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Summary. We prove a version of Frobenius descent with applications to the theory of
F-crystals and F-spans. Let X/S be a smooth morphism of schemes in characteristic p,
let FX/S : X/S → X ′/S be the relative Frobenius morphism, and let F : Z/T → Z′/T be
a lifting of FX/S , where Z,Z′, and T are p-torsion free p-adic formal schemes. If (E′,∇′)
is a p-torsion free coherent sheaf with integrable and quasi-nilpotent connection on Z′,
we show that any submodule of F ∗(E′) which is invariant under the induced connection
descends to E′. As a consequence, we show that if Φ : F ∗(E′,∇′) → (E,∇) is an F-span,
then the Mazur–Nygaard filtration on F ∗

X/S(E
′
X′) descends naturally to a filtration on

E′
X′ which satisfies Griffiths transversality. This generalizes an earlier result of the author,

which required that the Frobenius lift F be of a special form. We also investigate how the
Mazur–Nygaard filtration depends on the lifting F .

Let k be a field of characteristic p > 0 and W its Witt ring. Mazur’s fun-
damental work [2] (slightly generalized in [1]) showed that if Y/k is a smooth
projective scheme, then, under a mild hypothesis, the Hodge filtration Fil of
H

q
DR(Y/k) agrees with the “abstract” Hodge filtration defined by the Frobe-

nius endomorphism Φ of H q
cris(Y/W ). Namely, FiliH q

DR(Y/k) is the image
of Φ−1(piH

q
cris(Y/W )) under the canonical map

H
q
cris(Y/W ) → H

q
cris(Y/k)

∼= H
q
DR(Y/k).

Inspired by Mazur’s result, the current author attempted to formulate
an analog in which k is replaced by a smooth scheme S/k and in which
Y/k is replaced by a smooth and proper Y/S. The formalism of crystalline
cohomology then produces an “F-crystal” on S. Concretely this means that,
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2 A. Ogus

for each p-adic formal scheme T/W lifting S, we get an OT -module with
integrable connection (E,∇), and, for each lifting FT of FS , a horizontal
morphism

Φ̃ : F ∗
T (E,∇) → (E,∇).

Then one can follow Mazur to define a filtration on F ∗
T (E,∇) by

M iF ∗
T (E) := Φ̃−1(piE)

and then look at its image in F ∗
S(E/pE). However, this filtration is horizon-

tal, and the analog of the Hodge filtration we seek lives in E/pE rather than
F ∗
S(E/pE) and should satisfy Griffiths transversality rather than horizontal-

ity. To obtain it, one must show that the filtration M
q above descends to a

filtration A
q of E and that A q is Griffiths transversal. In [3], this is shown to

hold assuming that the Frobenius lift FT satisfies a hypothesis: there should
exist local coordinates (t1, . . . , tr) such that F ∗

T (ti) = tpi for all i. Recently K.
Kato has pointed out that this hypothesis seems to be superfluous. This note
is my attempt to understand his comment, for which I am grateful. I would
also like to thank the referee for a careful reading of the first submission of
this manuscript and for some helpful suggestions about the exposition.

To state our result, we change the setup slightly. Let X/S be a smooth
morphism of schemes in characteristic p, and let FX/S : X → X ′ be the
relative Frobenius morphism. Suppose that T is a p-torsion free p-adic formal
scheme whose reduction modulo p is S and that F : Z → Z ′ is a lifting of
FX/S , where Z/T and Z ′/T are formally smooth formal liftings of X/S and
X ′/S respectively. (All schemes and formal schemes will be assumed to be
noetherian.)

Our main goal is the following result.

Theorem 1. Let (E′,∇′) be a p-torsion free coherent sheaf with inte-
grable and quasi-nilpotent connection on Z ′/T . Suppose that E is a submod-
ule of F ∗E′ which is invariant under the induced connection on F ∗E′. Let
η : E′ → F∗F

∗E′ be the adjunction map. Then the natural map

F ∗(η−1(F∗E)) → E

is an isomorphism.

Since F is faithfully flat, the most natural way to attack this problem
would be to show that E is necessarily invariant under the descent data for
F ∗E′. In fact, as we explain later, the result can be deduced from Shiho’s
Theorem 3.1 in [5] which uses related, but different, descent data. Here we
follow a different approach, based on Cartier descent, working in the context
of F-crystals, which in fact is where the above question found its origin.

We recall some notions from [3]. Let F : Z → Z ′ be a lifting of FX/S

as above. Then an F -span on X/S is given by a pair of p-torsion free OZ-
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modules with quasi-nilpotent integrable connection (E′,∇′) on Z ′/W and
(E,∇) on Z/W together with an injective homomorphism

Φ̃ : F ∗(E′,∇′) → (E,∇)

whose cokernel is killed by pn for some n > 0. (Note that this is less data
than that of an F -span, since now the source and target of Φ̃ are decoupled.)

We have a commutative diagram:

E′ η
- F∗F

∗E′

F∗E

F∗Φ̃

?

Φ

-

These maps and the filtrations they lead to depend on the choice of the
Frobenius lift, and when we feel it necessary we will indicate this by adding
a subscript.

Definition 2. If Φ̃ : F ∗(E′,∇′) → (E,∇) is an F -span, let

M iF ∗E′ := Φ̃−1(piE),

AiE′ := Φ−1(piE) = η−1(M iF ∗E′),

M [i]F ∗E′ :=
∑
j

p[j]M i−jF ∗E′,

A[i]E′ :=
∑
j

p[j]Ai−jE′.

We shall show in Proposition 8 that the filtration A[ q], unlike A
q, is

independent of the lifting F , allowing a conceptual simplification of some of
the constructions of [4].

In what follows we shall often write (Ẽ, ∇̃) for F ∗(E′,∇′). Note that
E/pE = EX , the restriction of E to X, and similarly for E′ and Ẽ. The
map p−iΦ̃ induces a morphism M iẼ → E; we denote by N−iE its image.
Thus we find an isomorphism

Φ̃i : M
iẼ → N−iE.

The proof of the following proposition relating the associated graded modules
of these filtrations is a straightforward consequence of the definitions and is
omitted.

Proposition 3. The filtrations M ·Ẽ, M [ q]Ẽ are stable under ∇̃, and
the filtration N

q
E is stable under ∇. The filtrations A

q
E′ and A[ q]E′ satisfy

Griffiths transversality. The isomorphisms Φ̃i : M
iẼ → N−iE are compatible
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with the connections, and induce isomorphisms

(griM Ẽ, ∇̃) → (N−iEX ,∇),

(griM ẼX , ∇̃) → (gr−i
N EX ,∇).

Theorem 4. With the notation above, and for every i, the following
statements hold:

(1) The natural map F ∗(AiE′) → M iẼ is an isomorphism.
(2) The natural maps F ∗(AiE′

X) → M iẼX and AiE′
X → (M iEX)∇ are

isomorphisms.
(3) The natural maps F ∗griAE

′
X → griM ẼX and griAE

′
X → (griM ẼX)∇̃ are

isomorphisms.
(4) The natural map F ∗griAE

′ → griM Ẽ is an isomorphism.

Proof. We prove these statements together by induction on i. Suppose
i = 0. Then statement (1) is true by definition, and it follows that F ∗E′

X
∼=

ẼX . Cartier descent implies that E′
X = (F ∗E′

X)∇̃. This proves (2).
Since A1E′ = η−1(M1Ẽ) and contains pE′, it follows that

A1E′ = E′ ×ẼX
M1ẼX ,

and hence
A1E′

X = E′
X ×ẼX

M1ẼX .

Since E′
X ×ẼX

M1ẼX = (M1ẼX)∇ and since the p-curvature of M1ẼX

vanishes, it follows by Cartier descent that the natural map F ∗(A1E′
X) →

M1ẼX is an isomorphism. Then statement (2) for i = 0 implies that the map
F ∗gr0AE

′ → gr0M Ẽ is an isomorphism. By Cartier descent again, it follows
that the map gr0AE

′ → (gr0M Ẽ)∇̃ is an isomorphism. This proves (3). Since
gr0AE

′ = gr0AE
′
X and gr0M Ẽ = gr0M ẼX , (4) follows as well.

For the induction step, assume that the statements hold for all j < i. We
have a commutative diagram with exact rows:

0 - F ∗AiE′ - F ∗Ai−1E′ - F ∗gri−1
A E′ - 0

0 - M iẼ

?
- M i−1Ẽ

?
- gri−1

M Ẽ

?
- 0

Statement (1) for i− 1 implies that the middle vertical arrow is an isomor-
phism and statement (4) for i− 1 implies that the right vertical arrow is an
isomorphism. Thus the left vertical arrow is also an isomorphism, proving
statement (1) for i.
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We also have a commutative diagram with exact rows:

0 - F ∗AiE′
X

- F ∗Ai−1E′
X

- F ∗gri−1
A E′

X
- 0

0 - M iẼX

?
- M i−1ẼX

?
- gri−1

M ẼX

?
- 0

Statements (2) and (3) for i − 1 imply that the two vertical maps on the
right are isomorphisms, and consequently so is the map on the left. Since
the p-curvature of M iẼX vanishes, statement (2) holds for i.

The main difficulty is in the following lemma, which corresponds to [3,
2.2.1] and will allow us to prove statement (3).

Lemma 5. If the statements of Theorem 4 hold for all j < i, then the
map griAE

′
X → F∗gr

i
M ẼX is injective.

Proof. Suppose a′ ∈ AiE′ lifts an element of the kernel of the map in the
lemma. Then η(a′) = pb + c, with c ∈ M i+1Ẽ and b ∈ Ẽ. Suppose that in
fact

η(a′) = pjb+ c

with c ∈ M i+1Ẽ and j > 0. Since η(a′) ∈ M iE, it follows that b ∈ M i−jẼ.
Note that if j > i, in fact a′ ∈ Ai+1E′ and we are done. On the other hand,
if 0 < j ≤ i, we calculate

Φ̃(η(a′)) = pjΦ̃(b) + Φ̃(c),

Φ̃i(η(a
′)) = Φ̃i−j(b) + pΦ̃i+1(c),

∇Φ̃i(η(a
′)) = ∇Φ̃i−j(b) + p∇Φ̃i+1(c).

Since ∇Φ̃i(η(a
′))=Φ̃i(∇̃(η(a′))) is divisible by p, the same is true of ∇Φ̃i−j(b).

We saw in Proposition 3 that the map Φ̃i−j induces a horizontal isomorphism
gri−j

M ẼX
∼= grj−i

N EX , and we conclude that the image of b in gri−j
M ẼX is

horizontal. Statement (3) for i − j says that gri−j
A E′

X
∼= (gri−j

M ẼX)∇̃, so
there exist b′ ∈ Ai−jE′, b′′ ∈ Ẽ, and b′′′ ∈ M i−j−1Ẽ such that

b = η(b′) + b′′ + pb′′′.

Then
η(a′ − pjb′) = pjb+ c− pjη(b′) = pjb′′ + pj+1b′′′ + c.

Since pjb′′ ∈ M i+1Ẽ, we can set a′′ := a′ − pjb′ and c′ = pjb′′ + c, so now
η(a′′) = pj+1b′′′+ c′. Continuing by induction, we see that eventually a′ may
be chosen to lie in Ai+1E′

X .

Lemma 5 implies that Ai+1E′
X = AiE′

X ×M iẼX
M i+1ẼX . Since AiE′

X =

(M iẼX)∇̃, it follows that Ai+1E′
X = (M i+1ẼX)∇̃, and since the p-curvature
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of ∇̃ on M i+1ẼX vanishes, the map F ∗(Ai+1E′
X) → M i+1ẼX is an isomor-

phism. Thus (2) holds for i+ 1 and (3) holds for i.
Finally, we have a commutative diagram with exact rows:

0 - F ∗gri−1
A E′ [p]

- F ∗griAẼ - F ∗griAE
′
X

- 0

0 - gri−1
M Ẽ

?
[p]
- griM Ẽ

?
- griM ẼX

?
- 0

The left vertical arrow is an isomorphism by the induction assumption and
the right vertical arrow is an isomorphism by (3). It follows that the middle
arrow is an isomorphism, proving (4) and completing the proof of Theo-
rem 4.

It is fairly straightforward to transport our study of F -spans to the sit-
uation of Theorem 1.

Proof of Theorem 1. First suppose that there is a natural number n
such that pnF ∗E′ ⊆ E. Then multiplication by pn induces a horizontal
map Φ̃ : F ∗E′ → E, defining an F -span, and E = MnF ∗E′. Since AnE′ =
η−1(MnF ∗E′), statement (1) of Theorem 4 tells us that the natural map
F ∗(η−1(E)) → E is an isomorphism.

For the general case, let En := E + pnF ∗E′ for each n, each of which is
also invariant under ∇̃, and let E′

n := η−1(En) and E′′ := η−1(E). We claim
that in fact

E′′ = ∩{E′
n : n ≥ 0}.

Indeed, E′/E′′ ⊆ (F ∗E′)/E, and the Artin–Rees lemma implies that for
some r > 0,

(pn+rẼ/E) ∩ (E′/E′′) ⊆ pnE′/E′′′

for all n ≥ 0. Then En+r ∩ E′ ⊆ E′′ + pnE′ for all n ≥ 0. Taking the
intersection over n, we find that

E′′ ⊆
⋂

{E′
n : n ≥ 0} =

⋂
{E′ ∩ En : n ≥ 0} ⊆

⋂
{E′′ + pnE′ : n ≥ 0}.

This proves our claim, since E′′ is is necessarily p-adically closed in E′, by
the coherence assumption.

Since F is finite and flat, the natural map

F ∗E′′ = F ∗
(⋂

{E′
n : n ≥ 0}

)
→

⋂
{F ∗E′

n : n ≥ 0}

is an isomorphism. The previous paragraph tells us that each mapF ∗E′
n → En

is an isomorphism, so we conclude that the map

F ∗E′′ →
⋂

{En : n ≥ 0}

is an isomorphism. Since E is aso p-adically closed, this proves the result.
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Let us now review Shiho’s Theorem 3.1 of [5] and explain how it implies
Theorem 1. The theorem constructs an equivalence CF from the category of
modules with integrable nilpotent p-connection on Z ′/T to the category of
modules with integrable nilpotent connection on Z/T as follows. Recall that
there is a unique map

ζF : Ω1
Z′/S → F∗Ω

1
Z/S

such that pζF is the differential of F . Then if (E′, θ′) is a module with
p-connection on Z ′, it is easy to verify that there is a unique connection ∇̃
on Ẽ := F ∗E′ such that ∇̃ ◦ η = (ζF ⊗ η) ◦ θ′. Shiho proves that the functor
CF taking (E′, θ′) to (Ẽ, ∇̃) is an equivalence by studying the descent data
for the PD-thickenings which correspond to the crystalline interpretations of
these categories.

To apply Shiho’s result, suppose that (E′,∇′) is a module with integrable
nilpotent connection on Z ′/T . Then θ′ := p∇′ is a nilpotent p-connection
on E′, and

(ζF ⊗ η) ◦ θ′ = (pζF ⊗ η) ◦ ∇′ = (F ∗ ⊗ η) ◦ θ′,

Thus, the connection ∇̃ in Shiho’s correspondence is just the Frobenius pull-
back connection on Ẽ := F ∗(E′). Let E ⊆ Ẽ be a submodule which is invari-
ant under ∇̃. We claim that the induced connection on E is also nilpotent.
To see this, let N iE := piẼ ∩ E, which is also invariant under ∇̃, and note
that the inclusion map induces an injection griNE → piẼ/pi+1Ẽ ∼= Ẽ/pẼ. It
follows that the p-curvature of each griNE vanishes. On the other hand, we
have a surjection griNE → (N iE + pE)/(N i+1 + pE), so the p-curvature of
each of the latter also vanishes. By Artin–Rees, there is a natural number r
such that prẼ ∩ E ⊆ pE. Thus the images of N iE in E/pE define a finite
and exhaustive filtration of E/pE, and so the connection on E is indeed
nilpotent. Then the full faithfulness of CF implies that there is a submodule
E′′ of E′, stable under θ′ := p∇, such that F ∗E′′ = E ⊆ Ẽ. Necessarily
E′ ⊆ η−1(E), and since F ∗E′ ∼= E, it follows that E′ = η−1(E), as claimed.

Let us gather some implications of these results for the filtrations in
Definition 2 associated to an F -span.

Proposition 6. If Φ̃ : F ∗E′ → E is an F -span, then

F ∗(AiE′) → M iF ∗E′,

F ∗(A[i]E′) → M [i]F ∗E′,

AiE′ → η−1(M iF ∗E′),

A[i]E′ → η−1(M [i]F ∗E′)

are isomorphisms.
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Proof. The third assertion is true by definition, and statement (1) of
Theorem 4 proves the first equation. Since F is flat, the natural maps
F ∗Ai

FE
′ → F ∗E′ and F ∗A

[i]
F E′ → F ∗E′ are injective, and moreover

F ∗A
[i]
F E′ =

∑
j

p[i−j]F ∗Ai−j
F E′ = M

[i]
F F ∗E′.

This is the second case of the proposition, which implies the fourth, by the
lemma below.

Lemma 7. If A is a coherent OX′-submodule of E′ and M is the image
of F ∗A in F ∗E′, then A = η−1

F (F∗M).

Proof. Since F is flat, the map F ∗A → F ∗E′ is injective. Let A′ :=
η−1
F (M). Then A′ is an OX′-submodule of E′ and A ⊆ A′. We have injections
F ∗A → F ∗A′ → M whose composition is an isomorphism. Then the map
F ∗A → F ∗A′ is an isomorphism, and since F is faithfully flat, A = A′.

Let us now discuss how these filtrations vary with the choice of a Frobe-
nius lift. If G is another lifting of FX/S , the connection ∇′ furnishes a hori-
zontal isomorphism

εG,F : G∗(E′,∇′) → F ∗(E′,∇′).

and hence a map
Φ̃G : G∗(E′,∇′) → (E,∇),

making the diagram

G∗E′ Φ̃G - E

F ∗E′

ε

?

Φ̃F

-

commutative. It follows that the isomorphism ε takes M i
GG

∗E′ isomorphi-
cally to M i

FF
∗E′, and that N−i

F E = N−i
G E.

The diagram

E′ ηG- G∗G
∗E′ - G∗E

G∗F
∗E′

ε

?
G∗Φ̃F

-

shows that

(1) ΦG = G∗(Φ̃F ) ◦ εG,F .
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However, it need not be the case that Ai
FE

′ = Ai
GE

′; we give an example
below. The following proposition partially remedies this situation.

Proposition 8. Let F and G be liftings of FX/S to maps Z → Z ′. Then
A

[i]
F E′ = A

[i]
GE′ for all i.

Proof. For simplicity we write the rest of the proof assuming that X is a
curve and that it admits a local coordinate t. Let ∂ := ∇′(d/dt) and suppose
that G∗(t) = F ∗(t) + pg. Then if e′ ∈ E′,

(2) ε(ηG(e
′)) =

∑
j

p[j]gjηF (∂
j(e′)).

Note that since the connection ∇′ is nilpotent, the sequence ∂j(e′) converges
to zero.

To prove that A
[i]
GE′ ⊆ A

[i]
F E′ for each i, it will suffice to prove that

Ai
GE

′ ⊆ A
[i]
F E′ for each i. We work by induction on i. Assume that e′ ∈

Ai
GE

′. Then ηG(e
′) ∈ M i

GG
∗E′ and hence ε(ηG(e

′)) ∈ M i
FF

∗E′. Then

ηF (e
′) = ε(ηG(e

′))−
∑
j>0

p[j]gjηF (∂
j(e′)).

By the Griffiths transversality of the filtration A
q
G (proved in Proposition 3),

each ∂j(e′) lies in Ai−j
G E′, hence the induction hypothesis implies that ∂j(e′)

∈ A
[i−j]
F E′ when j > 0. Then p[j]∂j(e′) ∈ A

[i]
F E′, and we conclude that

ηF (e
′) ∈ F ∗(A

[i]
F E′)+M i

FF
∗E′ = M

[i]
F F ∗E′ by the second equation of Propo-

sition 6. Its last equation then implies that e′ ∈ A
[i]
F E′.

Example. Let X := Spec k[t, t−1], let Z be the p-adic completion of
SpecW [t, t−1] and let F send t to tp. Let E be the free OZ-module with
basis (e0, . . . , ep−1), let θ be the endomorphism of E sending ei to ei−1 and
e0 to zero, and let

∇ei = θ(ei)dt/t.

Recall that
log(1 + x) = x− x2/2 + x3/3 + · · · .

For each i, we have a formal horizontal section

ẽi := e−θ log t(ei)

:= ei +
(− log t)ei−1

1!
+

(− log t)2ei−2

2!
+ · · ·+ (− log t)i

i!
e0.

Then

ei = eθ log t(ẽi)

= ẽi +
(log t)ẽi−1

1!
+

(log t)2ẽi−2

2!
+ · · ·+ (log t)iẽ0

i!
.
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Let (E′,∇′) = (E,∇) and define

Φ̃F : F ∗(E′,∇′) → (E,∇) : e′i 7→ piei.

It is immediate to check that this map is horizontal
Now suppose that G is another lift of FX , sending t to tp + pg. Let

u := (1 + pt−pg), so that tp + pg = tpu. Note that log u ∈ pW{t, t−1}, say
log u = pδ. That is,

δ = t−pg − (p/2)t−2pg2 + (p2/3)t−3pg3 + · · · .

To calculate ε := εG,F , we use the fact that it acts as the identity on
horizontal sections. Since G∗(t) = tpu, we have

ε(G∗(ei)) = ε(G∗(e(log t)θẽi) = elog(t
pu)θε(G∗(ẽi)) = elog(t

pu)θF ∗(ẽi)

= elog(t
pu)θF ∗(e−(log t)θ)(ei) = elog(t

pu)θ(e−(log tp)θ)(ei) = e(log u)θei

= ei + (log u)ei−1 + (log u)2/(2!)ei−2 + · · ·+ (log u)i/i!e0

= ei + pδei−1 + p[2]δ2ei−2 + · · ·+ p[i]δie0.

After tensoring with Q, we can write

ΦG(ei) = Φ̃F (ε(G
∗(ei)))

= pi(ei + δei−1 + δ[2]ei−2 + · · ·+ δ[i]e0).

Thus, ei ∈ Ai
GE

′ if i < p, but ΦG(ep) = pp(· · · ) + (pp−1/(p− 1)!)δpe0, which
might not belong to Ap

GE
′.

Take for example p = 3 and g = t3. Then u = 4, so

log u = log(1 + 3) = 3− 32/2 + 33/3 + · · · ≡ 3 (mod 9),

and hence δ ≡ 1 (mod 3). Then

ΦG(e0) = e0,

ΦG(e1) = 3e1 + 3δe0,

ΦG(e2) = 9e2 + 9δe1 + 9
δ2e0
2

,

ΦG(e3) = 27e3 + 27δe2 + 27
δ2e1
2

+ 27
δ3e0
6

.

Thus e′3 does not belong to A3
GE

′, although it does belong to A3
FE

′.
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