## Mathematics 5324 (Topology)

## Midterm 2

- 1. The orange peel with c carpels ( $c \ge 1$ ) is a simplicial set  $O_c$  generated by the following system of generators and relations. There are two generating 0-simplices, N and S (north and south pole). There are c generating 1-simplices  $e_i$ , indexed by elements of  $\mathbf{Z}/c\mathbf{Z}$ . We have  $d_0(e_i) = S$  and  $d_1(e_i) = N$ , i.e., each generating 1-simplex goes from the north pole to the south pole, just like one would cut an orange. There are c generating 2-simplices  $f_i$ , also indexed by elements of  $\mathbf{Z}/c\mathbf{Z}$ . We have  $d_0(f_i) = s_0(S)$ ,  $d_1(f_i) = e_{i+1}$ , and  $d_2(f_i) = e_i$ , i.e., the 2-simplex  $f_i$  looks like a bigon squeezed between  $e_i$  and  $e_{i+1}$ , with one of the edges collapsed to a point.
  - Draw a picture of  $O_1$ ,  $O_2$ , and  $O_3$ .
  - Compute the homology of  $O_c$  for all  $c \ge 1$ . (If an arbitrary c presents insurmountable difficulties, take c = 3, which will be valued almost as much.)
  - Given  $c \ge 1$  and  $d \ge 1$ , consider the homomorphism of abelian groups  $r_d: \mathbf{Z}/dc\mathbf{Z} \to \mathbf{Z}/c\mathbf{Z}$  that sends an element  $x = [u] \in \mathbf{Z}/dc\mathbf{Z}$  to the element  $[u] \in \mathbf{Z}/c\mathbf{Z}$  represented by the same integer u. Construct a simplicial map  $O_{dc} \to O_c$  that sends  $S \mapsto S$ ,  $N \mapsto N$ , and  $f_i \mapsto f_{r_d(i)}$ .
  - Compute the homology of the simplicial map  $O_{dc} \to O_c$ . (If arbitrary c and d present insurmountable difficulties, take d=3 and c=1, which will be valued almost as much.)
- **2.** Triangulate and compute the homology of the following map:



The outer circle is mapped via the identity map, whereas the middle bar is projected onto the lower semicircle (so that its endpoints do not move).

- **3.** Compute the homology of simplicial set with a single generating simplex  $\sigma$  of dimension 3 with relations  $d_0(\sigma) = d_1(\sigma) = d_2(\sigma) = d_3(\sigma)$ .
- **4.** Construct all possible simplicial maps  $S^2 \to S^2$  and compute their homology. Recall that  $S^2$  is a simplicial set generated by a single 2-simplex  $\sigma$  and a single 0-simplex \* with relations  $d_i(\sigma) = s_0(*)$  for all  $i \in \{0, 1, 2\}$ .