The geometric cobordism hypothesis

Lecture 5a: The leftovers

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-5a.pdf
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https://dmitripavlov.org/lecture-5a.pdf

Overview

m Tuesday: definitions

m Wednesday: locality and how to use it to prove one half of the
GCH

m Thursday: the framed GCH (the other half)

m Today: contractibility of moduli spaces of cuts and its
applications to GCH
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Homotopy cocontinuity of Botrdy

Proposition (G.—P. (formal))

Given d > 0, we have a left Quillen functor
SPSh(FEmby)inj — sPSh(Cart x [ x A*?)o, S~ Bordy.

Theorem (G.—P.)

Given d > 0, the left derived functor of the left Quillen functor
sPSh(FEmby)inj — sPSh(Cart x I x A9, S — Bord§

sends Cech nerves of open covers in FEmby to weak equivalences.
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The codescent property

Theorem (G.—P.)
Given d > 0, the left derived functor of the left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*)c, S+ Bord

sends the Cech nerve of an open cover {W, — U,}aen of
(W — U) € FEmby to a weak equivalence:

hocolim Bord Ve Vo =y BorpW -V
neA°P d el ’
a:[n]—A

where Wy, = Wy, N--- N W,,.
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A

Step 1 Replace hocolim by colim
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The codescent property: main steps

hocolim H Bord ala =, Borplf 2V
neA°pr
a:[n]—A

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the

diagram):
hocolim SBotDZV“*Ua%colim H %Otbg‘/“_}u“
neA°P neA°p
a:[n]—A a:[n]—A
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A

Step 1 Replace hocolim by colim

Step 2 Pass to n-dimensional stalks on Cart for all n > 0.
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The codescent property: main steps

h : a—Us _~ W—uU

SECRLIJH H Bord, — Bord,
o:[n]—A

Step 1 Replace hocolim by colim

Step 2 Pass to n-dimensional stalks on Cart for all n > 0.

Step 3 Introduce a filtration (on n-dimensional stalks)

colim Bord)* 7V — By — -+ — By — Bord) V.
neA°p
a:[n]—A
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The codescent property: main steps

hocolim a>la _= Ainad
ocolir H Bord, — Bord,
o:[n]—A
Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all n > 0.
Step 3 Introduce a filtration (on n-dimensional stalks)
colim H Bord)/e Ve - By — -+ = By — Bord)/ 7Y,

neAc°pr
a:[n]—A

Step 4 Prove all maps in the filtration are weak equivalences.
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The codescent property: filtration

colim %otOZVD‘_}U"‘ — By — -+ — By — %otaff/_}“.

nc€A°p
a:[n]—A

Given d > 0 and (W = RY x U — U) € FEmb", the set
%OtDEdXU*U(V, (€), m),, has elements:

m a smooth manifold M;

m a V-family of embeddings M — RY;

m a V x A"-family of cut tuples with m; x --- x my cells;
m P M — (0);

m smooth map V — U,
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Filtration: Step 0
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Filtration: Step 0

colAim H Bord)/e 7V — By — -+ = By — Bord) Y.
€A°P
" a:[n]—A
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Filtration: Step 0

colAim H Bord* 7V = By — -+ — By — Bord) Y.
€A°P
" a:[n]—A

m colim: the entire bordism factors through some W, C W.

m By: every connected component of the bordism factors
through some W, C W.
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Filtration: Step 0

colAim H Bord* 7V = By — -+ — By — Bord) Y.
€A°P
" a:[n]—A

m colim: the entire bordism factors through some W, C W.

m By: every connected component of the bordism factors
through some W, C W.

Proposition (Formal)

The map colim — By is a weak equivalence in sSPSh(I" x AX%)..
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Filtration: Step 1
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Filtration: Step 1

m By: every connected component of the bordism factors

through some W, C W.
m B;: bordisms that can be chopped in the ith direction so that

every piece belongs to B;_j.
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Filtration: Step 1

m By: every connected component of the bordism factors
through some W, C W.

m B;: bordisms that can be chopped in the ith direction so that
every piece belongs to B;_j.

The map B;_1 — B; is a weak equivalence in sPSh(I" x A*9)oc
for every i > Q.
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Filtration: Step 1

The map Bi_1 — B is a weak equivalence in sPSh(I" x AXd)bc
for every i > 0.
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Filtration: Step 1

The map Bi_1 — B is a weak equivalence in sPSh(I" x AXd)bc
for every i > 0.

m Evaluate B;_1 — B; on an arbitrary object X of I' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);
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Filtration: Step 1

m Evaluate B;_; — B; on an arbitrary object X of [' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);

m Extract the kth simplicial degree (for some k > 0), obtaining
a map in PSh(A) = sSet;
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Filtration: Step 1

m Evaluate B;_1 — B; on an arbitrary object X of I' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);

m Extract the kth simplicial degree (for some k > 0), obtaining
a map in PSh(A) = sSet;

m The resulting simplicial set has

m vertices: germs of cuts (embedded in W);

m edges: bordisms between cuts (embedded in W);
m 2-simplices: composition of bordisms;
"
|

everything is in smooth families indexed by A¥;
bordisms must belong to B;_; respectively B;.

Want to show: B;j_1 — B; is a categorical weak equivalence in the
Joyal model structure on simplicial sets. O
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Intermission: Necklace categories
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.

m Want to know whether X — Y is a categorical weak
equivalence.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.

m Want to know whether X — Y is a categorical weak
equivalence.

m Fix vertices x,y € Xp.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

Xo — Yp an isomorphism of sets.

Want to know whether X — Y is a categorical weak
equivalence.

Fix vertices x,y € Xp.

Want a model for the simplicial map
Mapx (x, y) = Mapy (x, y).

28/29  9/18



Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

Xo — Yp an isomorphism of sets.

Want to know whether X — Y is a categorical weak
equivalence.

Fix vertices x,y € Xp.

Want a model for the simplicial map
Mapx (x,y) = Mapy(x, y).
m Answer: Dugger-Spivak necklace categories.
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Intermission: Necklace categories
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).

m Fix vertices x,y € Xp.
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.
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Intermission: Necklace categories

X: a simplicial set (not necessarily a quasicategory).

Fix vertices x, y € Xp.

The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

Objects (necklaces from x to y): simplicial maps

AM YV ...V A" — X, endpoints map to x and y.
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Intermission: Necklace categories

X: a simplicial set (not necessarily a quasicategory).

Fix vertices x, y € Xp.

The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

Objects (necklaces from x to y): simplicial maps

AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).

m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

m Objects (necklaces from x to y): simplicial maps
AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
m Morphism 1: A? v AP — A?%b (endpoint-preserving).

36/37  10/18



Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

m Objects (necklaces from x to y): simplicial maps
AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
m Morphism 1: A? v AP — A?%b (endpoint-preserving).
m Morphism 2: A? — AP (endpoint-preserving).
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Intermission: Necklace categories of bordisms
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

m Morphism 1: A? Vv AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

m Morphism 1: A? Vv AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).

m Morphism 2: A? — Ab: insert new compatible ordinary cuts.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

Fix vertices x,y € Xy, i.e., germs of cuts embedded into W.

Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

Morphism 1: A? v AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).

Morphism 2: A? — Ab: insert new compatible ordinary cuts.

Observation: the ambient composed bordism never changes
— can fix it in advance.
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Necklace categories of bordisms have contractible nerves: 1
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in Bj, but not necessarily in B;_1).
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Necklace categories of bordisms have contractible nerves:

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in Bj, but not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve (in Bi_1 and in B;).
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Necklace categories of bordisms have contractible nerves:

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in Bj, but not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve (in Bi_1 and in B;).

m Proof: B;: formal; B;_1: Morse theory on M.
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in Bj, but not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve (in Bi_1 and in B;).

m Proof: B;: formal; B;_1: Morse theory on M.

m This implies B;_1 — B; is a weak equivalence.
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The big picture
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Necklace categories of bordisms have contractible nerves: 2
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Necklace categories of bordisms have contractible nerves: 2

m Proof: Morse theory on M.
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Necklace categories of bordisms have contractible nerves: 2

m Proof: Morse theory on M.
m Pick a Morse function on M with distinct critical values.
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Necklace categories of bordisms have contractible nerves:

m Proof: Morse theory on M.
m Pick a Morse function on M with distinct critical values.

m Cut out a small neighborhood of each critical point.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.
Cut out a small neighborhood of each critical point.

Chop up the remaining cylinders into small bumps.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.

|

|

m Cut out a small neighborhood of each critical point.
m Chop up the remaining cylinders into small bumps.
|

All neighborhoods can be chosen to be subordinate to the
open cover of W.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.

|

|

m Cut out a small neighborhood of each critical point.
m Chop up the remaining cylinders into small bumps.
|

All neighborhoods can be chosen to be subordinate to the
open cover of W.

How does this help us to show contractibility of necklace
categories?
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Necklace categories of bordisms have contractible nerves: 3
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",

m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
m Chop up M as explained on the previous slide.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
m Chop up M as explained on the previous slide.
m By induction on the Morse decomposition, push the cuts past
each small region in the Morse decomposition, with some
cutting and gluing of cuts.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",

m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.

m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.

m Chop up M as explained on the previous slide.

m By induction on the Morse decomposition, push the cuts past
each small region in the Morse decomposition, with some
cutting and gluing of cuts.

m At the final step, all cuts have been collapsed to the source
cut of M.
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

m By: bordisms have a Morse function with critical points of
index at most k;
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

m By: bordisms have a Morse function with critical points of
index at most k;

® want to compute RMap(%Utasde—)U,V)
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

m By: bordisms have a Morse function with critical points of
index at most k; .
® want to compute RMap(%orOS ;

m base: RMap(BordR U=V V) — RMap(Bq, V):

XU—)U,V)
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

m By: bordisms have a Morse function with critical points of
index at most k;

® want to compute RMap(%orOSd ;

m base: RMap(BordR U=V V) — RMap(Bq, V):

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

XU—)U,V)
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

By: bordisms have a Morse function with critical points of
index at most k;

want to compute RMap(%otbsd ;

base: R Map(Bord® XU~V V) = R Map(Bg, V);

index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

everything except for the index k handle is in By_1;

XU—)U,V)
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How is this used in the framed GCH?

B_1—>Bo—>Bl—>Bz_>..._>Bd:%OtDdeU—>U

By: bordisms have a Morse function with critical points of
index at most k;

want to compute RMap(%otbsd ;

base: R Map(Bord® XU~V V) = R Map(Bg, V);

index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

everything except for the index k handle is in By_1;

— the value on the index k handle is unique up to a
contractible choice;

XU—)U,V)
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How is this used in the framed GCH?

m By: bordisms have a Morse function with critical points of
index at most k;

® want to compute RMap(%otbsd ;

m base: R Map(BordR U=V V) — RMap(Bq, V):

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_q;

B — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bk_1, V)unit;

XU—)U’V)
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How is this used in the framed GCH?

m By: bordisms have a Morse function with critical points of
index at most k;

®m want to compute RMap(%otbsd ;

m base: R Map(BordR U=V V) — RMap(Bq, V):

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_q;

B — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bk_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

XU—)U’V)
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How is this used in the framed GCH?

m By: bordisms have a Morse function with critical points of
index at most k;

®m want to compute RMap(%otbsd ;

m base: R Map(BordR U=V V) — RMap(Bq, V):

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_q;

B — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bk_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

m hence, RMap(Bx_1, V)unit = RMap(Bx_1,V) if k —1>1;

XU—)U’V)
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How is this used in the framed GCH?

m By: bordisms have a Morse function with critical points of
index at most k;

®m want to compute RMap(%otbsd ;

m base: R Map(BordR U=V V) — RMap(Bq, V):

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_q;

B — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bk_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

m hence, RMap(Bx_1, V)unit = RMap(Bx_1,V) if k —1>1;

m combine: RMap(By, V) ~ RMap(By, V)unit;

XU—)U’V)
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How is this used in the framed GCH?

m want to compute RMap(%OtDSdXU_)U,V);

m base: RMap(%otbdeu_}U,V) = RMap(By, V);

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_1;

B — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(Bx, V) ~ RMap(Bx_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

m hence, RMap(Bx_1, V)unit = RMap(Bx_1,V) if k —1>1;

m combine: RMap(By, V) ~ RMap(By, V)unit;

m index 0 handles fall off: RMap(By, V)unit =
R Map(B_1, V) x {units F(0) — F(S9™H};
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How is this used in the framed GCH?

m base: RMap(%OtOSdXU_}U,V) = RMap(By, V);

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_1;

m — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bx_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

m hence, RMap(Bx_1,V)unit = RMap(Bx_1,V) if k —1 > 1;

m combine: RMap(By, V) ~ RMap(By, V)unit;

m index 0 handles fall off: RMap(By, V)unit =
R Map(B_1, V) x {units F(0) — F(S9™H};

m cylinders are source-contractible: B_; ~ const(B_1([0]));
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How is this used in the framed GCH?

m base: RMap(%OtOSdXU_}U,V) = RMap(By, V);

m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

m everything except for the index k handle is in By_1;

m — the value on the index k handle is unique up to a
contractible choice;

m hence, RMap(By, V) ~ RMap(Bx_1, V)unit;

m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;

m hence, RMap(Bx_1,V)unit = RMap(Bx_1,V) if k —1 > 1;

m combine: RMap(By, V) ~ RMap(By, V)unit;

m index 0 handles fall off: RMap(By, V)unit =
R Map(B_1, V) x {units F(0) — F(S9™H};

m cylinders are source-contractible: B_; ~ const(B_1 ([0]))

m get rid of the dth direction: B_1([0]) ~ Bordj~ I(R xU=u),
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How is this used in the framed GCH?

m base: RMap(%OtOSdXU_}U,V) = RMap(By, V);
m index k — 1 (counit) and index k (unit) handles form an
adjunction in By;
m everything except for the index k handle is in By_q;
m hence, RMap(Bx, V) ~ RMap(Bk_1, V)unit;
m exchange principle: the index k — 1 handle in Bx_1 maps to a
unitin V, if k—1>1;
m hence, RMap(Bk_1,V)unit =~ RMap(Bx_1,V) if k —1>1,
m combine: RMap(By, V) ~ RMap(Bo, V) unit;
m index 0 handles fall off: RMap(Bo, V)unit =~
R Map(B_1, V) x {units F(0) — F(S9™H};
m cylinders are source-contractible: B_; ~ const(B_1([0]));
. . . tg—1(RIxU—U)
m get rid of the dth direction: B_;([0]) ~ Bord | ;
® inductive assumption:
RMap(B_1,V) ~ RMap(tg_1(RY x U = U),V} ,);
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How is this used in the framed GCH?

base: RMap(%OtOSdXU_}U,V) = RMap(By, V);

index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

everything except for the index k handle is in By_1;

hence, RMap(Bxk, V) ~ RMap(Bx_1, V) unit;

exchange principle: the index k — 1 handle in B,_; maps to a
unitin V, if k—1>1;

hence, RMap(Bk_1,V)unit = RMap(Bx_1,V) if k —1>1;
combine: RMap(By, V) ~ RMap(By, V)unit;

m index 0 handles fall off: RMap(Bo, V)unit =~

R Map(B_1, V) x {units F(0) — F(S9™H};
cylinders are source-contractible: B_;1 ~ const(B_1([0]));
d
get rid of the dth direction: B_1(]0]) ~ %otbfj'_‘i(R xU=u),
RMap(B_1,V) ~ RMap(tg_1(RY x U = U),V} ,);
R Map(BoroR ¥ Y=V V) ~ RMap(BoroR” V=Y ev,V).
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How is this used in the framed GCH?

base: RMap(%OtOSdXU_}U,V) = RMap(By, V);

index k — 1 (counit) and index k (unit) handles form an
adjunction in By;

everything except for the index k handle is in By_1;

hence, RMap(Bxk, V) ~ RMap(Bk_1, V) unit;

exchange principle: the index k — 1 handle in B,_; maps to a
unitin V, if k—1>1;

hence, RMap(Bk_1,V)unit = RMap(Bx_1,V) if k —1>1;
combine: RMap(By, V) ~ RMap(By, V)unit;

m index 0 handles fall off: RMap(Bo, V)unit =~

R Map(B_1, V) x {units F(0) — F(S9™H};
cylinders are source-contractible: B_;1 ~ const(B_1([0]));
d
get rid of the dth direction: B_1(]0]) ~ %otbfj'_‘i(R xU=u),
RMap(B_1,V) ~ RMap(tg_1(RY x U = U),V} ,);
R Map(BoroR ¥ Y=V V) ~ RMap(BoroR” V=Y ev,V).
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Cutting out handles

Theorem (G.—P.)

For any d > 0 and 0 < k < d, the following squares are homotopy
cocartesian in CwCat?;’\;:
Ok1—— 0k 1—— Ok 1—— Bk

[ R T

Hk Hk > ﬁk Bk.

Hy: index k — 1 (counit) and index k (unit) handles;
Ok—1: index k — 1 (counit) handle;

H, O: same, with tails attached in the (d — 2)nd direction;
H, O: same, with tails attached in the (d — 1)st direction.

left two squares: insert cuts close to the handle;

right square: invoke the same proof as for locality, using a

new open cover.
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Nebulous visions of the future. . .

m Prequantum/classical: the book “Natural operations in
differential geometry” (Koldf-Michor—Slovdk) constructs a lot
of functorial field theories. . .

m Quantum: quantization and path integrals (for fully extended
FFTs) via the GCH;

m Further compute the right hand side of GCH via oco-Lie theory;
Explore possible value categories:

m geometric factorization algebras (Pefia, based on
Carmona—Flores—Muro);

m closed symmetric monoidal category with duals of complete
vector spaces (?).
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