A Higgs Correspondence in Characteristic p

Arthur Ogus Mainz, September 24, 2012

A Higgs Correspondence in Characteristic p

Arthur Ogus Mainz, September 24, 2012 Joint with V. Vologodsky, 2001--2005

Appears in Pub. I.H.E.S., 2008

Toy Model for Simpson's and Faltings' theories

New work by Shing, Xin, Zuo, Gros, Le Stum, Shiho.....

Outline

- Quick Review
- The Cartier Transform
- Level One
- The Fundamental Extension
- The General Case

Riemann-Hilbert

 X/\mathbb{C} smooth projective scheme

Write $\pi_1(X)$ for $\pi_1(X_{an})$

$$Rep.(\pi_1(X))$$
 ———— $MIC.(X)$

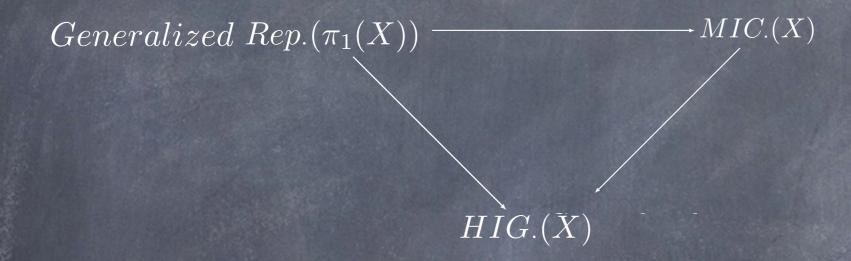
Simpson

$$Rep.(\pi_1(X))$$
 \longrightarrow $MIC.(X)$ $HIG.(X)$

Somewhere: Variations of Hodge structures

Faltings

X/K smooth projective scheme, where K is a $p\text{-}\operatorname{adic}$ field

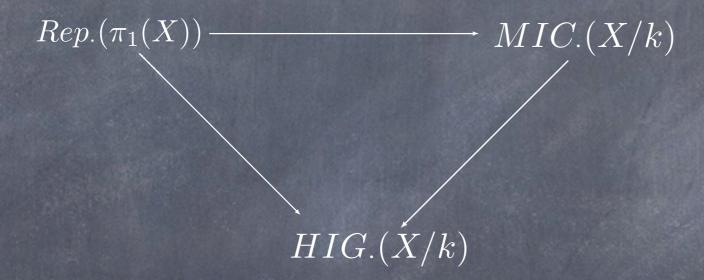


Somewhere:

Fontaine-modules on X, representations

O-Vologodsky

X/k smooth scheme, where k has characteristic p, (with a lifting \tilde{X} of $X \mod p^2$.)



Somewhere: Fontaine modules on \tilde{X}

Review

- Cartier isomorphism
- De Rham decomposition (Deligne-Illusie)

Notation and setup

S scheme in characteristic p.

 \tilde{S} flat over $\mathbf{Z}/p^2\mathbf{Z}$, lifting S

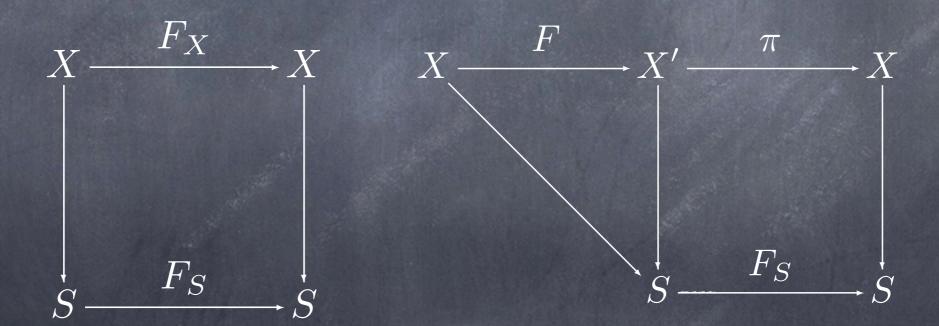
X/S smooth morphism

S scheme in characteristic p.

 \tilde{S} flat over $\mathbf{Z}/p^2\mathbf{Z}$, lifting S

X/S smooth morphism

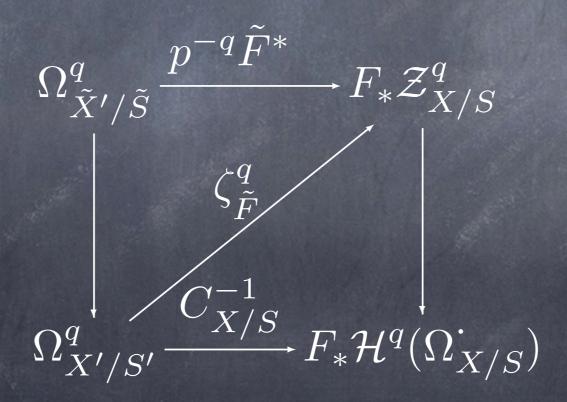
$$X' := X \times_{F_S} S$$



Cartier Isomorphism

$$C_{X/S}^{-1}: \Omega_{X'/S}^q \stackrel{\cong}{\longrightarrow} \mathcal{H}^q(F_*\Omega_{X/S}^{\cdot})$$

If $\tilde{F}: \tilde{X} \to \tilde{X}'$ lifts F, then $\tilde{F}^*: \Omega^q_{\tilde{X}'/\tilde{S}} \to \Omega^q_{\tilde{X}/\tilde{S}}$ is divisible by p^q , and we get



Deligne-Illusie

If $\dim(X/S) < p$, a lifting \tilde{X}'/\tilde{S} of X' gives an isomorphism in D(X'/S):

$$C_{\tilde{X}'/S}: (\Omega_{X'/S}, 0) \sim F_*(\Omega_{X/S}, d)$$

hence for every n:

$$\bigoplus_{i+j=n} H^i(X', \Omega^j_{X'/S}) \cong H^n_{DR}(X/S)$$

The Cartier Transform

Theorem: A lifting \tilde{X}'/\tilde{S} of X'/S induces an equivalence of categories:

$$C_{\tilde{X}'/\tilde{S}} : MIC_m(X/S) \longrightarrow HIG_m(X'/S)$$
 if $m < p$.

Variant: An equivalence of tensor categories:

$$C_{\tilde{X}'/\tilde{S}}: MIC^{\gamma}(X/S) \longrightarrow HIG^{\gamma}(X'/S)$$

What does "level m" mean?

HIG. means nilpotent Higgs fields: There exists an increasing ψ -stable filtration N. with $\mathrm{Gr}^N_{\boldsymbol{\cdot}}(\psi)=0$.

MIC. means *nilpotent* connections: There exists an increasing ∇ -stable filtration N such that $\mathrm{Gr}^N(\nabla)$ is p-integrable.

Better: Add the filtration to the data. "Level m" means $N_{-1}E=0$, $N_mE=E$.

The " γ " means divided powers.

p -integrability

$$T_{X/S} \to T_{X/S} : D \mapsto D^{(p)}$$

(pth iterate of a derivation)

$$(E, \nabla) \in MIC(X/S) \quad \nabla: T_{X/S} \to \operatorname{End}_{\mathcal{O}_S}(E)$$

Def: ∇ is "p-integrable" if $\nabla^p_D = \nabla_{D^{(p)}}$ for all D.

Thm: iff $(F^*(E^{\nabla}), d \otimes \mathrm{id}) \to (E, \nabla)$ is an isomorphism.

p-curvature

$$\psi: T_{X/S} \to \operatorname{End}_{\mathcal{O}_S}(E): D \mapsto \nabla_D^p - \nabla_{D^{(p)}}$$

In fact, $[\psi_{D_1},\psi_{D_2}]=0$ and

$$\psi: T_{X/S} \to F_{X*}(\operatorname{End}_{\mathcal{O}_X}(E, \nabla))$$

$$\psi: E \to E \otimes F^*(\Omega^1_{X'/S})$$

"F-Higgs field"

Differential Operators

 $D_{X/S}$ is the sheaf of PD differential operators on X/S (generated by $T_{X/S}$ over \mathcal{O}_X).

$$D \mapsto D^p - D^{(p)} : T_{X/S} \to Z_{D_{X/S}}$$

$$c: S'T_{X'/S} \cong F_*(Z_{D_{X/S}})$$

Theorem: $D_{X/S}$ is an Azumaya algebra of rank p^{2d}

Level one

$$C_{\tilde{X}'/\tilde{S}}^{-1} \colon HIG_1(X'/S) \to MIC_1(X/S)$$
 For example

$$EXT^1_{HIG}(\mathcal{O}_{X'}, \mathcal{O}_{X'}) \stackrel{\cong}{\longrightarrow} EXT^1_{MIC}(\mathcal{O}_X, \mathcal{O}_X)$$

Especially:

$$H^0(X', \Omega^1_{X'/S}) \longrightarrow EXT^1_{MIC}(\mathcal{O}_X, \mathcal{O}_X)$$

The Universal Extension

- "Universal" element of MIC1(X/S)
- Similar to construction of universal extension in log geometry (Kato-Nakayama);

Theorem: Given \tilde{X}'/\tilde{S} , there exists a natural object of $MIC_1(X/S)$:

$$\Xi := 0 \to (\mathcal{O}_X, d) \to (\mathcal{E}_{\tilde{X}'/\tilde{S}}, \nabla) \to (F^*\Omega^1_{X'/S}, d) \to 0$$

such that

ullet The boundary map ∂ on cohomology

$$H^0(X', \Omega^1_{X'/S}) = H^0_{DR}(X, F^*\Omega^1_{X'/S}) \to H^1_{DR}(X/S)$$

is the Deligne-Illusie map (up to sign).

 \bullet The boundary map ∂ on cohomology sheaves induces $-C_{X/S}^{-1}$

$$\mathcal{H}^0_{DR}(F^*\Omega^1_{X'/S}) \cong \Omega^1_{X'/S} \to \mathcal{H}^1_{DR}(\mathcal{O}_X).$$

$$\Xi := 0 \to (\mathcal{O}_X, d) \to (\mathcal{E}_{\tilde{X}'/\tilde{S}}, \nabla) \to (F^*\Omega^1_{X'/S}, d) \to 0$$

• The p-curvature ψ induces the identity map $F^*\Omega^1_{X'/S} \to F^*\Omega^1_{X'/S}.$

• Its class in $Ext^1(F^*\Omega^1_{X'/S}, \mathcal{O}_X) \cong H^1(F^*T_{X'/S})$ is the obstruction ξ to finding a lift \tilde{F} of F.

Build it:

Choose local lifts $\tilde{F}\colon \tilde{U} \to \tilde{U}'$, $\zeta_{\tilde{F}}\colon \Omega^1_{X'/S} \to F_*(Z^1_{X/S})$

On U, let $\mathcal{E}_{\tilde{X}'/\tilde{S}}:=\mathcal{O}_X\oplus F^*\Omega^1_{X'/S}$

and $\nabla(f,\omega')=(df-\zeta_{\tilde{F}}(\omega'),0)$

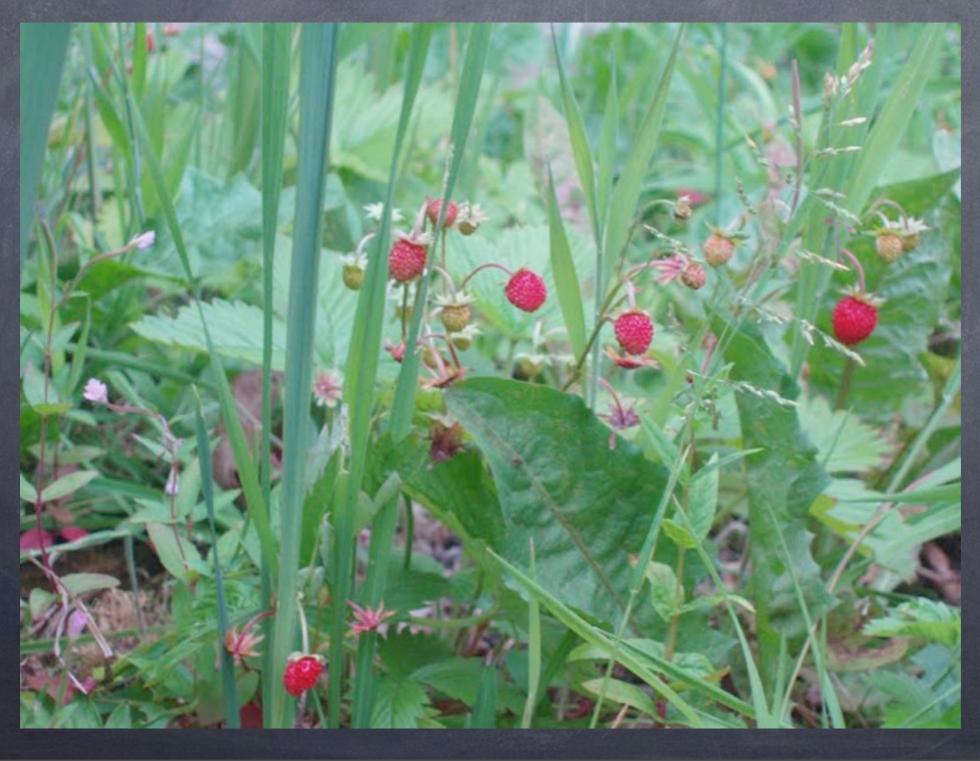
Adjust gluing: On $U_1\cap U_2$ have $\tilde{F}_2-\tilde{F}_1=\xi_{21}\in F^*T_{X'/S}.$ Use

$$\exp\begin{pmatrix}0&\xi_{21}\\0&0\end{pmatrix}$$

to glue.

OR:

Find it in Nature



Let $\mathcal{L}_{ ilde{X}'/S}$ be the sheaf of Frobenius liftings

$$U \mapsto \{(\tilde{U}, \tilde{F})\}/isom$$

Naturally an $F^*T^1_{X'/S}$ -torsor, whose class $\xi \in H^1(X,F^*(T_{X'/S}))$ is the obstruction to lifting \tilde{F} .

Represented by a relatively affine X-scheme

$$\mathbf{L}_{\tilde{X}'/\tilde{S}} := \operatorname{Spec}_X(\mathcal{A}_{\tilde{X}'/\tilde{S}})$$

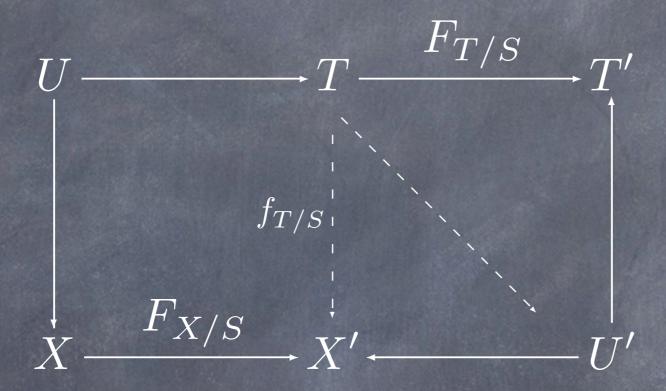
 $\mathcal{E}_{ ilde{X}'/ ilde{S}}\subseteq \mathcal{A}_{ ilde{X}'/ ilde{S}}$ the affine functions

$$0 \to \mathcal{O}_X \to \mathcal{E}_{\tilde{X}'/\tilde{S}} \to F^*\Omega^1_{X'/S} \to 0$$

$$\varinjlim S^n \mathcal{E}_{\tilde{X}'/\tilde{S}} \cong \mathcal{A}_{\tilde{X}'/\tilde{S}}$$

Natural Crystal Stucture

For any $T \in Cris(X/S)$, we have



If E' is a sheaf on X', then $\{f_{T/S}^*E': T\in Cris(X/S)\}$ is a crystal on X/S, corresponding to the Frobenius descent connection on F^*E'

Let $\mathcal{L}_{ ilde{X}'/S,T}$ be the sheaf of liftings of $f_{T/S}$

$$U \mapsto \{(\tilde{T}, \tilde{f}_{T/S})\}/isom$$

Sheaf, functorial in T because dF = 0.

Makes $\mathcal{L}_{\tilde{X}'/\tilde{S}}$, $\mathcal{A}_{\tilde{X}'/\tilde{S}}$, and $\mathcal{E}_{\tilde{X}'/\tilde{S}}$ into crystals.

Calculate ∇ and ψ of $\mathcal{L}_{\tilde{X}'/\tilde{S}}$ $\mathcal{E}_{\tilde{X}'/\tilde{S}}$, and $\mathcal{A}_{\tilde{X}'/\tilde{S}}$

Key Calculation

$$\nabla: \mathcal{L}_{\tilde{X}'/\tilde{S}} \to F^*T_{X'/S} \otimes \Omega^1_{X/S}$$

$$\to \operatorname{Hom}(F^*\Omega^1_{X'/S}, \Omega^1_{X/S})$$

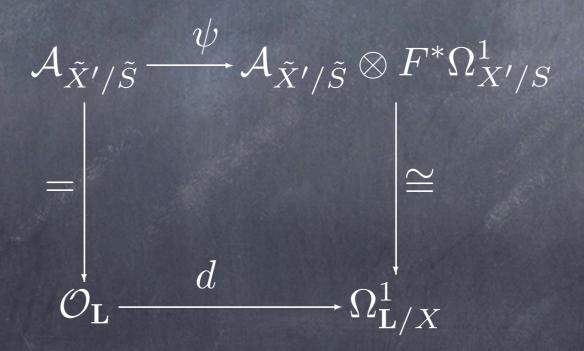
Claim:
$$\nabla(\tilde{F}) = \zeta_{\tilde{F}} \in \operatorname{Hom}(F^*\Omega^1_{X'/S}, \Omega^1_{X/S})$$

$$\tilde{T} := \tilde{U} \times \tilde{U}$$

$$\nabla(\tilde{F}) = p_{2}^{*}(\tilde{F}) - p_{1}^{*}(\tilde{F})
= \tilde{F}^{*} \circ (p_{2}^{*} - p_{1}^{*})
= p^{-1}\tilde{F}^{*} \circ (p_{2}^{*} - p_{1}^{*})
= \zeta_{\tilde{F}} \circ d$$

Get our desired properties!

Nicer formula for p-curvature:



More:

This action of $S^{\boldsymbol{\cdot}}T_{X'/S}$ on $\mathcal{A}_{\tilde{X}'/\tilde{S}}$ extends to an action of $\Gamma^{\boldsymbol{\cdot}}T_{X'/S}$.

Natural filtration N., with $\Gamma^i T_{X'/S} \times N_j \mathcal{A}_{\tilde{X}'/\tilde{S}} \mapsto N_{j-i} \mathcal{A}_{\tilde{X}'/\tilde{S}}$.

Object of $MIC_{\cdot}^{\gamma}(X/S)$, the category of admissibly filtered $D_{X/S}^{\gamma}$ -modules.

$$D_{X/S}^{\gamma} := \Gamma T_{X'/S} \otimes_{S} T_{X'/S} F_* D_{X/S}.$$

The Cartier Transform

Theorem: A lifting \tilde{X}'/\tilde{S} induces equivalence of tensor categories:

$$C_{\tilde{X}'/\tilde{S}}: MIC^{\gamma}(X/S) \longrightarrow HIG^{\gamma}(X'/S)$$

$$(E, \nabla, N) \mapsto (E', \psi', N)$$

$$E' := (E \otimes \mathcal{A}_{\tilde{X}'/\tilde{S}})^{(\nabla, \gamma)}$$

$$\psi' := \mathrm{id} \otimes \psi_{\mathcal{A}} = \mathrm{id} \otimes d_{\mathcal{A}/X}$$

$$C^{-1}_{\tilde{X}'/\tilde{S}}: HIG^{\gamma}(X'/S) \to MIC^{\gamma}(X/S)$$

$$(E', \psi', N) \mapsto (E, \nabla, N)$$

$$E := (E' \otimes \mathcal{A}_{\tilde{X}'/\tilde{S}})^{(\psi_{tot},\gamma)}$$

$$\nabla := \mathrm{id} \otimes \nabla_{\mathcal{A}}$$

Methods of Proof

- Solve the differential equations
- Use the Azumaya property of the ring Dx/s
 - \odot The dual of $A_{X'/S}$ is a splitting module

Cohomology

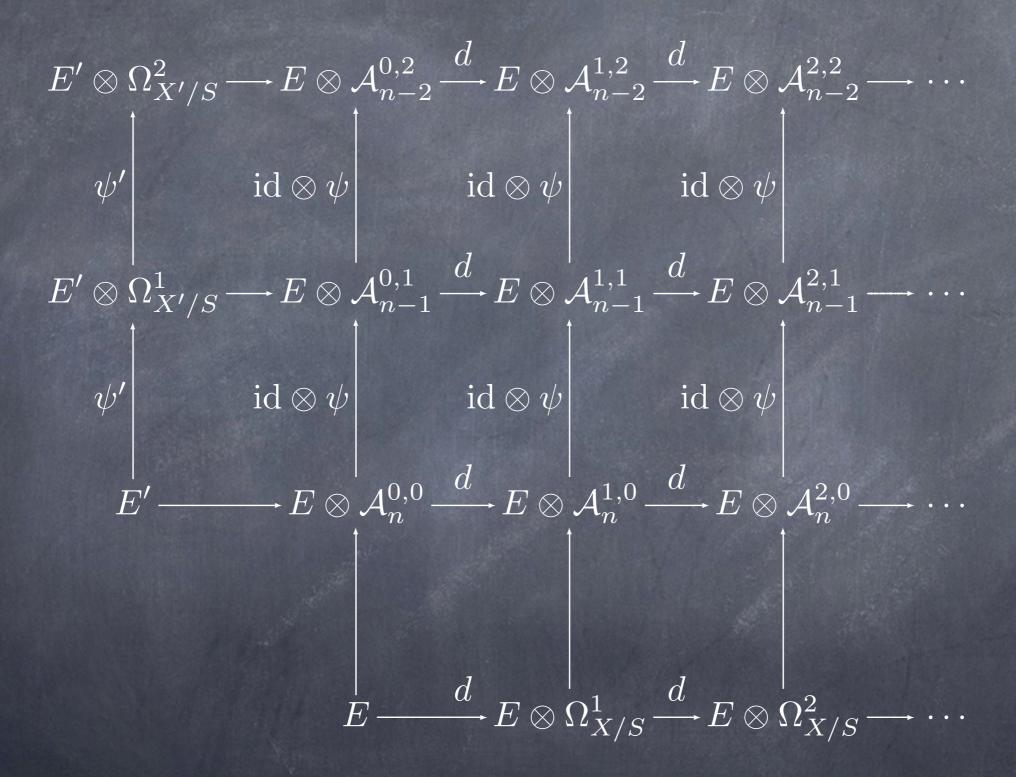
If $(E', \psi') := C_{\tilde{X}'/\tilde{S}}(E, \nabla)$, there are canonical quasi-isomorphisms:

$$\mathcal{A}_{\tilde{X}'/\tilde{S}}^{i,j} = \mathcal{A}_{\tilde{X}'/\tilde{S}} \otimes F^* \Omega_{X'/S}^i \otimes \Omega_{X/S}^j$$

$$(E \otimes \Omega_{X/S}^i, d) \qquad (E' \otimes \Omega_{X'/S}^i, \psi')$$

$$\mathcal{A}_{\tilde{X}'/\tilde{S}}^{i,i}(E)$$

if the level m of E is less than p-d.



Summary

- \odot Lift of X'/S induces an equivalence between MIC_m(X/S) and HIG_m(X'/S), if m < p.
- This equivalence is a categorification of the Deligne-Illusie decomposition
- It is compatible with cohomology