C is a fomplete category and [ is an [ndexing categoryl. Then there is a limit
functor

im:Cf - C
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whose value on objects of C’, i.e., I-indexed diagrams, is given by the ERi. uscd in cr==a, e, e, Tz, o=, &,

Proposition 26.39. [imifd in the fafegory of simplicial setq exist and can be computed pointwise.

Definition 26.40. A mmciod F preserves colimits (we also say that F is a cocontinuous functor) if the
image of a Eolimit_cocond under F' is again a Eollmit cocond. Likewise, F' preserves limits (we also say that
F' is a continuous functor) if it sends [t—coned to MmTconed. uvsed in oo, e=, T, &=, =3, &=,

Example 26.41. Many forgetful Encford preserve imitd. For instance, U:BH — Bell and U:Ring — BR
preserve Iimity. Likewise, many free lnciord preserve colimity. For instance, Z[—]:Bell — BH and Z[—]: Bl —
ing.

Definition 26.42. An equivalence of categories is a linctol F: C — D such that there is an inverse functor
G: D — C together with patural isomorphismg idc — GoF and Fo G — Mp. uvsed in o=, e, o0, o=, e, o,

Proposition 26.43. An Equivalence of cafegorieq preserves all [Imifd and Eolmitd.

Proof. Tt suffices to observe that an equivalence of categories induces an equivalence of the categories of
cocones under a diagram D in C and cocones under the diagram Fo D in D. |

27 Full, faithful, and essentially surjective functors

Definition 27.1. We say that F: C — D is a fully faithful functor if

is an isomorphism of sets for all X, Y € C. If the above map is always injective, we say that F is faithful and
if it is surjective, we say that F is full. vsed in o=, e, o, o=, s,

Definition 27.2. We say that C is a full subcategory of D if OB(C) Cc OB(D), Madc (X,Y) ¢ Madp(X,Y),
and the inclusion C C D is a [ully Taithful Tunctol. used in ex=, ex=, e=2, e==m, e==3, &=,

Definition 27.3. A Eunciad F: C — D is essentially surjective if for any object Y € D there is an object
X € C such that F(X) is isomorphic to Y. used in ==, oz, e,

Lemma 27.4. A bunctod F: C — D is an Bquivalence of categorieq if and only if it is Essentially surjectivd
and . Used in ZXT3.

Proof sketch. [Essential_surjectivity] allows us to define an inverse functor G:D — C on objects: we set

G(Y) = X, where X € C is any objects such that F(X) is isomorphic to Y. Enllfaifthfulnesd alllows us to
define G on morphisms as the inverse of the map of sets

BEaml(G(Y), G(Y)) — Bam(F(G(Y)), F(G(Y”))) — Bam(Y, Y”),

given by the composition of two maps, the first of which is an isomorphism by nITaithinmesd and the second
is an isomorphism of sets induced by isomorphisms ¥ — F(G(Y)) and F(G(Y")) — Y'. 1

87



28 Nerve-realization adjunction

In this section, we define the herve Tuncton (Definifion 281, the Eealizafion Tunctod (Oeinifion 28 0),
and show that the herve funcfod is right adjoint to the kealizafion Tuncfold

Definition 28.1. The nerve functor associated to a pair (C, R), where C is a and R:IN — Cis a
Enctod, sends an object X € C to the Ng(X) defined as

Ng(X)m = Boml(R(m), X)
for any m € N and
Ng(X); = Bam(R(f), X):Bom(R(n), X) — Bom(R(m), X)

for any [map of simpliced f: m — n. uUsed in =, ==

Definition 28.2. The category of simplices of a simplicial set X, denoted by N/ X, has
f:@™ — X as objects (m is an arbitrary Eimplex) and f — g are h: ™ — @A"
that make the following triangle commutative:

Am Ly pAn
A L
X.

Definition 28.3. The canonical diagram of a X is a mcIod N/ X — ESefl that sends an object
@ — X to @™ and a f — g to the underlying h:@@" — @". The canonical
cocone of a X is a cormmm under the Eanonical diagram] of X whose apex is X and the
for an object f:@™ — X is the f. Used in =2, =, e

Proposition 28.4. The Eanonical cocand of a fimplicial sef] X is a Eolimit cocand, i.e., an in
the Eafegory of coconed under the fanonical diagram N/ X — ESell. veed in s

Proof. Given another cormmm (A, {¢7}), we have to show that there is a unique [morphism of coconed g: X — A.
Indeed, the commutativity triangle for f:@™ — X, namely,

7

X—A

uniquely determines the value of g on the simplex f. Since f is an arbitrary simplex of X, this show
uniqueness. For existence, we have to show that g, as defined by the above relations, is indeed a
prap, which follows from the following fommutative diagram:

Here f' = fo n" by definition, so the corresponding triangle commutes. Also ¢ty = ¢f o 0" because (4,1)
is a cormmm, so the other triangle also commutes. In term of this diagram, evaluating ¢ on a simplex of X,
expressed as an arrow with Eadomaid X, simply switches the codomain to A. Applying the
associated to h amount to precomposing with the map I¥". We start with the simplex f
and observe that applying both operations in either order produces ¢ in both cases, which proves that g is

indeed a fimplicial' mag. |
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Proposition 28.5. Suppose C is a focomplete categoryl. The functor

CocoFun(ESsd, C) — Em(, C)

(where the left side denotes boconfmuons Tunctord) given by the restriction along the [Yoneda embedding
;N — ESefl is an Equivalence of categories.

Proof. Using Cemma 274, it suffices to show that the restriction functor is [ully Taithful and Essentially]
furiectivd.
To show Essential surjectivityl, for a lunciod R: N — C consider the functor

|_|R:E_>C7 |X|R:mSEW/XR(p(S))7

where p:M/X — O is the forgetful functor. Restricting to in the image of the Xonedd
yields the original functor R because the indexing category BN/B¥" has a terminal object given
by the identity map on B3 and colimits over indexing categories with terminal objects can be computed by
evaluating on the terminal object.

To show Il Taithiumesd, observe that faithfulness follows from the fact that extending two given natural
transformations ¢,t': R — R’ to ES&ll and then restricting back to N gives back ¢ and ¢'. Thus, if the
extensions of ¢ and ¢’ to ESall are equal, then so are ¢t and ¢’ themselves. To show EilInesd, consider a natural
transformation ¢: |—|gr — |—|r’. We claim that ¢ coincides with the extension to ESell of its restrction to IN.
Indeed, the latter Dafnral Transformation takes the same values on simplices, so it suffices to show that
taking the same values on simplices implies taking the same values on all simplicial sets. This follows from
the property, which allows us to compute tx for some X € ESell as a Eollmill (in the category
ESel ™ of and commutative squares) of a diagram consisting of maps of the form tggm. I

Definition 28.6. Given a binctod R:IN — C, the associated Eoconfimuous Tunctol ESell — C is denoted by
|—|r and is referred to as the realization functor associated to R. If C is a “geometric” category (e.g., some
kind of spaces), then |—|g is also known as the geometric realization functor. veed in o, z=m, =2, e

Proposition 28.7. Given a Einctal R:IN — C, the herve functol N (Definifion 281) is right adjoint to
the Eealizafion Tunctol |—|p (Definifion 25 4).

Proof. Given a X and an object Y € C, we have to construct a bijection of sets
C(|X|R7 Y) — %(X, NR(Y))

Both sides are cocontinuous in X, so it suffices to establish a natural bijection for X € N. Expanding both
sides yields the same set Bomlc(R(X),Y), as desired. |

Example 28.8. Consider the functor C:IN — [N that takes a fimplex m = (V, <) to the C(m) =
(V u{x},<’), where v <’ x for all v € V. Thus, the functor o C: [N — ES&ll admits a unique cocontinuous
extension to a functor C:ESell — ESell that we also denote by C. The CX is known as the
simplicial cone of X.

Example 28.9. Define the barycentric subdivision Einctol sd: ESell — ESell as a unique EoconimuonsTinctol
such that EAA® = A@° and EA@® = C(EQ(EA")). The definition of EAA™ uses the value of Ed on a

Eel whose nondegenerate simplices have dimension less than n, so this construction is well-defined. used in ===,

BT, B3, B3, B3, B, BT, BT, oo
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29 The fundamental groupoid

29.1. Groupoids

Definition 29.2. A groupoid is a in which all morphismg are [somorphismg. The category of
groupoids Grpd is the of the Ealegory ol categoried (assumed to be Bmall categoried, as

usual). Used in 03, oo=s, OISR, 290, EUrd, 2U=rn, B0, B, B0, BETE3.

Example 29.3. The discrete category on a set of objects (defined as having only identity morphisms) is a
groupoid because all [norphismy are idenfified. vsed in eo=s, =,

Example 29.4. The Helooping cafegory BG of a monoid G is a groupoid if and only if G is a group.

Definition 29.5. A system of generators and relations for a groupoid is specified as follows. First, one

specifies a set of objects O. Next, one specifies a set of generating morphisms f;: x; — y;, where z;,y; € O.

Finally, one specifies a set of relations of the form ff:l 0---0 ijoﬂ = f;ﬂ 0---0 ffl, where all generators must
K/ 0

be composable in the obvious sense, and the domain and codomain must be the same on both sides. uvsed in

Definition 29.6. The groupoid generated by a system of generators and relations has the given set of
objects, and morphisms between two objects are equivalence classes of chains of composable generators of
length zero or more, with the equivalence relation allowing for zero or more substitutions from the given set
of relations. uvsed in es=, pozz.

Exercise 29.7. Formulate and prove the universal property of the Eroupoid generated by a svstem of
Eenerators and relafiond, and prove that it always exists. vsed in ==

Proposition 29.8. The fafegory of groupoidq is focompletd.

Proof. Given a D: I — [Grpd of Eroupoidd, we take A = Ealim; ;U (D(2)) as the set of objects.
Denote by ¢;: U(D(i)) — A the [mjection morphismy (which need not be [njective maps of setd). For each
i€l and frz = yin D(i), we add a generating morphism ¢s:¢;(x) — ¢;(y). For each i € I and
composable pair of morphisms f:z — y and f:y — z in D(i) we add a relation ¢;(f’) o ¢;(f) = t;(f' o f).
For each ¢ € I and object x in D(i) we add a relation id,, ;) = ¢;(id,). Finally, for each hii— 1
in I and fix — yin D(i) we add a relation ¢;(f) = vy (h(f)). To establish the universal property
of colimits, invoke Exercise 297, Unfolding the universal property of reproduces precisely the
universal property of colimits. |

Remark 29.9. An identical proof shows that the Eategory of categorieq is cocomplete, using generators and
relations for categories instead of groupoids, provided that we disallow inverses in relations.

Exercise 29.10. Show that the Eafegory of groupoidd is Eompletd.

29.11. Classification of groupoids
We start by making a trivial observation.

Proposition 29.12. Every groupoid G decomposes into a coproduct of nonempty groupoids that themselves
cannot be further decomposed into such a coproduct with two or more summands, which we refer to as
connected groupoids. This decomposition is unique up to a unique isomorphism. Its indexing set is denoted
by m(G) and can be computed as the set of objects of G modulo the equivalence relation of isomorphism.

Used in T2, ecr3.

Next, we classify fonnected groupoidd.

Proposition 29.13. Suppose G is a fonnected groupoid and = € G. (Such z exists because bonnected
are by definition nonempty.) The canonical inclusion BEIds(2) — G is an equivalence of
groupoids, where Autg(z) denotes the group of automorphisms of the object x in the groupoid G. usea

in =, A, oo,

Proof. We choose for any object y € G an isomorphism p,:x — y. (Such an isomorphism exists because G
is connected, so my(G) = {*} and all objects belong to the same isomorphism class.) We set p, = Id,.
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First, we construct an mverse imetod G — BB (x). On the level of objects, there is nothing to
specify. We send a morphism f:y — 3’ to the morphism p;,l fpy € Bxdlg(x). This indeed defines a functor:
id, is sent to p;l id, p, =, and f'o f (where f":y' — y" is sent to p;,,lf’fpy = p;,,lf/pyzp;,lfpy.

By construction, the composition BBidl;(z) — G — BBidl(z) equals the identity functor because
p, = Id,. Tt remains to show that the other composition G — BB (x) — G is isomorphic to the identity
functor on G. Indeed, the collection of morphisms p,:x — y defines such a natural isomorphism. |

29.14. Construction of the functor

Definition 29.15. Consider the functor N — that sends a simplex m to the groupoid [m]* with U(m)
as its set of objects and exactly one morphism between any pair of objects. A [map of simpliced f: m — n is
sent to the unique functor that has U(f) as its underlying map on objects.

Definition 29.16. The fundamental groupoid functor m<;:ESell — is the Eealization Tunctod associated
to the lanctod N — [Grpd constructed above. Given a vertex v in a X, the fundamental group
of v in X is the group Bid, _, (x)(v). vsed in cm, ooz, eo=m, eo, ooz, &=

Proposition 29.17. A Bystem oI generators and relations for the fundamental groupoid of a BImplicial
Eed X can be constructed as follows. The set of objects is Xy, the set of vertices of X. There is a generator
for every nondegenerate 1-simplex of X, which is a morphism from the Oth to the 1st vertex. Finally, there
is a relation for every nondegenerate 2-simplex o of X:

dio = dgo odso.

Proof. We have to show that the fundamental groupoid m<; X of X is equivalent to the groupoid G spec-
ified by the above system of generators and relations. We construct maps both ways and show they are
equivalences. The map m<; X — G is constructed using the fimiversal property of colimitd: for any simplex
o:@™ — X we have to construct a Bmmctad [m]” — G and show these functors are compatible for all o.
Such a functor simply sends objects of [m] to the corresponding objects of G (given by the vertex map of
@™ — X) and morphisms likewise. Composition is clearly preserved and different o give compatible choices.

A functor G — m<; X is constructed using the universal property of a Eroupoid generated by a system
pI_generators and relationd. Each object of G is a vertex of X, i.e., a map B° — X and we map to itself
in m<; X. Each generator of G is a map o:@ — X and we map it to the morphism 0 — 1 in the groupoid
[1]* with index o. Finally, each relation of G comes from a map 7:0% and we see that once we map to the
groupoid [2]* with index 7, it is satisfied, and therefore it is satisfied in m<;.

Both compositions G = m<; X — G and m<; X — G — m<; X are equal to identities by construction. [

Definition 29.18. A spanning tree for a ponnected simplicial sef] X is a T C X such that
To = Xo, all nondegenerate simplices of T" have dimension 0 or 1, the map mo(7T") — mo(X) is an isomorphism
and the groupoid m<;(7T’) is a Hiscrete categoryl.

Proposition 29.19. Given a fonnected simplicial sefl X and a vertex z € Xg, a system of generators and
relations for my (X, z) can be constructed as follows. Choose a spanning tree T for X. The set of generators
is X3. For each 1-simplex ¢ € T; C X; introduce a relation ¢ = 1. For each nondegenerate 2-simplex
7 € X5 introduce a relation di7 = dg7daT.

Proof. We construct isomorphisms m;(X,z) - G and G — m (X, z), where G is the group generated by
the above system of generators and relations. For the map mi(X,2) — G, observe that any element of
my (X, z) is a loop of 1-simplices in X, traversed in either direction (with inverses added for traversing in the
wrong direction). We send such a loop to the product of the corresponding generators in G or their inverses,
accordingly. This map preserves composition and identity by construction.

The map G — m;(X,z) is specified using the universal property of groups generated by a system of
generators and relations. A generator ¢ € X7 is sent to the element t;olgotdlg of my (X, z) that goes from z
to dio using the edges in the spanning tree T, then traverses o, and then goes from dgo to = also using the
edges in T'. By definition of a spanning tree, there is a unique path in the tree between any pair of vertices.
In particular, relations are preserved because dg7ds7 is sent to

—1 —1
taodyrd0Ttd dor by, d,,d2Ttd dor
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where d1dg7 = dgda7, so the middle terms disappear and we get

taoordomdaTta, ayr = tooy it dyr = tg,q, 1Tl 47
as desired. The other relation o = 1 for o € T is preserved because ¢ maps to t(;ﬂlo)atdlg, and this loop
from z to z is contained in the spanning tree T', and since m<;(T') is a discrete category, we know that the
loop composes to id, also in m<;(X).

The composition my (X, z) = G — m; (X, x) is identity because a loop a,fl 0-:0 crf[1 of 1-simplices in X
from x to x is sent to the same expression 0251 0---0 ofﬂ in G, which is then mapped to a loop of 1-simplices
in X given by the original loop in which we insert ¢,t, ! = Id, for each intermediate position corresponding
to a vertex v, whereas at the beginning or end we insert ¢! = Id,. Thus, nothing changes and the original
loop maps to itself.

The composition G — m<;(X,z) — G sends 0 € X; to tgolaatdlg, which is then sent to o because each t
is a composition of edges in the spanning tree, which map to 1 by definition of the map m<;(X,z) — G. 1

Example 29.20. We compute the [undamental groupoid of the circle S. We have a single object = and a
single generator u: x — x, with no relations. Thus, we have arbitrary integer powers of u as morphisms, and
there are no other morphisms. Thus, the fundamental groupoid is BZ and the fundamental group is Z.

Example 29.21. We compute the fundamental groupoid of the sphere S™, where m > 1. We have a single
object x. There are no generators or relations since there is only a single 1-simplex, which is degenerate.
Thus, the fundamental groupoid is {z} and the fundamental group is trivial.

Example 29.22. We compute the fundamental groupoid of the real projective plane X:

Y b, T

a ,\ﬂ Ya
@

Y

There are two objects,  and y. There are three generating isomorphisms: a:z — y, b:x — y, and d: z — .
There are two relations: a = bod and b = a o d. The first relation allows us to eliminate a from the list
of generators. Substituting the expression for a into the second relation, we get b = bo d o d. Since b is
invertible, the latter relation is equivalent to id, = d o d. To summarize, the fundamental groupoid of the
real projective plane is freely generated by two objects, a morphism b: x — y, and a morphism d: x — x such
that d o d = Id,. In particular, we can extract the fundamental group m; (X, z) as the group generated by a
single generator d with a relation d> = 1. This is the group Z/2.

Example 29.23. We compute the fundamental group of the nonorientable surface with g crosscaps, with
the basepoint v:

a1 aop
Qa
a1 0
u
Qa
a9 3
az as

The spanning tree has a single edge that connects u and v. The 2¢g edges connecting v to u are marked b;
and ¢;. According to the recipe, we have relations

ab; = c;,
a;c; = biy1,
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and

|
=

bo

By a telescoping argument, we get
co = ao, by = apao, €1 = a1a9ag;, by = ayarapao,

and in general,

with the final relation being

Thus, the fundamental group with respect to the basepoint v is
(ag,...,ag—1 | a?fl---ag =1).
Exercise 29.24. For each of the listed in Exercise Th T3 as well as for the lens spaces, compute
its fundamental group and fundamental groupoid with respect to the basepoint.
We now explain how the fundamental group depends on the basepoint.

Proposition 29.25. (Fundamental group as a functor of the basepoint.) For any X there is
a functor

m<; (X) — Groug

that sends an vertex x € Xy to the group m (X, z) and a path p: 2 — y to the homomorphism of groups
ml(Xvw) — ml(va)

given by the formula

g+ pgp~ .

Used in BZT3A.

Proof. The given map is indeed a homomorphism:
99" = pgg'p™" = pgp~'pg'p ™.

It is also functorial:
('p)g(p'p) ™ = (pgp™ ") (¥) .

Identities are preserved, so it a functor. |

Corollary 29.26. If X € ESefl is connected, all fundamental groups are isomorphic. These isomorphisms
are noncanonical and depend on the choice of a connecting path.
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30 Adjoint functors

Adjoint functors are omnipresent in mathematics.

Definition 30.1. Suppose L:C — D and R:D — C are lonctard. We say that L is left adjoint to R (alias
R is right adjoint to L, or simply L 4 R) if there is a natural isomorphism u — v, where both « and v are
functors of the form

C® x D — Bed

and
u(e, d) = Bamp (L(c), d), v(e,d) = Bamc (¢, R(d)).

Slightly more informally, we say that there is a natural isomorphism
bEomlp (L(c), d) — Eomc (¢, R(d)),
and even more informally, we say that morphisms
fiLl(e) = d
in the category D can be identified with morphisms
g:c — R(d)

in the category C. This is known as the universal property of adjoint functors. In this case we say that f is
a left adjunct of g and g is a right adjunct of f. vsed in o=, Ewm, Eo, T, =, B==, ===,

Example 30.2. Consider C = Bell, D = BB, L:Bell — BH the [ree_abelian_group functoy, R: B — Bell the
forgetful functor. The L is left adjoint to R. Indeed, homomorphisms of abelian groups L(S) — A are
uniquely determined by their values on the basis elements in S, i.e., by the map of sets S — R(A).

Example 30.3. The functor my:ESell — Bedl is left adjoint to the functor 0id: Bell — ESell. Indeed, a map
X — E3(S) must be constant on each connected component of X, where it maps to some point of S. This
is nothing else than a map mo(X) — S.

Exercise 30.4. What is the right adjoint functor of m<;? Hint: it is closely related to the nerve construction.

Example 30.5. The functor ESell — &l (X — /X)) is left adjoint to the functor Call — BN/ X that sends
a C to the whose set of m-simplices is Boml(N/B™, C).

Example 30.6. The functor Call — (C — C[C™1]) that inverts all morphisms is left adjoint to the
inclusion functor — &8, Indeed, a functor C[C~1] — G is the same data as a functor C — G such
that the image of any morphism in C' is invertible in G. If G is a groupoid, the latter condition is trivial.

Example 30.7. The inclusion functor — & is left adjoint to the functor Call — (Cw— C*)
that removes all noninvertible morphisms from a category. Indeed, a functor G — C must land in invertible
morphisms of C' because functors preserves isomorphisms, and in a groupoid all morphisms are isomorphisms.
Thus, the set of functors G — C and G — C* coincides.

Example 30.8. The boimit functod
colm: Emi(7, C) — C

is left adjoint to the constant diagram functor
const: C — Eml(/, C)

that sends all objects to a given object of C and all morphisms to identities. The il Tuncion
m: BEml(7,C) — C
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is right adjoint to the fonstant diagram Ttunctoq Eamss: C — Eml(7, C). used in so=s, gom, m=m.

Proposition 30.9. Suppose C and D are Eocomplete cafegoried, and L: C — D is a functor that is left
adjoint to a functor R: D — C. Then L is a toconfimuons functon.

First proof. Suppose D:I — Cis a in C. We want to show that the canonical morphism
taliml(L o D) — L(EalimD)

is an isomorphism.
We construct a map

L(EamD) — Eom(L o D)
by constructing a map
colmD — R(cam(L o D)),
which itself can be constructed as a compatible family of maps
D(i) — R(caImmm(L o D))
that we can construct from maps

1P L(D(i)) — Eamm(L o D)

?

given by the injection morphisms.
We verify that the composition

Eoml(L o D) — L(EammD) — tolim(L o D)

equals the identity map. Indeed, pick an object ¢ € I and consider the component map

()

L
L(D()) ——=
Then the composition equals ¢-°P . as required.

We verify that the composition
L(camlD) — Ealiml(L o D) — L(caimlD)

L(EalimD) — Eamm(L o D).

equals the identity map. Indeed, passing to adjuncts, we get

EafmD — R(caim(L o D)) — R(L(Ea@mD)).

Restricting to a single component, we get
D(i) — R(cam(L o D)) — R(L(caIimD))
and passing to adjuncts again, we get
L(D(¢)) — tom(L o D) — L(camD),
which we know to be precisely the injection morphism (-0, |
Second proof. We want to show that the canonical morphism
tom(L o D) — L(camD)

is an isomorphism. By the lzeak Yoneda Temmd applied to C2, it suffices to show that for any object Y € D,
the induced map of sets

Eom(Eoim(L o D), Y) — Eom(L(camD), Y)
is an isomorphism. Using the adjunction property, we may instead verify that the map of sets
bEom(L o D, camsti(Y)) — hom(EalimD, R(Y'))

is an isomorphism. Using the adjunction property one more time, we may instead verify that the map of
sets
Eom(D, R oEamsi(Y))) — boml(D, camsi(R(Y)))

is an isomorphism. But R o Eamsi(Y) = EamsAi(R(Y)), which completes the proof. |

95



Theorem 30.10. (The weak Yoneda lemma.) Given a small category C, the functor
Y:C — Em(C™, Bel)

that sends ¢ € C to the functor d — BEomlc(d, ¢) is a [ally Taithiul Tuncton. Likewise, substituting C= for C,
the functor

Y: C®® — Eml(C, Bad)
that sends ¢ € C to the functor d — BEamlc(c, d) is a [ully Taithiul TUnctoy. used in g,
Proof. This follows from the (strong) Yoneda Temmd:
BEamd(Y(c), Y(')) = Y(<')(c) = Bam(c, ). |

31 Fiber functors

Supplementary sources: §2.4 and §2.5 in Joyal and Tierney [[NSHTI|.

First, we examine how can be analyzed through their fibers.
Definition 31.1. The functor

Fiber:ESell/Y — BEEml(N/ Y, ESed) /ey

sends an object of ES&l/Y, i.e., a f:X — Y, to the object of EERI(N/Y,ESell) /¢y, i.e., a
natural transformation f:F — ¢y of two mcford IN/Y — ESell, where ¢y is the fanomical diagram] of YV
and F is a [inctod that sends a simplex s: @™ — Y to the pullback B™ xy X and a morphism of simplices
h:@™ — O™ to the induced map h xy X:A™ xy X — A™ xy X. The halural Transformatiod f on a
simplex s:A™ — Y is given by the projection ps:A™ Xy X — BA™. vsed in e, &2,

Definition 31.2. The functor

Assemble: lml(N/ Y, ESed) /¢y — ESel/Y
sends a hafuraltransformafiod f: F — ¢y to its Ealimid, i.e., the map

Eoliml(f): Ealiml(F) — Ealiml(cy ) 22 Y,

where the last isomorphism is supplied by [Proposition 28.4. For a F — F it yields colim(F) —
M(F/) Used in ET=3, T3

Proposition 31.3. The functor
Essembld: Eiml(N/ Y, BSell) /¢y — ESel/Y

is left adjoint to the functor

Ehen: ESel/ Y — BEml(N/ Y, BSad) /ey
Proof. This is nothing else than the [iniversal property ol colimitd indexed by the category BN/Y. |

Definition 31.4. A hafuralfransformafion ¢: F — G of lmcfard F, G: C — D between that admits

finite miid is equifibered if the commutative square

Fs) — 5 F(s)

|- I

Gls) 5 G(s)

is cartesian for any morphism h:s — s’ in C. vsca in =2,

Proposition 31.5. The bonciod Ehed lands in the [ull_subcafegoryl of Exml(N/Y,ESell) /¢y consisting of
Equifibered natural fransformationd, denoted by Equi(Y’). If we restrict the domaid of Bssembld to Equi(Y")
and corestrict the Eodomam of Ehed to Equi(Y’), the resulting adjunction is an Equivalence of categorieq
between (Y) and EE/Y Used in BT,

Proof. The equifibration condition is necessary because the fiber of a fiber is again a fiber. |

Next, we consider yet another model for the fundamental groupoid.

96



Proposition 31.6. (Category of simplices model for fundamental groupoids.) We have a natural equivalence
DN/ XN/ X = @< (X),
where the left side denotes the image of the N/ X under the fonciod

Cadl — Grpd

that inverts all morphisms. uvsed in e=m.

Proof. The functor m<; is cocontinuous by definition. Below we establish that the functor ESeil — Al
(X — N/ X) is also cocontinuous, as well as the functor &l — [Grpd. Thus their composition is cocontinuous,
so X — M/X [0/ X 1] is a cocontinuous functor ESe# — [Grpd. Thus, to construct a natural equivalence of
functors ESell — [Grpd,

DN/ XM/ X' = mei (X),

it suffices to construct a natural equivalence of functors N — [Grpd,
/0™ [0/l ] — [m]

Given an object of the left side, i.c., a simple B8 — ™ of B™, we send it to its last vertex, which is an
object of the right side. On morphisms, the map is trivial. In the opposite direction, objects of the right side
map to the corresponding vertices on the left side. A morphism v — v’ maps to the composition of v — ¢
and the inverse of v' — e, where e is the edge that contains v and v’. |

32 Coverings
Supplementary sources: §2.4 and §2.5 in Joyal and Tierney [NSHT).

Definition 32.1. The category of coverings Cov/Y of a Y is the of ESel/Y
consisting of coverings of Y, defined as f: X — Y such that any commutative square

AN — X

L)

A —Y

has a unique diagonal filler that makes both triangles commute. uvscd in ==, ==, =, e, EX, ==, ==, e=m, =,

013, o3, B3, =3, o3
Proposition 32.2. A f: X —=>Yisa if and only if for any s:@@™ — Y we have a
commutative triangle

AW sy X — = 4 Am x dis(S)

S,

where the top map is an isomorphism and S is a set that will turn out to be canonically isomorphic to
mo (™ xy X). The map py is supplied by the definition of fartesian squared. It can be obtained by
projecting onto either ™ or X and then mapping to Y. usca in gz,

Lemma 32.3. If f: X — Y is a Eovering, then for any @™ — @A™ — Y the map of sets mo(B@™ Xy X) —
m (A" Xy X) is an isomorphism. uvsed in gz=a.

Definition 32.4. The monodromy functor
Mono:Cal/Y — Eml(m< (Y), Bel)
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sends a covering f: X — Y to the functor m<;(Y) — B&ll that sends a vertex v:@° — Y to the set v xy X
and an edge e:@@' — Y from vy to v; to the composition below (where the map going from right to left is
replaced by its inverse):

vg Xy X gﬂlo(?)o Xy X) —>l7.'ﬂ0(6 Xy X) (—mo(vl Xy X) = Xy X.

The monodromy functor sends a morphism of coverings f; — fo over Y to the natural transformation with
components v Xy X1 = v Xy X9, Used in ez, BT, 2, 5=,

Lemma 32.5. The monodromy functor is well-defined.

Proof. Given a triangle t:8% — Y, we have to verify that the corresponding triangular diagram commutes.
This is obvious from Cemma323. ||

Definition 32.6. The reconstruction functor
Recon: Hml(m<; (Y),Bel) — /Y
is defined as follows. First, given a functor
M:m<(Y) — Bed,

construct a functor
FA/Y — ESel

such that F(s) = M(sg) x @™ for any simplex s:@™ — Y, where sy, denotes the last vertex of s. Given a
morphism s — s’ of /Y (with a map of simplices o: "™ — O™ ), the functor F sends it to the induced map

M(sz) x B8 270 Msh ) xom

There is a natural transformation
p:F—cy,

where
cy:N/Y — ESed

is the canonical diagram of Y. We set

Reconl(M) = caliml(p): Eoliml(F) — Eolmi(cy ) 2 Y.

Used in BEZm, B2, B3, =3, X3
Lemma 32.7. The reconstruction functor is well-defined.

Proof. By [Proposition 32.9, given a functor

M:m<;(Y) — Bed,

it suffices to show that the fiber of
Recon(M) € Cal/Y

over some simplex s:@™ — Y (i.e., s € /YY) is isomorphic to the simplicial set
F(s) = M(sp) x @™,

where sy, denotes the last vertex of s. Indeed, by construction we have F(s) = M(sy) x @™. When passing
to kaliml(F), the fiber over s remains the same because all structure maps in the diagram

FOA/Y — ESel
are monomorphisms. |
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Proposition 32.8. The functors
Mond: Cod/Y — BEml(m<; (Y), Bed)

and
Recon: BEml(m<; (Y),Bell) — Cad/Y

form an Equivalence ol categorieq.

Proof. Given a covering f: X — Y, we construct a natural isomorphism

Recon(Mond(f)) — f

using the iniversal property ol colimity.
Given a functor M:m<;(Y) — Bell, we construct a natural isomorphism

M — Mond(Recan(M))
by defining its component indexed by an object v € m<;(Y") as the isomorphism
M(v) — v xy Recar(M) = M(v) x @° = M(v). 1

Corollary 32.9. (Classification of coverings of connected simplicial set.) Suppose Y € ESell is a Connected
and y € Yj is a vertex of Y. Then the [monodromy Tunctor induces an equivalence of categories

Mong: Cal/ Y — Efl(m< (Y),568) — Em(Ba, (Y, y), 6a8) = 5a™ Vv,

where BaF™:(Y*¥) denotes the category of sets equipped with an action of the group m; (Y, y).

Corollary 32.10. (Classification of connected coverings of a connected simplicial set.) Suppose Y € ESefl is
a ponnected simplicial sefl and y € Yj is a vertex of Y. Then the lmonodromy Tuncfoy induces an equivalence
of categories

CCal/Y — 068y, (v,y),

where CCov/Y denotes the of Cal/Y consisting of with connected total space (alias
connected coverings) and Orbg denotes the category of orbits of a group G, i.e., nonempty sets equipped with
a transitive action of G. Orbits are uniquely determined by their stabilizer groups, so connected coverings
correspond to subgroups of m; (Y, y). vsed in e=m, e=a, ez, =3, e=m.

Remark 32.11. (Orbits via stabilizers.) Recall the following alternative description of the category OBg:
e objects are subgroups H C G;
e morphisms H; — Hj are elements [g] € G/Hy such that H; C gHag .
In particular, the group of automorphisms of H is precisely the group Ng(H)/H.
An equivalence to the category OB is supplied by the functor that sends H C G to the G-orbit G/H
and a morphism [g]: H; — Hj to the map G/H; — G/H, that sends [z] — [gx]. The latter formula descends
to equivalence classes and does not depend on the choice of g because H; C gHg ™. vsed in szmm.

Lemma 32.12. If /: X — Y is a and both X and Y are connected, then for any x € X the
homomorphism of groups

m (f,z):m (X, 2) = m (Y, f(x))
is injective.

Proof. If two elements of m; (X, ) map to the same elements of m; (Y, f(x)), then the representing loops in X
map to homotopic loops in Y. This homotopy can be lifted to X using the unique lifting property. |
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Lemma 32.13. If f: X - Y isa and both X and Y are connected, then for any z,z’ € X, such
that f(z) = f(2’) the homomorphisms of groups

@y (f, 2):m (X, 2) = @i (Y, f(2))

and
m (f,2'):m (X, 2") — (Y, f(2))

yield conjugate subgroups of m;(Y, f(x)) as images. Vice versa, conjugating the subgroup m;(X,z) C
@y (Y, f(x)) by any element of m; (Y, f(z)) produces a subgroup of the form m;(X,z’) for some 2’ € Xy
such that f(z') = f(x).

Proof. Since X is connected, there is a morphism p:z — 2’ in m<3(X). According to [Proposition 29.29, p
induces an isomorphism my (p):m; (X, z) — my(X,2’) given by g — pgp~'. The image of p in m<;(Y) is an
automorphism of f(z) = f(z'), i.e., an element of m; (Y, f(x)). Thus, taking the images under m<;(f), the
isomorphism m; (p) becomes the conjugation by the element m<1(p) € m1 (Y, f(x)).

Vice versa, given an element ¢ € m (Y, f(z)), we can lift ¢: f(x) — f(x) to an isomorphism p: x — &’ in
m<1(X), which induces an isomorphism m; (X, z) — m; (X, 2’) whose image under m<;(f) is the conjugation
by q. 1

Proposition 32.14. Suppose Y is a fonnected simplicial sefl with a vertex y € Y. Given a connected
X — Y corresponding to a G-orbit O (which is isomorphic to the fiber over y), the fundamental
group of X with respect to a vertex x € Xy over y is isomorphic to the stabilizer group of x in O.

Proof. Any loop in Y from y to itself lifts to a path in X from z to some point in the fiber over y. This
points equals z if and only if the corresponding element of mq (Y, y) acts trivially on z, i.e., it belongs to the
stabilizer group. |

Corollary 32.15. Suppose Y is a fonnected simplicial sefl with a vertex y € Y. The X =Y
corresponding to the left regular action of m (Y, y) on itself has a simply connected total space, i.e., m<1(X)
is trivial. The X — Y is known as the universal covering of X. The choice of terminology is
justified by the fact that any other fonnected covering is a quotient of the iniversal covering because any
G-orbit is a quotient of the universal orbit G. If we make the base space and total space pointed, then the
requisite maps become unique. used in e=a, e=m.

Example 32.16. Consider the feal projective pland. Its fundamental group has been computed as Z/2.
Thus, apart from the trivial connected covering, which corresponds to a singleton orbit, it only has a bniversal
Eovering, corresponding to the left action of Z/2 on itself.

Definition 32.17. The deck transformation group of a (typically connected) covering f: X — Y is the
automorphism group of f in the category of coverings of Y. uvsed in e=z=.

Definition 32.18. A Galois covering (alias normal covering) is a fonnected covering f: X — Y such that
the action of the Heck transformation grouf on the fiber of one (hence any) y € Y is transitive.

Proposition 32.19. A fonnected covering f: X — Y is Galois if and only if the corresponding subgroup
m (X, z) Cmy (Y, f(x)) is normal.

Proof. 1f the subgroup is normal, then the quotient orbit m; (Y, f(x))/m; (X, x) is itself a group, and its auto-
morphism group is the normalizer of my (X, z), which coincides with m (Y, f(x)) and hence acts transitively.

Vice versa, if the deck transformation group acts transitively, by Remark 32 11 the normalizer of m (X, )
must coincide with m; (Y, f(x)), i.e., m1 (X, ) must be a normal subgroup. |
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33 Local systems

Definition 33.1. A local system (of pbelian groupd) over a fimplicial sef Y is a functor m<; (Y) — BH. The
category of local systems Loc/Y is the of such BNCEOTd. vsed in =29, =3, E=m, =9, =9, B, B, ==, B,

Example 33.2. The trivial local system on Y with fiber A € BB is given by the constant functor m<;(Y’) —
BH that sends all objects to A and all morphisms to identities.

Example 33.3. The local system of twisted integers on the feal projective pland sends all objects to Z, and
generating morphisms a, b, d are sent to the multiplication by —1, 1, and —1 respectively. The relations for
the fundamental groupoid are satisfied, so this indeed defines a [ocal systeml. used in s=2.

Definition 33.4. The forgetful functor

[ed/Y — Cad/Y

sends a [ocal systenl, i.e., a Eancon
Imgl(Y) — BB

to the composition
o< (Y) — BB — B=d

and then applies the beconstriiciion Tunctol

Reconl: M(ﬂlgl(Y),Eﬂ) — KE/Y

Proposition 33.5. Given a fomplete category] C, the category of group objects in C is defined as the category
of quadruples (G, m,i,u), where G € C is an of C,

m:G x G — G, .G — G wl— G

are morphisms in C (where 1 denotes the of C) such that the following diagrams commute:

GxGxG—""%Gxa c—4 ¢ ¢G—9——q¢
Gxm m d m d m
GXG—m)G, GXGTGXG, GXGT)GXG

(associativity and left and right inverses) and

¢G—4 ¢ ¢G—4 ¢
GXlid—Xu)GXG’ IXGTGXG

(left and right unitality). Furthermore, abelian group objects are distinguished by the following additional

diagram that must be commutative:
GxG



where 7: G X G — G x G permutes the two factors. The category of abelian group objects is defined as the
of the Eategory of group objecty. used in e=a, e=m.

Proposition 33.6. The fafegory of Tocal systemd over Y € ESell is equivalent to the fategory of abelian]
Eroup objectd in the Eategory of coveringd of Y.

Lemma 33.7. If L is a over a fonnected simplicial sef] Y, then all values of L are (noncanon-
ically) isomorphic to each other. If all values of L are isomorphic to some A, we say that L
has a (typical) fiber A.

Proposition 33.8. The category of over a fonnected simplicial sef] Y with typical fiber A is
equivalent to the category of representations of m (Y, y) on A, where y € Y;.

Proof. We have an equivalence
Bmy (Y, y) = @< (V).

Restriction along this inclusion produces an equivalence
Em(m<: (Y), BE) — Em(Bm, (Y, ), BB) = BE™ ),

where the latter category is the category of abelian groups equipped with an action of m; (Y, y). I

Example 33.9. The fundamental group of the feal projective pland is Z/2. There are exactly two repre-
sentations of Z/2 on Z: the trivial representation and the sign representation. The latter corresponds to a
nontrivial covering with fiber Z: as we go around the diagonal d, we get multiplied by —1. More generally,
this construction works for an arbitrary abelian group A instead of Z.

Definition 33.10. Suppose L:m<;(Y) — BB is a [ocal systen] on a fimplicial sefl Y. According to
BEon3T4, the functor

N/ YN/ Y1 - m<1(Y)
is an equivalence of categories. The composition
NY - N/ YN/ Y - @ac (V) — BB

is denoted by A. The twisted simplicial chains on Y with coefficients in L form a defined as
follows. In degree n we place the direct sum (primes denote nondegenerate simplices)

P Alo).

o€y,
The differentials are given by the alternating sum of face maps, as usual. The ¢th face map applied to o is
a homomorphism

A(p~): A(o) = A(d;0),

where p is the unique morphism in m<;(Y) from the last vertex of d;o to the last vertex of o. Tuwisted
simplicial cochains are defined in a similar way, replacing direct sums with products, and defining the
coboundary map as an alternating sum of coface maps. uvsed in =3, e=a.

An analogous argument to Cemma Th 8 shows that we indeed have a Ehain complex.

Definition 33.11. The twisted homology of a Y with coefficients in a L of abelian
groups on Y is the of the fwisted simplicial chaing on Y with coefficients in L. Likewise for the
twisted cohomology. vsed in e=3, e=m.

Example 33.12. We compute the fwisted homology of the [feal projective pland with coefficients in the
constructed in [Example 33.9. The fwisted simplicial chaing are

Az A% 4

Its homology] is
AJ24,  [E(Z/2,A), A

This is different from the untwisted homology, which is

A, AJ24, [EH(Z/2,A).
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34 Function complexes

Given two sets X and Y, we can construct another set Baml(X,Y’), whose elements are maps X — Y.
There is a natural isomorphism between the set of maps of the form W — Baml(X,Y) and the set of maps
of the form W x X — Y, i.e., an isomorphism

Eam(W, Bam(X, Y)) —» BEa@(W x X,Y).

Given a map f: W — Bom(X,Y), we send it to the map ¢g: W x X — Y such that g(w,z) = f(w)(z). Given
amap g: W x X — Y, we send it to the map f: W — Bom(X,Y) such that f(w)(x) = g(w, z). These maps
are manifestly mutually inverse to each other.

We would like to extend such a construction to pimplicial setq, i.e., given X, Y € ESefl, we would like to
construct Homl(X,Y) € ESell such that there is a natural isomorphism

Bom(W, Ham(X,Y)) — Bam(W x X,Y).

Recall that Boml(X,Y’) denotes the set of X-=Y.
We substitute W = @™ in the above isomorphism, obtaining

Eom(", Hom(X, Y)) — Eam(@® x X,Y).

By the MonedaTemmd, the left side is isomorphic to Homl(X,Y),,, the set of n-simplices of the
Homl(X,Y). The right side only uses Baml, whose definition is known to us. Thus, we can define the left
side as the right side.

Definition 34.1. Given X,Y € BESad, the internal hom (alias function complex or mapping
simplicial set) Hom(X,Y) is a such that

Hom(X,Y), = Eam(@" x X,Y)

and for a [map ol simpliced f: m — n the fimplicial structure mapg
Eom(X,Y); Bom(@® x X,Y) — Bom(B™ x X,Y)

is the map
Eom(B x X,Y):Eam(@ x X,Y) — Bom(@™ x X,Y).
Used in =3, BE23, o2,

Remark 34.2. As an important special case of the above definition, we obtain a natural isomorphism
Eom(X,Y)o = Bam(@° x X,Y) =~ Eam(X,Y),

i.e., O-simplices of HGm(X,Y) can be naturally identified with XY,

Proposition 34.3. (The universal property of internal homs.) For any X,Y, Z there is a
natural bijection between the set of maps of the form

X — EHa@m(Y, 2)

and the set of maps of the form
XxY > Z

In other words, the functor
ESell — ESedl, X—XxY

is left adjoint to the functor

& ESel, 7 v Haml(Y, 2).
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Definition 34.4. The functor
Homl: ESei®™® x ESell — ESed

sends a pair of Fimplicial setd X, Y € ESefl to Homl(X,Y") and a pair of fimplicial mapg f: X « X', ¢: Y = Y’
to a pimplicial map]

Homl(f, g): Hom(X',Y) — Hom(X,Y")
whose component in degree n
Hom(f, g)nzlELOTJJI(X', Y), — Homl(X, Y/)n

is the map
Eom(X” x f, g),:Bom(@® x X', V) — Bom(@" x X,Y’).

Proposition 34.5. We have hatural isomorphismg
X — Hom(@°, X)

and
B° — Hom(X,B°%).

Proof. The codomain of the first map is the value of the right adjoint functor Z IEIEI(INO7 Zyon Z =X,
so the first map is adjoint to the isomorphism

M x X — X.

The
X — Hom(B°, X)

has as its nth component an isomorphism of sets
X, — Eom(@" x @°, X) =~ Bam(@", X) = X,

hence the is itself an isomorphism.
Likewise, the second map is adjoint to the isomorphism

X x@° — X.

The
m° — Homl(X,R°)

has as its nth component an isomorphism of sets
1 —» Em(@* x X,[0°%) =1,

hence the is itself an isomorphism. |

Proposition 34.6. The functor Homl: ESef®™ x ESell — ESell preserves limits separately in each argument.
This means that the canonical maps

Hom(X, mD) — O, ;Hom( X, D;)

and
Eom(EaimD, X) — ;e Hom(D;, X)

are isomorphisms. (For the second map, recall that limits in ESef®™ are precisely colimits in ES&ll, which is
what we used for the left side.)
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35 Homotopies, homotopy equivalences, and invariance of homology

Definition 35.1. A simplicial homotopy between f,g: X —=>Yisa
' x X Y
such that

f=ho(d"x X)
and

g=ho(dx X).
Used in B2, B5=3, =0, B—3.

Pr?position 35.2. Equivalently, a fimplicial homotopy] between f,g: X — Y is a h: X —
Y® such that

f=vY%ohn

and .
g=Y% oh.

Another alternative: a Fimplicial homotopy] between f, g: X — Y is a 1[simplex h € Y;* whose two endpoints
are f and g respectively.

Proof. This follows immediately from the universal property of Infernal homi: there is a hafural bijective
correspondence between of the form

O x X —Y,

12 S
and X

X -Y®
Definition 35.3. A simplicial homotopy equivalence is a f: X — Y such that there is a
g:Y — X so that there is a fimplicial homotopy from Iidx to go f and a fimplicial homotopy

from f o g to my. Used in GO0, G573, G5, OO, G, G0N, 0920, G, B, g, oz, IR, IS, BRI, o,

Definition 35.4. A continuous homotopy between continuous maps f,g: X — Y of metric or topological
spaces is a continuus map

h:[0,1] x X =Y
such that h|0><X = f and h‘lxX = (. Used in E==9, E£=20.

Definition 35.5. A continuous homotopy equivalence is a continuous map f: X — Y such that there is
a continuous map ¢:Y — X so that there is a fontinuous homotopy from Idx to g o f and a Confimuoud
from fog toidy. used in ==, ==

Proposition 35.6. The pingular simplicial set functol sends fontinuous homotopied to fimplicial homod
Lopied.

Proof. The pingular_simplicial set functoy preserves Imifd, so we have an isomorphism
Bng([0, 1] x X) = BFing([0, 1]) x Emnd(X).

Thus we can write

St (h): 5T ([0, 1)) x 5Td(X) — Bd(Y)-

Consider the

@ — Fmg([o, 1])
that picks the |1] — [0,1] given by the obvious homeomorphism. Precomposing with the
o x Bing(X) yields a

I x BTd(X) — Bma(Y),
which completes the proof. |
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Corollary 35.7. The Eingular simplicial set tunctol sends Eontinuous homotopy equivalenced to fimplicial
homotopy equivalences.

We now examine the behavior of pimplicial homotopied unde the fimplicial chain functoq C:ESed — [A.
If @ x X — Y is such a homotopy, then after passing to Fimplicial chaind, we can precompose with the
Eilenberg—Zilber map for simplicial chaing:

C@) @ C(X) —=2% c@ x x) <", c(v).

Recall that C(@") is the

Z[0] & Z[0] «—— Z[1].

Furthermore, the requirement that & is a fimplicial homotopy] from f: X — Y to g: X — Y now translates
into the requirement that precomposing the above composition with the maps C(d')®C(X) and C(d°)®C(X)
yields C(f) respectively C(g). Observe that the above definition makes no use of the nature of the Chaid
C(X), C(Y) or the C(f), C(g). This motivates the following definition.

Definition 35.8. A between f,9:C — Dis a h: C(Wl) ®C — D
such that

f=ho(C@) )
and

g=nho(C(d*®0).

The chain complex C(B") has the Z ® Z in degree 0, and the value of h on C(B@")y ® C
is prescribed by the two conditions on f and g. Thus, the only remaining piece of data is the value of h on
C(@'); ® C = Z[1] ® C. This motivates the following alternative characterization of Fham homotopics.

Definition 35.9. A chain homotopy between f,9:C — D is a family of homomorphisms of
hyp:Cy — Dyyq such that dpp10hy +hp_10dy, =g — f. Used in =, =3, =3, =m0, =3, E=m.

Lemma 35.10. There is a hafural bijective correspondence between the two variants of Ehamn homotopied.

Proof. Given a
h:C(@)®C — D

we evaluate it on the degree 1 part of C (Iﬂl), which is isomorphic to Z, obtaining a family of
pt abelian groupy

hnZ C’n — Dn+1.

This, hy,(c) = h(1; ® ¢), where 1; € C(@'); is a generator. Since h is a fiam mag, for any ¢ € C,, we have
d(h(1l; ® ¢)) = h(d(1; ® ¢)).
Expanding both sides, we get
dptihn(c) =h((-1®1)®c—1; ®@dc) = —f(c) + g(¢) — hn—1dne,

which completes the construction.
In the opposite direction, given h,,: C;, — D,,41 such that d,,41 © hyy + hp—1 0d,, = g — f, we construct
a
h:C(@)®C — D

by setting it to f @ g on C(B@')g ® C and h, on C(A@'); ® C,,. It remains to see that this is a Fham map,
which is done by reversing the computation in the previous paragraph. |
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Definition 35.11. A chain homotopy equivalence is a f:C = D such that there is a
g: D — C so that there is a from ide to go f and a from fog toldp. vsea

in o2, G513, GO, .

Corollary 35.12. The fimplicial chain functoi sends Fimplicial homotopy equivalenceq to Ehain homotopy
pquivalenced.

Proposition 35.13. If f,g: C' — D are Ehain homotopid, then H(f) = H(g).

Proof. We have to show that for any ¢ € Z,,(C), the Ehamd ¢g(c) — f(c) is a poundaryl, so that H(f)([c]) =
H(g)([c]), i.e., H(f) = H(g). Indeed,

g(c) = f(e) = dnt1(hn(c)) + hn-1(dn(c)) = dnt1(hn(c)) + hn-1(0) = dny1(hn(c)),

which completes the proof. |

Corollary 35.14. The homologv Tunctol sends Ehain_homotopv_equivalenced to isomorphisms. The Emd
plicial homology tunctol sends fimplicial homotopy equivalenced to isomorphisms. The fingular homology]

Eanctal sends Eonfinuous homotopy equivalenced to isomorphisms.

Manifolds

36 Combinatorial manifolds

Definition 36.1. The star of an nfsimpley z € X, in a X is the pimplicial subsef star(x)
of X generated by all simplices of X that contain x. The link of z is the link(z) of the Etax
of x generated by all simplices of the star of X that do not contain any vertex of x. vsed in &=, ex=2, &=, &=,

B3, o3, BETEa.

Definition 36.2. A bistellar move in a X replaces a x Ob with da x b, where a:A" — X and

0b:EA"™" — X are injective such that 9b is the R of a and a x 9b is the of a. Used in
B3, g3

In 1991 Udo Pachner established that Bistellar maved are sufficient to relate any two piecewise linearly
homeomorphic manifolds. We take his result as a definition.

Definition 36.3. Two are combinatorially equivalent if they can be related by a finite se-
quence of bisfellar maved and reorientations of simplices. used in ez, ez, =,

Definition 36.4. A combinatorial manifold is a X such that the [mR of any r-simplex in
Ed(EA(X)) is fombinatorially equivalen to BA" ™" for some n > 0. vsed in &=, s, s, &=, E==a, B, &=,

Definition 36.5. A combinatorial manifold with boundary is a X such that the E&D of any r-
simplex in EA(Ed(X)) is fombinatorially equivalend to " ™" for some n > 0. The boundary of a combinatorial
manifold X is the of X consisting of all simplices z:8" — X of X such that the [OHR of any
simplex in the image of Ed(Ed(z)): Ed(EA(B")) — X is Fombinatorially equivalent to B" "',

Remark 36.6. The number n that appears in the definition is constant on every connected component of X
and is known as the dimension of that connected component. In particular, all nondegenerate simplices have
dimension at most n and are faces of some nondegenerate n-simplex.

Definition 36.7. A is compact if it has finitely many [pondegenerafte simpliced. A Eimplicial
Eed is locally compact if any simplex is contained in finitely many hondegenerate sSimplices. used in e, sm=3, s==x3,

e, e, BT, BT

Proposition 36.8. A X is if and only if for any infinite chain
Yo=Y =Yy — -
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and any f: X — oMY thereis k > 0 and a map g: X — Y}, such that the following diagram

commutes:
X
/ X

Y. — colimY
Used in B,

Proposition 36.9. Suppose X is a connected n-manifold. Then H, (X, A) is isomorphic to either
A or Ta1(Z/2, A). In the former case the isomorphism is canonical up to a sign, and in the latter case it
is canonical. We say that X is orientable if the former holds and nonorientable if the latter holds. In the
brienfabld case, the choice of one of two canonical isomorphisms H, (X, A) & A is known as an orientation
of X. Additionally, if A is a ring, the element of H, (X, A) = Z, (X, A) corresponding to 1 € A under the
isomorphism H,, (X, A) = A is known as the fundamental class or the fundamental cycle of X. used in e=m,

3. B3

Proof. Replace X with its second barycentric subdivision, which induces an isomorphism on homology. By
definition of a Eombmatorial mamiold, the link of any (n — 1)-simplex o in X is fombinatorially equivalend
to @A, i.e., two points. [Combinatorial equivalenced do nothing to O-simplices, so the link of ¢ also consists
of two points. This means that the star of o consists of two n-simplices glued along their common (n — 1)-
dimensional face. The two vertices not in this face form the link of o.

Since X has no nondegenerate simplices of dimension higher than n, we have H, (X, A) = Z,(X, A).
The boundary of an n-chain s vanishes if and only if its coefficient before any (n — 1)-simplex o vanishes.
The latter is

(=1)'sa + (=1) 55,

where 0 = d;oe = d;8. Thus we get a system of equations
Sa = Sp

or

Sa — —85,

where o and (8 are neighboring n-simplices in the above sense.

Since X is connected, any two nondegenerate n-simplices « and S can be connected by a sequence of
jumps between neighboring simplices. According to the above equations, this implies that s, = £sg.

The answer now depends whethere there is a loop of neighboring n-simplices that starts and ends at
some n-simplex a and such that the total change of parity in the loop is odd. If there is such a loop,
it yields an equation s, = —s,, which forces s, hence all of sg, to be 2-torsion, and also s, = sg for
all « and 8. The above equations are then satisfied. The common value of s, yields an isomorphism
Z,(X,A) 2 0ad(Z/2,A). If there is no such loop, then assigning an arbitrary value to s, yields unique
values for all sg, so Z,(X,A) = A. A different choice of o will either yield the same isomorphism, or its
additive inverse. |

Exercise 36.10. Consider n > 0 simplices of dimension d > 0 glues along their common boundary an’.
For which pairs (n, d) is the resulting Fimplicial sefl a Eombimatorial maniiold?

Exercise 36.11. For a Eonnected n-dimensional tombmatorial manifold X compute H™ (X, A).
Hint: both the answer and the proof will be very similar to the above proof.

Remark 36.12. The above proof does not work for noncompact manifolds. However, we can obtain an
analog of the above proposition by replacing homology with Borel-Moore homology. The latter is defined
using Borel-Moore simplicial chains CBM, which are defined like ordinary Fimplicial chaing, but using prod-
ucts of abelian groups instead of direct sums. In order for this construction to make sense, we must make
sure that no infinite sums occur in the definition of a boundary map. This is the case precisely for
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Eompact fimplicial setd. Likewise, one can define cohomology with compact support using simplicial cochains
with compact support CZ,, which are define like fimplicial cochaing, but using direct sums of abelian groups
instead of products. Once again, the construction makes sense precisely when the fimplicial sef is [ocally
Eompacy. With these modifications, the above computations extend to noncompact manifolds. Both of these
construction are not functorial with respect to all Bimplicial mapd, but only with respect to proper simplicial
maps. These are defined as f: X — Y such that for any B™ — Y the fiber @™ xy X is comm
pacy. This guarantees that when we write down formulas the homological pushforward and cohomological

pullback, the relevant sums will remain finite. vsed in e=a.

Definition 36.13. The orientation bundle (alias orientation covering, orientation local system) with a
typical fiber A (the default choice is Z) of an n-dimensional Eombmatorial manitold M is denoted by A
and is constructed as follows. We pass to the second barycentric subdivision. We send a vertex v of M to
the group H,, (EE=1(v)/MmH(v), A), which is isomorpic to A, canonically up to a noncanonical sign. We send
an edge e:u — v of M to an isomorphism H,, (E@&Ed(w)/mmH(u), A) — H,, (E=21(v)/@nB(v), A) constructed as
follows. Denote by W the pimplicial subsefl of Efal(v) U E@&Ed(v) consisting of those simplices that do not
intersect with e. Observe that W C [nB(u) UmMBA(v). Furthermore, W is a combinatorial n-disk because

[nH(u), MHE(v), and [nE(uw) NEnR(v) are combinatorial n-disks. Thus, we have isomorphisms

H, ((E23(u) U EED(v)) /W, A) — H, (E23(u) / EB(u), A)

and
H;, (B3 (u) U LD (v)) /W, A) — H, (E23(v) / EnB(v), A).

Composing the inverse of the former with the latter yields the desired isomorphism. Geometrically, we
“transport” the given cycle of the link of u along the edge e, obtaining a cycle of the link of v. used in e=m,

Definition 36.14. The of twisted integers is the prientation Tocal system for A = Z, i.e., Z.

Remark 36.15. A manifold M is orientable if and only if the prienfation Iocal svsten is trivial. Indeed, in
this case we have isomorphisms

H,, (M, A) = H,, (E0(u) / [B(u), A).

Proposition 36.16. The fwisted homology of a tombinatorial manifold M with coefficients in the briental
fion Tocal system] of M with typical fiber A is canonically isomorphic to A:

H, (M, A) —= A.

Proof. The proof proceeds along similar lines as above. The crucial difference now is that an n-cycle as-
signs elements of H,,(nK(v)/E&D(v), A) to n-simplices, instead 1 or —1, and such elements can be chosen
canonically, since the sign problem disappears. |

Definition 36.17. The twisted fundamental class is the element of H,, (M, [1) corresponding to 1 € A under
the above isomorphism. Here A is an arbitrary commutative ring. used in e=s, e=a.
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37 Poincaré duality

Supplementary sources: Clavier [MET].
In this section M denotes an n-dimensional cambinaforial manifold.

Lemma 37.1. Suppose X is a and u € C"™(X, A) and v € C, (X, [1) are a pimplicial cochair]
and on X, where (abusing notation) v € X, is a single simplex in X. The twisted cap product
U € Cp_pm(X, A) is the

u(vn—m,...,n)vo,...,n—my

where vg,.. | n denote the n — m- and m-simplices of X given by the first n — m and the last
m vertices of V. Used in &3, =2,

,,,,,

Proposition 37.2. For any X and ring A, the [wisted cap producy turns C(X, A) into a
differential graded module over the differential graded ring C*(X, A).

Definition 37.3. The Poincaré duality morphism

H* (M, A) = H,,_(M, A)

is given by the fwisted cap producy with the Evasfed Tundamental clasd f (with integer coefficients):

c—cnf.
More generally, for any L we have a morphism
H*¥(M,L) = H,_(M,Z ® L)

Used in 22=I30, =3

Theorem 37.4. (Poincaré, 1893, 1895, 1899, 1900.) The morphism is an isomorphism for
any fompact tambimatorial manifold M and any L.

Remark 37.5. For noncompact manifolds one must use either Borel-Moore homology] or Eohomology with
Eompact supporg. Thus, the following two morphisms, given by the cap product with the Exasfedfuindamental
Elasd (with integer coefficients) in the Borel=Moore homology] are isomorphisms:

HE(M, L) — HE2 (M, Z ® L),

Hes (M, L) = Hy k(M Z® L),
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38 Cellular homology

Definition 38.1. A cellular structure on a X is a collection {X«;};>0 of Fimplicial subsety
of X (we also write X; = X;41), X<;isa of X.; whenever ¢ < j, and the following square

is a pushout square
Uicc, OD7 — X<n

n
L; K
ll—liecn * l "

I—liECn D;n X<n+17

where D7 denotes an arbitrary combinatorial oriented n-disk (alias cell) (we can take different disks for
different ) and C), is known as the indexing set of n-dimensional cells. The map 0D — X, is known as
the attaching map of the cell D}'. vsed in e=, o=

Definition 38.2. A CW-complex is a topological space equipped with a cellular structure, defined in the
same way as for fimplicial setd, but in the category of topological spaces and D™ being the topological n-disk.

Definition 38.3. The cellular chain complex associated to a with a tellular structurd C' or
to a CW-complex is defined as follows. In degree n we place the abelian group Z¢». Given ¢ € C,,, its
boundary is an (n — 1)-chain computed as follows. We take the attaching map of ¢, namely, a: 0D? — X,
and compose it with the quotient map ¢: X, = X<,/ X<n—1. We compute its homology, which is a map

Hn,l(qa): anl(aDZn) — anl(X<n/X<n71)-

We have an isomorphism \/;c | D 1/oD ! — X_,,/X<,_1. The homology of a wedge can be computed
using direct sums, with a proviso that in degree 0 we must take reduced homology (i.e., the cokernel of the
map induced by the inclusion of the basepoint). Furthermore, both D and DP~'/dD!""! are oriented
spheres of dimension n — 1, so applying H,,_; yields a group canonically isomorphic to Z. Thus H(a) can be
identified with a map Z — Z%"~1, whose codomain is precisely the group of cellular (n — 1)-chains. We now
define Jc as the image of 1. vsed in &=, &=, ==

Definition 38.4. The canonical map from the fellular chain_complex associated to a with a
Eellnlar siructurd C (respectively CW-complex) to the corresponding (respectively
Ehamd) is defined as follows. We send a generator ¢ € C,, in degree n to a of X in degree n
given by the image of the fundamental chain of D} under the induced map

C(1): (D7) — C(X),

where 1: D! — X is the canonical map induced by the cellular structure.

Proposition 38.5. The above map is indeed a Ehain mag. Furthermore, it is a quasi-isomorphism, i.e., its
homology is an isomorphism of graded abelian groups.

Example 38.6. Consider the brienfable surfacd of genus g > 1, depicted by the left figure below:

a b
b a
c d
d c

The right figure denotes a combinatorial 2-disk, given by a similar figure, but without any identifications
between edges. We construct a cellular structure as follows. The Fimplicial subsefl Xy consists of the only
vertex located on the exterior polygon, so Cy has a single element. Its orientation is chosen to be the canonical
element 1 € Z 2 Hy(S°)/Ho(B"). The X is the exterior polygon, and the elements of C}
are given by the 2¢g exterior edges (after identification), e.g., C1 = {a, b, ¢,d} in the above picture. We choose
their orientations to coincide with the directions of arrows. The X5 coincides with X and
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C5 consists of a single element, corresponding to the disk on the right. Its orientation is chosen so that its
boundary is oriented counterclockwise.

We now compute the Eellular chain_complex:

A A%+ A.

The differential 0; sends a 1-cell to its boundary, i.e., the difference of terminal and initial O-cells, which in
our case coincide, so d; = 0. The differential 0y sends the only 2-cell to the homology class of the image
fundamental cycle of its boundary (which is simply the boundary of the fundamental chain of the disk itself)
unded the map that lands in X;/Xy. The boundary chain, being oriented counterclockwise, has coefficients
in a repeating patter 1, 1, —, —1. Once we map it to the surface, edges with indices differing by 2 will be
identified, so the corresponding coefficients will annihilate each other. Thus 03 = 0. Hence Hyg = Hy = A
and H; & A2%9,

Example 38.7. The honorientable surfacd with g crosscaps is treated very similarly: there is a single 0-cell,
g l-cells, and a single 2-cell. The Eellular chain compley is

A+ A9+ A

with d; = 0 for the same reason as before. When we compute do, we no longer have the same cancellation
effect, but rather both coefficients will be 1, for the total coefficient of 2. Thus 02(a) = 2a ), e;, where the
sum is taken over all 1-cells. We immediately deduce that Hy =2 A, H; & A9 1@ A /24, and Hy = [al(Z/2, A).

Homotopy theory of simplicial sets and homotopical algebra

39 Kan complexes

Supplementary sources: Kerodon §3

Definition 39.1. A Kan complex is a X that has a (nonunique) lifting property with respect
to horn inclusions: for any map A} — X there is a (noncanical and nonunique) map B" — X so that the
following diagram commutes:

A’ﬂ

The Il subcategoryl of all [Kan complexeq is denoted by sSetkan. Used in @, =2, s, v, o, BETTm, &=, =, 2=,

=0, 553, o3, g,

Definition 39.2. The functor
Ex: ESell — ESell

is defined as the fight adjoing of the funciol Ed. Thus,

E(X), = Bom(E(@"), X)

and likewise for fImplicial structure mapy. Used in o=, £, Ewm, o, Gon, BRI, oo, B2, B, B, G, BSmm, Bum, 3,

Definition 39.3. We have a haiuralfransformation Idgssy — EX with components
X - E(X)

that are adjoints of the last vertex maps
Ed(X) — X.

The latter are induced by the haiuralTransformafion Ed — Idgy with components

AR —n° 2,
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and
EdA" = C(d(EA")) — O

induced by sending the apex to the last vertex of A" and using the inductively defined map
Ed(En") — Ba".

Remark 39.4. Concretely, an n-simplex of EXX is a EA@" — X. The inclusion X — EXX
sends an n-simplex of X, i.e., a @* — X, to the composition EAA” — A@" — X, ie., an
n-simplex in EXX.

Definition 39.5. The functor
(X°°: ESel — ESell

sends a X to the toimil of the diagram
X ->HX) - HEX)) > HEE(X))) — -

Likewise for morphisms. We have a halural franstormation idgssg — EX™ whose components
X - K™ (X)

are given by the injection map of the first term in the colimit.

Proposition 39.6. The unciad EX™ preserves Enife imitd, Elfered colimild, [nonomorphismy.

Proof. The hinctord EX" (for any n > 0) are Fight adjoint Tunctord, so preserve Emall Tmitd, in particular,
Eoife Tmitd. They also preserve EEered calimitd because Ed” A" is a fompact simplicial sefl for any & > 0.
Finally, Elfered colimitd of fimplicial setd commute with Elfered colimitd and Enife Timitd. [Monomorphismg
are preserved because fartesian squareq are preserved. |

Proposition 39.7. For any X the EX*° X is a [Kan_complex.
Proof. We have to show that any diagram

A — Ex®X

Jv /

An
there is a lift d as depicted. Recall that IV} is a Eompact simplicial sell, so by [Proposition 36.8, the map
A} — XX factors through some inclusion " X — EX*° X, as depicted by the top maps in the diagram

below.
We are going to construct a map e: @ — EX™ ' X so that the left square in the diagram
Ap —— EX"'X

T

Ex®X

/

AY —— Ex" LY

commutes. If we define d as the composition of the bottom two maps, then the original triangle with d
commutes by definition of the maps involved.
Replacing B ' X with X', we simplify the lifting problem to

A — ExX’

An —e) EX2X/
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Using the adjunction Ed 4 [EX, we rewrite the problem as

sd AR

4R

sd® AR v X

N A

sd? An

where the map r is constructed below and ¢’ is the of e. We construct ¢’ by declaring the right
triangle to be commutative.

It remains to construct 7 so that the left triangle is commutative. Simplices of EAA™* are determined
by their vertices, so it suffices to construct r¢ and verify that » maps simplices to simplices. |

Definition 39.8. The skeletal filtration of a X is the diagram
By X — B X — B X — -+,

where sk, X is the of X generated by simplices of dimension at most n. The colimit of this
diagram is canonically isomorphic to X. vsed in ==, oo, zom, momm, =,

Proposition 39.9. For any X and any n > 0 the inclusion map kM, ;X — EK,X in the
Ekelefal filtration of X fits in the pushout square

ngx, m” —_— Eﬁn_lX

l |

Hyex, B — ER,X,

where X, is an ad hoc notation for the set of nondegenerate n-simplices of X. The bottom map is induced
by the universal property of coproducty and the Noneda Temma. The top map is obtained by factoring the
left-bottom composition through EM, ;X, which is possible because the nondegenerate simplices of EA"
have dimension less than n. uvsed in I=za.

Proof. The square is commutative by construction. [Pushoufd of fimplicial sefq are computed degreewise.
Thus, we have to show that for any simplex k the induced commutatative square of sets of k-simplices is a
pushout square of sets. Since the left map is an injection of sets, so is the right map and it suffices to show
that the bottom map induces a bijection of sets

I @ \@@™) = [T &\ J] & - 8, X )\ (681 X)w.

oeX], oceX], oceX],

By the [Eilenberg—Zilber lemma an element of the right side is a pair (o:@" — X, a:k — n), where o is a
n-simplex of X and « is a Burjective map of simpliced. An element of the left side indexed by
some o € X/, is a map o: 8% — @" that does not factor through BA", i.e., is surjective. Thus both sides are
isomorphic. |

Proposition 39.10. (Simplicial Whitehead theorem; J. H. C. Whitehead, 1949.) Suppose f: X — Y is a

between [Kan complexe§. The map f is a fimplicial homotopy equivalencd if and only if for
any commutative square

oA — X



there is a diagonal arrow d such that the upper triangle commutes and the lower triangle commutes up to
a homotopy relative boundary, meaning there is a homotopy B8 x B8* — Y from f o d to the bottom map
whose restriction to B x EA™ is a constant homotopy, i.e., it factors as ' x BA™ — EA™ — Y, where the
first map is a projection. uvsed in ew=a, ewm, cem, ETT=, £, ==

Proof. Consider a f: X =Y of with a lifting property as in the statement. We
are going to construct an inverse map ¢: Y — X together with homotopies h:@* x X — X and ¢:@* x Y —
Y by induction on the Ekelefal Tilfrafionl. Specifically, the inductive assumption is that we have already
constructed the map EM,, _1¢9:EH,, 1Y — EH,,_1X together with homotopies h,,: ! x kK, X — KK, ;X and
inzlﬂl x EM, 1Y — KK, 1Y, and we now want to construct the same data for n so that the resulting maps
EH,.g, h,, and i, extend the ones we already constructed. The base of the induction (n = —1) is trivial,
since all involved are empty.

Recall now that the inclusion map kK,, 1Y — EK, Y in the Ekelefal filirafion of the fimplicial sef] Y fits
in the pushout square

|_|0.eyl mn e mn_ly

! !

Upey; B — ER,Y,

where Y, is an ad hoc notation for the set of nondegenerate n-simplices of Y.

The universal property of pushouts allows us to construct the relevant maps on the coproducts of
simplices instead, while verifying that they are compatible with the existing maps on the boundary. The
universal property of coproducts allows us to construct the relevant maps individually for some fixed non-
degenerate n-simplex o:@" — Y and its boundary do:HA"™ — Y, which factors through EM,, Y. Consider
the composition EM,,_1g o do:EA™ — X. The fogodo:EA" — Y is homotopic to do via
the simplicial homotopy B' x EA™ — Y given by the restriction of i,,_;. This homotopy, combined with the
map o, yields a map

A=0" x B8 Uy ygmm B — Y.

Using the Kan condition on Y, we can extend the map A — Y to a map
mB=0"xO" =Y.

Define the map
A" =Y

to be the restriction of the map B — Y to the 0 x @', We have 87 = fogodo.

We have constructed a pair g o do:HA™ — X and 7:B" — Y, which together form an input data for
the lifting property in the statement. Thus we get a diagonal arrow d:@" — X such that dd = g o 9o and
fod:@ — Y is homotopic to 7 relative boundary via a homotopy p:* x B — Y. We define the value g
on ¢ (i.e., the map g o o:@" — X) to be equal to d. The above condition on dd guarantees that g respects
the previously defined values on do. We define the value of the homotopy :@* x Y — Y on ¢ to be the
gluing of the homotopies 7 and p constructed above.

Finally, we define the value of the homotopy h: x X — X on some arbitrary simplex x: 8 — X as
follows. First, for the simplex ¢ = f(k):[@" — Y we have the entire collection of maps constructed above.
In particular, we have the simplex d:B" — X such that f(d) is homotopic to ¢ = f(k). Furthermore, the
inductively constructed homotopy h yields a homotopy e:@" x EA™ — X between & and d. The maps &,
d, and € combine together into a map C' = 8(@1 x O@") — X, whose domain is a subdivided sphere. The
composition C — X — Y has a filling by a disk constructed in the previous paragraph. Using the lifting
property, we lift this filling to a map B8 x B — X, which is the value of h on &. 1

Exercise 39.11. Show that the lifting condition in the fimplicial Whitehead theoreny is equivalent to the
following two conditions:
e the map myf:myX — myY is an isomorphism of sets;
e the map m, (f,z):m,(X,z) = m, (Y, f(x)) is an isomorphism of sets (or groups) for any n > 1 and any
vertex x € Xg.
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Example 39.12. Given a smooth manifold X (such as an open subset of R™), we can define two different
version of the Bingular simplicial sef: Find. n(X) using continuous maps A" — X and Fiidsmeotn(X)
using smooth (i.e., infinitely differentiable maps) A™ — X. The inclusion BinGemzsrm (X) — Eidesmm(X)
is a pimplicial weak equivalencd. Indeed, the fimplicial Whitehead theorem] requires us to show that any
continuous map A” — X whose faces are smooth maps A”~! — X can be continuously deformed to a
smooth map A™ — X with its boundary not moving. This follows, for example, from the Weierstrass
approximation theorem or more directly from the Whitney approximation theorem. uvsed in s=m.

Definition 39.13. A f:X — Y is a pimplicial weak equivalencd (alias simplicial weak
homotopy equivalence if EX°°(f) is a fimplicial homotopy equivalencd.

Corollary 39.14. If f: X — Y is a of arbitrary (not necessarily Kan), we
can expand the meaning of the fimplicial Whitehead theoremn] for EX°°(f) as follows: f is a
if and only if for any commutative square

sd¥ oA — X

J

sdfAn — Y

Proposition 39.15. For any X the map X — E¥4*°(X) is a fimplicial weak equivalencd.

Proof. We use the pimplicial Whitehead theoren]. |
Definition 39.16. The derived internal hom bunciad

RHom: ESel®™® x ESell — ESell

is defined b
’ Y KHom(X,Y) = Homl(E™ (X)), (Y)).

Used in BY=I0, B, BSOS, o3, OO, oo, =23,
Remark/Exercise 39.17. Sometimes
RHoml(X,Y) = Homl(X, KX (Y))

is used as the definition of RHoml. This definition produces weakly equivalent answers, but there is no
canonical way to define composition for it.

Proposition 39.18. The Herived infernalhoml sends pairs of fimplicial weak equivalenced to fimplicial weaR
(and even pimplicial homotopy equivalences).

Remark 39.19. In modern homotopy theory, a space is Bimplicial sefl considered up to a fimplicial weaK
. Used in 03, ET2A.

Proposition 39.20. A f: X — Y is a simplicial weak equivalence or simply weak equivalence)
such that for any Z the induced map

Homl(f, Z): Ham(Y, Z) — Homl(X, Z)

is a Bimplicial homoftopy equivalenced. used in =, e, CEm, ex, e, G, G, Bwm, IS, ST, ST, G2y, B2, o, B,

oS, OOT0E, oo, oo, B0, o3, 023, o2, O, o=, 0520, g, 55T, oo, I, oo, 053, oo, I3, oo, I, 0653, oo, I, I3,

O3, o1, 623, 623

Proposition 39.21. Any fmmplicial homotopy equivalencd is a fimplicial weak equivalencd.

Definition 39.22. Two X and Y are weakly equivalent if they can be connected by a zigzag
of fimplicial weak equivalenceq (going in either direction). A X is weakly contractible if it is
weakly equivalent to A%, veed in e, o, s

Proposition 39.23. If f: X — Y is a fimplicial weak equivalencd, then the maps
H(f): H(X) = H(Y),
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HY(f): HY(X) — H*(Y),

are isomorphisms (of graded abelian groups) and
@< (f) @1 (X) = m<i (V)

is an equivalence of groupoids.

40 Relative categories

Definition 40.1. A relative category is a category C together with a subcategory W C C with the same
objects as C. Morphisms in W are known as weak equivalences. A relative functor (C,W) — (C',W’) is a
Emciod F: C — C’ that maps W to W’. Small felative categorieq and Eelaiive inctord form a RelCat.

Used in OEED, OOE3, EOED, o3, DOT0A, OO, oo, o0, 03, o3, o0, 0220, 023, 023, o3, o9, 6200, 6220, 623, 623

Example 40.2. The relative category of simplicial sets is formed by pimplicial sefd and Eimplicial weal
. Used in B3, =0,

Example 40.3. Bimplicial setd and fimplicial homotopy equivalenced form a very different

from the felative category of simplicial setd, even though their underlying categories are the same.

Definition 40.4. A f:C — D of thain complexeq is a quasi-isomorphism if the induced
map H(f):H(C) — H(D) is an isomorphism of Eraded abellan groupy. used in mm=, ez=n.

Example 40.5. If f:X — Y is a fimplicial weak equivalencd, then C(f):C(X) — C(Y) is a
[somorphisj.

Example 40.6. [Chain complexed and fuasi-isomorphismg form a felative categoryl, which we will refer to
as the relative category of chain complezes. vsea in ez

Example 40.7. Chain complexed and Ehain homotopy equivalenced form a felative categoryl, different from
the felafive cafegory of chain complexeq.

Example 40.8. Topological spaces and weak homotopy equivalences of topological spaces (defined as the
preimage of fimplicial weak equivalenced under the fingular stmplicial sef] functor).

Definition 40.9. Two object A, B € C in a relative category (C, W) are weakly equivalent if there is a finite
zigzag of weak equivalences that connects A and B:

A:Xo(*XlﬁXQ%Xgﬁle%ﬂ'Xn:B.

Example 40.10. Denote by S} and S% simplicial circles comprising one respectively two nondegenerate
l-simplices. Denote by S? and S2 simplicial spheres comprising one respectively two nondegenerate 2-
simplices. We have weak equivalences S — S and S2 — S%. No maps S — S3 or S2 — S2 could be
weak equivalences since a single nondegenerate simplex cannot be “stretched” to span two nondegenerate
ones. Thus, the simplicial sets ST U .S2 and S U S? are weakly equivalent, but only through a zigzag of
length 2, with an intermediate simplicial set S3 LI S2 that maps to both of them via weak equivalences.

When working in a felafive categoryl, we want all constructions to respect fweak equivalenced. This
means that replacing some data used in a construction with a weakly equivalent data produces a weakly
equivalent answer.

Example 40.11. The hom=sefl functor ham(X,Y’) between X and Y does not respect keald
Equivalenced. Indeed, the @™ are all weakly equivalent to each other. However, the mapping
sets Bam(B°,@™) = U(m) are all nonisomorphic.

Example 40.12. The [mapping simplicial sefl functor Hoaml(X,Y') between X and Y does
not respect [weak equivalenced. Take X = S, the simplicial circle, Y = S, and Y/ = EdY. Then Y and
Y’ are weakly equivalent via a weak equivalence ¢g: Y’ — Y. However, Homl(X,Y') has two vertices, which
lie in different connected component (so moHomI(X,Y) has cardinality 2), whereas Haml(X,Y”) has a single
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vertex (so mgHaml(X,Y”) has cardinality 1). If Hom(X,¢):Hom(X,Y’) — Homl(X,Y) was a fimplicia
[reak equivalencd, then mpHaml(X, g) would be an isomorphism of sets, since my sends weak equivalences to
isomorphism. But in our case, both sides have different cardinality.

Example 40.13. The Herived mapping spacd functor RHaml(X,Y") preserves weak equivalences. uvsed in me=za.

These examples exhibit an important feature of felative categoried: the set Boml(X,Y) of morphisms
X — Y and the internal hom Homl(X,Y") can play at best a technical auxiliary role, since these functors do
not respect weak equivalences. What really matters is the Herived mapping spacd.

Thus, we naturally are interested in category-like structures that have a pparg of morphisms between
any two objects, as opposed to a set of morphisms. Such a structure is known as an (oco,1)-category, or
previously also as an oco-category, though the latter term is often used interchangeably with quasicategories,
an important model for (co,1)-categories.

The term “(co,1)-category” is not rigorously defined and what is actually studied in mathematics are
models of (00,1)-categories, such as felafive categoried or quasicategories.

As it turns out, for any (C, W) one can define a functor RMap: C® x C — ESell. For the
[elative category of fimplicial sety this functor is guaranteed to be weakly equivalent to the Herived mapping
ppaca KHoml functor defined above.

Even more generally, we will describe a procedure that converts a given functor F: C — D (often a right
adjoint) between [elative categoried (C,W) and (D,Y) that does not send W to Y (i.e., does not respect
weak equivalences) and satisfies some mild conditions into a new functor RF: C — D that does respect weak
equivalence. The functor RF is known as the fight derived Tunctoy of F. Often, we have RF = F o Q, where
Q: C — Cis a functor that respects weak equivalences, sends any X € C to a weakly equivalent object QX and
induces weak equivalences RMap(X,Y) — RMap(QX, QYY) for all object X, Y € C. Thus, from the above
point of view, Q “does nothing”. Yet, the composition Fo Q preserves weak equivalences, unlike F. Applying
this construction to the functor F = Map: C® x C — ESell reconstructs the functor Riviap: C=® x C — ESedl
mentioned above. Likewise, a functor F: C — D (where F is often a left adjoint) can often be converted to a
[efi_derived Tunctald LF: C — D that respects weak equivalences.

Example 40.14. We work in the felaiive category] of Ehain complexed and consider the internal functor

Homl: (™ x CH — 3

and the tensor product functor
®:H x 3 — CA.

The former functor is [effi_derivabld and the latter functor is fight derivabld. For abelian groups A and B we
set
Ext"(A, B) = H,RHomI(A, Bln])

and
Tor" (A4, B) = H, (A ®" B).

Used in 53, 2ICS, 25010, B2, g, BT, ex=3.

118



41 Derived functors

Our first (preliminary) definition of a derived functor is based on what we have learned about deriving
the internal hom on simplicial sets. It suffers from theoretical defects that will be explained later, but it is
also a very practical way to computer derived functors.

Definition 41.1. Suppose (C,W¢) and (D, Wp) are felafive categoried and F: C — D is a functor that need
not preserve [weak equivalenced. We say that F is right derivable if there is a full subcategory C' C C (with the
inclusion functor denoted by ¢) and a resolution functor R: C — C’ that preserves weak equivalences together
with a natural weak equivalence r:ldc — ¢t o R (i.e., a natural transformation whose components X — RX
are weak equivalences for any X € C) such that the restriction of F to C' preserves weak equivalences. In
this case, the composition Fo R will be referred to as a right derived functor of F and will be denoted by R F.
The notions of left derivable functors and left derived functors are defined analogously using ¢ o L — Id¢ as
a natural weak equivalence. uvscd in BTz, Em, =3, ==, =3, =

Example 41.2. For the felafive categoryl (ESel, Wgsg) of fimplicial setd and Fimplicial weak equivalenceq
we typically will take C' = ESellgeg, R = EX*™° and r:idgsg — ¢ o 4™ will have as its components the
canonical weak equivalences X — EX>X that we constructed previously. Bimplicial weak equivalenceq
between are automatically fimplicial homotopy equivalences, and most functors that we deal
with automatically preserve Eimplicial homotopy equivalenced because they are enriched over the
D P .

Definition 41.3. The homotopy category of a (C, W) is defined as follows. It is an ordinary
category D equipped with a Eelafive Tunctad F: (C,W) — (D, Isop) such that for any other such pair (D', F)
the category of functors D — D’ that make the diagram

C
7\
D——D

commutative is contractible.

Definition 41.4. A contractible category is a C that is equivalent to the category with one object
and a single identity morphism.

Another way to phrase this is to say that a contractible category admits a terminal object, and the
unique map to the terminal object from any other object is an isomorphism.

Proposition 41.5. A kelafive Tunciad induces a functor on homotopy categories. Moreover, we have a
functor

Ho: RelCai — A

Thus, a fight derivabld or [effi_derivabld functor induces a functor on homotopy categories by virtue of its
right respectively left derived functor.
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42 Homotopy limits and colimits

Definition 42.1. Suppose [ is a and (C,W) is a [elative categoryl The felafive category
(C,W)! is defined as follows. Its underlying category is the category C! of functors I — C, i.e., I-indexed
diagrams in C. Its class of weak equivalences consists precisely of those halnralfransfarmafiond ¢: F — G of
Enctord F, G: I — C for which the morphism ¢(4): F(i) — G(i) belongs to W for any object i € I.

Recall that for any I and a C the unique functor 7: I — 1 induces the Eonstand

tonst: BEm(r, C): Em(1,C) = C — BEm(I,C) = C.

Its [effadjoint Tunctoy exists whenever C is focompletd, in which case it is the tolmit Tunctod

Ealm: ¢! — C

and its fight adjoint functoy exists whenever C is Eompletd, in which case it is the mit functod

mm: ¢! — C.
Altogether, we have an adjoint triple of functors

coliml 4 cons? - [l

Definition 42.2. The homotopy limit functor (alias derived limit functor) is the Fight derived Tunctoq of
m. homotopy limit The homotopy colimit functor (alias derived colimit functor) is the [elderived Timctol of
EoTml. homotopy colimit If I is a Hiscrete categoryl, i.e., all morphisms in I are identities, then Ealiml; = [,
and m; = [[;. These special cases are known as homotopy coproducts and homotopy products. used in =m,

Example 42.3. Consider the felative category ESefl of fimplicial setq and fimplicial weak equivalenced. If
is discrete, the functor [ [, preserves weak equivalenced. (For instance, observe that EX™ preserves
Eoproducts of simplicial setd.) Thus fomotopy coproducty of Bimplicial sety can be computed as ordinary
coproducts. If, in addition, I is finite, then the functor []; also preserves weak equivalenced. (For
instance, observe that EX¥™ preserves finite products of simplicial setd.) However, for infinite I the product
functor [] ; does not preserve fveak equivalenced.

Example 42.4. (Infinite products of simplicial sets do not preserve weak equivalences.) Continuing the
previous example, consider the case of infinite products of simplicial sets. We exhibit a weak equivalence
f:A — B such that [[; f:][; A — [[; B is not a weak equivalence for any infinite set I. Take B = B°
and A to be the generated by vertices n (n € Z) and edges n - n+ 1 (n € Z). Using the
Eimplicial Whitehead theoreml, one can immediately see that f is a fimplicial weak equivalencd. Computing
mo ([[; f) shows that it is not an isomorphism. Thus, [], f is not a weak equivalence. Thus, infinite
products of simplicial sets must be derived. In fact, we can take C' = ESelgy C ESef’ = C, R = (EX™)/,
and r the indexwise inclusion. When restricted to [Kan complexed, fimplicial weak equivalenceq are precisely
Bimplicial homotopy equivalenceq, and [] ; Ppreserves pimplicial homotopy equivalenced. Thus, R [L;cr Ai can
be computed as [[;.;ENA;. veed ine=.

iel

i€l

Example 42.5. Any category can be turned into a felafive categoried by postulating that weak equivalence
coincide with isomorphisms. In this case, homotopy [imity are precisely ordinary Omifd, and likewise for

Eolimitd.

In order to derive more complicated shapes of limits than those given by discrete I, we need a new idea.

Philosophy 42.6. When promoting ordinary categorical constructions to oo-categorical constructions,
equalities should be replaced by homotopies and be made part of the data of the construction under consid-
eration.

We illustrate this idea with the case of pullbacks.
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Example 42.7. Consider the case I = {0 — 1 + 2}, so that I-limits are pullbacks (alias fibered products).
The functor M, does not preserve limits. For instance, consider the following weak equivalence (depicted
vertically) of I-diagrams (depicted horizontally)

o’ — st — i
[
o’ — ST «—— A

where A is the universal cover of S as constructed in [Example 42.4. Applying the functor [Em; yields a
morphism

wO

l

Z

that is not a weak equivalence. Thus, pullbacky of Eimplicial setd must be derived.
To apply the above philosophy to this case, recall that the ordinary pullback is

AxpC={(a,c)|acAceC,fla)=g(c)}
Replacing equalities with homotopies and making them part of the data yields the following informal formula
Ax"C ={(a,c,h) |ac A ceC h:fla) = glc)},

where the notation for h means that h is a path in B from f(a) to g(c). To make this precise, we formalize
the space of paths as

REom(@', B) = (E2°B)™ .

The formula then becomes
Ax" O = Axggep x(E°B)® xgmep C.

As we will show later using more powerful abstract tools, this formula does indeed preserve weak equivalences.

Exercise 42.8. Explain how to compute the of an infinite tower of fimplicial sets:
"'—)X3—)X2—>X1—)X().

Show that the limit functor does not preserve weak equivalences of such towers.

Exercise 42.9. Show that the jomofopy colimif of an infinite cotower of

X0—>X1—>X2—)X3—>'“

can be computed as its colimit. Bonus points: show that the homotopy colimifl of an infinite cotower of
topological spaces cannot be computed as its colimit and explain how to resolve this problem. uvsed in cm.
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43 Lifting properties and Kan fibrations

Definition 43.1. In a category C, we write f rh g for morphisms f: A — B and g: C — D and say that f has
a left lifting property with respect to g and g has a right lifting property with respect to f if any commutative

square
A——C

o

B——D

1]

B——D.

can be extended to a commutative diagram

The diagonal map d is sometimes referred to as the lift of f with respect to g. vsed in ==.

Definition 43.2. For a class S of morphisms in a category C we set
S™ = {g| fgforal feS}
(the right complement of S) and
S ={g|gmfforal feS}
(the left complement of S).
Definition 43.3. The class of Kan fibrations (of Fimplicial setd) is defined as S™, where S = {@} — B"} is
the set of inclusions of horns into simplices. The class of trivial Kan fibrations (alias acyclic Kan fibrations)

is defined as S™, where S = {HA"™ — "} is the set of inclusions of boundaries of simplices into simplices.

Used in EZ=.

Definition 43.4. Suppose S is a well-founded fofally ordered sef] and I C Mad(C) is a class of morphisms
in a category C. An S-indexed transfinite sequence of morphisms in [ is a functor X:S — C such that for
any s € S the morphism X(s) — X (s + 1) belongs to I (where s 4+ 1 denotes the successor of s, i.e., the
smallest element of S greater than s) and for any ¢ € S that is not a successor and not the smallest element
of S, the object X (t) together with X(s) = X(t) for all s < ¢ is a Eollmit cocond for the
diagram obtained by restricting X to elements smaller than t. vsed in e=a.

Remark 43.5. The most commonly used transfinite sequences of morphisms are indexed by the first infinite
ordinal and are simply functors {0 < 1 <2 < ---} — C valued in I on morphisms.

Definition 43.6. The transfinite composition of a fransfinite sequencd X:S — C is the
X(0) — commlX,

where 0 € S is the smallest element. Likewise, the cotransfinite composition of a cotransfinite sequence
X:S% — C (where S is a well-founded totally ordered set) is the

EEX — X(0).
Used in =222,

Lemma 43.7. For any class S of morphisms in a category C, the classes S™ and ™S contain all isomorphisms
and are closed under compositions. Additionally, ST is closed under the following types of s

o prodict;

e pase changes;

e potransfinite compositions.
Likewise, ™S is closed under the following types of Eoimiis:

o EoDrodueT;

o [obase changes;

e [ransfinite compositiong.

122



44 'Weak factorization systems and model categories

Supplementary sources: Joyal [BAES].

Given a category C, we can construct the CO=1 of in C (objects are mor-
phisms in C and morphisms are commutative squares) as well as the CO=1=2 of composable
pairs of morphisms in C (objects are pairs (f, g) such that g o f is defined and morphisms are commutative
diagrams made of two squares). The functor {0 — 1} =2 {0 — 2} — {0 — 1 — 2} induces the composition
functor o: C071722 — CO—1,

Definition 44.1. A functorial factorization on a category C is a section of the composition functor

o: CO—>1—>2 — CO—>17

i.e., a functor
F: CO*}] N CO*}I*}Q

such that oF = mco—>1 . Used in £2=3, oz, E50, g5, O, oo, EE23, o5y, 60, B3, oSS, 053, oS3,

Concretely, F sends a morphism f: X — Y in C to a pair of morphisms F;(f): X — Z and Fo(f): Z =Y
such that Fo(f) o Fy(f) = f, in particular, the left side is always defined. Furthermore, both F; and Fy are
functors.

Definition 44.2. A (functorial) weak factorization system on a category C is a Incforal Tactorization
F = (F1,F2) on C such that the left class L = F;(C%~1) and the right class R = Fo(C%~1) (here in both cases
we take essential images, i.e., the closure of image under isomorphisms) satisfy the additional properties
L= th and R = Lrh. Used in £2=3, oz, o=, O

Definition 44.3. A weak factorization system generated by a set of morphisms S in a category C is a
freak Tactorization system] F = (F1,F) on C such the right class R = Fo(C°71) = S™ and the left class
L=F(CO7) ="R ="(5M).

Definition 44.4. A model structure on a felalive category] (D, W) is a pair of [veak Tactorization systemq
(C, AF) (cofibrations and acyclic fibrations) and (AC,F) (acyclic cofibrations and fibrations) on D such that
BEO=CNWand BH=FNW. Used in &, 539, ==, ==, mz3, s, 05, 5, ooy, 05, oo, oy, Bss, oeon, Em, o, D5, oo,

Definition 44.5. A model category is a felative categoryl (C, W) equipped with a such that
W satisfies the 2-out-of-8 property: if go f € W and one of f or g also belongs to W, then both f and g
belong to W. Additionally, C must be Eompletd and Eocompletd. used in mm, =, m=m, mm, s, =, ==, =, o=,

7, =0, B9, O3, o3, 51, o2

Remark 44.6. As stated, the above definition is due to Hovey (2001). An older version of the definition
of a due to Kan (1997) does not include the data of Eonctorial Tactorizationd, but merely
requires that they exist. An even older version due to Quillen (1967), where it is referred to as a closed model
category, does not require functoriality and C is required to be only fnitely completd and finitely cocompletd.

Remark 44.7. Knowing just one of the four classes C, Bd, F, BH allows one to recover the other three.
First, the properties C = "B, BO = "F, F = Eﬂm, BB = C™" allow us to recover the complementary class, so
that we know either BO and F or C and BH. Next, the properties BH = F "W respectively Bd = CN'W allow
us to recover BH respectively BQ. Finally, C = "BH respectively F = B allows us to recover the remaining
fourth class. used in I=m3.

Definition 44.8. An object X of a is cofibrant if the unique map 0 — X from the Iniiial
pbieci is a bofibrafion. Likewise, X is fibrant if the unique map X — 1 to the fermimal objeci is a Hhrafion.

Used in ==, EEM, =3, IX3A, o=,
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45 Model structure on simplicial sets

In this section we construct our first example of a [model category: the model category of simplicial setd.

Proposition 45.1. (Quillen, 1967.) There is a unique on the felative category of simplicia]
Ecid that turns it into a such that the class of Eofibrafiond coincides with the class of
[monomorphismy. The [weak Tactorization system (C,BR) is generated by boundary inclusions EA" — A" for
all n > 0. The [weak Iactorization system (BQ, F) is generated by horn inclusions B — B for all n > 1 and
0 < k < n. All objects are tolibranfl. [Fibrant objectd are precisely [Kan complexed. Eibrafiond are precisely
Kanfbrafiond. used in m=m, e=s.

Proof. Uniqueness follows immediately from B2, since we specified the class of cofibrations. Lemma 457
shows that [weak equivalenced satisfy the 2-out-of-3 property. In the next section, we establish funcforial

Eacforizationd for both weak Tactorization svstemd. Since both [weak Tactorization systemd are generated by
a set of morphisms, the lifting properties hold by definition. Cemma 453 shows that the class of kalibrationd

coincides with [nonomorphismg. |
Lemma 45.2. The class of fimplicial weak equivalenceq satisfies the 2-out-of-3 property. uvsed in I=.

Proof. By definition of fimplicial weak equivalenced, the problem is immediately reduced to showing that
Bimplicial homotopy equivalenceq satisfy the 2-out-of-3 property. The latter is accomplished by constructing
the necessary homotopy inverse by composing the given maps and their homotopy inverses. |

Lemma 45.3. The class of bofibrafiond coincides with [nonomorphismy. used in m=.

Proof. The EkeleTal Tiliration and [Proposition 399 imply that ) — B is a Cofibration for any
E&l B. More generally, given an arbitrary A — B, one can construct in an analogous way
the relative Ekelefal Hiltrafion

A:Bo—)BlﬁBQ%"'

whose Eolimifl is canonically isomorphic to B and show that individual transition maps B,_1 — B,, satisfy
an analog of [Proposition 39.9. |

Lemma 45.4. The functor EX™ preserves Ebhrafiond and pcyclic ibrations.

Lemma 45.5. The class of hcyclic fibrationd of pimplicial setd coincides with the intersection of the class of
Ebrafiond and pimplicial weak equivalences:

BH=FNnW.
Proof. Suppose f: X — Y is a fimplicial mag. If f is an hcyclic fibration, then f is also a Bbrafion. Indeed,

the [ight Nifting property of f with respect to BI™* — A" follow from the [Ight Lilting property of f with
respect to A" — EA™ and BA™ — @™, This is true by assumpotion for the latter map, whereas the former

map is a of A" — @' along the inclusion AA" ' — A™* whose image is the boundary
of B"*.

Next, if f is an hcyclic fibration, then f is also a Bimplicial weak equivalencd. It suffices to show that
EX™ f, which is an between [Kan complexed, is a fimplicial homotopy equivalencd using
the pimplicial_ Whitehead theorem]. Indeed, the corresponding square in the statement of the
M hitehead theoreml

OA™ — Ex™X

[T

A" — ExY,
admits a lifting where both triangles commute strictly, by definition of an hcyclic Tibration.
Finally, if f is a Bbrafiod and a pimplicial weak equivalencd, we have to show that f is an
Ebrafion. Using [Proposition 46.4, factor f = gc, where c is a kafibrafiod and g is an pcyclic fibration. The
map c is also a fimplicial weak equivalencd by the P-ouf-of-3 property] since we already know that g is a

pumplicial weak equivalencd. |
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Lemma 45.6. The class of pcyclic colibrationg of fimplicial setd coincides with the intersection of the class
of Eofibrafiond and pimplicial weak equivalences:

BEd=CnNW.

Proof. [Acyclic colibrationd are Eofibrafiond because hcyclic ibrationd are Ebrafiond.

[Ecyclic cofibrationy are fimplicial weak equivalencey because

Finally, if f is a Eofibrafion and a Fimplicial weak equivalencd, we have to show that f is an
Eofibrafion. Using Corollary 46.9, factor f = gc, where ¢ is an hcyclic cofibration and g is an
Ebrafion. ||

Definition 45.7. A is right proper if pase changeq along HEbrafiond preserve
@. Used in =91, £==3.

Lemma 45.8. The [model cafegory of simplicial setq is fight propel. uvsed in m=a.

Proof. Given a farfesian squard of fimplicial setq

Al— A

B/T)B

we have to show that if f is a Ebhrafiond and g is a fimplicial weak equivalencd, then ¢’ is also a
fveak equivalencd. We apply the functor E™ to the entire diagram. Using the fact that EX™ preserves Eniid
[miid, Ehrafiond, and creates fimplicial weak equivalenced from pimplicial homotopy equivalencey, the above
problem is immediately reduce to the special case when all four are Kan and g is a
homotopy equivalencd. |

46 Functorial factorizations of simplicial maps

Notation 46.1. The maps 1o:8° — @' and 1:@° — @' pick the two vertices of ! in increasing order.
The map «:BA" — A is the boundary inclusion of . The map p: @' — A@° is the unique simplicial map
from @' to B@°.

Lemma 46.2. (The mapping cylinder construction.) If X,V € ESefl and f: X — Y is a fimplicial maf, then
the maps X — cyl(f) — Y constructed in the proof form a IincEorialTactorization of f into a Cofbrafion
followed by a weak equivalencd. used in Cm, m=, @z, =,

Proof. Denote FF1(f) = @' x X Ux Y and (§1(X) = (([dyx) = @' x X. Consider the following Eommitativd
Miagraml, where the square is Eocarfesian:

x I,y

X 2% (X)) —— &)

This diagram yields the map X — E¥I(f), whereas the map Eyl(f) — Y is induced by the fimiversal property
from the maps fo (px X):@' x X - X —» Y and @y:Y — Y. These definitions imply that
the composition X — E¥1(f) — Y equals f, so we indeed have a ImcloralTactorization.

Consider the Eocartesian squarg

vyuy M xy

o | |

Nxy —— Xuy@ xY
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The left map is a Eolibration because v: BA" — O is a Eofibratiod. Thus, the right map is a Eolibrafiod. The
map X =2 X UQ — X UY is a cofibration because ) — X is a Eofibrafiod. Thus, the composition of the map
X — X UY and the right map is a tafibrafion. The resulting map X — X Ly W' x Y is the first map in
the factorization.

The map Evl(f) — Y is a fimplicial homotopy equivalencd (hence, a fimplicial weak equivalencd) because
the composition Y — Eyl(f) — Y equals idy and the map Y — EyI(f) is a of the map ¢ x X,
which is a pimplicial homotopy equivalencd because ¢q is one. |

Lemma 46.3. (The mapping path space (alias mapping cocylinder) construction.) If XY € ESelgzg and
f: X — Y is a fimplictal mag, then the maps X — cocyl(f) — Y constructed in the proof form a unctarial
Eactorization of the map f into an pcyclic colibration followed by a Hhrafion. vsed in mm, m=m, m==.

Remark 46.4. This lemma is formally dual to the previous lemma except for two differences. In this
lemma we must assume the source and target to be [Kan complexed, whereas the previous lemma imposes no
such restrictions. Additionally, the previous lemma can produce fweak equivalenced that are not Ebrafiond,
whereas this lemma produces weak equivalenced that are also Eofibrafiond.

Proof. Denote ocyl(f) = X xy YT and Eocvl(Y) = Eocyl(idy ) = YB' . Consider the following commutative
diagram, where the square is Earfesian:

Eal(e,Y)
—

Locv](f) —— Eocvl(Y) Y

l lﬁm(u,y)
x —L v
This diagram yields the map Eocyl(f) — Y, whereas the map X — Eocvl(f) is induced by the miversal

property of pullbacky from the maps idx: X — X and Ham(p,Y)o f: X - Y — VB, These definitions
imply that the composition X — Eocyl(f) — Y equals f, so we indeed have a nclorialTactorization.

Consider the fartesian squard

X xyY® — , y®

J/ J,(L7Y)
Xxy LBy oy
The right map is a Ebtaiiod because 1:EA" — W' is a Eoibratiod and Y is BEhzand. Thus, the left map is a
Ebrafion. The map X XY — 1 x Y 2 Y is a Hbrafiod because X — 1 is a Bhrafiod. Thus, the composition
Eocvl(f) = X xy Y® 5 X xY — Y is also a fibration and it is the second map in the factorization.

The map X — Eocyl(f) is a pimplicial homotopy equivalencd (hence, a pimplicial weak equivalencd)
because the composition X — Eocvl(f) — X equals idx and the map Eocvl(f) — X is a of the
map Homl(tq, X'), which is an because ¢1 is an pcyclic cofibration.

Finally, the map X — focvl(f) = X Xy Y® is a cofibration because its composition with the projection
X Xy Y& X equals idx. 1

We now remove the requirement for the source and target to be Kan complexes.

Proposition 46.5. (The derived mapping path space (alias derived mapping cocylinder) construction.) If
f: X — Y is a fimplicial map], then the maps X — Rcocyl(f) — Y constructed in the proof form a lunctorial
Eacforizafion of the map f into an hcyclic cofibrafion followed by a HEbrafionl. used in me==a, e=n, =z,

Proof. Consider the following diagram:

X — Y

l !

BE°x =2, m°y.
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We apply the [mapping path spacd construction of CemmaZ63 to the bottom map (its source and target are
fibrant) and complete the resulting diagram as depicted below, with the right square being cartesian and
the top map in the left square induced by the universal property of pullbacks.

X — Reoall(f) —— Y

l l l

BE*X — (B f) — BV

By Cemma 63 the bottom left map is an acyclic cofibration and the bottom right map is a fibration.
Accordingly, the top right map is a fibration because it is a base change of a fibration.

The middle map is a weak equivalence because the right map is one and weak equivalences are stable
under base changes along fibrations by Cemma A5 8. Thus, in the left square all maps except for the top one
are weak equivalences, hence the top map is also a weak equivalence.

Both maps X — EX*X — Eocyl(EX™ f) are cofibrations. Hence, their composition is also a cofibration.
Therefore, the top left map X — [Rcocyl(f) is also a cofibration. |

The 2-out-of-3 property of fimplicial weak equivalenced immediately implies the following claim.

Corollary 46.6. If f: X — Y is a pimplicial weak equivalencd, then the maps X — [Rcocvl(f) — YV
constructed in [Proposition 46.9 form a Euncforial Tactorization of the map f into an hcyclic cofibration

followed by an hcyclic fibration]. used in B, Eza.

We now improve CemmadG A, allowing the second map to be an and not just a
Wweak equivalencd.

Proposition 46.7. (The derived mapping cylinder construction.) If X,V € ESell and f: X — Y is a
Bimplicial maf, then the maps X — Reyl(f) — Y constructed in the proof form a mmctorial Tactorization
of f into a bofibrafion followed by an Rcyclic ibration. used in m==.

Proof. Use Cemma 467 to factor the map f as X — Ev](f) — Y, where the first map is a cofibration and
the second map is a weak equivalence. Use to factor the map ¢:Ev1(f) — Y as EA(f) —
Rcocyl(g) — Y, where the first map is an acyclic cofibration and the second map is an acyclic fibration.
Composing X — E¥I(f) and E¥I(f) — Rcocyl(g), we get a functorial factorization of the map f as X —
Rcocyl(g) — Y, where the first map is a cofibration and the second map is an acyclic fibration. |

Summary 46.8. Suppose f: X — Y is a simplicial map. Expanding the above constructions, we obtain
the following formulas for the EincfarialTactorizafiond of f. Acyclic cofibration followed by a fibration:

X - E°X xpmey (B®Y)® xgmey Y — Y.
Cofibration followed by an acyclic fibration:

X 5 B (@ x X) Uy Y) xpmey (EY)T xpmey Y — Y.

47 Cofibrantly generated and combinatorial model categories

Definition 47.1. A C is cofibrantly generated if there a set GCc of generating cofibrations
and a set GACc of generating acyclic cofibrations such that Fc = (GBOc)™ and BBc = (GOc)™. veed in e, m=m,
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48 Quillen adjunctions

Definition 48.1. A left Quillen functor is a [eff_adjoint functol] F: C — D, where C and D are madel
and F preserves Eofibrafiond and pcyclic cofibrationd. A right Quillen functor is a
Eonctol G: D — C such that G preserves Ebhrafiond and Rcyclic ibrationg. uvsed in e, e, ==

Lemma 48.2. If F: C — D is a [eff_Quillen functoy then its G:D — C is a fight_ Quillen functol
and vice versa. Thus, one also talks about Quillen adjunction or Quillen pairs.

Proposition 48.3. (Ken Brown’s lemma.) [Ceft Quillen Tunctorgd F: C — D admit [eff derived Tunctord that
can be derived as follows. The subcategory C’ C C consists of all folibrant objecty. The fesolmfion Tunctod
R:C — C’ sends an object X € C to the middle object X’ in the Iinclomal Tactorzationd ) — X’ — X of the
unique map ) — X as a Cofibraiiod followed by an pcyclic ibration. The natural transformation r: R — Id
is given by the second map: rx: X' — X.

Proof. We have to show that F preserves weak equivalenced between in C. Suppose f:A — B
is such a veak equivalencd. Factor g: AU B — B as a kafibrafion followed by an hcyclic fibration. |

We state the dual proposition, for completeness.

Proposition 48.4. (Ken Brown’s lemma.) [Right Quillen functord G: D — C admit [ight derived functory
that can be derived as follows. The subcategory C' C C consists of all ibrant objecty. The fesoifion Tunctod
R:C — C’ sends an object X € C to the middle object X’ in the IncloralTactorizatiod X — X’ — 1 of the
unique map X — 1 as an hcyclic colibration] followed by a Ebrafiod. The natural transformation r:id — R
is given by the first map: rx: X — X'.

Lemma 48.5. Given a [eft_adjoint functol] F: C — D between model categoried, it suffices to verify that F
sends Eenerating_cofibrationg in C to kofibrafiond in D and likewise for hcyclic colibrationd.

Proof. 1

49 The Dold—Kan correspondence and the Eilenberg—Zilber theorem

Local homotopy theory
50 Projective model structure on presheaves

Definition 50.1. Suppose I € &l is a and C is a Eategory. The category of I-indexed
diagrams is defined as the category Exml(I, C). The category of C-valued presheaves on I is defined as the
category Exml(/®®, C).

Definition 50.2. Suppose [ € Call is a and Cis a Eensored over Bell (which simply
means that C admits fmall coproductd). Furthermore, suppose i € I and ¢ € C are objects in these categories.
The hom-presheaf (alias represented presheaf) of i with value ¢ is the C-valued presheaf Boml(—,¢) ® ¢ on
that sends

j > BGm(j, i) @ ¢

and
(f:j— )~ (BEom(f,i) ® c:Bom(j’, i) ® ¢ — Baml(j,1)  ¢).

Definition 50.3. Suppose [ € Cal is a and C is a model categoryl. The projective model
structure (if it exists) on C-valued presheaves is uniquely defined by the requirement that its
[enced, Bhrafiond, and hcyclic fibrationd are bhatural transformafiond whose individual components belong to
the corresponding class of maps in the C. Used in o, &, &=,

Proposition 50.4. If C is a Eofibrantly generated model categoryl and [ is a pmall categoryl, then the
projective model structurd on EmI(/®®, C) exists. Furthermore, if GOc and GBOc are sets of
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Eofibrafiond and generafing acyclic cofibrationd respectively, then

{bom(—,7) @ f |i € I, f e GOc}

is a set of penerating cofibrationd for Exml(/®, C) and likewise for Eenerating acyclic colibrations.

51 Simplicial presheaves

Definition 51.1. The category of simplicial presheaves on a small category S is the of
functors S8 — ESefl equipped with the projective model structurd.

Definition 51.2. The category of presheaves of chain complezes on a small category S is the
of functors S® — A equipped with the projective model structurd.

However, we really interested in sheaves, not presheaves. The sheaf condition can be encoded as follows.

52 Left Bousfield localization
In the following three definitions, (C, W) is a [elative category] and S C Mail(C) is a class of morphisms.

Definition 52.1. An S-local object is an object X € C such that for any s € S the induced morphism

(s, X ) is a fimplicial weak equivalencd. (Recall that map denotes the of maps in a kelafivd
Eategory, defined via the Dwyer—Kan simplicial localization or the Dwyer—Kan hammock localization.) usea

in B2, B2, =23

Definition 52.2. An S-local weak equivalence is a morphism f such that mmap(f, W) is a
for any S-local object W. used in e==a.

Definition 52.3. A left Bousfield localization (alias homotopy reflective localization) of a felafive categoryl
(C,W) with respect to a class of morphisms S C [Mo1(C) is the felafive categoryl (C, Wg), where Wg denotes
S-[ocal weak equivalences. used in s=.

Proposition 52.4. The inclusion (Cgs,W) — (C,Wg) of the [elative category] of S-[ocal objectd and keal
induced from C into the [elBonsHeld Tacalization of (C, W) with respect to S is a
pquivalence of relative categoriey.

53 Sheaf cohomology
Sheaf cohomology

Further topics

54 Quasicategories

Stable homotopy theory

55 Generalized homology theories

generalized homology theory generalized cohomology theory

56 K-theory
K-theory

57 Spectra

spectrum
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58 Further topics

tensored

homotopy equivalence of relative categories

Quillen—-Kan—Serre-Milnor equivalence. Universal coefficient theorem.

Intersection product in homology. Homotopy limits and colimits of simplicial sets. Homotopy groups.
The Hurewicz isomorphism. Chain complexes and their homotopy (co)limits. The Dold—Kan correspondence.
Eilenberg—MacLane spaces. Interaction of homotopy (co)limits with simplicial (co)homology. Homology and
cohomology theories as (co)continuous functors. Eilenberg—Steenrod axioms.

Pushforward and pullback of local systems. Verdier duality. Long exact sequence of a fibration. Fiber
and cofiber sequences of homotopy groups. Blakers—Massey theorem. Freudenthal suspension theorem.

Topological K-theory. Model categories. The Smith recognition theorem. Example: simplicial sets,
chain complexes, spectra. Simplicial symmetric spectra. Representability of homology and cohomology
theories by spectra. Smash product and internal hom of spectra. Multiplicative cohomology theories.
Spanier—Whitehead duality. Thom spectra. Atiyah duality. Simplicial presheaves. Sheaf cohomology. De
Rham cohomology, de Rham theorem.

Prerequisites

59 Appendix: sets and functions

Supplementary sources: Lawvere and Rosebrugh [EETS].

59.1. Relations and maps of sets uvsed in e, =5, E, &=, ==, o=, o, =, e, e, [, B0, 57, BT, 50,

B, B, B, s,

The ordered pair (a,b) is defined as {{{a}}, {{b},{0}}}. The reasoning behind this definition is that
(a,b) = (a’,V') if and only if @ = @’ and b = b'. The product of sets A and B is the set A x B ={z|Ja €
Ab e B:z=(a,b)}. An ordered triple (a,b,c) can now be defined as ((a,b), c) and likewise for n-tuples.

A relation is a triple (A, B, R), where A and B are sets and R C A x B. We emphasize that A and B
form a part of the data of a relation. We also say that R is a relation from A to B. We often write aRb
instead of (a,b) € R. Relations can be composed: if R is a relation from A to B and S is a relation from B
to C, then So R is a relation from A to C for which (a,c) € So R if and only if there is b € B such that aRb
and bSc. We have (T o S)o R =T o (S o R), for which we simply write T' o S o R. The identity relation id
from A to A satisfies (a,a’) € ldy <= a =a. We have dgoR = R = Roldy. An equivalence relation
on a set A is a relation R from A to A such that aRa for all a € A, aRb implies bRa for all a,b € A, and
aRb and bRc implies aRc for all a,b,c € A. The equivalence class of an element a € A with respect to an
Equivalence telation] R on A is the set [a] := {z € A | aRx}.

A map of sets from A to B is defined as a functional relation from A to B, namely, a relation f from A
to B with an additional property that for any a € A there is exactly one b € B (denoted by f(a)) such that
(a,b) € f. We refer to A as the Hdomamd of f (denoted by Homd f) and B as the Eadomaid of f (denoted
by f). The composition of two functional relations is again functional, which allows us to define
compositions of maps via compositions of relations.

Remark 59.2. In the modern mathematical parlance, the word “function” is exactly synonymous with
“map” (of sets). Historically, though, a very different meaning was used: “E is a function of z” meant
that = is a variable, and substituting some value for x in the expression E would give us various values,
denoted by E(x), which therefore are “functions” of x. Of course, the historical meaning is closely related
to the modern meaning: if f: A — B is a map of sets, then f(x) is a function of x € A. Vice versa, if F
is a function of x € A and we are given a set B such that E(x) € B for all x € A, then the set of pairs
{(z, E(x)) | + € A} defines a functional relation from A to B, i.e., a map of sets A — B. The passage from
functions in the old sense to maps is ambiguous: B has to be given separately. Sometimes, A is also omitted
and must be guessed from the context. Occasionally, even x is suppressed, which may be quite confusing:
is 22 4+ y a function of x, of y, or both z and y? Even more confusing is the situation when the old and
new meanings are freely mixed together and both of them referred to as “function”. This is the case for
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many high school and lower-division undergraduate mathematics textbooks, which is an endless source of
frustration for students. vsed in ==, ==

We denote 24 = {S C A}, the set of all subsets of A. Given a f+A — B, we have two
induced maps: the pushforward f,:24 — 28 and pullback f*:28 — 24. Sometimes the notation f~! = f*
is used, however, it conflicts with a totally different notion of an [Iiverse map, which is also denoted by f~*.
Given A’ € 24 (i.e., A’ C A), we set f.(A") ={b€ B|3Jac A" f(a) = b}. Given B’ € 28 (i.e., B' C B), we
set f*(B')={ac A]| f(a) € B'}.

59.3. Injective and surjective maps of sets vsed in ==, I, oo, oo, BT, £, oo,

A f: A — B is injective if f(a) = f(a') implies a = d', surjective if for any b € B there is
a € A such that f(a) = b, and bijective if it is [jectivd and furjectivd. Bijective mapy are precisely invertible
maps of sets: a f:A — B is invertible if there is a map ¢g: B — A such that go f = id4 and
fog=Mg. The map g is always unique. It is known as the inverse map of f and is denoted by f~!.

An inclusion of sets is an (automatically injective) map f: A — B such that f(a) = a for all a € A.

A quotient map of sets is an (automatically surjective) map f: A — B such that ) ¢ B and for any b € B
we have b = f*({b}). Such maps can be identified with equivalence relations on A: a quotient map f yields
an equivalence relation R on A such that aRa’ <= f(a) = f(a’). Vice versa, an equivalence relation R
on A gives rise to a quotient map f: A — B, where B ={P C A| Jda € A:P = {a’ € A | aRd'}} and
f(a) = {d’ € A | aRa'}. Equivalently, such maps can be identified with partitions into disjoint nonempty
subsets of A: a quotient map f yields a partition whose elements are f*({b}) for all b € B.

Many that seem to be Inclusionsafsefd are in fact merely [mjectivd. For instance, one could
say that any integer number is also a rational number. Naively, such a claim could be formalized as Z C Q.
However, this is false for the most common construction of Q as a of Z x (Z\ {0}) with respect
to the equivalence relation (p, q) ~ (p',q¢') <= pq’ = p'q. (Instead of (p, q) one could write g, in which case
the above relation reads

/

LN 3, = pq =pq,

q q
a fundamental property of fractions that is taken as a definition here.) However, we do have a canonical
injective map Z — Q, which sends n € Z to the set {(nk,k) = %k | k € Z\ {0}}. Thus, although Z ¢ Q,
we can still pretend that Z C Q by implicitly applying the injective map Z — Q whenever necessary. We
will often use as if they were lnclusions of sefd. One important difference, however, is that
an Icusion of sefd is completely determined by its Hamaid, whereas for an we must know the
itself, not just the Homatd.

Given a set X the intersection of a family of Equivalence relafiond on X is again an Equivalence relation.

In particular, any subset S C X x X is contained in the smallest equivalence relation R generated by
it, namely, the intersection of all equivalence relations on X that contain S. Two elements xz,y € X are
equivalent in R if there is a finite sequence of elements g = x, x1, x2, ..., x, = y such that for each i we have
(xi,xip1) € S or (zi41,2;) € S. Given two maps of sets f,g: W — X, we can take S = {(f(w),g(w)) | w €
W}, and the resulting q¢: X — X/R, where R is generated by S as above, has the following

universal property: if : X — T is a such that ¢(f(w)) = t(g(w)) for all w € W then there is a
unique t/R: X/R — T such that t/Ro g = t. Thus the map ¢ identifies f(w) and g(w) for all
wewWw.

Similar reasoning applies to [fuotient maps of setd. For instance, the map exp:iR — U(1) = {z € C |
|z| = 1} is not a puotient map of sety (or groups) because elements of U(1) are not subsets of iR, but the
difference is superficial: the group quotient map iR — iR /2miZ (i.e., iR/~, where x ~ y <= x—y = 2wik
for some k € Z) is a quotient map of sets, and there is a canonical isomorphism iR /2miZ — U(1), so we can
pretend that U(1) is a quotient of iR.

59.4. Restrictions and corestrictions of maps of sets vsed in ==, s

Suppose f: A — B is amap ol setd and A’ C A. The restriction of f to A’ is the composition for: A’ — B,
where ¢: A’ — A is an Incision of sefd. We also write f|a+ for f ot. More generally, if f: A — Bis a
Eetd and «: A’ — A is an [mective maf, then the Eestriction of f: A — B along ¢ is the composition f o .
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We also need the dual concept, which makes the Eadomaid of a map smaller. Unfortunately, there is no
widely accepted name for this operation, only the rather obscure names like “astriction” and “corestriction”
can be found in the literature. If f: A — B is a and B’ C B, then the corestriction of f to B’ is
the unique map f|B/:A — B’ such that x o f|B, = f, where k: B — B is an inclusion of sets. Such a map
exists if and only if f(A) C B’. The Eorestriction of f along an arbitrary k: B’ — B is defined
as the unique map f|*: A — B’ such that ko f|* = f. It exists if and only if f(A4) C x(B’).

The Earesiticiion of f along k is also known as the of f along k. The latter name is far
more common than “astriction” or “corestriction”, but it refers to a rather more general concept: the map
need not be injective, and the is always defined, i.e., there is no requirement that f(A) C x(B’),
because in the latter case the Homam of the [pase changd will be different from the Hdomai of f. Additionally,
the canonical map from the Homai of the pase changd to A need not be an mcusion of sefd, but only an
[myection, which makes different from Eoresiriciiond.

59.5. Disjoint unions and products of sets vsed in =z

The disjoint union of sets A and B is defined as AU B = A x {0} U B x {{0}}. We have canonical
injection maps t4:A = AU B (a — (a,0)) and tpg: B — AU B (b~ (b,{0})). The sets {0} and {{0}}
could be replaced by any pair of distinct singleton sets. The point of this construction is that A and B are
replaced by isomorphic copies of themselves that happen to be disjoint (hence the name “disjoint union”).
In particular, we have a canonical map of sets AU B — AU B ((a,0) — a, (b,{0}) — b), which is an
isomorphism if and only if AN B = (). A confusing point of the above definition is that it makes use of
a specific pair of sets, {0} and {{(0}}, which seems to be quite random. What matters is not a specific
construction of the disjoint union, but rather its universal property: the disjoint union of A and B is a set
(denoted by A LI B) together with two maps t4: A — AU B and tg: B — AU B such that for any set Z
and a pair of maps f: A — Z, g: B — Z, there is exactly one map (denoted by [f,g]: AL B — Z) such that
[figlota = f and [f, g] otp = g. This property should really be taken as a definition of disjoint union. One
can then prove the existence of the disjoint union of A and B using the above construction with sets {0}
and {{0}}, or any other pair of disjoint singleton sets. While different choices of disjoint singleton sets will
give different disjoint unions, they will all be canonically isomorphic to each other. More precisely, if AL B,
y0A — AU B, /5B — AU’ B is another disjoint union, then the maps [/4,/5]: AUB — AL/ B and
[ta,eB]): ALY B — AU B form a mutually inverse pair of isomorphisms between A LI B and A L/ B that is
compatible with the inclusion maps: [y, t5]ota = 4, [V4,t5lots = U, [ta,tBloty = ta, [ta,tB]loty = iB.
By the universal property of coproduct (namely, the “exactly one” part) isomorphisms with such properties
are unique, and it is in this sense that the coproduct of sets is unique.

At this point we should remark that the entire discussion applies equally well to products of sets.
Recall that we defined A x B = {z | Ja € A,b € B:z = (a,b)}, where the (a,b) was de-
fined as {{{a}},{{b},{0}}}. There is nothing special about the last formula; one could just as easily use
{{{a}},{{b},0}}, since it also satisfies the fundamental property that (a,b) = (a’,¥’) if and only if a = o’
and b = b’. We could reformulate the definition of product in such a way that this ambiguity goes away. The
definition is entirely analogous to the definition of coproduct given above: the product of A and B consists
of a set (denoted by A x B) and maps pa: Ax B — A and pg: A X B — B such that for any set Z and maps
f:Z — A, g: Z — B there is exactly one map (denoted by (f,g): Z — A x B) such that p4 o (f,g) = f and
peo(f,g9) =g. The rest of the discussion about coproduct carries over in an entirely analogous fashion.

59.6. Families of sets

If I is a set, then an I-indexed family of sets is a f:T — I. The underlying idea of this
definition is that we assign to i € I the set f*({i}). An equivalent definition: an I-indexed family of sets is
a surjective map of sets g: I — W. The underlying idea of this definition is that we assign to ¢ € I the set
g(7). In order to construct g from f, we define W = {S C T | Ji € I: S = f*({i}) and set g(¢) = f*({i}).
In order to construct f from g, we use the family version of the disjoint union construction discussed above.
Set T'= ;¢ 9(i) x {i} and for any ¢t € T set f(t) =i, where t = (z,i) for some i € [ and x € g(i).

59.7. Ordered sets used in =, o=, =2, ==, £,

A preorder or a preordered set is a pair (S, <), where S is a set and <C S x S is a kelafiod on S that is
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reflexive (z < z for all € S) and transitive (x <y and y < z imply = < z for all z,y,z € S). A poset or
a partially ordered set is a (S, <) that is antisymmetric (z <y and y < z imply z = y for all
xz,y € S). A totally ordered set or simply an is a (S, <) that is total (x < y or y < x for
all x,y € 5).

60 Appendix: abelian groups

Supplementary sources: Aluffi [ZERTY.
Informally, abelian groups are “vector spaces over integers”.

Definition 60.1. (Cayley, 1854.) An abelian group is a tuple (5,4, —,0), where S is a set, +: 5 x S — S,
—:5 — S, and 0 € S are such that the following properties are satisfied for all a,b, ¢ € S: (a+b)+c¢ = a+(b+c)
(associativity), a+0 = 0+a = a (unitality), —a+a = 0 (existence of inverses), a+b = b+a (commutativity).

Used in IS, 2052, 2350, B3=1, B3, B5oX7, ooy, GO, B, BT, oI=3.

Example 60.2. The (additive) abelian group of integers is (Z,+, —,0), where Z denotes the set of integer
numbers and the three operations are the familiar operations on integers. We denote this group simply by Z.

Example 60.3. Analogously to the previous example, we have the (additive) abelian groups of rationals Q,
reals R, and complex numbers C.

Example 60.4. We can also define the multiplicative groups for the above sets of numbers. Their elements
are invertible numbers, i.e., x is invertible if there is y such that x -y = 1. For Z, Q, R, and C, the sets of
invertible elements are {—1,1}, Q\ {0}, R\ {0}, and C\ {0}. In all four cases, the three operations are
given respectively by multiplication, reciprocal, and the element 1. The multiplicative groupq are typically
denoted by a superscript x: Z*, Q*, R*, C*. usecd in e,

Definition 60.5. Suppose A = (S,+,—,0) and A’ = (5’,4/,—',0’) are pbellan groupy. A homomorphism
of abelian groups from A to A’ is a map of sets f: S — S’ such that the following properties are satisfied
for all a,b € S: f(a+0b) = f(a) +" f(b) (additivity), f(—a) = —'f(a) (preservation of inverses), f(0) = 0/

(preservation of Zeros). Used in 0=, DI, eorm, 659, B, oom, 67, SN, B9, SIrm, S, 6T, 5.

Example 60.6. The following maps are fomomorphisms of abelian groups.
e Z — C, n+ an for some fixed a € C.

Z — C*, n+— a"™ for some fixed a € C*.

C — C*, z +— exp(az) for some fixed a € C.

C* — C*, z +— 2™ for some fixed n € Z.

C* — C, z +— alog|z| for some fixed a € C.

Definition 60.7. Suppose f: A — A’ is a fomomorphism ol abelian groupy. If f is an IcIusion ol setd, we
say that A is a subgroup of A’. If f is a fuotient map ol sety, we say that A’ is a quotient group of A. If f
is an pijectionl, we say that A is isomorphic to A’. vsed in ==, m=, s, o=, &=,

Definition 60.8. Suppose f: A — A’ is a lomomorphism ol abelian groups.
e The kernel of f is the ker f of A with the underlying set {a € A | f(a) = 0} and all operations
induced from A.
e The image of f is the im f of A’ with the underlying set {a’ € A’ | Ja € A: f(a) = d'}.
e The cokernel of f is the coker f of A’ whose underlying set is the quotient of A’ by the
equivalence relation x ~y <= x —y € I f and all operations induced from A’.

Used in =922, 00550, 0=, O3, =3, C==3, 2003, OI59, 009, oo, =S

Proposition 60.9. The three groups defined above for f: A — A’ can be equivalently characterized by the
following universal properties.
e The v:ked f — A satisfies fu = 0. Furthermore, if x: K — A is another
such that fx = 0, then there is a unique p: K — kel f such that p = k.

K K

pJ\ALmy
A

ker f



e The mA — mdf and ¢ f — A’ satisfy vm = f. Furthermore, if 7': A — L and
V: L — A’ is another pair of such that /7’ = f, then there is a unique p: L — I f
such that pr’ = 7, hence also ¢/ = ip.

e The m: A — Eoked f satisfies mf = 0. Furthermore, if \: A’ — L is another Eomomord
such that A\f = 0, then there is a unique hlomomorphisn ¢: Eaked f — L such that gm = .

coker f
! s Jq

Used in &==3, [EE3A.

Remark 60.10. Consider a homomorphism of abelian groupy f: A — B with the associated homomorphisms

Eedf - A—mf— A — Coked f.

The Eokernel of the ked f — A is isomorphic to 01 f.
The kernel of the A’ — Eaked f is isomorphic to I f.
The kernel of A — I f is isomorphic to kel f.

The Eokernel of I f — A’ is isomorphic to Eoked f.

Definition 60.11. Suppose {A4;};cr is a family of abelian groups indexed by a (possibly infinite) set I.
The direct sum of A is the abelian group @, A; = (S, +, —,0), where S C J],.; A; is the set of all elements
J € Ilie; Ai such that {i € I'| f(i) # 0} is a finite set. The operations are defined indexwise. The direct
product [, A; is defined in the same way, but with the finiteness condition dropped.

We now cover some elementary facts about bilinear maps and tensor products.

Definition 60.12. If A, B, and C are pbelian groupd, then a bilinear map (alias biadditive map) from A
and B to C is a f:U(A) x UW(B) — U(C) with the following properties: for any a € U(A)

the map of sets U(B) — U(C) (b — f(a,b)) is a homomorphism of abelian groupd, and likewise, for any
b € U(B) the map of sets U(A) — U(C) (a — f(a,b)) is also a fomomorphism. uvsed in so=m, o=, BT=.

In other words, f is bilinear if f(a + da’,b) = f(a,b) + f(a’,b) and f(a,b+ V') = f(a,b) + f(a,b).

Notation 60.13. We denote bilinear maps from A and B to C using a comma:
A B—C.

We do not use the more obvious choice of notation A x B — C, because it can be easily confused with
a homomorphism of abelian groups from the product of A and B to C, which satisfies a very different
property: f(a+a’,b+ V") = f(a,b) + f(a’,b"), whereas for a as defined above we would have
fla+ad,b+V) = fla,b)+ f(a,V)+ f(d',b) + f(a, V). Thus, unless f(a,b) + f(a’,b) is always zero, which
holds if and only if f is the constant function with value 0, these two concepts are completely different.

Definition 60.14. (Hassler Whitney, 1938.) If A and B are hbelian groupd, then the universal bilinear map
from A and B is a bilinear map A, B - A® B (a,b+— a ® b) with the following universal property: for any
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C and for any f: A, B — C there is a unique homomorphism of abelian groups
h:A® B — C such that f(a,b) = h(a ®b) for all a € A and b € B. The A ® B is known as
the tensor product of A and B. used in o=,

In other words, bilinear maps A, B — C are the “same thing” as homomorphisms of abelian groups
A® B — C. Given a homomorphism h: A @ B — C, we produce a bilinear map f: A, B — C by setting
f(a,b) = h(a ®b). Given a bilinear map f: A, B — C, there is exactly one homomorphism h: A ® B — C
such that h(a ® b) = f(a,b).

Proposition 60.15. The fimiversal bilinear map exists for any abelian groups A and B.

Proof. Denote by F the free abelian group on the set U(A) x U(B). An element of the latter set is a pair
(a,b), where a € A and b € B, and denote the corresponding basis element in F by a®b. Now consider the
abelian subgroup R of F' generated by the following two families of elements:

(a+a )b — a&b — a'®b, a@(b+b) — a®b — a®b'.

Set A® B = F/R. We define a bilinear map A,B — A ® B by sending (a,b) € U(A) x U(B) to the
equivalence class of a®b, which we denote by a ® b. We verify that this map is indeed bilinear: for all a € A
and b € B we must have (a+a')@b—a®b—a ®b = 0. Indeed, lifting these elements of F/R to F, we get
(a+ a')®b — a®b — a’®b, which is an element of R, hence its image in F//R vanishes. The other identity is
verified in the same way.

We now prove the universality property: for any C and for any ffAB—=>C
there is a unique homomorphism of abelian groups h: A ® B — C such that f(a,b) = h(a®b) for all a € A
and b € B. Homomorphisms h: A ® B — C are in bijection with homomorphisms h’: FF — C' that vanish
on the subgroup R. Since f(a,b) = h(a ®b), we get h/(a®b) = h(a ® b) = f(a,b). Thus b’ is specified on
all basis elements of F, so it is uniquely defined. It remains to verify that h’ vanishes on R. The latter is
generated by (a + a’)®b — a®b — a’®b and its symmetric cousin. We compute:

B ((a + a')@b — a®b — a’@b) = h'((a + a')®b) — ' (a®b) — ' (a'®b) = f(a +a’,b) — f(a,b) — f(a’,b) = 0. 1

Remark 60.16. A necessary, but not sufficient, condition for a bilinear map A, B — C to be the universal
bilinear map is that its image spans C. A necessary and sufficient condition can be formulated as follows:
the image of f spans C and if ), f(a;,b;) = 0, then the set of pairs (a;,b;) can be transformed into the
empty set by repeatedly applying bilinearity relations.

Remark 60.17. If {a;} spans A and {b;} spans B, then {a; ® b;} spans A ® B.

Examples 60.18. We have
e A B=B® A;
AR (B®C)~=(A® B)® C,
(A®B)®C~2A®C® B C;
ARZ=A;
AQRZ/nZ = A/nA;
Z/mZ @ Z/nZ = 7] ged(m,n)Z;
Z/mQZL/m=Z/m;
A® Q= (A/T)® Q, where T is the torsion subgroup of A4;
Z/mZ ® Q = 0;
QeQ=Q;
QoR>R;
Q/Z ® A =0 for any A such that A =nA for all n > 1;
Q/Z®Q=0;
Q/Z® Q/Z =0
7% ® Zb o Zab.
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61 Appendix: rings

Supplementary sources: Aluffi [ZERO, Chapter III].
Definition 61.1. (Emmy Noether, 1921.) A ring is a triple (R, u, 1), where R is an pbelian grouf, u: RQR —
R is the multiplication map, and 1 € R is the unit element, with the following properties: multiplication is

associative ((zy)z = z(yz) for all z,y,z € R) and unital (1o = 21 = z for all z € R). A commutative ring
is a ring R such that xy = yx for all z,y € R. vsed ine=a.

Example 61.2. Some of the most important commutative rings include
e the ring of integers Z;

the ring of rationals Q;

the ring of real numbers R;

the ring of complex numbers C;

[ ]
[ ]
[ ]
e the ring of p-adic integers Z, and p-adic rationals Q,,.

Example 61.3. An important example of a noncommutative ring is the group algebra (known also as the
group ring in the case R = Z). Given a ring R and a group G (or even a monoid G, in which case it is
known as the monoid algebra), the group algebra R[G] is the abelian group

Pr

geG

whose typical element is denoted by

ng'g7

geG

equipped with the multiplication

(ng .g> | (th.h> S (o) - (gh)

geG heG g,heG

and the unit element 1 1. vsed in ==
Example 61.4. The polynomial ring R|z] can be defined as the R[N], whose typical element
is denoted by
Z rpx’.
n>0
The in n variables R[z,y,...] is defined as the monoid algebra R[N™]. vsed in ==

Definition 61.5. A homomorphism of rings f: (R, u,1) — (R', 1/, 1’) is a lomomorphism of abelian groupy
f: R — R’ such that f(xz-y) = f(z) f(y) and f(1) =1". used in ==, e==s, £,

Example 61.6. Given any a € R we construct a fjomomorphism of ringg R[z] — R by sending > -, rna"”
to Y, 50 na". (The left side uses operations in R[z]|, whereas the right side uses operations in R.) All such

homomorphism can be assembled together in a single homomorphism R[x] — RY(E) | wwhere the right side
denotes the product of copies of R indexed by the elements of U(R).

Example 61.7. Consider the polynomial 27 —z in the ring F,[z]. This polynomial is by definition a nonzero
element of this ring. However, its value on any element of F), is zero. Thus, the combined evaluation map
F,lz] — F}DJ (F2) i a homomorphism of rings that is not injective. In particular, polynomials should be
distinguished from the maps of sets that they induce through evaluation.

Definition 61.8. An ideal in a Risa I C R that is the kernel of the underlying homomaord
phism of abelian groupd of some fomomorphism of ringd R — @, denoted by Uma(R) — Uma(Q). (We use
the subscript BH to indicate that the forgetful functor discards only the multiplication and unit, and not the
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abelian group structure, as opposed to the forgetful functor U: Ring — Bed, which discards everything.) uveea

in =9

Proposition 61.9. A I of a ring R is an Ideal if and only if it is closed under multiplication by
elements of R, i.e., if i € [ and r € R, then ir and ri belong to I.

Proof. If I — Ugg(R) is the kernel of Ugg(R) — Ugg(Q)) for some fomomorphism of ringd ¢: R — Q, i € I,
and 7 € R, then q(ir) = q(i)q(r) = 0¢(r) = 0 and q(ri) = q(r)q(i) = ¢q(r)0 = 0, so ir and ri belong to I.
Vice versa, if an abelian subgroup I C Ugg(R) is closed under multiplication by elements of R, then the
quotient map of abelian groups ¢ = [—]: Ugg(R) — Ugg(R)/I can be promoted to a [ijomomorphism ol tingy
by equipping the quotient with an induced multiplication and unit (i.e., [a][b] = [ab] and 1 = [1]), which is
well-defined: if [a] = [@'], then a—a’ € I and [a'][b] = [a+ (a' —a)][b] = [a][b] + [’ —a][b] = [a][b] +0[b] = [a][b].
The quotient map preserves multiplication and unit by definition. |

Notation 61.10. Given an ideal I in a ring R, the resulting quotient ring is denoted by R/I. Given a
subset S of U(R), the intersection of all ideals containing S is again an ideal, which is denoted by (.5). vsea

in =m0, E=x3.
Example 61.11. The Z/(n) = Z/nZ has n elements. The ideal (n) consists of all integers
divisible by n.

Example 61.12. The R[z]/(z™) can be identified with finite sums of the form Y ., ',
where r; € R, which are multiplied like polynomials, but throwing away terms of degree n or higher.
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