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Abstract

Given a scheme in characteristic p together with a lifting modulo
p?, we construct a functor from a category of suitably nilpotent mod-
ules with connection to the category of Higgs modules. We use this
functor to generalize the decomposition theorem of Deligne-Illusie to
the case of de Rham cohomology with coefficients.
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Introduction

Let X/C be a smooth projective scheme over the complex numbers and let
X be the associated analytic space. Classical Hodge theory provides a
canonical isomorphism:

H"(X,Qy/c) = H'(X™,C) = @ H'(X,% ). (0.0.1)

i+j=n

Carlos Simpson’s “nonabelian Hodge theory”[36] provides a generalization of
this decomposition to the case of cohomology with coefficients in a represen-
tation of the fundamental group of X**. By the classical Riemann-Hilbert
correspondence, such a representation can be viewed as a locally free sheaf
E with integrable connection (E,V) on X. If (E, V) satisfies suitable con-
ditions, Simpson associates to it a Higgs bundle (E’,0), i.e., a locally free
sheaf E’ together with an Ox-linear map 0: E' — E' ® Q X/c such that
ONG: B — E' @ 0% /¢ vanishes. This integrability implies that the iterates
of @ are zero, so that 6 fits into a complex (the Higgs complex)

As a substitute for the Hodge decomposition (0.0.1), Simpson constructs a
natural isomorphism:

H'(X,E® Qy 0 d) = H"(X™, V)= H(X,E' © Qy)0,0),  (0.0.2)

In general, there is no simple relation between F and E’, and in fact the
correspondence E +— E’ is not holomorphic.

Our goal in this work is to suggest and investigate an analog of Simpson’s
theory for integrable connections in positive characteristics, as well as an
extension of the paper [8] of Deligne and Illusie to the case of de Rham
cohomology for modules with an integrable connection. Let X be a smooth
scheme over the spectrum S of a perfect field k&, and let F': X — X' be
the relative Frobenius map. Assume as in [8] that there is a lifting X of
X' to Way(k). Our main result is the construction of a functor C'y (the
Cartier transform) from the category M 1C(X/S) of modules with integrable
connection on X to the category HIG(X'/S) of Higgs modules on X'/S, each
subject to suitable nilpotence conditions.

The relative Frobenius morphism F' and the p-curvature

V: E— E® F*Q%,
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of a module with integrable connection (F, V) play a crucial role in the study
of connections in characteristic p. A connection V on a sheaf of Ox-modules
E can be viewed as an action of the sheaf of PD-differential operators [3,
(4.4)] * Dx on X. This sheaf of rings has a large center Zy: in fact, F,Zx
is canonically isomorphic to the sheaf of functions on the cotangent bundle
T%:

c:STx = F,Zx, (0.0.3)

and F.Dy is an Azumaya algebra over ST, [4]. The map c takes a vector
field ¢ (i.c., a derivation of Ox) to &7 — £®) € Dy, where (®) € Der(Ox) is
the pth iterate of ¢ and £? is the pth power of € in Dy. If V is an integrable
connection on F, then by definition 9¢ is the Ox-linear endomorphism of £
given by the action of V).

Let X be a lifting of X. Our construction of the Cartier transform C'g is
based on a study of the sheaf of liftings of the relative Frobenius morphism
F: X — X'. For each open subset U C X, the set L3 (U) of all Frobenius
liftings F': U — U’ is naturally a torsor under the group F*Tx.. Key to our
construction is the fact that the F*T’x-torsor ¢: Ly — X has a canonical
connection

V:L;— F'Tx ®Q%,

compatible with the Frobenius descent connection on the vector bundle
F*Tx:. If F'is a local section of Lz , V(F) € Hom(F*QL,, Q%) is given
by
Cﬁ‘ : F*Qﬁf’ - Q,lXW

where (z = ~1dF is the lifting of the inverse Cartier operator defined by
F. Thus the sheaf of functions Ayx = q.O acquires a connection, as does
its Ox-linear dual B;. The torsor structure on £ induces an action of the
completed PD symmetric algebra I'. F* Ty on Ay and Bg. We show that the
induced action of S"Txs coincides with the action of the center S'Tx C Dx
defined by the p-curvature of the connection V. Thus B becomes a module
over the algebra D} := Dx ®g1,, [Ty

We define the Cartier transform C'sx from the category of D} -modules to
the category of [ T'x-modules by the formula:

Cx(E) = wwHompy (Bg, E),

'The name “differential operators” is perhaps misleading: although Dx acts on Ox,
the map Dx — End(Ox) is not injective.



where ¢ is the involution of T, sending & to —¢’. ? In fact, By is a split-
ting module for the Azumaya algebra DY, and from this point of view, the
Cartier transform is, up to the twist by ¢, just the equivalence of categories
between the category of modules over a split Azumaya algebra and the cate-
gory of O-modules on the underlying space defined by the choice of a splitting
module. In particular, the Cartier transform gives an equivalence between
the category MIC,_1(X) of nilpotent D-modules of level less then or equal
to p — 1 and the category HIG,_1(X’) of Higgs modules supported on the
(p — 1)* infinitesimal neighborhood of the zero section X’ — T%,. The
larger categories of locally nilpotent D3-modules and . Tx,-modules have
the advantage of being tensor categories, and the Cartier transform is in fact
compatible with the tensor structures.

We also obtain an analog of Simpson’s isomorphism (0.0.2): if (E',6') is
the Cartier transform of a module with connection (£, V) whose level is less
than the p minus the dimension of X, then we construct an isomorphism in
the derived category between the de Rham complex of (F, V) and the Higgs
complex of (E’,0"). This result generalizes the decomposition theorem of
Deligne-Illusie [8].

Let us describe the structure and content of the paper in more detail. We
work with a smooth morphism X/S of schemes in characteristic p. We shall
see that the Cartier transform depends on a lifting X’ / S of X' /S modulo p?
rather than a lifting of X/S, and we write X' /S for the pair (X/S, X’/S).
In Theorem 1.1 of section 1.1 we construct the torsor Ly/s of liftings of
Frobenius and compute its connection in Proposition 1.10 and p-curvature
in Proposition 1.5, using the geometric language of the crystalline site and
in particular Mochizuki’s geometric description of the p-curvature, which we
recall in Proposition 1.7. We also discuss in section 1.3 the relationship
between Ay /s and some more familiar constructions in the literature.

Section 2 is devoted to the construction of the Cartier transform. We
begin by reviewing in Theorem 2.1 the Azumaya property of the algebra of
differential operators and the canonical fppf splitting module described in
[4]. Then we discuss the global Cartier transform Cy/s as well as a local
version which depends on a lifting F of the relative Frobenius morphism
Fx,s. Theorem 2.7 constructs from such a lifting F, or just the correspond-

2The role of the involution ¢ is to insure that our constructions are compatible with the
standard Cartier operator and with the decomposition of the de Rham complex constructed
by Deligne and Illusie [8].



ing splitting ¢ of the inverse Cartier operator, a surjective étale endomor-
phism ¢ of T%, and a splitting module B¢ of afDy/s. The restriction 5’4
of B; to the formal completion of T%, along its zero section splits the ring
ﬁX/S = Dxys ®S'Tx//s S'TX//S of HPD differential operators, and this split-
ting module defines an equivalence, which we call in Theorem 2.11 the local
Cartier transform, between the category of modules over D x/s and the cate-
gory of modules over the ring S T /s- In fact, 5’4 is naturally isomorphic to
the dual of the divided power envelope of A along the ideal of the section
of Ly/s defined by F. This gives the compatibility between the local and
global Cartier transforms.

In Theorem 2.23 we explain how the Cartier transform can be viewed
as an analog of the Riemann-Hilbert correspondence, with the sheaf of Ox-
algebras Ay/s playing the role of Oxaen. We also discuss a filtered version of
the construction, in which we study filtered D7 y g-modules (£, N.), where

(0;Tx/s)NWE C Ny, E (0.0.4)

for all £ and j. The algebra Ay,s has a canonical filtration with this prop-
erty, and we show that the filtered object Cx,s(E, N.), can be computed
from the tensor product filtration on Ay /s ® E, which again satisfies (0.0.4).
This construction will become important in our analog Theorem 2.26 of the
cohomological theorems of Simpson and Deligne-Illusie and in particular to
our study of the “conjugate filtration” in cohomology.

Section 3 investigates the compatibility of the Cartier transform with
direct and inverse images with respect to a morphism of smooth S-schemes
h: X — Y. We begin with a review of the construction of the Gauss Manin
connection on the relative de Rham cohomology Rh.(E ® Q) when h
is smooth and discuss its analog for Higgs fields. Our review culminates
with Theorem 3.4, which shows that R%h, increases the level of nilpotence
of a connection by at most the relative dimension d of h, strengthening the
result [18, 5.10] of Katz. In particular, we show that if N. is a filtration of
E such that Gr" E has zero p-curvature, then the filtration of RIh,(F ®
Q'X/Y) induced by Deligne’s “filtration décalée” N of F ® Q'X/Y has the
same property. Theorem 3.8 shows that the Cartier transform is compatible
with direct image by constructing, given a lifting &’ of of #': X’ — Y”, an
isomorphism in HIG(Y'/S)

RWWHICCy s B = CysRIWPEE (0.0.5)
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if the level of E is less than p — d; we also show that this construction
is compatible with the filtrations N%¢. This result can be regarded as a
relative version of the cohomology comparison Theorem 2.26.

The remainder of section 3 is devoted to derived versions of these results in
a certain filtered derived category of Dx/s-modules. The first important in-
gredient of this approach is a new construction, described in Proposition 3.12,
of the functors Lh}, and RhPE in characteristic p, due to Bezrukavnikov and
Braverman [5], based on the Azumaya property of the algebra Fx,g.Dy/s.
This construction allows us to work locally over the cotangent bundle. An-
other ingredient is the conjugate filtration

- CIy C--- CIy C Fxss.Dxys, (0.0.6)

where 7} ZSiTX//S(FX/S*DX/S)

and the concept of the I-filtered derived category DF(Fx/s.Dx/s,Zx) of
modules over the filtered algebra Fx/s.Dx;s. Objects of this category are
filtered complexes (£, N') of Fx,g.Dx/s-modules such that for every integer
7
IxN'E" C N'WE,

or equivalently, such that the associated graded module has vanishing p-
curvature. We lift the functors RhPT and Lh%,, to functors between the
T-filtered derived categories and prove in Proposition 3.16 that, for a smooth
morphism A : X — Y of relative dimension d, the functor RhP® increases
the range of the Z-filtration at most by d:

RhPR(DFy. (Fx/s«Dx/s,Zx)) € DFy_an(Fy s« Dy;s, Iy ).

A different filtered derived category of Dx/s-modules was defined by Lau-
mon in [20]. Instead of the conjugate filtration (0.0.6) he considers the order
filtration

Ox = Dx;s0 C Dxys1 C -+ C Dxysi C -+ C Dxys.

An object of Laumon’s category D(MF(Dx/s)) is a complex E of Dx/g-
modules together with a filtration

-+ CFECF'EC---CFE
by Ox-submodules satisfying Griffiths transversality:
Dy (F/E¥) c FIT'E",
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It is shown in [20] how the functors RhP® and Lh}, 5 lift to functors between
Laumon’s filtered derived categories. Laumon’s construction makes sense
over any base S, not necessarily of characteristic p.

We observe in section 3.4 that the graded Azumaya algebra GrzF'x/s.Dx/s
has a canonical splitting which then defines an equivalence of categories

Cy/s : D(Mod' (Grz, Fxs.Dxys)) = D(HIG" (X'/S)).

We explain in Remark 3.19 how this observation combined with the formal-
ism of filtered derived categories leads to a generalization of Katz’s formula
[19, Theorem 3.2| relating the p-curvature to the Kodaira-Spencer mapping.
Namely, for any smooth morphism h, we have canonical quasi-isomorphisms

s Gry RPR(Ox) ~ RII'9(Ox) ~ Gre RN (Ox)

C;f/s Gry - Grp
(The second quasi-isomorphism is constructed in [20].)
In section 3.5 we explain how, when [ — k < p, the Cartier transform lifts
to an equivalence of triangulated categories

Cxys : DFyy(Fx/s«Dxys, Ix) = DFyg(STxs, Txv)

between the category DFjj(Fx/s+Dx/s,Zx) and the J-filtered derived cate-
gory DFy, n(S'Tx1 s, Jx+) of Higgs modules, where Jx: C S'Tx//g is the ideal
generated by T'xs/s. We then show in Theorem 3.22 that, for a smooth mor-
phism 7 : X — Y, alifting 2’ : X’ — Y’ induces a filtered quasi-isomorphism

Cxss 0 RWPE = RIS 0 Oy g, for 1 —k+d < p.

The exposition of sections 3.3-3.5 does not depend on sections 3.1-3.2, which
obtain many of the same results on the level of cohomology by more explicit
methods.

Section 4 is devoted to applications and examples. First we give a char-
acterization of the local étale essential image of the p-curvature functor from
the category MIC(X/S) to the category of F-Higgs sheaves. We show in
Theorem 4.1 that if £ is coherent and ¢: £ — E® F§/SQ§(,/S is an F-Higgs
field, then, étale locally on X, (E, ) comes from a connection if and only if,



étale locally, (E, ) descends to X’. This can be regarded as a nonabelian
analog of the exact sequence [23, 4.14]

F3 %, o—C
* x/8 x dlog 1 X/87VX/S
0— Oy —— FX/S*OX — FX/S*ZX/S

Ql ’/S E—— O,

where Cy/g is the Cartier operator and mx/s: X’ — X is idy x Fg. Next in
Theorem 4.5 and Proposition 4.4 come a comparison of the gerbes of liftings
of X" and of splittings of Fix/s. D} /s and a cohomological formula for the class
of F'x/s+Dx/s in the Brauer group. We prove in Theorem 4.14 that if X is an
abelian variety, then Fy;s.Dx/s always splits over the formal completion of
the zero section of its cotangent bundle, and in section 4.5 we construct an
example of a liftable surface for which Fx,g,Dx/s does not have this property.
Section 4.6 contains a discussion of p-torsion Fontaine modules, especially as
developed in [11] and [28], from the point of view of the Cartier transform.
As an application, we give a reduction modulo p proof of the semistability
of the Higgs bundles arising from Kodaira-Spencer mappings. Finally, in
section 4.7, we show how our nonabelian Hodge theory can be used to give a
reduction modulo p proof of a celebrated recent theorem of Barannikov and
Kontsevich, answering a question of Sabbah [34].

We conclude with an appendix devoted to generalities about Higgs fields,
and in particular to the study of the tensor product structure on the category
of Higgs modules. This structure can be viewed as convolution with respect
to the additive group law on the cotangent space and makes sense when
restricted to the formal and divided power completions of the zero section.
The tensor category of Higgs modules has an internal Hom, and an object B
of HIG(X) defines what we call a “Higgs transform” E +— Hompy;q(B, E)
from the category of Higgs modules to itself. Our key technical result is
Proposition 5.16, which shows that the Higgs transform with respect to a
character sheaf on the cotangent space defines (after a change of sign) an
involutive autoequivalence of tensor categories. In the last part of the ap-
pendix we introduce, using Dy/s as a model, the notion of a tensor structure
on an Azumaya algebra A over a group scheme. Such a structure makes the
category of A-modules a tensor category.

Both authors would like to express their gratitude to Roman Bezrukavnikov.
The second author would like to say that he learned the main idea of this
work from him: in particular, he explained that the ring of differential op-
erators in characteristic p is an Azumaya algebra over the cotangent bundle
and suggested that it might split over a suitable infinitesimal neighborhood
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of the zero section. The first author was blocked from realizing his vision
(based on [29]) of a nonabelian Hodge theory in positive characteristics until
he learned of this insight. Numerous conversations with Roman also helped
us to overcome many of the technical and conceptual difficulties we encoun-
tered in the course of the work. The authors also benefited greatly from
Pierre Berthelot, who in particular explained to the first author years ago
how a lifting of Frobenius makes D x/s into a matrix algebra. Special thanks
go to the referee who pointed out a mistake in an early draft as well as a
simplification in our argument which offered a way around it. This led us
to the realization that we could greatly strengthen one of our main results
and allowed us to develop the filtered Cartier transform in the context of
cohomology and derived categories. We are also extremely grateful to the
referee for pointing out an enormous number of misprints and ambiguities in
an early draft. We would also like to thank Alexander Beilinson, Alexander
Braverman, Luc Illusie, and Ofer Gabber for the interest they showed and
the advice they provided. Finally, we would like to alert the reader to a forth-

coming work by Daniel Schepler which extends this theory to log geometry.
3

3Both authors would like to acknowledge the support this collaboration received from
the Committee on Research at the University of California at Berkeley. The second author
was partially supported by NSF grant DMS-0401164, but support for the team effort was
denied by the National Science Foundation and the Miller Institute for Basic Research.
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1 The torsor of Frobenius liftings

1.1 Liftings of Frobenius

If X is a scheme in characteristic p, let Fx denote its absolute Frobenius
endomorphism, ¢.e., the map which is the identity on the underlying topo-
logical space and which takes each section of Ox to its pth power. For any
morphism f: X — S of schemes in characteristic p, Fso f = f o Fx, and
one has the relative Frobenius diagram:

X&,X(S)ﬂ,x

[ f

Fs

S S.

The square in this diagram is Cartesian, and the map Fy/gs is the unique
morphism over S such that x5 0 Fly;s = F’x. If no confusion seems likely
to result, we may simplify the notation, writing X’ for X9 F for F X/
etc. We also often write X/S for the morphism f: X — S, viewed as an
S-scheme.

If f: X — S is any morphism of schemes in characteristic p > 0 and n
is a positive integer, by a lifting of f modulo p™ we shall mean a morphism
f: X — S of flat Z /p"Z-schemes, together with a Cartesian diagram

X X
f f
S S,

where S — S is the closed subscheme defined by p. Note that if X/S is
such a lifting and X/S is flat (resp. smooth), then so is X /S. We shall be
primarily interested in the case n = 2, and if n is not specified, this is what
we shall mean. If the absolute Frobenius endomorphism Fy lifts to S, then
X X Fg S — S lifts X'/S. For example, if S is the spectrum of a perfect

field k and S the spectrum of its truncated Witt ring, then there is a unique
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such Fg, but in general there is no reason for a lifting of Fs or of X’ to exist
even locally on S, unless S is smooth over a perfect field.

Throughout the rest of this section, let us fix a smooth X/S as above.
We assume that a lifting X'/S of X'/S modulo p? exists, and we denote
the pair (X/S,X’/S) by X/S. Note that, given a lifting X of X, it is very
rare for there to exist a global lifting of Fy/g: X — X (For example, no
such lift can exist if X is a smooth proper curve of genus at least two over
a perfect field, as is well known.) However it follows from the smoothness of
X'/S that such lifts do exist locally, and we shall see that the sheaf of such
liftings is crystalline in nature.

Let us fix a divided power structure on the ideal pOg and consider the
crystalline site Cris(X/S). If (U, T) is an object of Cris(X/S), let T be the
reduction of 7" modulo p. The ideal J; of the inclusion i: U — T is a divided
power ideal, and so a? = 0 for every local section a of Jr. Then the relative
Frobenius map Fr/g factors through U’, and there is a unique and canonical
morphism fr/s: T"— X' such the following diagram commutes.

s g
fr/s
Fivs /o (1.0.7
1% nc U

Let us note for future reference that the differential of fr,¢ vanishes:

Indeed, df}/s odi' = dFr/s = 0, and since di’ is an epimorphism, df}/s =0.
If g: Ty — T5 is a morphism in Cris(X/S), then fr,/s09 = fr,/s. Hence
if £’ is a sheaf of Ox/-modules, there is a natural isomorphism

99: g*f';:g/SE, = f';:l/SE,?

and the collection {f7 y oF', 0,4} defines a crystal of Oy s-modules. The cor-
responding object of MIC(X/S) is F} gE' with its Frobenius descent con-
nection. (This is the unique connection V on F ¢E’ which annihilates the
sections of FX/SE’ C Iy sE)

12



An extension of crystals

0> E—HL0x—0 (1.0.9)

gives rise to a sheaf h™ (1) C H of E-torsors on Cris(X/S); this construction
defines an equivalence between the category of E-torsors and the category of
extensions (1.0.9). Recall that giving a crystal E amounts to giving a quasi-
coherent sheaf of Oy-modules with an integrable connection Vg : £ —
E® Qﬁ(/s' Similarly, giving an E-torsor £ on Cris(X/S) is equivalent to
giving an E-torsor £ on Zar(X) together with a map

such that V(I +¢e) = V() + Vg(e) and such that the composition
v v
L—FE® Qs — E® Q%

is equal to zero.

If £ is a locally free crystal of Oy s-modules, we shall denote by E the
corresponding crystal of affine group schemes over Cris(X/S). That is, for
each T' € Cris(X/S),

ET = SpeCT S'QT,
where ) is the crystal of Ox/g-modules dual to E. In particular, a vector
bundle £ over X' defines a crystal of affine schemes Fy ¢E'. More generally,
for an E-torsor £ on Cris(X/S), we denote by L the corresponding crystal
of affine schemes, which has a natural action E x L — L.

Now let us fix a pair X'/S = (X/S, f(’/g) as above. By a lifting of fr;s
to T we shall mean a morphism F: T — X' lifting fr/s. The sets of such
liftings on open subsets of T' form a sheaf £ x/s,7 on the Zariski topology of T
(which coincides with the Zariski topology of T'). Since X'/S is smooth, such
liftings exist locally, and by standard deformation theory, the sheaf £, /s, of
such liftings forms a torsor under the abelian sheaf Hom(f} y e /5 pOj) =

fz*“/s(TX’/S)'

Theorem 1.1 Let X/S := (X/S, X'/S) be as above. Then there is a unique
crystal of 'y / I'x1/g-torsors Ly ;s on X/S with the following properties.

1. For each object T of X/S admitting a flat lifting T € Cris(X/S),
Lx s, is the sheaf of liftings of fr;s to T.

13



2. For each morphism §: Ty — Ty of flat objects in Cris(X/S) and each
]iftjngF: T, — X' of fr,s, the transition map 6,: g*Lx/sm, — Lx/sm
satisfies

0,(F)=Fog: T — X'.

We denote by Ly /s the crystal of relatively affine schemes Spec Ax /s cor-
responding to the FX/STX//S—torsor Lxs; thus Ay/s is a crystal of quasi-
coherent O/ g-algebras.

Remark 1.2 We should point out that if T, and T, are two flat liftings
of an object T of Cris(X/S), then the set of liftings of fr;s to Ty and
to T, can be canomcally identified. More precisely, let T1 and T2 be flat
objects of Cris(X/S), and let § and §' be two morphisms Ty — T, with the
same reduction modulo p. Then Ly/s(9) = Lx/s(g’) as maps EX/S(TQ) —
Ly /S(Tl). This will follow from the proof of the theorem, but it can also
be deduced from the following elementary argument. Let g: T} — T5 be the
common reduction modulo p of g; and gs. Then there is a map h: Q%Q /s
9+Or, such that §™(a) = g*(a) + [p|h(da) for every section a of Oy, lifting a
section a of Or,. Then if FeLly /S(Tg) is any lift of fr,/¢ and b is a section
of O, with image b in Ox,

(Fog) (b) = (F 0 g)"(b) + [plh(dfr,s(db)).

But we saw in (1.0.8) that dfy,)s = 0, hence Fog= Fo§

Proof of Theorem 1.1 We will need the following easy technical result.

Lemma 1.3 Let Crisf(X/S) denote the full subsite of Cris(X/S) consist-
ing of those objects which are flat over S. Then the morphism of sites
a: Cris;(X/S) — Cris(X/S) induces an equivalence between the respective
categories of crystals of Oy sg-modules.

Proof: 1Indeed, the question is local on X, so we may assume the existence
of a lifting X / S. Then both categories can be identified with the category of
pairs (F, €), where E is a quasi-coherent O g-module and € is an isomorphism
between the two pullbacks of E to the d1v1ded power completion of X x X
along the diagonal, satisfying the cocycle condition [3, §6]. O

14



Thus we can identify the category of crystals of Ox/s-modules on Cris(X/S)
and the category of p-torsion crystals of Oy g-modules on Crisy (X/S). The
same is true for torsors over crystals of Oy s-modules.

It is clear that the family {Ly 57 : T € Crisy(X/S)}, together with the
family of transition maps 6, described in the theorem, forms a sheaf of sets
on Crisp(X/S). Furthermore, as we saw above, this family naturally forms
a sheaf of F7 / T'xr/s-torsors. This proves the theorem.

O

Let us record some basic facts about vector groups which we will need
later. Let mp: T — X be a vector group over X and let T be its sheaf of
sections. Thus T is a locally free sheaf of Ox-modules of finite rank and
T = Specy S, where € is the dual of T'. The pairing T' x Q2 — Ox extends
to a pairing T' x S'Q2 — S°Q), where sections of T act as derivations of S'(2.
This action defines a map:

= De: T — mp Ty x,

which identifies T" with the sheaf of translation invariant vector fields of T
relative to X. It also induces an isomorphism 777" — Ty ,x. Moreover, there
is a canonical pairing of Ox-modules:

r,T® S0 — S0

which is perfect when m = 0; see section 5.4 and [3, A10]. If we endow
['.T with the topology defined by the PD-filtration of I'.T" and S"Q2 with the
discrete topology, this action is continuous. Thus it extends to a continu-
ous action of the completion I'.T" and identifies Home, (S°Q, Ox) with the
completed divided power algebra [.T of T. * This action identifies the sheaf
of divided power algebras I.T" [33] with the subring of translation invariant
elements in the full ring of differential operators [3, 2.1] of T relative to X.

A section & of T can be thought of as a section of the map 7p: T — X;
let t;: T — T be translation by . Then the derivation D¢ belongs to the
divided power ideal of I'.T", exp(D¢) makes sense as a differential operator of
infinite order, and one has the formula (Taylor’s theorem):

te(f) = (exp De)(f)- (1.3.1)

4Thus the Cartier dual of T is the formal scheme Tfy associated to the PD-algebra .7
with the topology defined by the divided power filtration {[].-, I';T :n € N}.

Jjzn
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for the action of ¢ on S'(). The increasing filtration

N,S'Q:=) 5'QCSQ

i<n

is invariant under ¢¢; furthermore ¢; acts trivially on the successive quotients.

Now let £ be a T-torsor over X and let 7.: L — X be the corresponding
relatively affine scheme. It follows from the translation invariance of D¢ that
the action of .7 on S°Q carries over to an action on 7, Of. Similarly, there
is a canonical filtration N. on 7,0y, and a canonical isomorphism

Cr¥(7.0L) = S°Q (1.3.2)

Note that N;m.Oq, can also be characterized as the annihilator of Hj>i LT,
The bottom level NyS' €2 of S°Q corresponds to the translation invariant
sections, so there is a canonical exact sequence

0—-0x—>&—-Q—0,

where € := Ny7,,.Oy, is the set of affine functions on L.
A section £ of £ determines an isomorphism sy: L — T s,(¢') :=0'—( €
T for all sections ¢ over all X-schemes. This isomorphism determines an
isomorphism
o =58;: 80 — 71O

This is the unique isomorphism of filtered O xy-algebras with the property that
oo(w)(l") = (w, ¢’ — ¢) for all local sections ¢ of £ over X and w of Q. (The
uniqueness comes from the fact that any polynomial o € Alty, .. . ¢4] of degree
less than or equal to 1 is determined by its values on all A-valued points.)
Note in particular that, as a f‘.T—module, me+OL 18 locally coinvertible, i.e.,
its Ox-linear dual is, locally on X, free of rank one over I.7T.

Finally, let us remark that if 77 — 7" is an Ox-linear map of locally
free sheaves, and L' is the T'-torsor deduced from L by pushout, then the
morphism £ — £ induces an isomorphism

WL/*OL/ = Homf'T(f.T',Wﬁ*OL) (133)
Let us summarize these remarks for our crystal of torsors Ly/s.

Proposition 1.4 Let X/S := (X, X’) and Lys be as above, and let Ay /s
denote the corresponding crystal of Ox-algebras.

16



1. There is a natural horizontal action of f‘F)*( /STX/ /s on Ay s, compati-
ble with the action of I}, / I'x1/s by translation, as described in formula

(1.3.1) above. As a sheaf of f.F;(/S(TX//S)—mOdu]es on X, Ax/s is lo-
cally coinvertible.

2. There is a natural horizontal filtration N. on Ay s, invariant under the
action ofF)*(/STX//S. In fact N; Ax s is the annihilator oij>i FjF}/STX//S,
and there is a canonical isomorphism:

3. Let T be a flat object of Cris(X/S) and let F: T — X' be a lift of
fr/s. Then there is a unique isomorphism of (filtered) Or-algebras

Op: fiﬁ/sS.Q}a/s — Ax/s.1-

with the following property. For every section @ of O, lifting a sec-
tion a’ of Ox, Up(f}/sda’) € NiAx,sr is the Op-valued function on

Lxs(T) such that for each F',
[plog(fyjsda’)(F) = (@) — F*(&).
Furthermore Gry o is the isomorphism of (2).

O

In particular we have a fundamental exact sequence: °

where
g)(/s = Nl.Ax/g.

A section F of Ly /s determines as above a homomorphism o which induces
a splitting (not compatible with the connections) of this sequence, and in
fact the set of splittings is bijective with the set of sections.

Since mz: Lyjs — X is an F)*(/STX//S—torsor over X, there is a natural
identification QE/X = W2F§/SQ§<//S- (Here we are omitting the distinction
between £ and L in the notation.) The following result is the key to our
theory; it shows that the p-curvature of the connection on Ay s is very rich.

>The first explicit construction of this sequence was given in [37].
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Proposition 1.5 The action described in part (1) of Proposition 1.4 of
F)*(/STX//S - FF)*(/STX,/S on Ays is the same as the action given by the
p-curvature 1 of the connection V on Ays. That is, the diagram
2/) * 1
Axss — Axjs @ Fx s8Qx/s

[ [

d

1
WE*OE WL*QL/Xa

where d is the usual exterior derivative and 1) is the p-curvature of the con-
nection on Ay/s, is commutative.

This formula can be proved by explicit calculation (see Remark 1.11 be-
low). We prefer to give here a conceptual proof based on a geometric con-
struction of the p-curvature due to Mochizuki and communicated to us by
Brian Osserman; see [30]. This construction begins with the following crys-

talline interpretation of Fj /SQ% /s

Proposition 1.6 Let X/S be a smooth morphism of schemes in character-

istic p, let X (1) := X x5 X, and let (D(1),1,7) denote the divided power
envelope of the ideal I of the diagonal immersion X — X (1). Then there is
a unique and functorial isomorphism

ot FysQiys — I/(T

such that, for every local section a of Oy,

1

&(dn"(a)) = dy(a) == (1@ a) — (@@ )P (mod T"" 4 1Op)).

Proof: For each section a of Ox, let £(a) :==1®a—a®1 € [Opay C 1.
Note that £(a) annihilates T/ (7[p+1] +10pq)), and hence that the actions of

(a®1) and of (1®a) on 7/(7[“1} +10p(1) are the same. Thus this quotient
can be viewed as a sheaf of Ox-modules. If b is another section of Ox, then

Ela+ b)) = (f(a>+£<b>>“’1=£<a>[p1+i£<a>m£<b>[pﬂ+£(b>“°]
= )P +£®)P (mod 10pq)).

18



Furthermore, {(ab) = (1®a){(b) + (b® 1){(a), so a similar calculation shows
that
£(ab)! = aP¢(D)P + 0P¢(a)! (mod TOpny).

Finally, if a is a local section of f~1(Og), £(a) = 0. These properties imply
that d, is a derivation Ox — Fl. (7/(7[]3“] + I(’)D(l))), and hence that d,
factors through an Ox-linear §, as claimed. To see that £, is an isomorphism,
we may work with the aid of a system of local coordinates t1, .. .t,, for X/S.
Let & := &(t;), so that, in multi-index notation, {¢/) : I € N™} forms a
basis for h1,Opg1), where hy: D(1) — X is the first projection. Note that
T € T" + I0pn and that €0l € IO if any I; < p. It follows that
7/(7[p+1] + IOpq)) is freely generated by {EP], . .Sn@, and hence that &, is an
isomorphism. ]

Proposition 1.7 (Mochizuki) Let E be a crystal of Ox-modules on X/ S,
Let hy and hy be the canonical maps D(1) — X, and let €: h3E — hiE be
the canonical isomorphism. Then the p-curvature v of E identifies, via the
isomorphism &, of Proposition 1.6, with the map sending each local section

e of Ex to the class of e(h3(e)) — hi(e) in 7/(7[p+1] +10pm)) ® E.

Proof: We verify this formula with the aid of a system of local coordinates
(t1,...tm), using the notation above. Then if D; := 9/0t;,

e(hy(e)) =Y MV ni(e):

note that Di(p) = 0. Thus, modulo JRa I0py, €(hs3(e)) — hi(e)) reduces

to
D_&lVihile) = D& (dm (1) Vh,i(e) = (d ® &)(b(e)).

7

Remark 1.8 Let h: X — Y be a morphism of smooth S-schemes, let E €
MIC(Y/S) be a module with an integrable connection, and let ¢y : F —
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E ®o, F;/SQY//S be its p-curvature. Then the p-curvature of A*E is the

composition:
h*E%h*E oy F)*(/sh/*Ql //51@> hWE ®o, FX/SQX’/S

This follows immediately from Proposition 1.7; it was first proved years ago
by O. Gabber, using an indirect method.

Proof of Proposition 1.5 Let F: X — X'bealocal lift of Fx,g. Let (D(1), J,7)
denote the PD-envelope of the diagonal ideal J of X’( ), let (D(1),1,7)
denote its reduction modulo p, and denote again by F' the induced maps
X(1) — X’(1) and D(1) — D’(1). Since J is flat over S, multiplication by p
induces an injective map

Since J /7" is flat over S, (pJOpy + 7" NP0 = p(JOp + 1),
so multiplication by p induces an injective map

Flp+1] 7 ~lp+1]
pl: I/(10pay + 17 7) = J/(pJOpy + 7 )
If a is a local section of O, we let (a) =1®a—a® 1.

Claim 1.9 Let F: X — X' be a local lift of Frobenius, let a be a local
section of Oy, let o’ := w*(a), and let & be a local lift of a’ to O,. Then

EF@)) = —pl@?  (mod pJOp)

—[p+1
= —[pldy(a) (mod pJOp,+ T

Proof: ' We may prove this claim with the aid of a local lifting @ of a. Then
F(a’) = a? + pb for some section b of Ox. Since p¢(b) € pJOp ),

(F@) =1®a”—a"®1 (mod pJOp ).
Now l®a=a®1+&(a), so
l@a’ =a’® 1+ pC+ (@),

where p( = _ (Z) a'é(a)r—t e pJOp(). Since (€(a))r = p!(&(a))P and
p—1l=-1 (mod p), this proves the claim. O
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Let o be the splitting associated with F described in Proposition 1.4,
and let o 1= op(dn*(a)) € Ax/s. Then ¥(a) € Ax/s ® F QX, 5, and
by the p-curvature formula of Proposition 1.7, (id ® &,)¥(«) 1S the class of
h3(a) = hi(e) in AX/3®(]/I(’)D(1)+I[p+H). If F': D(1) — X’ is any section
of Lx;s(D(1)) and F; := F o h;,

Pl @ & () () = [p] (h3()(F") - hi(a)(F))

= o, (Fiysda)(F) = o (Fisdd)
(@) - < - (F"(@) - Fr (@)
= @) -
- —5<ﬁ*<a>>
= l(d,0)
= g (dra)

Since [p] is injective, it follows that ¢)(a)) = dm(a). This proves the formula
for elements of the form a = oz(da’). The general case follows from the
fact that both ¢ and the action described in Proposition 1.4.1 annihilate
Ox C Ax,s and both are compatible with the algebra structure. O

T

)

I
VR
 ~—r
~— T

)
F*(d)

It is helpful to have at our disposal an explicit formula for the connection
on Ay/s. Recall from [18] that the inverse Cartier isomorphism C’;(}S is a
canonical Ox/-linear map:

Cyst xigs = M (Fxys:8xs); (1.9.1)

if i = 1 and a is a local section of Ox, then C)_(}S(dw_}"(/s (a)) is the cohomology

class of a?~'da. Let Zi /s denote the sheaf of closed i-forms on X /S. Then

the Cartier operator is the composite
Cxs: FxyseZx)s — H'(Fx/s:Qyx/s) = Qxr/s

where the first map is the natural projection and the second is the inverse of
C’)’(}S. Since %, /s 18 locally free, locally on X there exists a section of Cx/g
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(in degree one), giving rise to a commutative diagram:

FX/S*Q_l)(/S
¢
Cx/s
Cxs Cxs
HI(FX/S*Q}(/S)

Mazur’s formula [21] shows that a lifting £ of the relative Frobenius
morphism Fy/g: X — X' determines such a splitting (. Suppose that
F: X — X' is a lifting of F;s modulo p?. Since

dF: QL

X’/S - FX/S*Q

1,.. ~
X/8

is divisible by p, there is a unique map (7 making the following diagram
commute:

dr -
1 1
52;(//5 - F*Q;(/g
(]
(1.9.3)
G

Then ( is a splitting of the inverse Cartier operator in the sense of diagram
(1.9.2). Let us recall the proof. Let a be lift of a section a of Ox and let @’
be a lift of 7*a. Then F*(a') = a” + pb for some b € O4. Hence

[pl¢s(dn*a) = dF* (@) = [pla”~"da + [p]db,

where b is the image of b in Oy. Then (;(dr*a) = a”~'da + db is closed, and
its image in Hl(FX/S*Q'X/S) is the class of a?~'da, as required.
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Proposition 1.10 Let X' /S be as above and let U be a lift of some open
subset of X, let F' be an element ofﬁX/S(U) and let o be the corresponding
splitting of Ex s described in Proposition 1.4. Then for any local section
W' of 4, /s

V(ep(l®w)) = —=(p(w)

where V is the connection (1.4.1) on Ex/s.

Proof: Since both sides are linear over O, it suffices to prove the formula
if W' = da’, where a' is a section of Ox:. Let T be the first infinitesimal
nelghborhood of U in U x g U with its two natural projection hi: T — U,
and let T be the reduction of 7' modulo p, so that Or = Op @ QU/S The
crystal structure on Ex/s gives us isomorphisms

hsEx sy — Exisr ~—— hiEx/su

reducing to the identity modulo the ideal Q; /s of Or. Using the resulting
identifications,

V(op(dad)) = hy(op(Fx/sda’)=hi(0p(Fy sda’)) € Axsu®@Qy)s C Axsr

Let us evaluate this section on an arbitrary section F': T — X' of Ly /S(T ).
Let £, := Foh; € Las(T). If @ is a lift of @/, then by Proposition 1.4,

IV (05 (Fysdd))(F') = [l (05(Fisda)) (") = [plhi (07(F sda') ()
- [p]a@(FX/sda)( ) = oo, (i sda)(F)
(F’* - Fr(@))

I
T
“11
*
@z N ﬁj‘

O

Remark 1.11 Somewhat more generally, let ( be a section of CX /g as in
(1.9.2), and let
(&, V) =0x ® F;(/SQ%/S,
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where V: & — &£ ® Qﬁ(/s is the map

(fig@w) = (df —g® (W), @dg).

Then V is an integrable connection on &, and one can simply compute that
its p-curvature is the map

2/)2 EC _>SC®F;(/SQ,1X’/S (f,g®w/) = (g,())@u/

(See for example [26, 2.10].) If F is a lift of Frobenius, then ¢ provides a
splitting of the fundamental exact sequence (1.4.1) and hence an isomorphism
Ex s = & inducing the identity maps on Ox and F§ / i /s The formula of
Proposition 1.10 shows that this morphism is horizontal, and hence provides
another proof of Proposition 1.5.

1.2 Functoriality

The geometric construction of Ly,s we have given makes it quite straight-
forward to check its functoriality. Note first that a morphism h: X — Y of
smooth S-schemes induces a morphism of schemes h’': X’ — Y’ a morphism
of Ox-modules T'x//g — h*Ty/s, and hence a morphism of crystals of vector
bundles:

Thll F)*(/STX’/S - h*F;/STy//S.

Proposition 1.12 Let h: X — Y be a morphism of smooth S-schemes and
let ' be a lift of b'. Then the pair h := (h, h’) induces a morphism of crystals
of torsors: .

Lx/s — h*Lys,
compatible with the actions ofF)*(/STX//S and h*F;/STy//S via the morphism

T,. This induces an isomorphism of crystals of h*Fy / s Ty s-torsors,

E..
h*F;/STy//S X p* £;(/5 ", h*ﬁy/g,

x/sTx1/s
a horizontal morphism of filtered O x-algebras:

9E3(h*«4y/s,N-) — (.AX/S,N.)
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and a horizontal isomorphism of h*Fy; y I Ty s-algebras

h*Ay/S — HomF;{/Sf‘.TX//S(h*F;/SF'TY//SvAX/S)

Proof:  Recall from [3, 6.5] and [3, 5.11] that if £ is a crystal on Y/S, then
h*E is the unique sheaf such that for each morphism ¢: T} — 75 from an
object in Cris(X/S) to an object in Cris(Y/S), (h*E)r, = g*(Er,). Now if
T is an obJect of C’msf(X/S) h'o fr;sisamap T'— Y’  and the set L, 7 of
its liftings T — Y is a torsor under fT ¢h"*Ty+)s. We claim first of all that
T — f}/sh'*Ty//S can be identified With h*F{;/STy//S and that T +— L,
can be identified with h*Ly,s. Indeed, if g: Ty — T3 is as above, then

(W By sTyys)r = 6" (Fy sTvys)n,) = g f1,/sTvys = 1,0 Tyys,

provmg the first part of the claim. Suppose further that Ty € Crisy(X/9),

€ Crisf(Y/S), and §: T1 — Ty is a PD- morphism, compatible with
h and let g: 77 — T3 be its reduction modulo p. If F is a local section
of Ly,sm, then Fog:Ty — Y'is alift of f, og = W o frs, and the
sheaf of such lifts forms a g*f7, /STy/ ss-torsor. Thus F +— F o § defines
an isomorphism of torsors from Ly /s 1, X7, T1 to the torsor of such liftings,
proving the second part of the claim. Now if Fi: Ty — X' is a local section
of Lx/smr, then h' o F} is such a lifting. Thus composition with h' defines
a morphism Lx/s1 — ¢*Ly;sm, which is evidently compatible with the
torsor actions. O

Corollary 1.13 Let h: X — Y is a morphism of smooth S-schemes. Then
alift h': X' — Y’ of b induces an exact sequence

h*gy/s — 5){/3 — F;;'/SQ}X’//Y/ — 0.

If h is smooth, this sequence is short exact (and locally split).
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1.3 Further remarks

If Fy lifts to S and X /S lifts X/S, then X' := X X g S lifts X’. In this case
there is a lifting #’': X’ — X of 7: X’ — X, and the following proposition
applies.

Proposition 1.14 Suppose that 7: X' — X lifts 7: X' — X. Then for
each section a of Og, there is a unique section 6z(a) of Ex;s € Axys such
that for every lifting F': U — X' of Fx,g over some open subset U of X,

[P0z (a)(F) = F*#*(a) — &
on U. Furthermore

1. The following diagram commutes:

Py 5 dor
Ox Ex/s FysQ%1/s,

where the bottom row is the fundamental extension (1.4.1).
2. The set of all §z(a) for a € O3 generates Ex/s as an Ox-module.
3. If F: X — X' is a lift of F,
07(a) = 02(a)(F) + o (Fxda),
where o is the splitting defined in Proposition 1.4.
4. For every local section a of Oy lifting some a € Oy,

Viz(a) = —1®a" 'da € Ay/s ® Qﬁ(/s and
Poz(a) = 1® Fx(da) € Axys ® Fx/sQx1 /s
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5. If a and b are sections of Ox reducing to sections a and b of Ox.

57}(&[)) = apéﬁ(b) + bp5ﬁ-(&)
0a(@+b) = 0x(a)+0x(b) + >

0<i<p

o b
il (p—1)l.

Proof: First of all, note that 7 o F'x/g = F'x, which takes any section a of
Ox to aP. Hence if F is a lift of Fx/g and a is a lift of a, F*7*(a) — a® is

divisible by p. Thus the formula defining 0 as a function Ly;s(U) — Ox
makes sense. Now if F” is another lift of Fx/s,

ploz(@)(F) = Frw@) -a ~
= F*fr*(d) j aP + F/*%*(EL) . Fjﬁ'*(d)
= [p|0z(a)(F) + [plop(Fx (da)(F),

by Proposition 1.4. This proves that, as functions on Lx,s(U),

5+(a) = 6:(@)(F) + o p(Fida).

This proves that dz is well defined and satisfies (3). If @ = [p]b for some

b € Ox, then a” = 0, and [p|dz(a)(F) = Fy s7"(pb) = [p|bP. This proves the
commutativity of the first square in the diagram, and shows that the sub-Ox-
module of £x/s generated by the image of 47 contains Ox. We have already
proved (3), which implies the commutativity of the second square and the
fact the set of images of all the §z(a)’s generates Ex,s. To prove (4), we may
assume that a lifting £ of F x/s exists. Then by (3) and Proposition 1.10,

Voz(a) = doz(a)(F)+ VoaF5(da)
= d0z(a)(F) = ¢p(dm*(a))
hence
pIVéx(a) = d([p]o=(a)(F)) — [pl¢p(dn*(a))
_ 4 (F*fr*(a) @ —(Fo ﬁ)*(d))
= —da?

—[p]ap_lda

27



This proves the first equation in (1.14.4). The second follows from the formula
for the p-curvature v in Proposition 1.5; see also Remark 1.11.

The proofs of the formulas of (1.14.5) are straightforward calculations
which we leave to the reader. O

Remark 1.15 We have seen that if Fg: S — S lifts Fg and X' =X X g g,

then the projection X’ — X is a natural global choice of a lifting 7 as above.
If X’ is some other lifting of X', then such a lift # will exist locally on
X. However in general there may be no lift of Fs even locally on S, and
consequently there may be no lift 7 even locally on X. However, if a € O3
is a local lift of a € Oy, then we can choose a local lift @' € Oy, of 7*(a).
Then the analogs of the formulas in Proposition 1.14 hold with &’ in place of

dz(a).
Let us describe another construction of the fundamental exact sequence
(1.4.1). For each T € Cris(X/S), let I' be the graph of fr/g: T'— X', and

for cach lifting F: T — X' of fr/s let [ be the graph of F. Let J7 be the
ideal of the of the immersion

T — Txg X 20 T x g X', (1.15.1)
A morphism §: Ty — Tb in Cris X/ T) induces a corresponding morphism
of conormzil sheaves: g*Jy, /J7 — Jg/ J%l, and~ So~the fz}mily {Jp/J3 T €
Crisp(X/T)} forms a sheaf on Crisg(X/S). If F: T — X'is a lifting of fr/g
and ¢ is a section of Jjz, I'*(¢) € O vanishes on T, and hence is divisible by

p.

Proposition 1.16 For each T € Cris;(X/S), there is a unique morphism

~ 8 _
B:dy — Jp/J: ——Exjsr  E— B

such that for every local lift F' of fr;s and every section ¢ of Jg,

[plB:(F) = T'3() € O
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In fact, 3 defines an isomorphism of crystals of Ox,s-modules and fits into
a commutative diagram:

[p]

0 Or Ji] JZ I/ —0
id 3 =
0 Or SX/S,T - f:?/sQ&//s — 0,

where I is the ideal of I': T C T x X' and the bottom row is the exact
sequence (1.4.1).

Proof: Suppose for example that @' is a local section of O, and that b is
a local section of Oz such that f7,4(a’) = inc*(b). Then ¢ :=1Qd —b® 1
is a section of Jj7, and J; is locally generated by such elements. If F is any
local lift of fr/s, [p]G:(F) = F*(@') — b. If £ is a local section of I/ %13
and F' =& + I/, then (:(F') = BC(F) + (¢, da’). This shows that 3z defines
a section of Ex/s 7. It is clear that 3= depends only on the class of & mod J%,
and so ¢ — [z defines a map 3: JT/J% — Ex/sT-

Let us check that the diagram commutes. We may assume that a lifting
F of fr/s exists. By definition I := J;/(p) is the ideal of I". Then [/I? =
f;/sﬁﬁ(,/s, and the image of oz (da’) in I/I? is the class of

l®d - frs(d) @1 = (fr/s xid)"(1®ad —d ®1),

which corresponds to f7. /S(da' ) in f7, /SQ% /s> S0 that the right square of the
diagram commutes. Furthermore, if @ is a local section of Oy, then pa € J5
and B,4(F) = [ (pa) = [pla, where a is the image of @ in Or. This shows
that the left square of the diagram also commutes. This implies that the
arrow [p] in the diagram is injective. The exactness of the rest of the top row

is formal, and it follows that (3 is an isomorphism.
O

Remark 1.17 The isomorphism class of the extension of connections in
(1.4.1) is an element of Ewt&lC(F;(/SQk,/S,OX), and there is a spectral
sequence with

E;’j ~ Hi(X, 5:Utj(9§(//s, (’)X)) a Hi(X/7TX//S &® Qg(//s).
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In particular, there is an exact sequence
0 — HY (X', Tx1s) = Extyo(F*Qxg, Ox) — HY (X', Txiys @ Qxi/s).

The extension (1.4.1) has the property that its image in H°(X”, TX//S®Q§(,/S)
is the identity, and the above exact sequence shows that the set of extension
classes with this property is a (pseudo)-torsor under H'(X' Tx//s). Note
that the same is true of the set of isomorphism classes of liftings of X’/S.
We shall investigate this further in section 4.2.

It is perhaps worthwhile to elucidate the relationship between the funda-
mental extension (1.4.1) and some more familiar exact sequences. Since the
relative Frobenius morphism Fyx/g: X — X' is a homeomorphism, (1.4.1)
remains exact when pushed forward by Fx,g. Pulling the resulting sequence
back by means of the canonical map Q. g — Fx/s.Fx,5(Qy /), one gets
an exact sequence

0 — Fx/s.(Ox) — Evjs — Qx5 — 0 (1.17.1)

of locally free sheaves on X’. Each local section €’ of £ /s maps to a horizon-
tal section of Iy, ¢Q%, ¢, and hence V(¢') lies in Ox @ QY. /g € Ex/s @ /-
Since V is integrable, in fact V(e') € Z} /- Thus, the connection V on Ex/s
induces an Ox/-linear map Séz/s — FX/S*Z}(/S, which fits into the commu-
tative diagram below:

0 Fxs:0x — Fxs:.Ex)s — FX/S*Q§//5 0
= inc

0 Fx/5.0x Exss Qg —— 0
d Crjs Cxis

0 FxysiBx)s — Fx/s:Zx;s — Fx/sHpp(X/S) ——— 0

(1.17.2)
Here the middle row is the pullback of the top row along inc and the
familiar bottom row is the pushout of the middle row along d: Fx/s.(Ox) —
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Fxs«Bx/s. Recall that the bottom row is rarely split. Indeed, a splitting
would induce an injective map Q}('/s — FX/S*Z}(/S — FX/S*Qﬁ(/S and in
particular a nonzero map F)*(/SQ%,/S — Q%{/S' For example, no such map
can exist on a complete curve of genus at least two over a field.

Note that there is also an exact sequence

0 — Ox — Fx;s:.0x — Fx/5:Bxys — 0 (1.17.3)
When pulled back to X this sequence is split by the natural map
S: F;(/SFX/S*OX — Ox.

Thus FyY/Fx/s:(Ox) = Ox @ FY gFi(Bxys). Furthermore, (1.4.1) is the
pushout by s of of the pullback by F)*(/S of (1.17.1) along s. Warning: the
map S is not compatible with the natural connections on the source and
target. An S-scheme X/S for which sequence (1.17.3) splits is called F'-
split [16].
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2 Connections, Higgs fields, and the Cartier
transform

2.1 Dy/s as an Azumaya algebra

Let X/S be a smooth morphism of schemes in characteristic p > 0. Let Q7 /s
be its sheaf of Kahler differentials, let T'x/g be its dual, and let Dx /g denote
the ring of PD-differential operators of X/S [3, §2]. A section D of T'x/g can
be viewed as a derivation of Ox relative to .S and hence as a PD-differential
operator of order less than or equal to 1, and Dx/g is generated as a sheaf
of rings over Ox by T'x/s. If E is a sheaf of Ox-modules, then to give an
integrable connection V: E — E ® Q5 /g 18 the same as to give an extension
of the action of Ox on E to an action of Dx/g [3, 4.8], which we continue
to denote by V. The pth iterate D® of a derivation is again a derivation,
hence a section of T'x/g and an operator of order less than or equal to 1. This
is in general not the same as the pth power DP of D, which is an operator of
order less than or equal to p, even though D® and DP have the same effect
on sections of Ox. For each derivation D, let

¢(D) :== DP — DV, (2.0.4)

One can show either by calculating in local coordinates [4] or by means
of techniques from noncommutative algebra [18], that ¢ is an F%-linear map
from T'x/5 to the center Zx,s of Dx,s. By adjunction, one deduces from c
an Ox,g-linear map

d: Txis — Fxss2x/s @ D' d(D'):=(1aD)—(12D)P (2.0.5)

Let V be an integrable connection on £ and ¢v: £ — E ® F)*{/SQ%//S be
its p-curvature. It follows from the definitions that for every local section D’
of Tx/s, ¥pr is the endomorphism of £ induced by the differential operator
d(D'). This mapping satisfies the linearity and integrability conditions of a
Higgs field with F§/SQ§(,/S in place of Qﬁ(/s' We refer to such a map as an
F'-Higgs field on E, and we denote by

U: MIC(X/S) — F-HIG(X/S)

the functor taking (E, V) to (E,v).
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Since ¢ maps to the center of Fxs,Dx/g, it extends to a map from
the symmetric algebra S"T'y//s to Zx/g, and in particular makes Fx/s.Dx/s
into a sheaf of S"T’x//g-modules. Let T},/S := Specy, S T'x//s be the cotan-
gent bundle of X'/S. Since Fx;s.Dx/s is quasi-coherent as a sheaf of Ox/-
modules, it defines a quasi-coherent sheaf Dx/g on T%, /s

Recall that an Azumaya algebra over a scheme Y is a sheaf of associa-
tive algebras A such that locally for the fppf topology, A is isomorphic to
Endp, (O%). More generally, if Y is a topological space, R is a sheaf of
commutative rings on Y, and A is a sheaf of associative R-algebras which is
locally free and finite rank as an R-module, we say that A is an Azumaya
algebra over R if the canonical map A ® A? — Endg(A) is an isomorphism.
One can show that if Y is a scheme and R = Oy, then these definitions
agree. (See Chapter 4 of [23] for a quick review.)

Our starting point in this section is the following theorem of [4], which
asserts that Dy g is an Azumaya algebra on T%, /s

Theorem 2.1 Let X/S be a smooth S-scheme of relative dimension d. Then
the map (2.0.5) induces an isomorphism:

S'Txiys — Fxs:Zxs-

This morphism makes Fx;s.Dx/s an Azumaya algebra over S Tx/g of rank
p*®. The corresponding sheaf Dy,g of OT},/S—a]gebras onTY, 5 Is canonically

split (isomorphic to a matrix algebra) when pulled back via the map 7r in
the diagram below:

/% = * T *
X/S—>X><X/T ’/S—>T ’/S

(2.1.1)

F
X X/S X/

Proof: 'We recall here only the main idea of the proof, referring to [4] for
the details. Let Mx/s := Fx/s.Dx/s which we can view as a module over
OTS?/S = Fx/5:Zx/5 @0, F'x/5+«Ox via right multiplication and the inclusion
Ox — Dx/s as well as a left module over itself. These left and right actions
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agree on the center Zx /g, and hence they define a homomorphism of sheaves
of rings

Fx/s:Dx/s @1y, Oy, — 5ndOT,§/S (Mx/s),

which one can check is an isomorphism in local coordinates. O

Observe that if dim X /S > 0, then Dx/g is not split locally in the Zariski
topology of T%, /5" It suffices to check this when S is the spectrum of a field
and X is affine. Then I'(X, Dx/s) has no zero divisors, because its associated
graded sheaf with respect to the filtration by order is canonically isomorphic
to the symmetric algebra S™Tx,5. Since T}//s is integral and Dy is locally
free as an OT},/S—module, it also has no zero divisors and hence is not split.

Remark 2.2 The power of Theorem 2.1 can be seen from its application to
Cartier descent [18]. Consider the action of Dy/s on Ox. Since D? and D)
agree on Oy, this action kills the ideal S*T'x//g of S"T'x//g. Thus Fx;s.(Ox)
can be viewed as a sheaf of i*Dx,s modules, where i: X' — T*X,/S is the
zero section. Since i*Dx/g is an Azumaya algebra over X' of rank p?? and
Fx/5.(Ox) has rank p?, this shows that i*Dy/s is split, and that tensoring
with the splitting module Fy/s.(Ox) induces an equivalence between the
category of Ox-modules and the category of Dy,s-modules for which the
action of S*T'x/g is zero. This is just the category of Ox-modules endowed
with an integrable connection whose p-curvature is zero.

Let Dg( /s be the commutative subalgebra of Dx,s generated by the left
inclusion Ox — Dx/g and its center. Then F X/S*Dﬁ(/s defines a quasi-
coherent sheaf of algebras Dﬁ(/s on T%, s In fact, it is easy to check
that the natural map F )*(/SS'TX/ /8 — Dﬁ(/s is an isomorphism, so that

¢ ~ 1% . .
SpeCT;{,/S Dy)s = T%/s (see diagram (2.1.1)). In particular, a sheaf M
of Dx/s-modules which is quasi-coherent over X can be viewed as a quasi-
coherent sheaf of OT/;/S—modules.

Proposition 2.3 Let f: 7 — T},/S be a morphism and suppose L is a

splitting module for f*Dx;s. Then L, viewed as a sheaf of Ox .,z-modules,
is locally free of rank one.
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Proof: First let us prove this when f = 7y and L = Mx/g. Our claim is
that Mx,s := Dx/s is locally free of rank one over W}Dg(/s =0x®@STx)s®
Ox, where the first Ox acts by multiplication on the left and the second on
the right and the tensor products are taken over Ox,. We may assume that we
have a system of local coordinates (ty, ..., tq) for X/S, with a corresponding
set of generators D; for Dx/s. Then the product le_l e Dg_l generates
My,s as a module over W}DQ/S, as one sees from the fact that [D;,t;] = ;.

This generator defines a surjective map W;'Dﬁ(/s — Mx/s, and since the
source and target of this map are locally free Ox/-modules of the same rank,
it is an isomorphism.

To deduce the general statement, note that it is enough to prove the claim
about L after a faithfully flat cover, and in particular after a base extension
induced by 7. Thus we can replace Z by Z Xy, T’)’g/s = 7 xxr X. The
pullback of Mx/g to this space has the desired property, and L is necessarily
locally isomorphic to My,s. This concludes the proof. O

Let us recall that the category of left Dx, g-modules is equipped with a
tensor structure. In section 5.5 we will discuss this structure from the point
of view of Azumaya algebras.

2.2 An étale splitting of Dy/g

The proof of Theorem 2.1 gives an explicit flat covering of T%, /s which splits
Dx/s. It follows from the general theory of Azumaya algebras that there
exist étale coverings over which it is split. In this section we will give an
explicit construction of such a covering, which in fact is a surjective étale
endomorphism of the group scheme T, /5"

The construction of the splitting depends on a choice ¢ of a splitting of
the Cartier operator C'x/g, as exhibited in diagram 1.9.2. In order to express
the formulas we shall encounter geometrically, we introduce the following
notation. The map ¢ induces by adjunction a map Fy 4%, 5 = Qﬁ(/s
whose dual is a map ¢ : Tx/g — F}'}/STX//& Pulling back by mx/g, we find
an Ox-linear map ¢': Tx)s — Fx,/Tx1/s. We let h¢ be the composite of the
map of vector bundles induced by ¢’ with the relative Frobenius map for the
X'-scheme T%, /g0 A8 displayed in the diagram below.
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FT*/X’ *(X")
X'/S

Tz = T;{’/S
Spec ¢’ (2.3.1)

TY//s
This morphism is a homomorphism of affine group schemes over X', but
it is not compatible with the vector bundle structures. We shall see that
a¢ = h¢ —id is surjective and étale and that the Azumaya algebra Dx g
splits when pulled back via .

Recall from Remark 1.11 that associated to a splitting ¢ there is an object
(&, V) of MIC(X/S), where & = Ox & F)*(/sgﬁa/s- The connection V on
& induces a connection on each S"&:, compatibly with the inclusion maps
SnE — S"E induced by the map Ox — &, and hence also on the direct
limit A := h_r)nS"é’C. The splitting o: & — Ox defines an isomorphism
of Ox-algebras A; = F)*(/SS'Q}(,/S and the submodule F}/SQ}(,/S generates
an ideal I of A¢, which we can identify with S*F;}/SQ%(//S. By [3, 6.2],
the completed PD-envelope flz of this ideal has a natural structure of a
crystal of Ox/s-modules, so the connection V on A extends canonically

to a connection V¢ on AZ Furthermore, if a is a local section of I, then
Vea" = a"=1V(a), and V, maps T[Cn] to T[Cn_l] ® Qy/g- The algebra A =
F)?/SS'Q%(,/S also has a canonical F-Higgs field 0: if £ is a local section of
Tx/s and w' a local section of Q&,/S, Oe(w') = (£,w'), and the action of
¢ on the higher symmetric powers is determined by the Leibnitz rule. In
fact, as we saw in Remark 1.11, this F-Higgs field is also the p-curvature of
the connection A, = S'F% /Sﬁﬁ(, /s This field extends to the divided power

envelope .AZ and its completion /lz the pairing

S"Fx/5Tx17s ® DnamFx sk /s = TmFx /s (2.3.2)
comes from the multiplication on the symmetric algebra and the duality
between the symmetric and divided power algebras explained for example
in [3, A10]. In particular, if £ € Tx//g and w € Qk,/s, one has

cwll = (£, W)Wl and hence €Pwl = (£, w)Pwl=7), (2.3.3)
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Let ]
B; = @HomoX(AZ/I ,Ox),

be the topological dual of ,le, equipped with the dual connection and F-Higgs
field (5.5.1). Thus B¢ = ©S5"Fy,Tx/s as an Ox-module. Because of the
sign in the definition of the dual Higgs field, a section of £ of T'x//g acts on
B¢ as multiplication by —¢. The F% /sS "T'x1s-structure of B corresponding
to this field identifies it with L*F;{/SS'TX//S, where ¢: T*X,/S — T*X,/S is the
involution ¢ — —t of the vector group Tx/,5. Note that V is compatible with
the algebra structure of A, and with the divided power algebra structure of
AZ It is not, however, compatible with the algebra structure of B¢, but
rather with its coalgebra structure.

Remark 2.4 If ¢ comes from a lifting F* of Fxs as in (1.9.1), we can give
a geometric interpretation of the construction of B, as follows. Let (A}, I)
be the divided power envelope of the the ideal I of the section of Ly/s
corresponding to F. Recall from Proposition 1.4 that Ayx/s has a connection
V as well as an action of Fy / ¢S T'x1/s, the latter via its identification with the
ring of translation invariant PD-differential operators. Both the connection V
and the action of F'§ / sT'x1/s extend naturally to A} and to its PD-completion

A} Then /lz can be identified with the fl} and B, with its topological dual.
It is clear from the definitions that these identifications are compatible with
the I / ¢S T'x1/s-module structure, and Proposition 1.10 shows that they are
also compatible with the connections.

Proposition 2.5 Let X/S be a smooth morphism of schemes in character-
istic p > 0 with a splitting ofC’)_(/lS, and let he and B, = F;(/SS'TX//S with
the connection V. described above.

1. The map:
a¢:=1id —he 1 T =Ty g — Txi/g

is a surjective étale morphism of affine group schemes over X'.

2. The action of an element £ of S"T'x;5 on B defined by its p-curvature
is multiplication by «(£').
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Proof: We have already observed that h¢ is a morphism of group schemes,
and consequently so is c¢. Since h¢ factors through the relative Frobenius
map, its differential vanishes, and it follows that o is étale. Then the images
under o, of the geometric fibers of T¢ /X" are open subgroups of the fibers of
T%./s/X'. Hence the image of each fiber of T7/X’ must contain the entire
corresponding fiber of T%, /s /X', and so a¢ is surjective. Thus a, is an étale
covering (but not necessarily an étale cover, since it need not be a finite
morphism).

We must next compute the p-curvature of the divided power envelope
Al = F.F)*(/SQ&,/S of Ac. Let w’ be a local section of Qﬁ(,/s, so that z =
(0,1®w’) belongs to the divided power ideal of A!. Let D be a local section
of Tx/s and let ¢ := ﬂ;k(/SD € Txr/s. Then ¢(D) € F)*(/STX//S, and we shall
need the following formula.

Claim 2.6 ¢(D)? = Fy shi(€) € S'Fy sTxs.

To check this, let T* := Specy, S"Tx//s and let T* denote its pullback to X
via the map Fy/g, i.e., T* = Specy F;}/SS'TX//S. Then there is a commuta-
tive diagram:

e x50
pr pr (T
e Frpejxr (X)) _c T*7
where the morphism c is the projection
T*(X/) =T xp, X' = T* Xrxs X' — T*.

Let us view ¢(D) as a section of Q.. Then c*¢(D) = ¢'(£'), so

(p(D)) = Fx.(o(D))
= Fi e x (0(D))
= Ff. xpr(#(€))
= PT*F"I“*/X'@/( )
= prrh(§)

£
§
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Since the map pr in the diagram corresponds to pullback by Fy/g, the claim
is proved.

By the definition of the connection on & C .AZ given in Remark 1.11 and
of the morphism ¢,

Vp(x) = Vp(0,1®w) = (D, —((1®w)),0)
= —({¢(D),1®u"),0)
= —¢(D)r € AL

The formula [29, 6.1.1] for the p-curvature of divided powers and the
computation of the p-curvature of & (Propositionl.5), then say:

Yo () = 2 @ e (x) + 2P (Vp(z))?
(&x)2l=Y — 2P (D))
2l — ((D))P(al)
(& = h(€))al
= —ag(¢)al,

Since B: € Hom(A/, Ox) as a module with connection, the formula (2)
for the p-curvature of B, follows from the formula for the p-curvature of the
dual of a connection; see for example Lemma 5.27. n

We can now show that Dy/s splits when pulled back by a;. Since Tf =
T, /8 Fx/s:B; can also be viewed as a quasi-coherent sheaf on T7.

Theorem 2.7 There is a unique action of aZ(DX/S) on Fxs.B; extending
the actions of ocgl(DX/S) and of Ory. The resulting module splits the Azu-
maya algebra af(Dx/s).

Proof:  Proposition (2.5 shows that the actions of S"Ty//g on Fx /g8 de-
fined on the one hand through the p-curvature homomorphism S"Tx:/s —
Dx/s and through o agree, and hence that the action of Dx,g extends
canonically to an action of afDx/s. Since B; = F)"}/SB’C and B & S'Txys,
B is locally free of rank p? over T?. Hence it is a splitting module for the
Azumaya algebra afDx/s. m

39



2.3 The Cartier transform

In this section we explain how a lifting of Fiy/s: X — X' or just of X'/S
modulo p? determines splittings of Dx,s on suitable neighborhoods of the
zero section of T%, /s We then use these splittings to define characteristic p
analogs of the Simpson correspondence.

Let us begin with the global construction. Suppose we are given a lifting
X'/S of X'/S; and as before, let X' /S denote the pair (X/S,X’/S). The
sheaf I.T’x/s has a canonical divided power structure and can be identified
with the divided power envelope T7, /s of the zero section of the cotan-

gent bundle T, ¢ of X'/S. TIts completion f‘.TX//S with respect to the

PD-filtration {T[n] : n € N} can be viewed as the sheaf of functions on the
formal scheme T;g, /s The topology on the structure sheaf is defined by the
PD-filtration and is admissible [14, 7.1.2] but not adic, and its underlying
topological space is X’. It inherits the structure of a formal group scheme

from the group structure of T%, /5 and the group law is a PD-morphism. If

T;7 is the closed subscheme defined by 7[n+1], the group law factors through

maps T2 x T — T, for all n,m. We shall denote by HIG,(X'/S) the
category of sheaves of I". T/ ss-modules and by HIG (X'/S) the full subcate-
gory of locally PD-nilpotent modules, i.e., those with the property that each
local section is annihilated by some . As explained in Definition 5.3 and
(more abstractly) in section 5.5 of the appendix, the group law on T?, /s de-
fines a tensor structure (convolution) on the category HIG. (X'/S). If HIG?
denotes the category of Orp+v-modules, the convolution factors through func-
tors

HIGT(X'/S) x HIGM(X'/S) — HIG™™(X'/S).

If By and Ej are objects of HIG (X/S) and § is a local section of Tx//g,
then the total PD-Higgs field on the tensor product satisfies

Vel = Z Ve ® Yeist- (2.7.1)

i+j=n

Note that )¢ can be nonzero even if £y and Ej have level less than p. Note
also that this total PD-Higgs field commutes with the Higgs fields id ® ) and
Yid. If By € HIGI(X'/S) and Ey € HIGH(X'/S), then Homo, (E, E») €
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HIG*™(X/S), with the unique PD-Higgs field satisfying:

Ve (h) = Y (=1)¢bgi 0 ho .

1+j=n

See section 5.5 for a geometric explanation of this formula. More generally, if
FE is locally PD-nilpotent, then F; = h_n>1 N E1, where N, E; is the subsheaf

of sections annihilated by T[HH, and if By € HIGY(X/S) for some n, then

HOmoX (El, EQ) = liLHHOWLOX (NkEl, Eg)

has a natural structure of a I'. T/ ss module, but it may not be locally PD-
nilpotent.
Let DY /s denote the tensor product
D}c/s = Dxys ®S'TX//S I (Txys)
via the map S'Tx//g — Dx/g induced by the p-curvature mapping ¢’ (2.0.5).
The category MIC,(X/S) of D}/S—modules on X is equivalent to the cat-

egory of sheaves of Ox-modules E equipped with a connection V and a
horizontal homomorphism

A

1/1: F.(TX//S) — FX/S*gndoX(E, V)
which extends the Higgs field
S'TX//S - FX/S*gnd(’)X (E, V)

given by the p-curvature of V. We write MIC_ (X/S) for the full subacate-
gory of locally nilpotent objects, those for which each local section is locally
annihilated by I"Ty/ /g for i >> 0. For example, Ox has an obvious struc-
ture of a D} / g-module. More generally, if (E, V) is a module with integrable
connection whose p-curvature is nilpotent of level less than p, (F, V) can be
viewed as an object of MIC.(X/S) by letting the pth divided power of the
ideal I'" T'x/ /g act as zero.

The convolution product on HIG (X'/S) allows us to make the category
MIC.(X/S) into a tensor category. If F) and Ej are objects of MIC.(X/S)
and § is a local section of T/, then the total PD-Higgs field on the tensor
product satisfies equation 2.7.1. Since these endomorphisms are horizontal
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and since this formula agrees with the p-curvature of a tensor product when
n =1, it does indeed define an object of MIC (X/S). If By € MIC.(X/S)
and Fy € MICH(X/S) for some n, then Homo, (E1, Ey) € MIC,(X/S),

with the usual connection rule and the action of I'.(T /s) defined above.
In order to keep our sign conventions consistent with other constructions®,

we have found it convenient to introduce a twist. Let ¢: T%, I T /s be

the inverse operation in the group law. Then (* = ¢, is an involutive autoe-

quivalence of the tensor category HIG(X'/S). If (E',¢') € HIG(X'/S),
(B ") =1 (B ) = (E' ") = (B, =) (2.7.2)

Recall that in Theorem 1.1 we constructed an algebra Ay/s from the
torsor of Frobenius liftings Lx/s. We have seen in Proposition 1.5 that the
p-curvature of (Ax/s, V.4) coincides with the action of S"Tx//g coming from
the torsor structure and hence that it extends naturally to a continuous
divided power Higgs field 1 4. Thus Ay,s can be regarded as an element
of MIC(X/S). Let Bx/s be its Ox-linear dual, which makes sense as an
object of MIC,(X/S) (although it does not lie in MIC. (X/S5)).

Theorem 2.8 Let X/S = (X/S,X'/S) be a smooth morphism together
with a lift of X'/S modulo p*.
1. The D}(/S—module Bx s described above is a splitting module for the
Azumaya algebra FX/S*(D}(/S) over f.(TX//S).
2. The functor
Cyss: : MIC,(X/S) — HIG,(X'/S).
E L*HOWD}/S(BX/S, E)
defines an equivalence of categories, with quasi-inverse

Cyjs: HIG,(X'/S) — MIC,(X/S)

/ * /
E — BX/S ®f'TX’/S B
Furthermore, Cy/s induces an equivalence of tensor categories:

MIC(X/S) — HIG,(X/S).

6See for example Remark 2.15 below.
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3. Let (E,V) be an object of MIC,(X/S), let ¢ be its p-curvature, and
let (E',¢)") == Cx/s(E,V). A lifting F' of Fxg, if it exists, induces a
natural isomorphism

Ng: (E7w) = ;(/S(Elv _w/)v

Proof: To prove that By/s is a splitting module for D7 /5 it suffices to show

that it is locally free of rank p? over the center I'.Tx/ /s of DY /s As we have
already observed, the action of this center coincides with the action coming
from the torsor structure as described in Proposition 1.4. Since Ax/s is

coinvertible by op. cit., By/s is locally free of rank one over F;(/Sf.TX//S, and

hence is locally free of rank p? over . Ty /s- 1t then follows from the general
theory of matrix algebras that HomD}/S (Bx)s, ) and BX/S®f.TX,/S are
quasi-inverse equivalences of categories. Since ¢, is an involutive equivalence,
the functors Cy /s and C';(} s are also quasi-inverse equivalences.

The algebra structure of Ay /s endows By /s with the structure of a coal-
gebra with counit. As explained in Proposition 5.29, this gives By/s the
structure of a tensor splitting and makes Hom(By/s, ) a tensor functor; the

compatibility isomorphism
Cx/s(E1) @ Cxs(Ey) — Cxys(Ey @ E»)
comes from the diagram:

Hompy  (Bxys, E1) ® Hompy  (Bxys, E»)

/S /S

®

*

Hompy, (Bx/s ® Bxys, E1 @ E»)

/S

HomD} (Bx/s, B1 @ E3).

/s

Since ¢ is a group morphism, ¢, is also compatible with the tensor structure.
A lifting F' of Fx//g defines a trivialization of the torsor Ly/s and hence

isomorphisms of I'. Ty /s-modules

Axss & Fy 58 Qxys,  Bays = Fiy sl Txoys.
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Then

E=uE @pp, Brs = uE @, FslTos = Fysi b

/S

as F)*(/Sf'TX/ /s-modules. Statement (3) follows. O

Corollary 2.9 With the notation of Theorem 2.8, the Azumaya algebra
Fx/s+Dx/s splits on the (p — 1)st infinitesimal neighborhood of the zero
section of T, /5"

Remark 2.10 Although the source and target of the isomorphism 7z in

part (3) of Theorem 2.8, are independent of F, ng itself is not. Indeed, let F
and [ be two liftings of Fy/g, differing by a section § of Fy /s Txrys. Then
one can form € in the completed divided power envelope F's / SfTX/ /s. Since
E' € HIG(X'/S), ¢* acts naturally on FY sE', and we have the formula

77F2 = 66 © 77151'

This follows from the fact that the isomorphism of Theorem 2.8 is induced
by the section of Ly/s defined by F and the formula (1.3.1) for the action
by translation of F)*(/STX//S on Ay/s.

A lifting F of F x/s, if it exists, allows us to extend the equivalence of
Theorem 2.8 to the category MIC"(X/S) of all locally nilpotent connections.
As explained in [3, 4.4, 4.12], objects of this category give rise to modules
over the ring ﬁX/S of hyper-PD-differential operators. This ring can be

identified with the tensor product of Dy/g with the completion S T /s of
S"T'x1/s along the ideal of the zero section, and FX/S*DX/S can be viewed as
an Azumaya algebra over the sheaf of rings S Ty /s, or equivalently, over the
formal completion Ty /s of the cotangent space of X’/S along its zero section.
Let MIC«(X/S) denote the category of sheaves of ﬁx/g—modules on Oy,
and let HIG,(X’/S) denote the category of sheaves of S T /s-modules on
Ox. The subcategories M1C"(X/S) and HIG"(X'/S) are tensor categories.
The natural map S'Tx:;s — I'.Tx//s induces a pair of adjoint functors

v HIG,(X'/S) — HIGs(X'/S)
v HIG(X'/S) — HIG,(X'/S),
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and similarly for MIC(X/S).
Let Af be the divided power envelope of the augmentation ideal of Ay s
defined by the section of Ly,s given by F, and let B i be its Ox-linear dual.

Recall from Remark 2.4 that it has a natural D x/s-module structure. There
are natural maps

Axss = Ap; Dl @p  Br = Bays (2.10.1)

Theorem 2.11 Let X/S be a smooth morphism of schemes endowed with
a lift F': X — X' of the relative Frobenius morphism F/g.

1. The ﬁx/s—module BF described above is a splitting module for the
Azumaya algebra FX/S*ﬁX/S over its center FX/S*ZA’X/S = S'TX//S.

2. The functor
Cp: MIC(X/S) - HIG (X’/S)

Ew— L*HomDX/S(BF: E):

defines an equivalence of categories, with quasi-inverse
Col HIG (X'/S) = MIC(X/S)
/ 3 . /
E =Bz, E
Furthermore, C induces an equivalence of tensor categories

MIC'(X/S) — HIG (X'/S).
3. The map By — Bxs (2.10.1) induces isomorphisms of functors

Cpov =7 0Cxs and Cysoy =y 0Cp

Proof: Let (: Q%('/s — FX/S*Qﬁ(/S be the splitting of Cartier associated

to F (1.9.3). Recall that we constructed in Proposition 2.5 a module with
connection B, together with a horizontal action of F7 y ¢S T'x1/5; as a module
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over this sheaf of rings, B is free of rank one. As we have already noted in Re-
mark 2.4, we can identify B 7 with the formal completion BC of B¢; this iden-
tification is compatible with the connections and the actions of F'§ / SS’ Txrys.
In particular, l§’< is an invertible (even free) sheaf of F' /SS "T'xr/s-modules,
and hence is locally free of rank p? over S Ty /s- Recall from Proposition 2.5
that there is a surjective étale group morphism a¢ = id—h¢: T, /s~ T/ /s

and note that its restriction ¢, to T}, /g 1s an isomorphism, with inverse
a;t =id+he +hI+ -
¢ ¢TI :

According to Proposition 2.5, the p-curvature action of S"T'x//g on BC is given
by a7 followed by the standard action. Since &¢ is an isomorphism, a¢.B¢
is locally free of rank p?. Thus BC is an F X/S*ﬁx/g—module which is locally

free of rank p? over the center S Ty /s, and hence is a splitting module. This
proves (1), and (2) follows as before. The compatibilities stated in (3) follow
immediately from the constructions and the morphisms (2.10.1). [

Let us give a more explicit description of the local Cartier transform C'z.
Given a splitting ¢ and a Higgs module (£’,1’) we define a module with
integrable connection

\Ifgl(E’, V) = (FysE', V) (2.11.1)

V = Vo—f-(ldE/@C)OF)*(/S(w,), (2112)

where V) is the Frobenius descent connection and (idg ® () o F' ;‘(/S(W) is the
Ox-linear map

* F;(/S(w/) * * d g QC 1y

Let B /g := 1S Tx1/s, viewed as an object of HIG(X'/S).

a3

Lemma 2.12 The isomorphism B; = L*S'F)*(/STX//S induces an isomor-
phism
U (By)s) = B

compatible with the connections.
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Proof:  For each n, the ideal By /79 = @55 Tx/s also defines an object of
HIG(X'/S), as does the quotient B), of B s by BY/g. Let A7 denote the

dual of B, in HIG(X'/S) and let A ¢ :=lim A7 For example,
All’y = (‘:;(/S = OX/ ) Q}X’/SW
and if £ € Tx//g, ' € Oy, and W' € Q] s

f(ala w/) = (<§7 w,>7 O)

Furthermore, A ¢ = [.Qy, g, and if W} € QY, g for j = 1,...7, then each
zj = (0,w)) belongs to the divided power ideal of .A/;/S, and

f(l‘[lil}x[zm .. .gj?[jr]> — Z<£’ w;>x[li1]x[2iz] . '$£'ij_l]l‘£,ir].

J

It follows from the definitions that (&,V) = \1121(53(/5). Then by the
formula above for the action of T'yx//s on divided powers and the similar
formula for the action of a connection on divided powers, it follows that
(A, V) = \Ifgl(.A/)}’/S). Hence by the compatibility of \Ilgl with duality,
(B¢, V) = U (BYys). O

Let (E',¢') be an object of HIG(X’'/S). Then the isomorphism in the
previous lemma induces

U E) 2 U E ®@s1y, 3 Byys) = E'@sry, o Ve (Bys) = E' @51y, o B
(2.12.1)
Recall from Theorem 2.7 that F'x/s.B. splits the Azumaya algebra aZDX/S
over
TZ = Ti;(//s —C> T}’/S'

This, together with (2.12.1), implies the following result.
Theorem 2.13 Let ¢ be a lift of C’)_(}S, let

OZZZ FX/S*ZX/S = S.TX’/S — S'TX’/S = ZC
be the map described in Proposition 2.5, and let

DC = S'TX’/S ®o¢2 FX/S*DX/S-
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Let MIC:(X/S) denote the category of sheaves of D.-modules on X. For
each £ € T'x//g, the p-curvature ¢ on \Ifc_l(L*E’) is induced by the action of
al(§) on E', i.e., e = Fy o(—af(§)). This makes W '(t.E') a D¢-module.
Furthermore, the functors

HIG(X'/S) — MIC:(X/S)
(Ela wl) — Rz, BC
(B¢ = U E)

are isomorphic equivalences of categories, with quasi-inverse given by

E— 7’{07711)C (Bc, E)

Corollary 2.14 Let (FE,V) be an object of MIC.(X/S), let ¢ be its p-
curvature, and let (E',v') := Cz(E, V), and let ¢ be the splitting of Cartier
determined by F'. Then there is canonical isomorphism:

(B,V) = W la (B¢

Remark 2.15 The appearance of the involution ¢ in Definition 2.8 insures
the compatibility of the Cartier transform with the usual Cartier operator.
Let us explain this in the context of extensions. The group Ext},;-(Ox, Ox)
of isomorphism classes of the category EX Ty, ;o(Ox,Ox) of extensions of
Ox by Ox in the category MIC(X/S) is canonically isomorphic to the de
Rham cohomology group Hl,(X/S). Similarly, the group Ext};;o(Ox:, Ox/)
of isomorphism classes of the category EXTY;o(Ox:, Ox) of extensions of
Ox' by Oxs in HIG(X'/S) is canonically isomorphic to

Hypgy(X'/S) = H (X', Oxr @ Qyr5[-1)).
The inverse Cartier transform defines an equivalence of categories
Cyls: EXTy16(Oxs, Ox1) = EXTh0(Ox, Ox),

and hence an isomorphism of groups

Covst Higgy(X'/S) — Hip(X/S).
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Let us consider the following diagram.

Hipay(X')S) —— H(X', Q% 5)
C;cl/s C)_(/IS

Hap(X/S) —= HY(X, Hap(X/5)).

Thanks to our definition, the diagram is commutative. It suffices to verify
this when Fx/g lifts and for extensions Oy, — E — Ox+ which split in the
category of Ox-modules. Then E’ has a basis (e, €] ) such that ¢(ej) = 0 and
P(e)) = eg @ W', where w' € Q4 /s~ Then one can check that £ := C’;}S(E')
has a basis (eg, e1) such that V(ep) = 0 and V(e;) = ey @ ((w'), where ( is
the splitting of C;c}s defined by the lifting of F'y;s. This implies that the
diagram commutes.

2.4 The Cartier transform as Riemann-Hilbert

In the previous section we defined a pair of inverse quasi-equivalences of
categories:

Cxjst MICY(X/S) — HIG(X'/S)  +  Ew " Hompy (Bys, E)
C;;}sz HIG(X'/S) = MIC(X/S) :  E'v— Bays B Tyr LE'

Our goal here is to show how the ring structure on the dual Ay/s of Bx/s
can be used to give an alternative and more symmetric description of these
functors. This viewpoint sharpens the analogy between the Cartier transform
and the Riemann Hilbert and Higgs correspondences, with the sheaf of Ox-
algebras Ay/s playing the role of the sheaf of analytic or C*° functions.
This construction of the Cartier transform relies on the “Higgs transforms”
described in (5.9) and ordinary Frobenius descent instead of the theory of
Azumaya algebras.

Roughly speaking, the idea is the following. The algebra Ay,s is en-
dowed with a connection V 4 and a PD-Higgs field 6 4. If (E, V) is an object
of MIC (X/S), the tensor product connection on F'® Ay /s commutes with
the PD-Higgs field id ® 6 4. Hence id ® 6 4 induces a PD-Higgs field on the
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sheaf of horizontal sections of E® Ax,s, and it turns out that the correspond-
ing object of HIG  (X'/S) is Cx/s(E). Similarly, if (£',0') is an object of
HIG. (X'/S), then the total PD-Higgs field 0;,, of E'® . Ax s commutes with
the connection induced by V 4. Hence the subsheaf of sections annihilated
by ¢}, inherits a connection, and the corresponding object of MIC.(X/S)
is C';(}S(E’ ).

To make this precise, we begin with some notation and a slightly more
general setting. Let ) be a locally free sheaf of Ox-modules, let T" be its
dual, and let T be the vector group Specy S'2. Let G be the group scheme
Specy I'.T', and let us write Og for the sheaf I'.'T, Z for the divided power
ideal T T of I'.T, and Og, := Og/T"* if n € N. Recall from the discussion
preceding Proposition 1.4 that if 7,: £ — X is any T-torsor, then there is
natural action of Qg on the filtered algebra (Az, N.) := (7.0, N.), and
that N, A, is the annihilator of the ideal Z"*1. Thus there is a natural map

Ogn X NnAL — Nn.A[;. (2.15.1)

We shall find it both useful and convenient to study filtered Og-modules.
We denote by Z° the divided power filtration on Og (although we should
perhaps really write Z!'1).

Definition 2.16 Let E be an Og-module. An increasing (resp. decreasing)
filtration N. (resp N') of E by sub Og-modules is said to be I -saturated,
or just an I -filtration, if for all j and k,

IVINLE C Ny _;E, (resp. IVNFE C N*HE).
For example, the filtrations N. of A, and Z* of Og are I -filtrations. If E is
any Og-module, then the canonical filtration
NiE :={e € E: TMe =0} (2.16.1)

is 7 -saturated, and E is locally nilpotent if and only if this filtration is
exhaustive. If (E;, N.) and (Es,, N.) are Og-modules with Z -saturated filtra-
tions, then the tensor product filtration

N(Ey ® Ey) = Y Im(N,E; @ NyEy — Ey @ Ey) (2.16.2)
a+b=c
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is again Z -saturated, because the group law induces maps

p IV = N Im(TM e IV - 0g @ Og).
a+b=j
If F is any Ox-module, let 6, denote the Og-module structure on E for
which the ideal 7 acts as zero. That is, (£, 6y) = i, E, where i*: Og — Ox is
restriction along the zero section. If £ any O x-module and 6 is an Og-module

structure on E, let
E? := Homo, (i.Ox, E),

i.e., EY is the sub Ox-module of E consisting of all the elements annihilated
by the ideal Z.

Now let E be an Ox-module equipped with an Og-module structure 0
and an 7 -saturated filtration N.. The Ox-module

AL(E) =F ®OX .Aﬂ

has three natural Og-module structures: the action by transport of structure
via F, the action by transport of structure via A, and the convolution
structure defined in (2.7.1). We shall denote these by

HE = 8E®ldA:9E®¢90
9A = idE®(9A:90®(9A
Oor == Op®04

We endow it with the total (tensor product) filtration N. (2.16.2). It follows
from formula (2.7.1) that 64 and 6,,; commute. Define

To(E) = (Ac(E)™

with the Og-structure 67 induced by 6 4 and the filtration induced by N. We
have natural maps, compatible with the Og-structures shown:

(E,00,05) —2~ (Ap(E), 04, 010) 22— (T2(E), 07, 6)), (2.16.3)

where ig(e) := 1 ® e and jg is the inclusion. Note that ig factors through
(Az(E))%4 and jg factors through (Ag(E))%t. Endow Az (7z(E)) with the
tensor product filtration, and let

h: Ae(T2(E)) — Ag(E)
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be the map defined by the commutative diagram:

Jjep®id

Ap(T:(E)) =1:.(F) ® Az E A, @ Ar

h (2.16.4)
idE @ m

EF® A,
Proposition 2.17 Let E be an Ox-module with a locally nilpotent Og-
module structure 6 and an 7 -filtration N. which is bounded below.

1. The map ig of (2.16.3) is injective and strictly compatible with the
filtrations, and its image is (Az(E))™.

2. The map jg of (2.16.3) is injective and strictly compatible with the
filtrations, and its image is (A (E))"".

3. The map h of (2.16.4) fits in a commutative diagram

g

Ar(E).

Furthermore, h and k are strict filtered isomorphisms, compatible with
Og-module structures as shown:

h: (Ag(72(E)),04,0100) — (Az(E),Oi01,04)
ki (Te(Te(E)),07) — (E.,08).

4. If s is a section of L, then s* o jgr induces a strict isomorphism
nNs: (%(E)a QT) - (Ea L*QE)7

where ¢ is the inversion mapping of the group scheme G.
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Proof:  This result can be interpreted and proved in many ways. For ex-
ample, it is a special case of the theory of Higgs transforms on affine group
schemes as explained in section 5. Here we give a simpler version. Indeed,
all of the statements of the proposition can be verified locally on X, and so
we may and shall assume without loss of generality that £ has a section s
defining an isomorphism £ = T and hence A, = 5°Q).

Note that the Og-module structure (2.15.1) on A, and the map

s*t A — Ox
defined by the section s of £ together define a perfect pairing
Og, x N, Ar — Ox. (2.17.1)
If Fis any Ox-module, let
H.(Og, E) := li_rr)lHomoX(Ogn, E) C Homo, (Og, E).
Then the pairing (2.17.1) defines an isomorphism:
Apr(E) =A@ E=H.(Og, E), (2.17.2)

Let us denote by 64 and 6, the Og-module structures on H.(Og, E) de-
duced from the corresponding structures on Az (E). These can be described
explicitly as follows. If E and Fs are two Og-modules, then Home, (E1, E2)
can be give an Og ® Og-module structure by the rule

(b1, 02)(¢)(e1) := bagp(brey).

Then 6,,; corresponds to the Og-structure induced by p, and 6 4 to the struc-
ture induced by pri.. © The total filtration N. of A.(E) corresponds to the
filtration N. of H.(Og, E) defined by

NH.(Og, E) = {¢: (V) C N,,_,E}.

Now if F is a locally nilpotent Og-module, let us consider the following
maps:
ig: E— H.(Og, E) ip(e)(b) :=1ig(b)e
o: H.(Og, E) — E ¢ — ¢(1)

"In the systematic treatment in the appendix, we use p, instead of ji.
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The map g is the identity section of G and the map ig corresponds to the
map ip defined in (2.16.3). Similarly the map o corresponds to the map
ns of statement (4) of Proposition 2.17. Note that o is compatible with
the filtrations and that o o iy = idg. This shows that ig is injective and
strictly compatible with the filtrations. The image of ig is just the set of
homomorphisms which factor through Og, = ig.(Ox), which corresponds
to (A(E))%4. This proves (1) of Proposition 2.17, and (2) is a tautological
consequence of the definitions.
Define
7: E— H.(Og,E) by 7(e)(b):="(b)e,

where ¢: G — @G is the inverse mapping in the group G. If e € E, then a priori
7(e) is just an element of Homoe, (Og, E), but if e is annihilated by I+
then 7(e) € Hom(Og,, E). Thus 7 is well-defined if E is locally nilpotent.
Note that o o 7 = idg, so 7 is also injective. If e € N, E and b € ZU!, then
t*(b)e € Ny_,;E, so 7(e) € NyH.(Og, E). Thus 7 is compatible with the
filtrations, and in fact is strictly compatible because o is also compatible.

It is clear that the image of T consists precisely of the elements of H.(Og, E)
which are (-linear. We claim that these are the elements which correspond to
elements of 7.(E) C A.(F). Indeed, if ¢: Og — E is t-linear then it follows
from the commutativity of the diagram

pr

g X

(1d7 [') ig

Gxg—tr g
that 0;,¢(¢) = 0, and the converse follows from the fact that the diagram is
Cartesian.

Thus we can write 7 = jg o7, where 7: £ — 7,(FE) is an isomorphism of
Ox-modules, inverse to the mapping o o j. It is clear from the definitions of
7 and 04 that 7 takes g to .04, and this proves (4) of Proposition 2.17.

It remains for us the prove statement (3). First let us check that h is
compatible with the Higgs fields as described there. As we have observed in
equation (2.16.3), jg takes 0y to 0;,. More precisely, but perhaps somewhat
cryptically: 0, 0 jg = jg o 6y, where for example we are writing 6,,; for the
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endomorphism of £ ® A, induced by some element of Og corresponding to
the Og-module structure given by 6.

(Oror ® 04) 0 (jE ®idy) (jr ®ida) o (6o ® 0.4)
(idg @ m) o (Ot ® 04) © (jp ®@ida) = (idp@m)o (jp ®ida) o (6o ® 0.4)
Oior 0 (idg @ m) o (Jp®idy) = (dg®@m)o (jp®idy)ola
Oisoh = hofy.

Similarly, (6o ® 04) o jg = jg o 01, so

(o ®O4®04)0 (jpRida) = (Jp®idy)o (07 ®04)
(idg @m) o (B ® 04 ®04) 0 (jp®ida) = (idp®@m)o (jp®ida)o (07 ® 0.4)
(0o ®0.4) 0 (idp ®m)o (jp®ida) = ho(br ®04)
QAOh = ho@tot.

Thus h takes 0 4 to 0;,; and 0;,; to 04 as claimed. Since h takes 0;,; to 04, it
induces the map k:

To(Te(B)) = (Ae(Te)(E)™ — Ac(E)* = E.
Let us check that h is compatible with the filtrations. By definition,

NPALTE(E)) =Y (Im(NJT2(E) © No—oAr — To(E) @ Ac(E)).

a

The definition of N,7.(F) shows that its image under jg is contained in the
sum of the images of NyE ® N,_pAz. Hence h maps N A.(7,(E)) into the
sum of the images of

NoE @ Ny_yAr @ Ne_oAr —— E® Ar(E),

which is contained in N!**A.(F).

Note that if h is a strict isomorphism, then it induces a strict isomorphism
from the annihilator of 6, to the annihilator of 0 4, i.e., from 7 (7.(F)) to
E. Thus k is also a strict isomorphism.

Thus it remains only to show that h is a strict isomorphism. Suppose first
that Gr; E = 0 for all ¢ # k. Then the Og-structure on E factors through
ig, 80 04 = O,y and E = T,(E) C A(F). Then the map h is:

e®ar—e®@l®@ar—e®a,
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i.e., the identity map. Now we can proceed by dévissage. Statement (4)
shows that the functor E +— 7;(F) preserves strict exact sequences, and
since Gr Az is locally free, the same is true of the functors £ — Ag(FE)
and F — Ag(7z(F)). Now suppose that N,E = 0 and that h induces an
isomorphism for £’ := N,_; E. Then we have a strict exact sequence

0—FE — NE— E"— 0,

where E” := NyE/N, 1 E. We have seen above that the theorem is true for
E”, and it holds for E’ by the induction assumption. Then it also holds for
NyE by the strict exactness of the functors Az( ) and A (7()). Tt follows
by induction that h is a strict isomorphism whenever the filtration on E is
bounded, and, by taking direct limits, whenever the filtration is bounded
below and exhaustive. This completes the proof. O

Remark 2.18 It is easy to see that the filtration of 7;(F) induced by the
total filtration N on Ag(FE) is the same as the filtration induced by the
filtration Ay ® N.E. The total filtration has the advantage of being again
1 -saturated, a fact we will exploit in our cohomology computations in the
next section.

Remark 2.19 A similar result holds for standard Higgs fields if one works
with the divided power completion of A, along the ideal of a section. More
abstractly, suppose that T" and €2 be as above, let 0: F — E ® () be a locally
nilpotent T-Higgs field on E. Let I be the ideal of the symmetric algebra
ST generated by T. Then an [-saturated filtration on F is just a filtration
N such that IN,FE C N, 1E. Let Ag be the divided power algebra I'.(2,
and define A(F) := E ® Aq and To(E) := (Aq(F))**. Then the evident
analog of Proposition 2.17 holds.

We will sometimes want to consider graded Higgs fields and PD-Higgs
modules, i.e., graded modules over the graded ring Og, where Og = I'.T
or S'T. There is an evident functor Gr from the category of 7 -filtered
(resp. Z-filtered) modules to the category of graded Og-modules, compatible
with the convolution tensor product. In particular, if £ is a T-torsor, then
GrA, = 5°Q = ST, as a graded I'.T-modules (note that the multiplication
sends ', T ® S’Q to S,_.Q); furthermore its divided power envelope I'.Q is
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in a natural way a graded S"(2-module. If F is an Z -filtered Og-module, the
natural map

GrEQ AT =2 GrE® GrA, — Gr AL(E)

is an isomorphism, since Gr A, is locally free over Oy, and it is compat-
ible both with 64 and 6. In particular, if E satisfies the hypothesis of
Proposition 2.17, the map 7.(F) — A.(F) induces a map

Gr7.(F) — Gr(Az(E)) = Gr(F) ® Ar(E)
whose image is annihilated by 6;,; and hence induces a map

Gr7:(E) — Tr(Gr(F))

Corollary 2.20 Let (E,0,N.) be an Ox-module E equipped with an Og-
module structure ¢ and an I -filtration N., as in Proposition 2.17.

1. The map Gr7;(FE) — Tr(Gr(E)) above is an isomorphism. In fact
there is a commutative diagram of isomorphisms:

Tn(Gr E) ® Ap — CrTz(E) @ Ar — Gr A (Tz(E))

h Gr(h)

GI(E) ® A GrE® At GI‘Ag(E),

compatible with the Og-module structures as in op. cit..

2. There is a natural isomorphism of graded Og-modules:

Gr7.(F) =21, GrE.

Proof: The existence and the commutativity of the diagram is clear, as
is the fact that the arrows are compatible with the Og-module structures.
Furthermore, it follows from Proposition 2.17 that h and Gr(h) are isomor-
phisms. It follows that the middle vertical arrow is an isomorphism, and that
the image of Gr7.(FE) in Gr E ® A is exactly the annihilator of 6y, i.e.,
Tr(Gr(E)). This proves (1). Then (2) follows by applying (4) of Proposi-
tion 2.17 with E replaces by Gr E and L replaced by T. O
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There is a useful cohomological complement to the construction of Re-
mark 2.19. Recall that associated to a T-Higgs module (E,6) is its Higgs
(Koszul) complex

EFE—-E®Q—-FE0) — ..,

where Q0 := AQ).

Proposition 2.21 Let E be a graded Ox-module with a graded T-Higgs
field 0:
0: F— E®AQ,

where 2 is in degree 1. Using the notation of Remark 2.19, let
A (E) = Ag(E) @ Q' @ ¥
and let

da: t AFY(E) — ALY(E)
di: AG (B) — AJT(E)

be the boundary maps associated to the fields 8 4 and 0, respectively, ten-
sored with the identity. Then these maps fit into a graded double complex
Ag(E), and the maps i and j of Remark 2.19 define augmentations of the
double complex

E@Q — A;E)
To(E) @ — Ag(E)

For each i, Ay (E) is a resolution of E ® Q' and for each j AF(F) is a
resolution of To(F) @ ¥

Proof: 1t is immediate to verify that the boundary maps commute and
hence define a double complex. The fact that AY (E) is a graded resolution
of E® Q' follows from the filtered Poincaré lemma [3, 6.13] for the divided
power algebra I'.(€2). Since h is an isomorphism transforming 6, into 64,
the second statement follows. O

Let us now return to our discussion of the Cartier transform. Recall
that the center of D;(/s can be identified with the divided power algebra

['".Tx//s. Let Ty denote the divided power filtration of the divided power ideal
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Ix of I''Tx:/g. Let MICN,(X/S) denote the category of D}/S—modules E

equipped with an exhaustive, horizontal, and bounded below filtration Z"-
filtration N. (see Definition 2.16). Similarly, let HIGN,(X'/S) denote the
category of I"Tx//g-modules £’ equipped with an exhaustive and bounded
below 7 -saturated filtration N!.

If (E,V,N.) is an object of MICN.(X/S), let

EV7 .= HomD}/S(OX,E), and

EY Ker(E—» E®QX/S)

The action of the center I'. T’/ /5 of D;(/s defines a PD-Higgs field on Fx g, F
and hence an F-PD Higgs field v on E; note that EY is invariant under the
connection V: F — EF ® Q%{/s- Furthermore, EV = E¥", since Dy g is
generated as a topological ring by Tx/s and I'.Tx/s.

We endow Az(E) := E® A, with the tensor product D} g-module struc-
ture V coming from the given structures on £ and on Ay/s and with the
tensor product filtration coming from the filtrations N. of £/ and Ay,s. We
also endow it with the F-PD-Higgs field 64 := id ® 64, where 64 is the
F-PD-Higgs field of Ax/s.

Lemma 2.22 The action 04 of I'.(Tx//g) on Ax/s(E) commutes with the
action of D /s corresponding to the tensor product DY /s-module structure.

Proof: As we have already observed, it follows from the formula (2.7.1)
that the p-curvature PD-Higgs field of Ax,s(£) commutes with id ® 6.4.
That is, the action of I''T'x/ /g C D}/s commutes with id ® 4. Furthermore,

if D e Tx/s, f/ c F.TX//S, ec E, and o € -AX/S7

(id®9§’)VD(€®(Z) = ()®05/(a)+6®951VD(a)
= Vp(e) ® bz (a) + e ® Vplbe (a)
= Vn(id®s,)(e®a)

Since D}/s is generated by T’x,s and I".T'x//g, it follows that Vp commutes

with 0 for every D € D} /s O
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Now recall that, by definition, ¢.Cx/s(E) = HomD}/S(BX/S, E), with the
I".Tx//s-module structure coming from E, where By s := Homo, (Ax/s, Ox)
in the category of D} / g-modules. Thus when E is locally nilpotent,

1.Cuxys(B) == Hompy (Bys, B) = (E® Axss)” " = ((Awss(E)))”
Of course, the total PD-Higgs field on Cx,s(£) is zero, but because of the
commutation of D}(/S and id ® Oy, 1.Cx/s(E) is stable under the PD-Higgs
field id ® 04 of Ax/s. In fact, the induced PD-Higgs field induced by 64 on
is ¢, of the PD-Higgs field induced by 6g. A geometric explanation of this
fact is given in the appendix after Definition 5.9; it can also be checked by
direct computation. Thus it follows that

Css(E) = t.Hompy | (Buss, B) = (Tays(B))” (2.22.1)

where Ty/s(E) := (Axs(E))%* as in Proposition 2.17.
It is clear from the construction that there are natural maps, compatible
with the connections and F-PD-Higgs fields shown:

(.00, V) —— (Ax/s(E), 04, V) ~— (F/sCx/s(E),0. Vo) (2.22.2)

Here Vj is the Frobenius descent connection on F% /SC’X/S(E). Since N. is
an Z'-filtration on E, the filtration on Fy ¢Cx/s(E) induced by the total

filtration of Ay /s(E) is horizontal and is also an Z"-filtration with respect to
the action of §4. It follows that it descends to an Z'-filtration on Cy/s(E).
Thus we obtain a filtered version of the Cartier transform:

Civjs: MICN' (X/S) — HIGN.(X'/S). (2.22.3)

On the other hand, if (E', ¢, N!) is an object of HIGN_ (X'/S), we can
endow
hess(B) = Fy)sE ®oy Ax/s (2.22.4)

with the tensor product F-PD-Higgs field ¢, ,. It follows as in Lemma 2.22
that 0;,, commutes with the tensor product connection on F§ ¢E' ® Axys,
where I /SE' is given the Frobenius descent connection Vy. Thus

Yys(B') = (Alys ()% (2.22.5)
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inherits a nilpotent D}( /S—module structure from Ay/s, which we denote by
V 4. We have natural maps
* T i! / N ol 7' / N pf
X/S(E 0 >V0) - ( X/S(E )79tot7vA’) DA ( X/S(E )76t0t7 VA)
(2.22.6)
where i’ takes the PD-Higgs field of E’ As before, the Z -filtration N! on E’

induces an Z"-filtration on C 5(£'), and we get a functor:
st HIGN, (X'/S) — MICN,(X/S). (2.22.7)
The commutative diagram
. j®id
Fy)sCx/s(E) @ Axys —— E® Ax/s @ Axys

h
id ®m
E® Axs
defines a horizontal map
h: ( /X/S(CX/S(E>)7 9_,4, 9t0t7 N) — (.Ax/g(E), Htot, 6_,4, N) (2228)
A similar construction defines a horizontal map

W (Anss(Clyys(E). 0y Oy NT) — (Al s(E), O 00, NT) (2229

Theorem 2.23 Let X/S := (X/S,X'/S) be a smooth morphism with a
lifting of X’ mod p? as described above.

1. Let (E,V,N.) be an object of MICN (X/S) and let (E',0', N!) :=
Cx/s(E£,V,N.). Then the map h (2.22.8) is a filtered isomorphism,
and fits into a commutative diagram:

-/

-/
Clyys(E') -+ Ay s(B) ——— E'

I

h id

E Awys(E) <= Crys(E)
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2. Let (E',0', N!) be an object of HIGN (X'/S), and let (E,V,N.) :=
Cly/s(E",0',N!). Then the map ' (2.22.9) is a filtered isomorphism
and fits into a commutative diagram:

l
E

Cx/s(E) . Ax/s(E)

I

n id

Z'/ -/
B — Wy s(B) L Ol s(E)

Consequently, C", /s 18 quasi-inverse to the Cartier transform Cy,s and is
therefore isomorphic to the functor C/,;} s of Theorem 2.8 (ignoring the filtra-
tions).

Proof: This theorem is an immediate consequence of Proposition 2.17 and
Cartier descent. The p-curvature of the connection on Ay ,s(E) is the total
Higgs field 6,,;. Hence

E' = Cuss(E) = ((Ax/s(E)")Y = Ta/s(E)Y,

in the notation of op. cit.. Since the p-curvature of the connection Ty s(E)
vanishes, standard Cartier descent implies that the natural map

is a filtered isomorphism. Thus we have a commutative diagram

Y

F)*(/SE/ ® Ax/s — Tx/s(E) ®ox Axss
h
E® Ax/s

Proposition 2.17 implies that h is a filtered isomorphism and hence so is
h, and it is also horizontal. The vertical left arrow in the diagram of (1)
corresponds to the map k of Proposition 2.17 and is also a horizontal filtered
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isomorphism, compatible with the PD-Higgs fields, i.e., an isomorphism in
the category MICN_(X/S). A similar argument works if we start with an
object (E',¢",N!) of HIGN,(X'/S). This shows that Cx/s and C, 5 are
quasi-inverse equivalences. O

Corollary 2.24 Let (E,V,N.) be an object of MICN (X/S) and let
(E',0/,N!) = Cx/s(E,V,N.).

Then there is a natural isomorphism in the category of graded I'.Tx/s-
modules:

(Gr(E',0',N!)) = 1, (Gr(E, 1, N.))v,

where 1 is the action of I'.T'x1/g C D;(/s and ¢ is the inversion involution of
F-TX//S.

Proof:  Using Corollary 2.20, we have

GrE = Gr((Tus(E)Y)

> (CrTuys(E)”
= (1. Gr(E))Y

[]

Remark 2.25 A similar formalism works when there is a lifting F' of F X/S-
Let MICN(X/S) denote the category of modules with connection (£, V)
endowed with a horizontal filtration N. such that Gr™(FE) is constant. We
assume also that N. is exhaustive and bounded below. As before, let Az
be the nilpotent divided power completion of Ay,s along the ideal of the
corresponding augmentation Ay;s — Ox. Then if (E,V,N.) is an object
of MICN(X/S), its p-curvature ¢ gives (Fx/g.F, N.) an I-saturated Higgs
field as discussed in Remark 2.19. Then we define:

Ai(E) :=FE®o, Ay and Ti(E) = (AF(E))etot
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where 7;(E) has the Higgs field 67 induced by 6 4. Then
Co(E) = (Ap(E)) = (TH(E))Y
with it inherits a Higgs field and filtration. Thus we obtain a functor
Cz: MICN(X/S) — HIGN(X'/S).
On the other hand, if (E’,0', N!) is an object of HIGN(X'/S), let
Ap(E') = E @0 Ap.

Then the total Higgs field " on Az (E’) commutes with the connection id ®
V4. Let

Ot = (Ap(E),
which inherits a connection from the action of id ® V 4 and a filtration N.
from the total filtration Ny ,. Thus C;l is a functor

Ol HIGN(X'/S) — MICN(X/S).

These functors are quasi-inverse equivalences, compatible with the tensor
structures and with the global functors C'y/s considered above.

2.5 De Rham and Higgs cohomology

Let us continue to denote by X/S a smooth morphism X/S of schemes
in characteristic p, together with a lifting X’/S of X’/S. Let (E,V) be a
module with integrable connection on X/S, nilpotent of level £. Our goal in
this section is to compare the de Rham cohomology of (F, V) with the Higgs
cohomology of its Cartier transform (E’, 0"). We shall do this by constructing
a canonical filtered double complex (A’ 5(E), N.) of Oxs-modules and quasi-
isomorphisms

whenever {4+ d < n < p, where A, /s 18 the total complex associated to the
double complex A% /s
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In fact,
Ag/S(E) = Fx/ss (E ® Ax/s ® F sx/s ® Qgf/s)
=~ FX/S* (E X -AX/S ® QJ)}/S) ® Qg('/s'

with boundary maps constructed from the de Rham differentials of (E, V)
and the p-curvature of Ay/s. In the case (£,V) = (Ox,d) we obtain an
isomorphism in the derived category

FX/S*(E ® Q.X/E,Hd) ~ (Q.X’/Svo)

between the de Rham complex of X/S and the Hodge complex of X'/S,
when d < p. This is the result of Deligne and Illusie [8] (with a loss of one
dimension). For general E it can be regarded as an analog of Simpson’s
“formality” theorem [36].

We shall find it convenient to work with filtered connections and their
de Rham complexes. Let (E,V) be a module with integrable connection
endowed with a horizontal filtration N. such that (Gry(FE), V) is constant,
i.e., has zero p-curvature. We assume that N_1E = 0 and N,_,E = E, so
that (E,V, N.) defines an object of MICN.(X/S). Let N be the tensor
product filtration on £ ® Ay /s induced by N. and the filtration N. of Ay/s.
Let (E’, N!) be the Cartier transform of (£, N.) with the filtration induced
by N as explained in Theorem 2.23. For fixed 7, the de Rham complex of
the module with connection Ay/s(E) ® F)*(/SQ%//S is the complex:

. i,0 . i,1
is(B) e Ay (B) " e (2:25.1)
Similarly, for fixed j, the Higgs complex of (Ax/s,6.4) tensored with E®Q§( /5
is the complex
d'ti

L . d/O,j .
A s(E) = Agf/S(E) £ AigJ/S(E) S (2.25.2)

It follows from Lemma 2.22 that the differentials d and d’ commute. Thus
we can form the double complex A’ / s(F) and the associated simple complex

Ay s(B). | |
For each i there is a natural map from E' ® Yy, ¢ to Ker(d“?), which can
be regarded as a morphism of filtered complexes,

(E'® Qjs, NI) — (AY 5(E), NI, (2.25.3)
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compatible with the Higgs boundary maps:

(E' @ D5, NT) — (A% 5(E), NI*)

(B'® Qi) NI) — (A} 5 (B), N

In the same way we find for each 7 a morphism

Fx/s*(E X Q N) — ( X/S<E) Nt0t> (2254)
compatible with the de Rham boundary maps

FX/S*(E®Q§(/57 ) — (AX/S( ) N-tOt)

X/8

Fysu(B @ QL N — (A 5(E), N

These assemble into morphisms of filtered complexes:
a b
(B' @ Qs N) 205 (A5 N) 225 (B QN (2.25.5)

If there is a lifting F of F x/s, we can make the analogous construction
with A in place of Ax/s, and we use the analogous notation. Then there
is a natural morphism of double complexes A%y (E) — A%Z(E). Taking
associated simple complexes, we find a commutative diagram:

ax/s bx/s

(Crys(E) @ Qxrjg, NI) —— (Axys NI = (B ® ® Qy/g, N-)

(2.25.6)

. a N .
(Cr(E) ® Vx5, NI) —— (Ap, NI*) +—— (B @ Q. N.).

Before stating the main theorem, let us recall that if C" is a complex with
an increasing filtration N., then as explained in [7], the filtration décalée N2
on C" is defined by

N := Ny yC? 4+ d(Ny_g1C97 ) (2.25.7)
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Theorem 2.26 Let X/S be a smooth morphism in characteristic p. Let
E :=(E,V,N) be an object of MICN(X/S) with N.;E =0 and N,_1E =
E.

1. If X /S is a lifting of X/S, then the maps ax/s and by ;s (2.25.5) induce
filtered quasi-isomorphisms:

(N2 (Ceys(B) ® Qixry), N0) - = Fysu(NEG Ay j5(E), N™°€)
Fx/s. (N2 (B @ Qiyys), N*) - — (N Ay s (), N©).

Consequently they assemble into an isomorphism in the filtered derived
category of Ox/-modules:

Fx/s. (N (B ® Q). N, d) 2 (NE(Cays(E) @ Qixyg), N4, 0.
2. If F is a lifting of Fx/s, then the maps az and by (2.25.6) induce filtered
quasi-isomorphisms:

(Co(B) ® Qx5 N/*)  —  Fyysu(Ap(E), Nf)
Fxse(E ® Qy /g, N*) —  (Az(E), N™)

These assemble into an isomorphism in the filtered derived category of
Ox-modules

(FX/S*(E X QX/S), N.dec) ~ (CF’(E) ® Q.X’/Sv N./dec)‘

Corollary 2.27 Let (E,V) be an object of MIC(X/S) which is nilpotent
of level { < p. Then a lifting X /S induces isomorphisms in the derived
category:

Fx/s+ (T<p—fz(E ® QX/S)) = Tp-e(Cays(E) ® Q.)f’/~9>’
and if { + dim(X/S) < p,

FX/S* (E X Qk/s) = (CX/S(E) & Q.X’/S)'

Applying (2) of Theorem 2.26 to the canonical filtration (2.16.1) of a
locally nilpotent connection, we obtain the following result.
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Corollary 2.28 Let (E,V) be an object of MIC(X/S). Assume that the
connection V is locally nilpotent (quasi-nilpotent in the terminology of [3]).
Then a lifting F' of F'x/s induces isomorphisms in the derived category

Before beginning the proof of Theorem 2.26, let us remark that it is not
true that the maps

ap: (B'®Qyi5,N.) —  Fx/s.(A(E), N.) (2.28.1)

bp: Fyxsu(E® Q'X/S,N.) — (Az(E),N.) (2.28.2)

are filtered quasi-isomorphisms. However, these maps induce maps of spec-
tral sequences, which on the F; level are maps of complexes of sheaves:

H(Grap): (H(GrE' ® Q. /5),di) — (Fx/s:(H(Gr Az(E)),di) (2.28.3)

H(Grbg): (Fx/sH(GrE® Qy)g),di) — (H(GrAx(E)),d1)  (2.28.4)
where d; is the differential of the spectral sequences. We shall prove that

these maps are quasi-isomorphisms (not isomorphisms), and hence induce
isomorphisms on the Fs-terms of the spectral sequence.

Lemma 2.29 In the situation of (2) in Theorem 2.26, the maps (2.28.3) and
(2.28.4) above are quasi-isomorphisms.

Proof: Since the p-curvature of Gr E vanishes, the classical Cartier isomor-
phism induces a canonical isomorphism:

E(E® Qs N)=H (CrE® Qy5) = (GrE)Y @ 0%, 4

Corollary (5.1.1) of [29] allows us to compute the differential d; of this spec-
tral sequence. It asserts that the diagram below is anticommutative, thus
identifying the (negative of) the differential di with the graded map Gr(1))
induced by the p-curvature of E:

di .
Hq(GI'Z' E® QX/S) —1> Hqul(GI'i,l EF® QX/S)

(2.29.1)

Gr(¢) (Gri—l E)V ® Qq+1

(Gri £)Y @ Q%5 X'/s"
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Thus there is an isomorphism of complexes
(Fx/seby (B ® Qy/g, N-), d1) = (Gr E'® Qxr/5, Gr(y)).

We apply the same method to analyze the F; term of the spectral se-

quence of the filtered complex (A% (E), N.). The total differential of the

double complex A% (F) induces a map
Nk.A%] — NkflAg_l’j D NkA;,j-i_l,

so the differential on Gr A% (E) is just the de Rham differential of the module
with connection

Gr AR (E) = ®: Gr Az (E) ® Fy 5% s,

Since this connection has vanishing p-curvature, the classical Cartier isomor-
phism provides an isomorphism:

H (Gr A(B) @ FysQoys0 d) 2 (Gr(AR(E)Y © Qs © Qs
The differential d; of the spectral sequence is then a sum of maps
(CrAp(E))T @ Qs © Upys — (Cr(Ap(E)T @ Uy @ i)
(Gr(Ap(E))Y ® Qs @ Dy —  (Gr(Ap(E))Y @ Qg ® Qs
The first of these is the map induced by differential d' of A% (F), which
comes from the p-curvature of A, and [29] identifies the second as the map

coming from the p-curvature of the connection V on Az(E). Thus we have
an isomorphism of complexes:

(By(AX(E),N.,dy) = (GrAz(E)Y ® Qyr/s © Uy, d)

where the differential on the right is the differential of the simple complex
associated to the double complex whose term in degree ¢, j is

(GrA(E))Y @ Vx5 © Qﬁ(l/s

and whose differential is the graded map induced by the Higgs fields 6 4 and
it In fact, by Corollary 2.20, Gr Az(F) = Gr E ® Gr Az (E), compatibly
with the connections and Higgs fields. Furthermore,

(GrE®GrAp)Y = (GrE)Y @ (GrAp)Y = (GrE)Y @ .0k .
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Let us write €2 for Q;,/S and T for its dual. According to 2.20, Gr E’ is the
Higgs transform of Gr E with respect to the T-Higgs module I'.€2. Thus the
maps Graz and Grbz become identified with maps of complexes which term
by term are the mappings

(GrEYV o0 — (GrE)Vel.aQe o
Gr(EY®Q — Gr(B)elr.QeQ' e

constructed in the same way as az and bg. This is exactly the situation
discussed in Proposition 2.21, so the lemma follows. O

Proof of Theorem 2.26 To prove that the arrows in (1) of the theorem are
isomorphisms is a local question, so we may without loss of generality assume
that there is a lifting F of Frobenius. For i < p, the map N;Ay/s — N;Ap
is an isomorphism. Furthermore, since N_1F = 0,

NI Axss(B) =Y  N;E@ NijAxss = Y N;E® N jAp = NI Ap(E)
7=0

j=0
when ¢ < p. Thus the map:
(Ay/s(E), NI') — (AL(E), NI).

is a filtered isomorphism when restricted to N,_;. Thus statement (1) will
follow from statement (2).

Since the filtration N. on E is exhaustive and formation of direct limits
in the category of sheaves on X is exact, we may and shall assume that N.
is finite. It will suffice for us to prove that the maps of complexes

Fxys. GV (B @ Qyys) — GrV" (AR(E))
GV (CR(E) ® Qyys) — GV (AR(E))

are quasi-isomorphisms. Recall from [7] that there are natural injections
HY(GrN C") — Gr™N™ ¢ which assemble to form a quasi-isomorphism

(Ey(C",N.),d) = (H (GrN C),d) — GV O = (Eo(C, N%), d).
(2.29.2)
Thus the theorem follows from Lemma 2.29. ]
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Remark 2.30 Let (E, V) be an object of MIC.(X/S), suppose that there
exists a global lifting of Fx/g, and let (E’,1)’) denote the Cartier transform
of (E,V). By Remark 2.10, there is a canonical isomorphism F)*(/S(E’, Y =
(E, —1), where 1 is the p-curvature of V. This induces isomorphisms

)*(/SHi(Elv 1//) = Hl(Ev _w)

for all i. Recall from [29] that the sheaves of Ox-modules H'(E, —) carry a
canonical integrable connection V whose p-curvature is zero, induced by the
given connection on F and the Frobenius descent connection on F / 0% /s
It follows easily that the above isomorphisms are horizontal and hence de-
scend to isomorphisms of O y/-modules

Hi(E/7 Q/}/) = HZ(E7 —¢)v
On the other hand, (2.26) gives us isomorphisms H'(E',¢)') = H'(E, V).

Combining these, we find the “generalized Cartier isomorphism”

Another construction of such an isomorphisms was given in [29], independent
of any lifting of X or Fy,s or nilpotence condition on V. One can easily see
that these two isomorphisms are the same, because they agree when ¢ = 0
and because both sides are effaceable cohomological delta functors in the
category MIC.(X/S).

Suppose that X is noetherian and E is coherent. A consequence of the
isomorphisms discussed in Remark 2.30 is the fact that the de Rham complex
of (£, V) with an integrable connection V is determined, as an object in the
derived category, by its formal completion along a closed subset determined
by its p-curvature . Recall that (F,1) gives rise to a coherent sheaf E
on T, . Define the essential support of (E,V) to be the set-theoretic
intersection of the support of E with the zero section of T, /s We should
perhaps recall that Fx/g: X — X' is a homeomorphism and from [29, 2.3.1]
that the essential support of (£, V) corresponds via Fx,s to the support in
X of the Higgs cohomology sheaves of the p-curvature of (£, V). (In fact,
the dth cohomology sheaf suffices.)

Proposition 2.31 Let X/S be a smooth morphism of schemes in charac-
teristic p > 0 of relative dimension d. Let (E,V) be a coherent sheaf with
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integrable connection on X/S, and let Z C X be a closed subscheme con-
taining the essential support of (K, V). Letiz: X,; — X denote the natural
map from the formal completion of X along Z to X. Then the natural map
of de Rham complexes:

is a quasi-isomorphism.
Proof: It suffices to prove that the map above induces an isomorphism on

cohomology sheaves. The generalized Cartier isomorphism [29] is an isomor-
phism of sheaves of Ox,-modules

HY(Fx s5:E ® Qy/s5) = Fx/s HU(E ® Fx/sQy5)Y

where the complex on the right is the Higgs complex of the F-Higgs field
given by the p-curvature of V. Now one has a commutative diagram

HY (Fx/s:E ® Qx/g) HU(ize Bz ® Q)

~ >~

HUE @ Fy/sQ%1s)" — H(iz.Ejz @ FyjsQxi5)Y
Thus it suffices to prove that the natural map
HUE ® Fy/sQxs) — H(izelz @ Fi sy )5)

is an isomorphism of Ox-modules. Since the completion functor is exact,
and since the cohomology sheaves HI(E ® F% /SQ'X, /S) have support in Z,
this is clear. O]

Let us also remark that in the situation of Proposition 2.31, we can define
a formal Cartier transform as follows. Let I C Oy be an ideal of definition
of the essential support Z of E. For each n, let E, := E/F;}/SI”E, which
inherits an integrable connection from the connection on E. Then the p-
curvature of (E,, V) is nilpotent and hence, given a lifting F of Fx/s, it has
has Cartier transform Cz(E,,). These Cartier transforms are compatible with
change in n, and they fit together to define a coherent sheaf on the formal
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scheme X7, which we (slightly abusively) still denote by C'z(E). The double
complex constructions used in the proof of Theorem 2.26 also fit together into
a formal double complex. The following statement is a consequence of this
and the previous proposition.

Proposition 2.32 Suppose that X is noetherian and that (E,V) is a co-
herent sheaf on X with integrable connection. Let F be a lifting of Fx/s and
let C(F) denote the formal Cartier transform of E described above. Then
the maps of Proposition 2.31 and statement (2) of Theorem 2.26 fit together
to define an isomorphism in the derived category of Ox/,-modules
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3 Functoriality of the Cartier transform

3.1 Gauss-Manin connections and fields

In this section we review the definitions of higher direct images of modules
with connections and Higgs fields. We show that their formation with re-
spect to a smooth morphism of relative dimension d, increases the level of
nilpotence of a connection (resp. of a Higgs field) by at most d. This result
strengthens the nilpotence theorem of Katz [18, 5.10] and will be used in our
discussion of the compatibility of the Cartier transform with higher direct
images.

Recall that if h: X — Y is a smooth morphism of smooth S-schemes and
if (£, V) is a module with integrable connection on X /S, then the sheaves

Rnh*DR(Ea v) = Rnh*(E ® Q.X/Ya d)

are endowed with a canonical connection, called the Gauss-Manin connection.
By the same token, if (£, 0) is a module with a Higgs field #, then the sheaves

R'hyrc«(E,0) = R"h.(E ® Q.X/Y’ 0)

are endowed with a canonical Higgs field, which we shall call the Gauss-Manin
field. Each of these can be constructed in many ways. For the reader’s con-
venience we explain one of these here; a variant of the “explicit” construction
explained in [18, 3.4]. We write out the details in the de Rham case only;
the Higgs case is analogous but easier.

Let (E,V) be a module with integrable connection on X/S and let £ be
a local section of T'x/s. Then interior multiplication by § defines a map of
graded sheaves

ie: EQQy g — E®Qy g,

of degree —1. The Lie derivative with respect to & is by definition the map
Lg = dlg + ’L.gd,

which has degree zero. By construction L¢ is a morphism of complexes,
homotopic to zero. Now recall that a smooth morphism h induces exact
sequences

0— h*Q%//S — Q%(/S — Qﬁf/y — 0

0—Txyy — Txis — h'lys—0
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Pull the second of these sequences back via the map h*ITy/S — h*Ty;s
to obtain an exact sequence of sheaves of h™!(Oy )-modules:

0— Tx;y — Txg — h™'Tyys — 0. (3.0.3)

Let us note that T}? /s C Tx/s is closed under the bracket operation and
that the inclusion T,y — T}? /s is compatible with the bracket operations.
Moreover, if g is a local section of h™!(Oy) and ¢ is a local section of Ty /5
then £(g) also belongs to h~!(Oy), and if 7 is a local section of Ty, then

1,¢](9) = n(&(g9)) — &(nlg)) = 0.

It follows that [n,&] € T'x/y, so that T'x/y is an ideal in the Lie algebra T)}g/s
and the map T /s h™'Ty,s is a Lie algebra homomorphism.

Lemma 3.1 If £ is a local section of T}g/s, then L¢ preserves the Koszul

filtration K" of EQQ /s induced by the exact sequence (3.0.1). In particular,
L¢ induces a morphism of complexes

Furthermore, if £ and &' are local sections of T;(//S, then [L¢, Let) = Lie e in
End(E ® Qy )y ).

Proof: By definition,
K'(E® Q) = Im (1'Qy)s © B Q%) — B @ Q.

Let € be a local section of Ty /5" Since L¢ acts as a derivation with respect
to multiplication by €2 /55 it suffices to check that if w is a local section of
h*Qy g, then L¢(w) also belongs to h*Qy g Again using the fact that Lg
is a derivation, we see that it suffices to check this when w lies in A71Q, /5
Butif w € hilﬁ;/s and if the image of £ in h*Ty,g lies in h™'Ty/g, Le(w) =
dig(w) + igdw € h™1Qy .

The fact that the action of T'x/s on £ by Lie derivative is compatible with
the bracket follows from the integrability of V, and it is well-known that the
same is true for its action on 27 /5" Since L¢, L and L ¢ act as derivations
with respect to multiplication by forms, it follows that [L¢, Le] = Lige on
E® Q'X/S and hence also on £ ® Q'X/Y ]
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Now let .
Tx_y =Tx)y — T§/S,

regarded as a complex in degrees —1 and 0, where the boundary map is the
inclusion. We can give Ty the structure of a differential graded Lie algebra

by defining [, 7] := 0if , 7" € Ty, [, €] := [dn, §] € Txyy if n € Ty and
e T;(//S, and [¢,&'] the usual bracket if £, & € T;(//Y. The exact sequence

(3.0.3) defines an isomorphism in the derived category of f~'Oy-modules:
Ty_y — h ' Tys. (3.1.1)

which is compatible with the bracket structure on h_lTX/y.
If n is a local section of Ty, then i, defines a section of degree —1 of
the complex End(E @ (Y y), which we denote by V~i(n). If £ is a local

section of T}(//S, then Lemma 3.1 tells us that L¢ defines a section V°(€) of

degree 0 of End(E ® Q). Let us observe that V~! and V° assemble into
a morphism of complexes:

ViiTy y — End(E® Qyy).

Indeed, if £ € Ty /g then VO(€) is a morphism of complexes, so it is annihi-

lated by the total differential of End(E ® Q'X/Y). If n € Tx/y, then V7(n)
has degree —1, so

dVtn)=doVi(n)+Vt(n)od=doi,+i,od= L, =Vdn).

Let us also check that V' is a morphism of differential graded Lie algebras.
If&¢ e T;(//S, then we saw in Lemma 3.1 that

[v0(§)7 VO(SI)] = [L§7 LE’] = L[&f'} = vO([g’ gl])
We must also check that if £ € T}(/ /s and 7 € Ty, then

[V (), V)] = V[0, €]), iee.,

that [t,, L¢] = ijy,¢. Observe first that both sides are derivations of E®(2Yyy
of degree —1 with respect to multiplication by forms, and in particular are
Ox-linear. Thus it suffices to check the formula for closed 1-forms. In fact,
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ifwe Q%{/s is closed, then

[V 0), VO(©)(w) = iyLe(w) = Leiy(w)
= ip(d{§,w)) — Le(n, w)
= nw) —&n,w)
= ([n,¢],w)
= V([n.€]),

as required. Finally, let us observe that V' is a derivation with respect to
multiplication by sections of h~1(Oy).

Definition 3.2 Let h: X — Y be a smooth morphism of smooth S-schemes
and let (E,V) (resp.(E,0)) be a module with integrable connection (resp.
Higgs field) on X/S. Then the Gauss-Manin connection (resp. Higgs field)
on R"h.(E @y, ) is the map

obtained by composing the adjunction map
Ty/g — h*hilTy/S = Roh*hilTy/S

with the inverse of the isomorphism Roh*T)'(ﬁY — Roh*hflTy/S defined by
(3.1.1) and the maps

R°h.(V'): R°h.(Tx_y) — R°h.End(E ® Qy)y) — End R"h.(E @ Qv ).

Remark 3.3 The integrability of the Gauss-Manin connection defined here
follows from the compatibility of the maps (3.1.1) and V' with the bracket
operations. A similar construction defines the Gauss-Manin Higgs field, and
thus we obtain sequence of functors

R"WPR. MIC(X/S) — MIC(Y/S)

R"RHIY: HIG(X/S) — HIG(Y/S)
It is straightforward to check that these fit into sequences of exact effaceable
0-functors and hence are derived functors. This makes it easy to compare

this construction with the many others which appear in the literature and in
particular with the derived category constructions appearing in section 3.3.
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Now suppose that N. is an increasing filtration on E which is stable
under the connection (resp. Higgs field). Then the filtrations N. and N9 of
E @y are stable under the action of Ty, and hence the higher direct
images of the corresponding filtered pieces and the graded objects inherit
Gauss-Manin connections.

Theorem 3.4 Let h: X — Y be a smooth morphism of smooth S-schemes.
Let E be a sheaf of Ox-modules endowed with an integrable connection V
(resp. a Higgs field §). Suppose that N. is a filtration on E such that Gr™¥ V
is constant (resp., such that Gr™ § = 0). Then for each n and i, the action

of the Gauss-Manin connection (resp. field) on R"h,(GrN""(E Qyy)) is
constant (resp. trivial).

Proof: 1If 6 is a Higgs field such that Gr™(8) = 0 , then # maps N;E to
N,_1E® Q%{/S' It follows that the actions of T,y and T;(//S on F® Q'X/Y
by interior multiplication and Lie derivative map N to N, Hence T .y
acts trivially on Grfvdec(E ® Xy ).

Now suppose that V is a connection on £ and N is a horizontal filtration
on E. Recall that we have a natural quasi-isomorphism (2.29.2) of complexes

a: (By7(E®Qyy,N),di) — GV (B ® Q. d).

Here BV’ (E @ Qy,y, N) = H/7(Gr)Y E ® Q). Note that if { € Ty C
T}(//S, then 7 is well-defined on £ ® Q'X/Y, and hence L¢ = dig + i¢d acts as
zero on HY(E ® Q'X/Y). Thus the action of T _,, factors through h™'Ty/s;

the boundary maps d; are compatible with this action. Thus R"h.(E;”, d;)
has a connection also, and we claim that R"h.(a) is compatible with the
connections. To see this, it is convenient to recall the “dual” version of the
filtration décalée:

Ni*(E ® Q%(/Y) =Nl ® Q?{/Y A dil(NiqulE ® Q%(/Y)'

Then there is also a natural quasi-isomorphism
a: (Grjv* (E ® QX/Y)? d) - (EI’J(E ® Q‘X/Ya N)a dl)

Then a* and aa* are compatible with the actions of T _ . Although a is
not compatible with the action of T’y on the level of complexes, it follows
that it is compatible with the induced action of Ty, 5 on hyper direct images.
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Now suppose that Gr E := Gr" E is constant. The theorem will follow if
we prove that the Gauss-Manin connection on R"h.(E;(E ® Yy, N.), d1)
is constant. Let us consider the relative Frobenius diagram:

¥ FX/Y x) TX/Y/S X/
) B B (3.4.1)
Fy;s v’
Here Fx/s = 7x/v;s © Fx/y and he square is Cartesian, so Q§(<Y>/Y o

7Tﬁc/y/nga/yv
The morphism of filtered complexes

induces a morphism of spectral sequences, which on the E;-level corresponds
to the top row of the following commutative diagram:

HY(Gr E® Qy/g) HYGr E® Qyy)

Cs Cy

H(Gr B ® Qxs) © V%) — MG E® Q) @ Wr 1y

HY(GrE @ Qx/s) ® Qg(,/y,

The vertical maps cg and ¢y induced by the inverse Cartier isomorphism
are isomorphisms because Gr E is constant, the map a is surjective, and the
map b is injective. Thus H°(Gr E ® Oy /g) @ %,y can be identified with
the image of the arrow at the top of the diagram. Since the differentials of
the spectral sequence leave this image invariant, they induce maps

H(GrE® Qy5) @ W jyr — H(Gr E @ Qi 6) ® Q?}Y"
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and define a complex H°(Gr F ® Qy /S) ® QY Iy of sheaves of Ox/-modules
on X'. Since the natural map

TX/v/S (HO(GTE ® Qy/s) ® Q&//y/) — H(GrE® Qx/v) ® Qg(m/y

is an isomorphism, we see that the complex F;(E, N.) descends to a complex
of Ox,-modules on X'.

Note that if £ € Tx/y C T)?/S’ then 7¢ is well-defined on F ® Q'X/W
and hence L¢ = di¢ + icd acts as zero on H?(E ® (Yy,y). Thus the action
of Tx_y on HY(E ® (Xy,y) factors through h~'Ty,s. For the same reason,
h™'Ty/s acts as zero on the image of H(Gr E® Q) in HY(Gr E® Q).
and it follows that the action of h™'Ty/g on E;(E, N.) is nothing but the
Frobenius descent connection. It follows that the Gauss-Manin connection
on R"h{") (H GrV(E® QYy/y), d1) is the Frobenius descent connection. [

The following result is an improvement of the result [18, 5.10] of Katz,
which gives a multiplicative instead of an additive estimate for the level of
nilpotence of higher direct images.

Corollary 3.5 In the situation of the previous theorem, suppose that h: X —
Y has relative dimension d and denote by MICN,(X/S) the category of ob-
jects of MICN(X/S) of level ¢, i.e., such that there exists an integer k such
that N, E = 0 and N, E = E. Then for each q, RIhPR(E ® Q'X/WN.deC)
lies in MICN 4,4(Y/S), and the analogous statement for Higgs modules also
holds.

Remark 3.6 In the case of connections, we can use the diagram 2.29.1,
which computes the boundary maps of the complex E|7(E ® Q Jys N2, to
see that

R'h, Gl (E @ Qv d) 2 Fy g R, Gr (B © Q) D)

where 1) is the map induced by the p-curvature.

Example 3.7 Let k be a field of characteristic p, S := Speck, Y := Spec k[t].
If d is a positive integer, let m := d + 2, assume (p,m) = 1, and con-
sider the hypersurface X in P"*! over S defined by X" + X{" + --- X', +
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tXoX1 - Xgi1. Once Y is replaced by a suitable affine neighborhood of the
origin, X/Y will be smooth, and the iterated Kodaira-Spencer mapping

(kajor)” : H(X,Q%)y) — HY(X, Ox)

is an isomorphism [27, 3.4]. Then Katz’s formula [19, Theorem 3.2] implies
that the iterated p-curvature mapping

(Yopor)": H'(X, M (Qy)y)) — HUX, H(Qyyv))

is also an isomorphism. This implies that the level of the Gauss-Manin con-
nection on R, (Q /Y) is d. Moreover, if d > p, the action of the center of

Dy;s on Reh, (Y /Y) does not factor through the divided power neighbor-
hood of the zero section.

3.2 The Cartier transform and de Rham direct images

Let h: X/S — Y/S be a smooth morphism of smooth S-schemes, endowed
with liftings X'/S and Y’/S. We shall explain how a lifting h': X’ — Y’
of h' defines a compatibility isomorphism between the Cartier transform of
the de Rham direct image of a module with connection and the Higgs direct
image of its Cartier transform.

It is convenient to work with filtered categories as described in Corol-
lary 3.5. If £ < p, an object (E,V,N.) of MICN,(X/S) can be viewed as
an object of MICN_(X/S) and we apply the filtered Cartier transform of
Theorem 2.23 to obtain an object (E’,0', N!) of HIGN,(X'/S).

Theorem 3.8 Let h: X/S — Y/S be a smooth morphism of smooth S-
schemes, endowed with liftings X'/S and Y'/S. Let { be an integer less
than p— d, where d is the relative dimension of h. Then a lifting ' X’/S —
Y'/S of i': X'/S — Y'/S induces an isomorphism of functors (made explicit
below):

@%, : th;HIG o C){/S = Cy/g o thER
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making the diagram below 2-commutative:

Cx/s

MICN,(X/S) HIGN,(X'/S)

RInPR RIHIG

CY/S /
MICN 1 g(Y/S) 25 HIGNo(Y'/S).

We shall construct the compatibility isomorphism of Theorem 3.8 from a
canonical filtered double complex, a relative version of the double complex
we used in the construction of the comparison isomorphism in Theorem 2.26.
For any (E,V,N) € MICN(X/S), define

Ag/y/S(E) = Fxys« (E ® Ax/s @ FxysQx v @ Qg(/y)
= FX/S* (E & -AX/S & Q&/Y) ® 2 Y’

The de Rham and Higgs boundary maps then form a double complex
(Ay/y/s(E),d' d), which we endow with the total filtration N. := N/
There is a canonical morphism

(A}/S(E%NW) - (A}é/y/s(E)aN?Ot)

Let us recall from the diagram 3.4.1 that we have a morphism A(): X®) —
Y and a homeomorphism 7x/y/s: X () — X', which we will sometimes allow
ourselves to view as an identification to simplify the notation. The terms of
the complex A, /y /S(E) are Fxs.Ox-modules and the boundary maps are
WX/y/S*OX<Y)—linear.

Recall from Proposition 1.12 that the lifting 2’ of & defines a morphism
of filtered algebras with connection

Q;L/Z (h*Ay/S, N) — (.Ax/g, N)
Then we have a morphism of filtered relative de Rham complexes:
(E® hppAyss ® Uy, NI*') = (B @ Axys @ Qyjy, NI,

Since h},pAy/s comes from Y, its p-curvature relative to Y vanishes, so for
each j, the map

E@h Ays @ Yy — E® Axss @ . (3.8.1)
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is annihilated by the differential:
d: E® Axss @y — B Axs @ Yy ® Fi %y

Let Ay s(F) = E® hppAys € MIC(X/S). It follows that the maps
(3.8.1) define a morphism of filtered complexes:

b: Fxse(Ays(E) @ Qxjy, NI — (Al /y,s(E), N (3.8.2)

Let E’ be the Cartier transform of E. Since formation of p-curvature
is compatible with de Rham pullback (see Remark 1.8), the map 6;, is also
compatible with the F-Higgs fields. Thus we have a morphism of filtered
relative F-Higgs complexes:

(E, ® h*Ay/s ® F)*(/SQ'X//YHN-tOt) N (E X »AX/S & F;(/SQ‘X’/Y” N.tot)
Note that there is an isomorphism of Oy )-modules
mxyyysh ™) Ay s 2 B Fyjs, Ayys.

Since h¥)" Ay s and the Cartier transform E' of E are both annihilated by
the relative de Rham differential Ax;s(£) — Ax/s(E) ® Qﬁ(/w the same is
true of the tensor product

Ays(E') = E' @ mxpy/sh™ " Ayys.
Thus we find a morphism of filtered complexes:
a: (Ayss(E") @ Qi jyr, NI — (Ay s (E), NI). (3.8.3)

We shall deduce Theorem 3.8 from the following result on the level of
complexes.

Theorem 3.9 Suppose that E is an object of MICN (X/S) such that N, 1 E =
E and N_1FE = 0. Then the morphisms a and b above induce filtered quasi-
isomorphisms

a: (N (Ayys(E) @ Qyyyn), N€) - = (NS Ay yys(E), N<)
b: Fxyse (N5 (Ayss(B) ® Qyyy), N¥) - = (NG Ay s(E), N°).
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The map a is compatible with the Gauss-Manin connections and the map b
is compatible with the Gauss-Manin Higgs fields defined in (3.2). Moreover,
the Gauss-Manin connection annihilates the map

El (%9 Q.X’/Y’ — AX/))/S(E)
and the Gauss-Manin Higgs field annihilates the map

Fxys:E @ Qx )y — A}c/y/s(E)-

Proof: The compatibilities with the Gauss-Manin connections and fields
are straightforward. To prove that the maps in the theorem are filtered
quasi-isomorphisms, we follow the outline of the proof of Theorem 2.26. In
particular, we may work locally on X and Y, and we may assume that there
are compatible Frobenius lifts G: Y — Y’ and F: X — X’. Then we work
with the local Cartier transforms, using complexes A’ /&) s(E) A o(E), and
A~ (E). It will suffice to show that the maps of complexes

. s
é/s(
a: (B (AL (B, N.) dy) — (B (A

be (B ( Ay g(B), N d) — (B} (A

E),N~),d1)
E)7N‘)7dl)

ﬁ/é/s<

}?/é/s(

are quasi-isomorphisms. As in the proof of Theorem 2.26, we find that these
become maps

Gra: (Gr El &® F.Qy//s & Q'X,/Y/, dl) — Gr(E &® F'QX’/S &® Q:X"/Y’? dl)
Grb: (GrE@F.QY//S(gQ:X//Y/,dl) — Gr(E@F-QX//S(gQ:X//Y/,dl)

Working locally on X, we may assume that the sequence 0 — h’*Q%,/S —
Qﬁ('/s — Qﬁ(/y — 0 splits. Then we can identify F.Qﬁ(,/s with the ten-
sor product h*I".Q4, 15 ® I.Q% Jyr» and the result follows from the filtered
Poincaré lemma, as in Proposition 2.21. O

Proof of Theorem 3.8 We may assume without loss of generality that N_ F/ =
0. For each g, let (E%,, N.) := RIWPEE with the filtration induced by the fil-
tration N9 of E®(Yy,y, and let (B g, N.) := RIW™C B with the filtration

induced by N’%,

84



Since the pieces of Gr . Ay/s consists of locally free sheaves of finite rank,
the projection formula gives filtered isomorphisms

(Ay/s ® B, NIy = (RUhPT Ay s(E), N.)

(Fy/ssAy/s ® Eff 1, N = (R'WIC Ay s(E'), N.)

where the filtrations on the right are induced by the filtration N%¢. Fur-
thermore, these maps are compatible with the Higgs fields and connections.
Theorem 3.9 then gives us an isomorphism

(N1 (Ayys © B g), NI') = (N (Ayss © Efyg), N

compatible with the filtrations, connections, and Higgs fields. Since E}, has

level at most p— 1, its Cartier transform is obtained by taking the horizontal

sections of N,_1.Ay/s(E?), which by the above isomorphism is (E,q, N.).
O

Remark 3.10 When Y = S, the categories MIC,(Y/S) and HIG,(Y'/S)
reduce to the category of Og-modules, and Theorem 3.8 above reduces to
Theorem 2.26.

3.3 Derived direct and inverse images

Let S be a noetherian scheme of finite Krull dimension, h: X — Y a mor-
phism of smooth schemes over S. Let T%._y, be the pullback of T3, ¢ to
X', which fits into the following diagram:
Ty — T,
E/
T3,

Note that i) is a closed embedding if and only if A’ is smooth.
Let HIG(X' — Y') denote the category of sheaves of h'*S"Ty~,g-modules
on X'. We define the derived inverse image

LIy,e: D(HIG(Y'/S)) — D(HIG(X'/S))
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to be the composition

D(HIG(Y'/S)) M5 DHIG(X' — Y')) 2 D(HIG(X'/S)).

Since A’ is a morphism between smooth S-schemes, 7/~ has bounded coho-
mological dimension, and so takes D*(HIG(Y'/S)) to D*(HIG(X'/S)).

Similarly, for a smooth morphism h, the derived direct image
R D(HIG(X'/S)) — D(HIG(Y'/S))

is the composition

DHIG(X'/S)) ™5 DIHIG(X — ")) ™ DHIGK/S)),

where Ri"' sends a complex E in D(HIG(X'/S)) to

! . g%
Ri"(E) = RHomS-TX//S(S Ty s, E).

It is again true that this functor takes bounded complexes to bounded com-
plexes. Note that R/ is right adjoint to L% 6

Let us pass to the direct and inverse images of D-modules. Proposi-
tion 3.12 below is a reformulation, based on the Azumaya property of the
algebra of differential operators in characteristic p, of the usual definition of
the functors

Lh}g: DIMIC(Y)S)) — D(MIC(X/S))

RRPE . D(MIC(X/S)) — D(MIC(Y/S)).

Recall that Dx/g is the sheaf of algebras on the cotangent space of X'/S
associated to Fx/s.Dx/s. We first need the following result.

Theorem 3.11 ([5]) Let h: X — Y be a morphism of smooth S-schemes.
Then the Dx/s ® h_lD?f}S—module Dx_y = h*Dy,s induces an equivalence
of Azumaya algebras on T%, . :

ilsz/g ~ W*Dy/s.

86



Proof: To prove the theorem consider Dy,s as a left module over itself.
Remark 1.8 shows that the left action of Dx/s on h*Dy/s and the right
action of h~'Dy/g together define a left action of

FX/S*DX/S ®S.TX’/S h/*FY/S*D;)};S)

where S"T'x/ /g acts on h’*Fy/S*Dg,’;S via ', and the evident action of A" S Ty g.
This gives us a module over the Azumaya algebra i', Dx/s®o... (H*Dy/ 5)°P.
X/

Y/
A local computation shows that this module is locally free over OT}/ of

YI
rank ind(i'; Dx/s) - ind(h" Dy/s). O
As a corollary, we get an equivalence of categories:
CX/_>Y/ : MOd(Z‘;l*FX/S*D

) =~ Mod(h" Fys.D (3.11.1)

X/S y/5)7

where Mod(.A) denotes the category of A-modules. Note that, since F/gs is
a homeomorphism, the functor

Fx/s«

MIC(X/S) :M0d<Dx/S) — MOd(Fx/S*Dx/S)

is an equivalence of categories. Thus the following result determines Lh},p
and RhPE.

Proposition 3.12 ([5]) For any morphism h : X — Y there is a canonical
isomorphism:

Fx/ge0 Ly 2 i 0 Cylys 0 LB o Fy ..
If h is smooth we also have

Fy/s. 0 RhPT 22 R, o Cxi iy o Ri},' o Fx/g..

Proof: We shall just explain the second formula. By definition, for any
E e D(MIC(X/S)), we have

Cxr—yr o Ril, (Fx/s.E) =

HOmi/;Fx/S*DX/S (FX/S* h*DY/Sa RHomFX/S*DX/S (i/ZFX/s*DX/S, FX/S*E))
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RHompy g, Dy, s (Fx/s«h" Dyys, Fxs:E).
It follows then that

Rh/* @) CX’—>Y’ e} R'i;l!(FX/S*E) = Fy/S*Rh*(RHOTrLDX/S(h*Dy/g, E))
When h is smooth this is the standard definition of Fy/g. o RhPE. O

As an application of the new construction of RhPE let us observe that
if £ € MIC(X/S) and the Zariski closure of supp Fx;s. 2 C T%, does
not intersect T%, y» C T%,, then RhPRE = 0. (This follows also from
Proposition 2.31).

3.4 The conjugate filtration on Fx;s.Dx/g

The algebra of differential operators in characteristic p, besides the order
filtration, has another natural filtration by ideals:

o+ CTy C -+ C Iy C Fxs:Dxys, (3.12.1)

I;( = SiTX/(Fx/S*Dx/S)-

We shall call (3.12.1) the conjugate filtration since, as we will explain in
(3.17) below, it induces the conjugate filtration on the de Rham cohomology
groups. The associated graded algebra Gr(F,s.Dx/s) is a canonically split
tensor Azumaya algebra. In this section we shall study a certain filtered
derived category of modules over the filtered algebra Fx/s.Dx/s. We will
see how the splitting property of Gr(Fy/s.Dx/s) together with some general
results in homological algebra lead to generalizations and simple proofs of
some of the fundamental results of Katz, including the p-curvature formula
for the Gauss-Manin connection. Our main application is the functoriality
of the Cartier transform with respect to the direct images.
The following construction plays a central role in this subsection.

Definition 3.13 Let A be a sheaf of algebras over a scheme Z and T C A be
a two-sided ideal. Denote by CF(A,T) the category of (unbounded) filtered
complexes of A-modules

(NP ) © (NTE ) C - C (B d),

satisfying the following conditions:
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1. Ujez N'E? = E7 and (o, N'E? =0,
2. The filtration N* on each E’ is an I-filtration, that is:
IN'E? C N"*EY, (3.13.1)
(see also Definition 2.16).

The Z-filtered derived category DF (A, Z) is the Verdier quotient of the homo-
topy category Ho(CF(A,T)) of CF(A,Z) by the subcategory Ho(CF*(A,T))

of acyclic complexes.

In the context of this definition, a filtered complex is said to be acyclic if
for every i the complex (NE",d) is acyclic. Recall that by the definition of
the Verdier quotient there is a triangulated functor

L: Ho(CF(A,T)) — DF(A,T),

such that L (Ho(CF*(A,Z))) = 0. The pair (DF(A,Z), L) has the following
universal property: for every triangulated category 7', the composition with L
induces an equivalence of categories between the full subcategory of triangu-
lated functors ® : Ho(CF(A,Z)) — T, such that ® (Ho(CF*(A,I))) =0,
and the category of triangulated functors ®' : DF(A,7) — T. Explicitly,
DF(A,Z) can be constructed as the category whose objects are those of
Ho(CF(A,T)) and morphisms Hompraz1)(X,Y) are represented by dia-
grams
X 5y &y,

where o and s are morphisms in Ho(CF(A,Z)) and cone s € Ho(CF*(A,T)).
We refer the reader to [25] for a detailed discussion. In the case when Z = 0,
the filtered derived category DF(A) := DF(A,0) was first considered by
[llusie in his thesis [15].

Given a filtered complex E°, we denote by E’(r) the same complex but
with the shifted filtration: N*(E"(r)) = N"""E". Let CF</(A,Z) be the full
subcategory of C'F(A, Z) whose objects are filtered complexes with N1 E" =
0, let CF5;(A,Z) be the full subcategory whose objects satisfy N*E' =
E°, and let be C'Fjy(A,T) the intersection of CF<(A,Z) and CF>,(A,Z).
Denote by DF<(A,Z), DFs,(A,Z), and DFy, (A, T) the quotients of the
corresponding homotopy categories.
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Lemma 3.14 The functor ¢y : DFs(A,Z) — DF(A,T)
has a right adjoint functor

wsy, : DF(A,T) — DFs(A,T) @ wsi(E) = NFE".
The functor c<; : DF<(A,T) — DF(A,T) has a left adjoint functor
we;: DF(A,T) — DF (A L) : wq(E)=E/NTE.
Moreover, wsicsi >~ Id, w<jc<; >~ Id.

The proof is straightforward.

Corollary 3.15 The functors csi, c<; and ¢y : DFpyy(A,Z) — DF(A,T)
are fully faithful. The essential image of c¢>y, consists of those objects (E", N'E")
such that each N7E" — E" is a quasi-isomorphism for all j < k, and the es-
sential image of c<; consists of those objects such that NYE" is acyclic for all
g >1.

Proof: 1Indeed, for E*, E" € DF>,(A,Z) we have

Hochzk(A;[)(E., E,.) ~ HomDFZk(A,I)(E.a kaCZkE/')

~ HomDF(AI) (CZkE., CZkE/.),

where the first isomorphism is induced by wspc>r ~ Id and the second
one comes from the adjointness property from the lemma. The proofs for
c<; and ¢y are similar. If (E°, N'E") is an object of DF(A,T) and each
NE" — E is a quasi-isomorphism for all 7 < k, then the natural map
cspwsp(E,N'E") — (E',N'E") is an isomorphism in DF(A,Z), so that
(E°, N'E") is in the essential image of ¢>,. The proof for c<; is similar. [

Let p: 'V — Z be a vector bundle over a scheme Z, V' the corresponding
sheaf of sections (thus, V' is a locally free sheaf of Oz-modules), and let A
be a flat sheaf of algebras over p,Oy = S'V*. Let Z be the sheaf of ideals
in A generated by V*. Denote by Gr A = @;50Z7/Z7*" the sheaf of graded
algebras over S'V*. Since A is flat over S'V* the morphism:

SV*®o, AJT - Gr A, f®a— fa (3.15.1)
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is an isomorphism and Gr A is a flat S"V*-module. Denote by D(Mod" (Gr A))
the derived category of graded Gr A -modules. We then have a functor:

Gr: DF(A,Z) — D(Mod (Gr A))
(E) » & NE/NTE.

—o0<j<+00

Let ¢ : W — Z be another vector bundle over Z and 2 : W — V a linear
embedding. Set B = A®g-,. SW* and I' = W*B C B. Then B is a sheaf
of algebras over S"W* and 7' C B is a subsheaf of ideals.

Proposition 3.16 Assume that Z is a noetherian scheme of finite Krull
dimension.

1. The functor i, : DF(B,1') — DF(A,T) has a right adjoint
Ri': DF(A,T) — DF(B,T')
and the functor i, : D(Mod (Gr B)) — D(Mod (Gr A)) has a right

adjoint:
Ri' : D(Mod’ (Gr, A)) — D(Mod" (Gr B)).

2. The functor Ri' takes the essential image of DF<;(A,T) into the essen-
tial image of DF<,(B,Z') and the essential image of DF>i(A,Z) into
the essential image of DFsy_q(B,Z'), where d :==rk'V —rk W.

3. For every I-filtered A complex E, the morphism Gr Ri'E" — Ri' Gr E
defined by adjunction:

Id € Hom(E',E") — Hom(Cri,Ri'E",Gr E') — Hom(Gr Ri'E", Ri* Gr E")
is an isomorphism.

4. Ri* commutes with the forgetful functors
U: DF(A,Z) — D(Mod(A))and V' : DF(B,Z") — D(Mod(B)),

i.e. the canonical morphism V' Ri'E" — Ri'UE", defined by adjunction,
is an isomorphism.
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Proof:  For (1) we use the technique from [24]. The Brown Representability
Theorem (loc.cit., Theorem 4.1.) asserts that the existence of the adjoint
functor Ri' : DF(A,Z) — DF(B,I') would follow if we prove that

1. the categories DF(A,Z) and DF(B,Z’) have arbitrary direct sums
2. the functor i, commutes with arbitrary direct sums

3. the category DF(B,I’) is compactly generated 8.

The first two properties are immediate. Let us check the third. Given an open
subset j : U — Z, denote by By the filtered B-module such that N‘By = 5B
for i <0 and N'By = ji(S‘W*B) for i > 0. For any E* € DF(B,Z'), one has

Hompps,g)(Bu(l), E'[j]) ~ R'T(U,N~'E").

It follows that DF(B,J) is generated by objects of the form By (l). It is
known that for any noetherian space U of finite Krull dimension the functor
RT'(U, ) commutes with arbitrary direct sums (see, for example [38]). Thus
the objects By (l) are compact.

The second claim in (1) is proven by a similar argument.

For (2), let B € DF<(A,Z). We want to show that ws; 41 Ri'(c<; E") = 0.
Indeed, for every E” € DFs;,1(B,7’) we have

Hom(E" , ws141 Ri'(cq) E7)) =~ Hom(csiyy B, Ri'(co; E7))
~ Hom(w<i.(cs111E"), E")
~ Hom(w<csi11i(E"), E")
0.

To prove the second statement consider the forgetful functor
®: DF(B,I") — DF(Oy) := DF(Og,0)

to the filtered derived category of Oz-modules. By Corollary 3.15, we will
be done if we show that ®Ri'(E") € DFs;_4(Oy) for every object E° of
DFsi(A,T). Consider the Koszul complex

0— AT ®p, A(—d) — - - T ®0, A(—-1) - A — i,i* A — 0, (3.16.1)

8Recall that an object X € DF(B,Z’) is called compact if for every set of objects {Y,}
one has ®Hom(X,Y,) ~ Hom(X,®Y,). A category is said to be compactly generated if
there exists a set T of compact objects such that for every nonzero Y € DF(B,Z’) there
exists X € T such that Hom(X,Y) #0 .
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where T' := ker (V* AN W), and where the Z-filtration on A™T' ®¢, A(—m)
is defined by ' '
N'(A"T ®p, A(—m)) = A"T ®p, T ™.

Then (3.16.1) is an acyclic complex in CF(A,Z). It yields a functorial iso-
morphism

ORIE) ~ Homa(A'T ®0, A(—),E’) (3.16.2)
This is the filtered complex C" whose term in degree i is
Ch = @ ANT* ®0, E(p).
p+q=i

Since E(p) € DFs;_,(A,Z) and T* has rank d, this completes the proof.
For the last two statements, it will be enough to prove that Gr Ri'E" —
Ri'GrE" (resp. VRi'E" — Ri'WE" ) becomes an isomorphism after the
projection to the derived category of graded Oz-modules (resp. the derived
category of Oz-modules.) In turn, this follows from the Koszul computation
in (2). O

Let h: X — Y be a smooth morphism of relative dimension d of smooth
schemes over a noetherian scheme S of finite Krull dimension. We shall apply
the above construction to the linear morphism

-/

h
T}/_,)ﬂ e Ti;(/,

and to A D 7 being either STy O Jx = @,., 5 Txs or the Azumaya
algebra FX/S*DX/S D Ix = TX’<FX/S*DX/S)- We then have the filtered
derived image functors

RW!" = R o Rit,' : DF(S'Txr, Jx1) — DF(S Ty+, Jy)

RhER = Rh, o Cx/_yr 0 RZ’;I! : DF(FX/S*DX/S,I)() — DF(FY/S*DY/SaIY)

and by the previous proposition
RIC DFy (S Tx/, Ix') — DFyp—qn(S Ty, Jy)
RRP" : DFyy(Fx/s:Dx/s,Ix) — DFj—an(Fy/s«Dy;s, Iy ).

In particular, this gives another proof of Corollary 3.5.
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Example 3.17 Consider the Dy/s-module Ox € DF(Fx/s.Dx/s,Zx) en-
dowed with the trivial filtration. Then the filtration on

RhPROx € DF_40/(Fy s« Dyys, Iy')

coincides with the “conjugate” filtration. Indeed, we will construct a canon-
ical quasi-isomorphism in the filtered derived category DF (i} (Fx/s+Dx/s)):

(Riy,(Fx/s:0x), N') 2= (Rij(Fx/s:0x),T"),

where for any complex C",

C1 if g < —i
T'C?:={ Im(d?) ifqg=—i+1
0 ifg>—i+1.

That is, T°C" = 7<_;C", where 7< is the canonical filtration. Note that by
(3.16.2),
Gl‘im RZ;'L(F)(/S*O)() ~ QWXQ//Y/ (=Y Fx/S*OX[—m].

Thus the result follows from the following lemma, whose proof is straightfor-
ward.

Lemma 3.18 Let (E°,N") be a filtered complex in an abelian category.
Assume that the filtration is finite and that for every m

HY(Gr™™ E') =0, forevery i m.
For each i, let T{E" := T'N'E" C N'E". Then the morphisms
(B, NT) — (B, Ty) — (E7,T7)
are filtered quasi-isomorphisms.
Observe that the graded Azumaya algebra
Gr Fx/s«Dx/s ~ (Fx/s:Dx/s/Ix) ®o,, S Tx

over S'T'x, splits canonically: Fx;s.0x ®o,, S Tx: is the graded splitting
module. This defines an equivalence of categories :

Cys: D(HIG'(X'/S)) — D(Mod (Gr Fxs.Dxys))
C‘;(?‘é(E.) = B ®S'TX’/S (FX/S*OX X STX’/S)
= E.. ®OX’ FX/S'*OX
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Observe that Cxﬁ* and its quasi-inverse Cy /g commute with Ri}. By part
(3) of Proposition 3.16 we have a functorial isomorphism

Cx/s Gr Rij(E") ~ Ri},(Cx/g Gr E') (3.18.1)
and its direct image to Y’
Cy,s Gr RRL™(E") ~ RIS (Cy ) Gr E). (3.18.2)

Let £ be an object of DFy, ;j(Fx/s+Dx/s,Zx). Then the filtered complex
RhPR(E") yields a spectral sequence:

EPT = HPY(Gr? RRPE(E")) = H*(RRPE(E)).

We shall call it the conjugate spectral sequence ° (c.f. Example 3.17).
Assume that the conjugate spectral sequence degenerates at E;. Then the
quasi-isomorphism (3.18.2) induces an isomorphism of graded Higgs modules:

Cy,s Gr RIDLM(E") ~ RIW9(Cy g Gr E7). (3.18.3)
Remark 3.19 Let us explain how formulas (3.18.2) and (3.18.3) can be
viewed as generalizations of Katz’s formula [19, Theorem 3.2] relating p-

curvature and the Kodaira-Spencer mapping. Recall from [20] that the com-
plex M = RWPE(Ox:) of Dy /s-modules has another natural filtration

- CF'M CF™'M c..-.CcM,
where FVM* C M* are Oy-submodules satisfying Griffiths transversality:
Tyys(FIMY) c FI-'M* .

The last property makes Gry M* a Higgs module on Y’ and there is canonical
quasi-isomorphism

Grp RWPR(Ox) ~ R (0y). (3.19.1)

in the derived category of graded Higgs modules [20, Construction 5.6.1]. If
the morphism A’ is smooth and proper, the filtration /" induces the Hodge

9Let us note that, when E = Ox the E,-terms of our spectral sequence correspond to
the E,1 terms of the usual conjugate spectral sequence, after a suitable renumbering.
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filtration on RA/P(Ox:) and the spectral sequence associated to F is the
Hodge spectral sequence. Combining Laumon’s formula (3.19.1) with (3.18.2)
(for E- = Ox) we obtain a canonical quasi-isomorphism

Cy,s Gry RhPF(Ox) = Grp RR'™(Ox) (3.19.2)

in D(HIG"(Y')S)).

Assume that h is smooth, proper, and that the Hodge spectral sequence
and the conjugate spectral sequence for the de Rham direct image of Ox
degenerate at F;. Then (3.19.2) yields an isomorphism of Higgs modules

Cy,s Gry RIhPR(Oy) ~ (Grp RINH(Ox0), k), (3.19.3)

where Grp denotes the associated graded object with respect to the Hodge
filtration on R/A'P"(Ox/) and  is the Kodaira-Spencer operator viewed as
a Higgs field on Grp RRPE(Oy.). This is Katz’s p-curvature formula!®. See
Example 3.17 for an explication of the left side which relates it to Katz’s
original formulation. We refer the reader to section 4.6 (formula (4.16.2)) for
a generalization of this remark.

Remark 3.20 Example 3.17 can be generalized as follows. Let A be sheaf
of algebras flat over S'V* and 7 : W — V a linear embedding. Consider the
functors

DF(AT) - DF(i*A,i*T)

l l

DF(A) - DF(i*A).

This diagram is not commutative. However, we will show that for every A-
module E with a finite Z-filtration (F = N°E > --- D N"E D N""E = ()
the Z- filtration (Ri'E = N"Ri'E D --- D N"Ri'E D N""'Ri'E = 0) is the
filtration décalée of (Ri'E = Ri'N°E D --- D Ri'N"E D Ri'N""'E = 0). To
see this we, first, recall an interpretation of the filtration décalée convenient
for our purposes.

Let DF(C) be the filtered derived category of an abelian category C, and
let DF<F(C) c DF(C) (resp. DF=*(C) C DF(C)) be the full subcategory
whose objects are filtered complexes (E", F"E") such that, for every integer

10Tn Joc.cit. Katz considers also the log version of his formula. We shall not do so here.
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n, Gr" £ has vanishing cohomology in degrees greater than n+ k (resp. less
then n+ k). It is known [1, Appendix], that the subcategories DEF'<*(C) and
DF=k(C) define a t-structure on DF(C) whose heart is the abelian category
of complexes C(C). In particular, the embedding DF=<K(C) — DF(C) has a
right adjoint functor

T<i : DF(C) — DF=*(C).

Explicitly,
Fm(Tgk(E'7 FE))Z — Fm-i-i—kEi + d(Fm—H_k_lEi_l),
if 7 > k and ' '
F™"(r<,(E",F'E")) = F"E"
otherwise.

The canonical filtration
- CT<(EF'E)C---C(E,F'E).
makes F° a bifiltered complex. We shall denote this bifiltered complex by
(B, FE)* .= (E",NFE),

so that (B, N"*F'E") = 7<4(E", F'E"). We then have the following gener-
alization of Lemma 3.18.

Lemma 3.21 Let (E°, N'F'E") be a bifiltered complex. Assume that the
filtration N is finite, i.e. there exist integers a and b such that N*F'E" = 0
and N°F'E" = N7 F'E" for every i > 0. Set ['E" := N°F'E’. Assume
also that, for every m,

Gry™(E",N'F'E’) € DF<™(C) N DF>"(C),

ie. HI(Gr% Gry™(E',N'F'E")) = 0, for every j # k+m. Then the canonical
morphism

(E.’ N.F.E.> N (E.7 F.E.)dec
defined as in Example 3.17 is a bifiltered quasi-isomorphism.

We omit the proof.
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We apply the Lemma to the bifiltered complex (Ri'E, N'F'Ri'E), where
NFF™RI'E = N*Ri'cs wsm E 1. By (3.16.2),

Grk, Gry™ Ri'E ~ AMT™T* ®p, Cr* E[—k — m).
Thus we get a canonical bifiltered quasi-isomorphism

(RI'E,N'F'Ri'E) ~ (Ri'E, F' Ri' E)*.

3.5 The derived Cartier transform.

Let X/S be a lifting. For any k and [ with [ — k < p, the Cartier transform
yields equivalences of categories

Cx/s

DFyy(Fx/s:Dx/s,Zx) — DEpy(S Txr, Ix)

C/s(E',N'E') = (Cy/sE,C)sN'E').

Theorem 3.22 a) Let h : X — Y be a morphism of smooth schemes over
S. Then, for any integers k and | with | — k < p, a lifting b’ : X' — Y of i/
induces an isomorphism:

LhpoCol 2 O

vs = Cxjso Ly + DEy (S Tyr, Jyr) — DFjy(FxysDxys, Ix ).

b) If in addition h is smooth of relative dimension d and | — k — d < p, then

RhPFoCry)s = Oy soRR,™ s DFy (S T, Ixr) = DFj—ay(Fys.Dyys, Iy ).

Proof: a) Define an equivalence of categories

©y,)7"

DFyy (i (S Tx), Tx)) —  DFuy(iy (Fx/s«Dxys), I)

UPrecisely, (Ri'E, N F'Ri'E) is defined as Ri‘'(E,N F'E), N'F"E = Nmew(km) g
in the bifiltered derived category of A-modules (E°, N'F'E) such that ZN¥F™E" C
Nkt FmE:
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to be the composition
(Cg(//s)_l = Muxys o Ly,

where ¢, 1 DFy (4, (S Txr), Tx1) — DFpe (i (S Txr), Jx) is the involution
defined in (2.7.2) and Mg is the tensor product with the splitting module
Fx/s:Bx/s:

Muys(E',N'E') = (B @pq,  Fx/seBrjs; N'E @pr,  Fxys:Bx)s).

Similarly, the splitting module A" Fy/s.By/s yields an equivalence of cate-
gories

X -1
(Cy/s>

DEyy(h™*(S Ty:), h*Jy') — DFy (k™ (Fys:Dys), h*Iy).

Lemma 3.23 A morphism (h, h'): X/S — Y /S induces an isomorphism of
functors
O.}(//S ~ C’)})(/S O CXI_)YI

Ik O 'Y/
DFy (i (Fx/s«Dx/s), Ty ) Al

DFyy(h™ (Fx)s«Dyys), W Iy)

Cy /S C))J(/S

DFy (i (S Txr), Tx)

DF[kJ] (h,*<S.TY/)’ h/*jy/).
Proof: Recall from Proposition 1.12 that a morphism (h, h): X/S — V/S
induces an isomorphism
h*.Ay/S — HomF)*(/sF'Txl/s (h*F;/SF'Ty//S, .A)(/g).
Dualizing this isomorphism, we find an isomorphism of Dx,/s-modules
F;/Sh/*FTY//S ®F;(/szX//S BX/S = h*By/g.
With the notations of Theorem 3.11, we have
Fxysh™Bys =~ Fxys« Dx—y ®nry 5.0y, W Fyys:Bys.

99



Thus we get an isomorphism of splitting modules for h*T'Ty /s ®S'Tx//s

Fx;s.Dx/s:

h/*nyf/s D1y g Fx/s:Bx/s = Fx/s«Dx .y ®wry gDy, M FyysBys-
(3.23.1)
By definition, the functor (C% /S)_1 is the composition of the involution ¢,

and the tensor product over h*T'Ty /s with the left-hand side of (3.23.1),
and the functor (C’j)f/s o Cx/_y/)~ ! is the composition of ¢, and the tensor
product with the right-hand side of (3.23.1). Thus, (3.23.1) induces the
desired isomorphism (C’}‘_,//S)*1 ~ (03)2(/3 o Cxryr) L. O

Let us return to the proof of the theorem. Observe the natural isomor-
phisms of functors:

Lh™ o (Cys)™t =~ (C3s) "o Lh™ and

ihe 0 (Cxys)™ = (Cays) ™' 0d.
Hence, by Lemma 3.23

Lh’bRoC’;/lS r~ Z./}L*O(CX’HY’)_IOL}L,*OCB:}S ~ Z';Z*O(CX/_.Y/)_IO(CJ))(/S)_IOLM*

~ iy, 0 (Cyys) ™ o L™ =~ Cyjg o L.

This proves part a) of the Theorem.
b) By Lemma 3.23 it remains to construct an isomorphism of functors:

Ri},'Cyjs = CY sRil, : DFy(Fxys:Dxys, Ix) — DF[kdﬂ(z‘f(S'TX/(), j)’(,).>
3.23.2
Let £ € DF[k,l}(FX/S*DX/S;IX) and E” c DF[k_d’l](Z';;k(S.TX/%j_),(/). We

then have functorial isomorphisms
Hom(E", i}, Cs(E')) ~ Hom(Ciygih, B, E') ~

Hom(,,(CY) ' B", B) ~ Hom(E", Yo Ri} (E)).
By the Yoneda lemma this yields (3.23.2). O
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Remark 3.24 In the absence of the lifting of A’ the theorem can be modified
as follows. Let £, be the h*Ty/ s-torsor of liftings of A’ and let exp Ly be
the pushforward of £,/ via the homomorphism

exp : h"Tyr — (W*TTy:)"

Thus exp Ly is a (h*TTy:)*-torsor. We denote by K the corresponding
invertible module over A'*I'Ty+. Define an autoequivalence

Th' - MOd(h/*ny/) — MOd(h/*ny/)
7(B) = B @ty K
Then, with the notations from the proof of Theorem 3.22, one has

K ®pry, o Fxyo:Brys = Fx/sDx oy @uery 5.0y, W Fyjs.Byys,

Lh}‘)ROC):}S = C';(}Soi/h*on;loLh/*

DFy (S Ty, Jyr) — DFyy(Fx/s«Dx/s,Zx)
and if A is smooth of relative dimension d and [ — k+d < p

Rh?ToCylg = C5)s 0 Rh, o Ty o Rij

DFy (S Tx,Ix') — DFy_ay(Fy/s«Dyys,Iy).

Corollary 3.25 Let h: X — Y be a smooth morphism of relative dimension
d and let E" be an object of D(HIG;, ,(X"/S)). Assume that | —k —d <p

and that there exists i’ : X' — Y. Then the conjugate spectral sequence for
H*(Rth(C;}SE')) degenerates at Fj.

Proof: We have
RAIG(E) ~ RREIG(Gr E) ~ Gr RRFIC(E").

Here the first isomorphism comes from the grading on E° and the second
one from (3) of Proposition 3.16. It follows that the spectral sequence of the
filtered complex RhIT%(E") degenerates at E;. Then by Theorem 3.22 the

same is true for Rth(C;}SE'). O
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4 Applications and examples

4.1 Local study of the p-curvature

Let X/S be a smooth morphism of schemes in characteristic p > 0 and let
U: MIC(X/S) — F-HIG(X/S) (4.0.1)

denote the functor taking a module with integrable connection to the corre-
sponding module with F-Higgs field. This functor is not an equivalence or
even fully faithful. For example, the category of pairs (O V) with vanishing
p-curvature is equivalent to the category of invertible sheaves L on X’ to-
gether with a trivialization F)*{/SL ~ Ox. However, we show that if (E;, V)
and (FEq, Va) are two noetherian objects of MIC(X/S) with isomorphic im-
ages in F-HIG(X/S), then Zariski locally on X, (Ey, Vy) and (Es, V3) are
isomorphic. Moreover, we can characterize the image of the functor ¥, étale
locally on X: if ¢ is an F-Higgs field on a coherent E then étale locally on
X/S, 1 comes from a connection if and only if (£, 1) descends to a Higgs field
on X'/S. Taken together, these results can be interpreted as a nonabelian
analog of the well-known exact sequence [23, 4.14].

F)*(/s dlog 1 7 —Cx/s

Q%(’/S 07

where C/g is the Cartier operator and m: X’ — X the projection. Indeed,
one can recover this sequence by considering the category of connections of
the form (Ox,d + w), where w is a closed one-form, and recalling that the
p-curvature of such a connection is precisely 7*(w) — Cx/s(w).

Theorem 4.1 Let X/S be a smooth morphism of noetherian schemes in
characteristic p.

1. Let (E;,V;), i = 1,2, be objects of MIC(X/S), with E; coherent,
and let v; denote their p-curvatures. Suppose that there exists an
isomorphism h: (Ey,v1) — (F2,19) in F-HIG(X/S). Then Zariski
locally on X, (Ey,V4) and (Es, Va) are isomorphic in MI1C(X/S).

2. Let E be a coherent sheaf with an F-Higgs field{: E — E®F)*(/SQ§(//S.
Then étale locally on X, the following are equivalent:

(a) There exists a connection on F whose p-curvature is 1.
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(b) There exist a coherent sheaf with a Higgs field (E',¢') on X'/S
and an isomorphism (E, 1) = Fy o(E',¢').

Proof: To prove (1), let H := Hom(E}, Es), with the internal Hom connec-
tion and p-curvature. Let H¥ C H be the subsheaf annihilated by v, and let
Fx/s.(HY) be the subsheaf annihilated by V. Then by Cartier descent, the
natural map F)*{/SFX/S*HV — HY is an isomorphism of Ox-modules.

Let = be a point of X, and let 2" be its image in X’. Then k(z) is a finite
and purely inseparable extension of k(z'). The fiber V' := (Fx,s.H")(2') of
Fy/s.HY at 2’ is a finite dimensional k(2’)-vector space, the fiber V := HY(z)
of HY at x is a finite dimensional k(x)-vector space, and the natural map
k(r) ®p@y V' — V is an isomorphism. There is also a natural map V' —
Homy,)(E1(2), E2(x)). Let V be the affine space over k(z) corresponding
to the k(x)-vector space V, and let U denote the Zariski open subset of V
corresponding to those elements which define isomorphisms F;(x) — Eq(z).
The isomorphism A lies in H¥ and hence its image h(x) in V corresponds to a
k(x)-rational point of U. Let V' be the affine space over k(z’) corresponding
to V'. Then V is the base change of V' to Speck(x), and since k(z') —
k(x) is a purely inseparable extension, the projection mapping V. — V' is a
homeomorphism and the image U’ of U in V' is a nonempty open subset.
If k(x') is infinite, it follows that the k(z’)-rational points of V' are Zariski
dense, so U’ has a k(2')-rational point. If k(2’) is finite, it is perfect, and
it follows that k(x) = k(z’). Thus in either case there is an element v’ in
V" which induces an isomorphism Fj(x) — FEs(x). Then there exists an
element ¢’ in the stalk of the Ox/,-module Fy/g,H" at 2’ whose image in
V' is v'. Let b := F%(¢’), which defines a horizontal morphism E; — Ej
in some neighborhood of x. The fiber of A’ at x is an isomorphism. We
know that E; , and E,, are isomorphic as Ox ,-modules, and in particular
their reductions module any power of the maximal ideal have the same finite
length. It follows from Nakayama’s lemma that h’' is surjective modulo any
power of the maximal ideal, and hence is also an isomorphism modulo any
such power. Then it follows that A’ is an isomorphism in a neighborhood of
x. This proves (1).

We should remark that (1) could also have been proved from the theory
of Azumaya algebras; we preferred to explain the elementary proof above.
We do not know of such an elementary proof of (2). Note first that since (2)
is a local statement, we may assume that there exists a spitting ¢ of C’;(}S as

103



in (1.9.2).

Suppose that (E’,1’) is an object of HIG(X'/S), with E’ coherent as an
Ox-module. Let E' denote the coherent sheaf on Ty s corresponding to
(E',4)") Let i': Z' — Tx//s be the closed immersion defined by the annihi-
lator of E’ in OT}//s' Since E’ is coherent as a sheaf of Ox-modules, 7’ is

finite over X', and hence the étale covering a¢: Tx//g — Tx//g splits over
Z', étale locally on X’. Thus, after replacing X’ by an étale localization, we
may assume that there exists a map j': 2/ — T% s such that a¢ o i =1.
Let E”N:: j;i’*E:, which corresponds to an object (E”,4") of HIG(X'/S).
Then E' = i,i*E' = anjli”" B = aE". Let (E,V) = \Ilgl(E”,w’) (see
Theorem 2.13). By op. cit., the p-curvature of (E,V) is F;‘(/Sag*(E”,w”) =
Fys(E ).

Conversely, suppose that (£, V) is an object of MIC(X/S), with E co-
herent as an Ox-module. Its p-curvature defines an object (E, ) of F-

HIG(X/S), and hence a coherent sheaf £ on T}(,)jg = VI §Txs (see

diagram (2.1.1)). The claim is that there exists a coherent sheaf £’ on Tx/ /g
such that m5(E') = E. Since Fx/s.F is coherent as an Ox-module, the
scheme-theoretic support Z’ of my, is finite over X', and there exists a sec-
tion j' of a; over Z'. If we view E as a module over SiTxi/s via 4%, then
the action of S&TX/ /s agrees with the action of S"T'xs/g, and so the action

of Dx/g on E extends to an action of D¢. Let E = Homop, (B, E), corre-
sponding to an object (E',v¢') € HIG(X'/S). Then (E,V) = \Ilc_l(E’,z//),
so (E,¢) = Fy (o (B, ¢)) in F-HIG(X/S), by Theorem 2.13. O

4.2 Stacks of liftings and splittings

In this subsection we discuss relationships between and geometric interpre-
tations of some of the liftings and splittings used in our constructions. In
particular, we show that there is a natural equivalence between the gerbe of
liftings of X’ and the gerbe of tensor splittings of Dx,g over the completed
divided power envelope T;g, ¢ of the zero section of T%, /s

First we shall study the gerbe of splittings of the Azumaya algebra Dy,
on T%, s Recall from [23] and [9] that the equivalence class of this gerbe
can be viewed as the image of Dx,s in the cohomological Brauer group
H*(T%, /8 O%- ). Our first goal is to provide a simple description of this

X'/s

cohomology class.
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Recall from [23, 4.14] that for any smooth Y/S there is an exact sequence
of étale sheaves on Y

dlog ﬂ';/s_CY/S

F*
0 Oy —5 Fyys.0y % Fyjs. 2y

Qg /g — 0. (4.1.1)

Here Fy/S*le//S C Fy/S*Q%//S is the subsheaf of closed one-forms, Cy/g is
the Cartier operator, and my/g : Y' — Y is the morphism induced by the
Frobenius on S. As we observed in section 4.1, the morphism 73, i Cyys :
Fy/S*Z}//S — O, /s can be viewed as the map sending the line bundle Oy
with integrable connection V = d 4w to its p-curvature. The exact sequence
4.1.1 induces a morphism:

¢: HO(Y', Qyys) = H' (Y, Fyys.(03)/05) — HA(Y',03,) = Br(Y").

As we shall recall below, the cotangent bundle of X’/S has a canonical global
one-form (the “contact form”). We shall see in Proposition 4.4 below that the
Brauer class of Dx/g can be identified with the image of this one-form under
the map ¢. We begin with the following convenient geometric description of
the map ¢.

Proposition 4.2 Let o' € H°(Y’,Qy,,g) be a one-form. For each étale

U =Y letU = F;/ls(U’) — Y and let P*,(U") be the groupoid of invertible
sheaves with integrable connection on U whose p-curvature is equal to w'.
Then, Pi, forms a fibered category which is in fact a gerbe under Oy, on Y'.

The class of P}, in H2(Y',0%,) is equal to ¢(w').

Proof: 1t is clear that 735, forms a stack and that the automorphism group
of each object is OfF,. The local surjectivity of S Cy/s implies that the
class of objects of Pi, is locally not empty. If L; and Ly are two objects of
PE, over some U’ then the p-curvature of Hom(Ly, L) is zero, and hence
locally has a horizontal basis. This implies that any two objects of Pi, are
locally isomorphic, so that Pi, is indeed a gerbe.

The boundary map associated to the exact sequence

dlog W;/S_CY/S

0 — Fy5.:(05) /Oy —> Fy 5.2y s

takes w’ to the (Fy;s.05)/Oy.-torsor 7, of closed one-forms 7 such that
Ty 57 — Cy;s(n) = . The boundary map associated to the exact sequence

0— O;/ — FY/S*(O;/) - FY/S*<O;)/O;’ —0

Ql//s—>0
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takes 7. to the gerbe Gy of Fy,g.(Oj5 )-torsors £ equipped with an isomor-
phism a: £ — T, where L is the (Fy,5.05%)/O% ~torsor associated to L.
Hence ¢(w') = G, and it will suffice to prove that G, is equivalent to Pf),.
Let £ be an object of G, over U’, let L be the associated invertible sheaf over
U, and let e be a local section of L, i.e., a basis for L on some open subset
V' of U. There is a unique connection V on L such that V(e) = e® a(e). It
follows from the fact that « is a morphism of torsors that V is independent
of the choice of e, and it is clear that the p-curvature of V is «’. This con-
struction defines a functor from the gerbe G, to PE),, which is easily seen to
be an equivalence. O

Remark 4.3 In the context of the above proposition, the form ' gives a
morphism i : Y’ — T, /50 and 735, is the gerbe of splittings of the Azumaya
algebra "Dy g on Y.

Let us write T* for T7% /5 and recall that there is an exact sequence
* 1 1 1
0 — prifly,g — QT}/S/S — QT}/S/X — 0 (4.3.1)

Furthermore, T* = Specy S'Tx/s, so that there is a canonical global section
of pr.pr*Q /s = Q% 15 ® S'Tx/s, corresponding to the identity element of
Q}(/S ®Tx;s = EndTx/s. The image of this section in Q"lr*/s is the well-
known “contact form” on the cotangent bundle.

Proposition 4.4 ([5]) Let v’ € I'(T%, s, Q. /S) be the contact form and
X/

let Pf), be the corresponding G,,-gerbe on T%, /s described in Proposition 4.2.

Then the gerbe 735, is equivalent to the gerbe S of splittings of the Azumaya
algebra Dx /g on T}‘(,/S. In particular, the class of Dx/g in BT(T*X,/S) is

o).
Proof: We have a diagram:

* FT*/X * T * *
Tx/s /s Ty /g — Txys

Fx/s ,
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in which both squares are Cartesian and Frp«;g = mp o Frp«/x. We identify
the pullback of T% /s by Fs with T%, /s and use abbreviations:

N * ko ik
T = X/S» T = X'/S» T = X/S-

Let U — T* be étale, let U — T* (resp. U”) be its pullback via Fr+ /g,
(resp. via 7). Let (L, V) be an object of P%,(U"), i.e., an invertible sheaf
with integrable connection on U/S whose p-curvature is w’. The connection
V defines an action of Dy g and hence of the subalgebra Dy-/x on L.
Since the projection of W' to Q1. Jx0 18 equal to 0, the p-curvature of the
corresponding object of MIC(T*/X) vanishes. Let

L' i= Hip(L ® Q. jx) i= Ker (L —— L& Qg — LOpr'Qhx )

Then L’ has a natural structure of a sheaf of Ogn-modules on U”, and
it follows from Cartier descent that the natural map Fr. /XL’ — L is an
isomorphism. Furthermore, V induces a map V': L' — L' @ pr*Qs /5 which
defines a pr—*Dy/g-module structure on L'. (This is essentially the Gauss-
Manin connection for the morphism T* — X.) The p-curvature of this
module is still given by the contact form w’, which means that the action of
sections of Og« via the p-curvature is the same as the action via the map
T™ — T* and the given Op-structure. This means that we can safely view
the p'r’_lDX/S—module structure and the Op~«-module structure as defining
a Dx/s-module structure on L'. Since L' is an invertible sheaf on T", it
has rank p? over T*, and thus defines a splitting module for the Azumaya
algebra Dy/s. Thus we have defined a functor P, — S. It is clear that
this functor is fully faithful, since the automorphisms of objects in either
category are just give by units in Op«. On the other hand, suppose that M
is a splitting module for Dy/s. Then viewing Ox — Dx/s via the action
on the left, we can view M as a module over T", and by Proposition 2.3
it then becomes an invertible sheaf of Op«-modules. Since the O/ «-module
structure of M comes from its p-curvature, the p-curvature of M is just the
contact form w’. A local calculation shows that there is a unique extension of
the action of Dx/g on M to an action of Dy- /g on F;*/XM with the property

that M is the annihilator of Dy«,x. This shows that the functor Pi, — S
is an equivalence. The statement about the Brauer group then follows, as
explained in [23].

]
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In this following discussion we will assume that the reader is acquainted
with the notion of tensor structure on an Azumaya algebra introduced in
section 5.5. In particular, we explained there that the algebra Dy,s has a
canonical symmetric tensor structure. Let us consider the following stacks
on X,

1. The stack £ of liftings of X".

2. The stack 7 SP of tensor splittings of Dx/s over the completed divided
12

power envelope T;g, /s of the zero section of T%, /s

3. The stack SP; of pairs (M;, «), where M is a splitting of Dx,g over
the first infinitesimal neighborhood T7 of the zero section of T, ¢ and
a:1"M; ~ Fx/5.Ox is an isomorphism between the restriction of M;
to the zero section and the canonical splitting over X'.

4. The stack EX of extensions of F)"‘(/SQ;,/S by Ox in MIC(X/S) such
that the graded p-curvature mapping 1 : F)"(/SQ_%{,/S — OX®F;/SQ§(,/S
is the identity.

In the discussion preparing for Theorem 2.8 we constructed a functor
B associating a tensor splitting By,s to a lifting X' of X’. Furthermore,
recall that X’ determines an extension (1.4.1) as in (4), so that we also have
a functor £: L — £X. Recall that for any tensor splitting M there is a
canonical isomorphism « : i*M ~ Fx/5.0x, and hence there is a restriction
functor 77 : TSP — SP;. The dual of an extension in £X is an object of
SPq, so there is also a functor from EX — SP;. This functor is easily seen
to be an equivalence. The following theorem, shows that in fact all the above
functors are equivalences.

Theorem 4.5 The stacks above are in fact gerbes, and the functors
B: L—-TSP, i:7TSP — SPy, and E: L—EX

are equivalences.

12Note that the étale topologies of X, X', and ’i‘}'y/ are the same.

/8
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Proof: 1t is clear that £ and SP; are gerbes. The fact that ¢ is an equiva-
lence is proven in Proposition 5.30, and it follows that 7SP is also a gerbe.
Thus, it suffices to prove that the composition ¢; o B : £L — SP; is an equiv-
alence. Let us show that, for any lifting X', the group of automorphisms of
X’ reducing to the identity on X’ maps isomorphically to the group of auto-
morphisms of (77Bx/s,®). Indeed, the first group can be identified with the
group of vector fields on X’ , and the second one with the group of invertible
functions on X{ equal to 1 on X', and the map is the obvious isomorphism
between this two groups. The following easy and well known result completes
the proof.

Lemma 4.6 Let F': M — N be a morphism of gerbes on Y. Assume that
for every étale morphism U — Y and every object C € M(U) the induced
map

F, : Aut(C) — Aut(F(C))

is an isomorphism. Then F' is an equivalence of gerbes.

]

Let 6 € Tx//5(U) be a vector field on U C X’. We may view 6 as a linear
91‘
al
makes sense as an invertible function on the completed PD envelope T;}”/ s C

function on the cotangent space T, /s Then the exponential exp(f) =

T, /5" Thus we get a homomorphism of sheaves:

exrp . TX’/S — Or}*w - (fTX’/S)*'

x'/s

This, in turn, gives a map:

exp : HY\(X's Txrys) — HA (X' Ok ).

x'/s

In the following corollary we use N * / ¢T'x1/s -module structure on By/s
as introduced in subsection 2.

Corollary 4.7 1. Let § € H°(X', Tx//s) be an automorphism of a lifting
X /S reducing to the identity on X'. Then the induced morphism

0* : Bx/g - BX/S

is the multiplication by Fy s(exp0) € (f‘F)*(/STX//S)*.
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2.

Let (X/S)1, (X/S)s be liftings, and let L4 be the Txs-torsor of iso-

morphisms between X, and X reducing to the identity on X'. Denote
by exp L4 the corresponding OF.., -torsor and by K4 the correspond-

x//s
ing invertible sheaf on T X/ Then the isomorphism of F'§ /STX/ /-

torsors Lys, ®Fx/sTx'/s X/S‘Cfd ~ Lxs, induces a tensor isomorphism

of splitting modules

Bissi @y 1y, FxysKra = Biays),-

The class of the Azumaya algebra Dx/g restricted to T7 X1/8 in the
cohomological Brauer group BT(TX,/S) = H2(X'; 0%, ) is equal to
X'/8

expd, where 6 € H%(X'; Ty s) is the obstruction to lifting of X' over
S.

Proof:  Since 6, and exp 6 are tensor automorphisms of By/s, by Theorem
4.5 it is enough to check that ¢, and exp 6 are equal when restricted to i{By/s.
In turn, this follows from the fact that the automorphism of Ly /s induced
by the automorphism of the lifting X' /S coincides with the translation by
F)*(/SQ € HY(X, F%/sTxr/s). This proves (1). The proof of the second claim
is similar, and the last claim follows from Proposition 5.32. O]

Remark 4.8 The construction of the tensor splittings in the proof of Propo-
sition 5.32 can be viewed in the present setting as follows. Let exp Lx/s be
the pushforward of the F'§ 15 Txs-torsor L x /s via the homomorphism

The (

the associated invertible I F'* T'x1/s-module exp ‘CX/5®(FF*

ETP F;;'/STX’/S — (fF;(/STX’/S)*

FFX y sT'x//g)*-torsor exp Ly /s acquires the induced connection, as does

/STX’/S)*FFX/STX//S'

We then have a horizontal isomorphism

BX >~ expﬁ;(/g ®( f\F;(/STX’/S

x/sTX’/S)
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Let us end by explaining the relationships between the various liftings,
splittings, and extensions we have been considering. Consider the exact
sequence of Ox/,-modules:

0 — Fx/s«Bx/s — Fx/s+Zx;s — Fx/s«Hpp(X/S) — 0.

A splitting of this sequence amounts to lifting ¢ of CX/S as in (1.9.2). Let
My/,s denote the sheaf on X which to every open set U assigns the set of
liftings of C;(}s over U. If U is an open subset of X, let Lx/g(U) denote

the category whose objects are morphisms F: U — U’ lifting the relative
Frobenius morphism Fy/g: U — U’ and whose morphisms F} — F, are
commutative diagrams

~ F ~
U, L.
f I
Uy U,

where f and f’ reduce to the identity modulo p. In particular, f and f’ are
necessarily isomorphisms, and Lx/s defines a stack over S. As a variant,
consider the stack Jy/s which over each U is the category whose objects are
pairs (U’, s), where U’ is a lift of U’ and s is a section of the torsor Luys
defined by U’ as in Theorem 1.1 and whose morphisms are those reducing
to the identity and compatible with s. If we are given a fixed lifting X’ / S
of X'/S, then we can also consider the fibered category Ly s which to every
open set U in X assigns the category of pairs (U F) where U is a lift of U
and F: U — X' is a lift of fuys. Morphlsms in this category are diagrams
as above, in which f’ is the identity. If U is a fixed lifting of U, recall that
EX/S(U ) is the set of all liftings of fy/g, so there is a natural map from
Lx/s to the sheaf of objects of Ly/s. Finally, if FS: S — S is a lift of the
Frobenius endomorphism of S we can define a more rigid version of Lx/g. If
U is an open subset of X, let Ky/s(U) denote the subcategory of Ly;s(U)
whose objects are liftings F: U — U’ of Fy/s with U=2=5 X fy U and whose
morphisms are diagrams as above with f' = f xz_ids.
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Proposition 4.9 Let EX/S denote the sheaf associated to the presheaf of
isomorphism classes of objects of Lx /s, and use the analogous notation for

Lx/g.

1. The stack JX/_S is rigid, and the natural map Ly;s — Jx;s induces an
isomorphism Ly,s — Jx/s.

2. The map (1.9.3) F + (j induces an isomorphism Lx/s — My/g and
hence also Jx/s = Mx/s.

3. The natural map Lx/s x — Ex/s is an isomorphism.

4. If Fg lifts Fg, then Ky g is rigid, and if S is the spectrum of a perfect
field, then F' + (j induces an isomorphism Kx/s — Mx/s.

Proof: The following lemma follows from standard deformation theory and
Remark 1.2; we omit its proof.

Lemma 4.10 Let X and X' be liftings of X and X' respectively. Then

1. The sheaf of liftings F: X — X' of Fx/s is a torsor under F;‘(/STX//S,
under the standard action.

2. IfFy and Fy: X — X' lift Fx/s and differ by a section h' off)*(/STX//S,
then Fy is isomorphic to F, in Lx/s if and only if h' comes from a
section of T'x/g.

3. If f is an automorphism of X lifting the identity, then F o f =
f" is an automorphism of X' lifting the identity such that f' o F
then f' =id.

4. The sheaf of automorphisms of an object F of Lx/s is canonically
isomorphic to Tx/g.

O

Suppose that (U’, s) is a section of Jx /g over U. Then, locally on U, there
exists a lift U of U and a lift F: U — U’ inducing s. Then an automorphism
f of (U, s) corresponds to an automorphism of U’ reducing to the identity
and such that f o F = F. By Lemma 4.10, f is the identity, é.e., J is rigid.
It follows that the natural functor Ly,s — Jx/s factors through EX/S, and

112



the above argument makes it clear that this morphism is surjective. The
injectivity follows from the definitions.
It follows from the lemma that Lx/g is a torsor under

C = COk(TX//S — FX/S*F;(/STX’/S) = HOm(Qi;(//S, FX/S*B%(/S)7

since

(Fx/5:O0x)/Oxr = Fx/5.Bx s C Fx/sQ%x s,
where as before By,s is the sheaf of locally exact one-forms. The sheaf
Mx/s is also naturally a torsor under Hom(Qﬁ(,/S, FX/S*B}(/S), and the map

F— (7 factors through EX/S:
Ly/s — Mx/s 1 F e (.

This map is a morphism of torsors, hence a bijection. Now suppose that F. g
exists and suppose that F is an object of K x/s(U). Then an automorphism
of F is an automorphism f of U lifting idy such that f’ F=F f . where
f’ = f Xy id. But then it follows from the lemma that f =1id, so Kx/s is
rigid and its presheaf of isomorphism classes is a sheaf. Let Fy and F, be two
objects of Ky s(U). After shrinking U, U, and U, become isomorphic; let us
assume they are equal. Then Fiis isomorphic to Fy if and only if there exists
a lifting f of the identity such that Fj = f’Flf I But f'F) ! = f'Fy, and
if f corresponds to an element D of Ty, f F dlffers from £} by the action
of m*D. This shows that Kx/,s is a torsor under the cokernel of the map

7T1Tx/5 L TX’/S — FX/S*F;;'/STX’/S-

When S is the spectrum of a perfect field, 7* is an isomorphism, and it
follows that K /g is also a torsor under C'.

Statement (3) can be checked at the stalks. Let x be a point of U C X
and let U, be a liftings of U. Then the stalk of Ly /s = Ly s,m, at z is the
set of germs at x of lifts of fy/s to Ul, and the stalk of EX/S at x is the set
of germs of isomorphism classes of of lifts (U, F) of fuys- Let F:Uy— X'
be a lift of fy7/5 in some neighborhood of z. Then there is an isomorphism

U, = U, near z, and this shows that the map is surjective. For the injectivity,
observe that if F and F” are elements of Ly /3(U1) which become equal in

LX/S v, then there is an automorphism of U; which is the identity mod p

and which takes F to F’. But then by Remark 1.2, F = F’. This shows the
injectivity. 0
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4.3 Line bundles with connection

We use the following notation. If X is a scheme over a field k, E is a coherent
sheaf of Ox-modules on k, and S is a k-scheme,

H'(X,E)(S) := H°(S,05) @, H'(X, E).

If H (X, E) is finite dimensional, the functor H (X, E) is represented by the
(vector) k-scheme Spec S"H'(X, E)V.

Let X/k be a smooth proper geometrically connected scheme over a per-
fect field of characteristic p > 0, with a k-rational point z,. Let PiCUX(S>
denote the set of isomorphism classes of triples (L, V, «), where L is an in-
vertible sheaf on X x S, V is an integrable connection on L relative to S, and
« is an isomorphism L = Ox over zp x S. Forgetting V defines a morphism
b from Pic% to the Picard scheme Picx of X. If L is an invertible sheaf on
X x 8, the set of integrable connections on L is either empty or a torsor
under the group H°(X, Z)lfo/s) of closed one-forms on X x S/S. Note that

formation of the latter commutes with base change and that H°(X, Z} ) =
HYX',F.Zy ). Thus HY(X,Z}, 45) = HY(X',F.Z,)(S). The Chern
class map dlog: O% — Z)l(/k defines a morphism c: Picy — H'(X, Z)l(/k),
and there is thus an exact sequence:

0 — H(X, Zk;,) — Picly —— Picx —— H'(X, Z} ).
The proof of the following is then immediate (and well-known).

Proposition 4.11 The above sequence is exact as a sequence of sheaves in
the flat topology. Furthermore, the functor Picg( is representable, and its
tangent space at the origin is canonical isomorphic to Hjp(X/k).

O

If (L,V) is an object of Pic%(S), its p-curvature can be viewed as an
element of H°(X' x S,Q%, /) This defines a morphism of group schemes
Y Pick — HY(X',QY, ). If I is an invertible sheaf on X' x S trivialized
along z(, x S, then (Fx/g x idg)*L is an invertible sheaf on X x S, and we can
equip it with its canonical Frobenius descent connection to obtain an element
of Pic% (S). This defines a morphism of group schemes ¢: Picy: — Pick.
An element in the kernel of b is given by an integrable connection on Ox g,
relative to S i.e., a closed one-form w € Q% ¢ /5 and the p-curvature of the
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corresponding connection is ﬂ}xs/s(w) — Cxxg/s(w), where Cxyg/g is the
Cartier operator [19, 7.22]. Thus there is a commutative diagram:

Picy
5 s
HO(X, Z% ) — Pic}, b Picy (4.11.1)
(G
ﬂ-;(/k — Clxyi

HO (X', Q% 1),
where 7% Ik is the composition:

HO(X', Q% ) = HY(X, Q% ) Xpr b = H (X, Q). (4.11.2)

Here the map H°(X, Q%) — H(X, Q%) is the relative Frobenius map
of the k-scheme H®(X, QY ;). The map Cxyx in the diagram is the map of
group schemes induced by the linear map of vector spaces

CX/k:: HO(X7 Z;{/k) - HO(XGQ%(/k)

Recall that there are two spectral sequences converging to de Rham co-

homology: the Hodge spectral sequence, with Eij = H'(X, Qfx/k), and the

conjugate spectral sequence, with By’ = H'(X, H},) = H/(X', Qg(,/k).
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Lemma 4.12 In the corresponding diagram of tangent spaces:

H'(X',0%)
NG
da db

HO(X7 Z;(/k) - H;R(X/k) - Hl(Xa OX)

dy
—Cx/

H(X', QL )

db (resp. —di) is the edge homomorphism coming from the Hodge (resp.
conjugate) spectral sequence, and di o da = —Cx/y.

Proof: Since 7% s in diagram 4.11.1 factors through the relative Frobenius
map in formula 4.11.2 above, its differential is zero. Since Cx/, is k-linear,
it follows that di o da = —Cx/. To compute di, let S := Speck[e], let 1 €
H},5(X/k) and let (L, V) be the corresponding line bundle with connection
over X x S. Then di(n) is a section of H°(X', Q. ) and is determined by
its restriction to any nonempty open subset of X’. We can choose an open
subset on which L is trivial, and hence reduce to the previous calculation.
This proves the claim. O

As we have seen, Fx /i, Dx/i, defines an Azumaya algebra Dx ;. over T}//k;
we shall study the splitting of the pullback of this Azumaya algebra along the
canonical map ¢: X' x H(X',QY, ) — T%, . The universal (L, V) defines
a module over the pullback of Dx/;, to X' x Picg(, and since it is locally free
of rank pd™¥X it is a splitting module. More generally, suppose we are given
a morphism of k-schemes f: Z — H°(X'/k, Q% ) and a splitting module
L over the pullback of Dx/, to X’ x Z via the map idxs x f. Then L is a
coherent sheaf on X’ x Z equipped with an action of the differential operators
Fxy Z/Z*(D X x Z/Z), and in particular can be regarded as a coherent sheaf with
integrable connection on X x Z/Z whose p-curvature is equal to the section
of Q% , /7 defined by f. By Proposition 2.3, L is an invertible sheaf on
X x Z. By a rigidified splitting of Dx/i, along f we shall mean a pair (L, «),
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where L is a splitting module for (idx» x f)*¢*Dx/, and « is a trivialization
of the restriction of L to x¢p x Z. Thus the universal (L, V, «) is a rigidified
splitting of D/, along .

Proposition 4.13 Let f: Z — H(X", Q) be a morphism and let (L, V, a)

be the universal rigidified line bundle with connection on X X PichX.

1. The map f ~ f*(L,V,«) is a bijection between the set of isomorphism
classes of rigidified splittings of Dx, and the set of maps f: Z — Pici(

such that ¢ f = f.

2. If f as above is a morphism of commutative group schemes, then un-
der the the bijection above, the tensor splittings of (id x f)*q¢*F.Dx/j
correspond to the group morphisms f with ¢ f = f.

Proof: 'We have seen that a rigidified splitting of (id x f)*¢*F.Dx ) gives
an invertible sheaf (M, V, a) with connection on X x Z whose p-curvature is
given by f and a trivialization of M on xg X Z. Hence there is a unique map
f:Z— Pch such that f*(L,V,«) = (M, V,a), and necessarily v f = f.
This completes the proof of (1), and (2) follows immediately. O

4.4 Abelian varieties

Theorem 4.14 Let A be an abelian variety over a perfect field k of charac-
teristic p.

1. The Azumaya algebra F, D 4y, splits (non-canonically) over the formal

completion T*, Ik 13

2. There exists a tensor splitting of F.D 4, over Tz, Ik if and only if A is
ordinary. For an ordinary A, the tensor splitting is unique.

Proof: 1t is known [22] that Hodge and conjugate spectral sequences for
A degenerate and that Pic" °y 1s smooth. Thus Lemma 4.12 implies that the
differential of : Pic’ W — HO(AL QL /k) is surjective, and it follows that 1

13This result is due to Roman Bezrukavnikov.
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is smooth. This implies that 1) has a lifting over the formal completion of
HO(A', /f“) at the origin, ?nd therefore by Proposition 4.13 that D,y splits
over A" x HO(A’,Q}LV/,C) =T )

It follows from Proposition 4.13 that giving a fensor splitting of F,D 4/,
over A’ is equivalent to giving a group homomorphism

¢: VH(A', QL)) — Pic%,

such that ¥ o 1; = id. The map bo 1; necessarily factors through Pic%, and
since the latter is p-divisible, boy) = 0. Hence ¢ factors through a in diagram
(4.11.1) and can be viewed as a morphism VH?(A, Q) — H(A, Z ;). Since

HO(A, Zy ) = H°(A, QY ), the groups VH(A, Zy) and VHO(A', QL) are
smooth of the same dimension. Thus the existence of 1 is equivalent to the
differential of ) o a at 0 being an isomorphism. It follows from Lemma 4.12

that this restriction is the negative of the Cartier operator
CA/k . HO(A7 Q]A/k‘) — HO(A,, Ql ’/k)

One of the equivalent definitions of an ordinary abelian variety is that Cy /4, is
an isomorphism. This proves that lifting h exists if and only if A is ordinary.
Moreover, for an ordinary A the morphism 1 : VH?(A, QL) — VH(A", QL))
is an isomorphism. Thus, in this case, the lifting is unique. We could also
remark that an ordinary abelian variety over a perfect field of characteristic
p has a canonical lifting, together with a lifting of F', and this gives a tensor
splitting of TZ, Ik by Theorem 2.11. O]

4.5 A counterexample: Dy need not split on TX//S

In this section, we will construct an example of a smooth proper surface X/k
over a perfect field k& which lifts to W (k) but such that Dy, does not split
over the formal completion of T%, Ik along the zero section, or even over the

formal completion of X’ x HO(X’, Q}, i) along the zero section.

Lemma 4.15 Let X/k be a smooth and proper scheme with a rational point
xg. Assume that the following properties hold:

1. dim H°(X, Q%{/Q = dim H'(X, Ox),
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2. Fx acts as zero on H'(X, Ox),
3. The Hodge spectral sequence of X /k degenerates at Ej,

4. ¢*F.Dxy, splits over the formal completion of X' x H*(X’, Qﬁ(,/k) along
the zero section.

Then Picy is reduced.

Proof: 1t follows from assumption (3) that the Hodge and conjugate spec-
tral sequences of X/k degenerate at F; and Es respectively [19, 2.32], and
so the row and column of the commutative diagram of Lemma 4.12 are short
exact. The map h := F% n in the diagram below vanishes by assumption (2).
This implies that the map d¢ factors as shown below through da. By (1) and
(3) the induced map A’ is an isomorphism, and it follows that Cx/ is zero,
and hence that diy factors through an arrow h” as shown.

HY (X', Ox/)

h d ¢ h

s da db
HO(X, Z;m e By (x/k) — % H'(X,0x)

-
Cx/k

HY (X', Q% k)

Now suppose that F /Dy, splits over X’ x HO (X', Q&,/k) Choos-

ing a rigidification of the splitting module, we get a lifting @/; of 9 over
HO(X’ Qk/ i), S0 dip o dip = id. Then h" o dbo di) = id, so

dbodi: H(X', Q. ) — H'(X,Ox)
is injective. By (1), the source and target have the same dimension, so the

differential of the morphism b o ¢ is an isomorphism. Since VH O(X", %, /k)
is smooth, this implies that Picy is smooth. O
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Let k£ be a perfect field of odd characteristic and let W be its Witt ring.
We construct an example of a smooth projective surface X /W whose special
fiber X over k satisfies (1)—(3), but whose Picard scheme is not reduced, us-
ing the technique of Serre and its generalization by Raynaud [31, 4.2.3]. Let
E be an elliptic curve over W with supersingular reduction and denote by GG
the kernel of multiplication by p in E. By [op. cit.], there exists a projective
complete intersection Y, flat of relative dimension two over W, with a free
action of G' and whose quotient X := Y /G is smooth over W. By the weak
Lefschetz theorem, Pic% = 0, and it follows that Picgz is the Cartier dual
of G, which can be identified with G itself. Since Pic commutes with base
change, the Picard scheme of the special fiber X is the special fiber G of G.
In particular G is not smooth. Replacing k by a finite extension, we may
assume that X has a rational point. Thus to produce our counterexample,
it will suffice to prove that X satisfies (1)—(3) of Lemma 4.15. The degener-
ation of the Hodge spectral sequence of X/k follows from its liftability. The
endomorphism of H!'(X,Ox) induced by Fx corresponds via its identifica-
tion with the tangent space of GGy to the Cartier dual of the endomorphism
induced by the Frobenius of GGy which in our case vanishes. Since Picxy = Gy,
H'(X,Oy) is one-dimensional, and so to prove (1), it will suffice to prove
that Hjn(X/k) is two-dimensional. We use Faltings’ comparison theorem
[12, 5.3] which relates the de Rham cohomology Hjn(X/k) to the étale co-
homology H, P}t(f(?, F,). In particular, this theorem implies that these have
the same dimension. Since Xz = Y% /G, Gz = F, ® F,, and Yx is simply
connected, H}, (X7, F,) 2 F,®F,. Thus H}.(X/k) is two dimensional, and
(2) follows.

4.6 Fontaine modules

Throughout this section we assume that S is a smooth scheme over a field of
characteristic p.

Definition 4.16 Let X/S be a smooth scheme and let X /S be a lifting.
Fix integers k <[ with | — k < p. Then a Fontaine module on X' /S consists
of a coherent sheaf with integrable connection (M,V) of MIC(X/S) and a
Hodge filtration

O=F* "M CFMC.---CF;FM =M
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satisfying Griffiths transversality, together with an isomorphism
¢ : O)_(}SW}/S<GT}7‘M7 ’i) = (M7 v)) (4161>
where the Higgs field k is given by the Kodaira-Spencer operator

GrvV :GroM — Gri' M @ Qﬁ(/s-

We will denote the category of Fontaine modules by MFy;, j(X/S). Although
we shall not do so here, one can check that if S is the spectrum of a perfect
field k, and the lifting X’ — S = Spec Wa(k) comes from a smooth formal
scheme Xy ) over W (), the category MF, (X /S) is equivalent to the full
subcategory of p-torsion objects in Faltings’ category MFY,(Xww)) [11].

The formula N™(GrpM,k) = @< nGriM C GrpM defines a Jx-
filtration on (GryM,r). Applying the isomorphism ¢ we obtain an Zx-
filtration on M:

N™M = Cy)smy/s(@ic—mGrpM) C M
together with an isomorphism of Higgs modules:

Cys(Gry M,Gry)) =~ 7% 5 (Grp M,Gr V). (4.16.2)

Theorem 4.17 Let (M,V,F"M,¢) and (M', V', F",¢') be Fontaine mod-
ules over X. Then

1. For every integer i, the Ox-module Grt, M is locally free. In particular,
M is a locally free Ox-module [11, Theorem 2.1].

2. Every morphism f : M — M’ of Fontaine modules is strictly compatible
with the Hodge filtration F". In particular, the category MFy ;(X/S)
is abelian [op. cit].

3. Leth : X — Y be asmooth proper morphism of relative dimension d,let
W : X' — Y’ be a lifting of i/, and let (M,V,F",¢) € MFyy(X/S)
be a Fontaine module. Assume that | — k + d < p. Then, the Hodge
spectral sequence for RhPE(M, F"M) degenerates at E,. Thus, by
Theorem 3.22 b), for every integer i, we have a canonical isomorphism

¢ 1 C5 sy s(GrpRITM, k) 2= (R'RM, V), (4.17.1)
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which makes (R'hPEM,V, F"RPhPEM, ¢) a Fontaine module over Y.
In particular, if d < p, the Dy s-module R'hPEQOx is a Fontaine mod-
ule [11].

4. The Chern classes ¢;(M) € H2(X,Qy(i)), | # p, i > 0 are all equal to
0.

Proof: The key to parts a) and b) is the following general result, whose
proof can be found in [28, 8.2.3].

Lemma 4.18 Let Z be a smooth scheme over a field of characteristic p and
let
O=F*"M CFM C---CF'M =M

be a bounded filtered complex of coherent Oz-modules. Assume that there
exists a (not necessarily filtered) quasi-isomorphism

FyGrpM ~ M.

Then the differential M~ — M *! is strictly compatible with the filtra-
tion and, for every pair of integers i and j, the Oz-module H!(GriyM") ~
Gri.HI (M) is locally free.

Let us return to the proof of the theorem. Since the claims in parts (1) and (2)
are local on X we may assume that there exists a lifting F' of the Frobenius
Fx;s. By Theorem 2.11, such a lifting induces a natural isomorphism of

Ox-modules
g1 Cyjs(E) = Fy/sE, (4.18.1)

for every E € HIG, 1(X'/S). Composing this with (4.16.1) we obtain an
isomorphism of Ox-modules

FiGreM ~ M.

Then the statements (1) and (2) follow from the lemma.
By Theorem 3.22 the lifting A" induces an quasi-isomorphism

Cy sy s R (GrieM, k) = RhERM. (4.18.2)

Applying (4.18.1) we obtain locally on Y an isomorphism in the derived
category of Oy-modules

FyRAIC(Gri. M, k) =2 RRPEM.
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We can compute RhIE(Gry, M, k) as follows. Endow the relative de Rham
complex €2y /vy ® M with the filtration

and let (RhPEM, F*) be the filtered derived direct image of (y)y @ M, F").
We then have an isomorphism in the derived category of Oy-modules

GrpRhPEM ~ RRHTC(Gri. M, k).

Thus by Lemma 4.18, applied to the filtered complex of coherent Oy-modules
(RhPEM, F*), the Hodge spectral sequence for RRPE(M, F*), (RhRPEM, F),
degenerates at ;. Hence we get a canonical isomorphism of Oy-modules

GrpRhPEM ~ R'AWIC(Gri.M, k) (4.18.3)

It is well known'* that this isomorphism is compatible with the Higgs fields.
Thus passing to the cohomology sheaves in (4.18.2) we obtain the desired
isomorphism (4.17.1). This completes the proof of statement (3).
For statement (4), we will first prove that for any Ox-coherent N €
HIG,1(X/S),
[Cyjsmx/sN] = Fx[N],

where [] denotes the class of a coherent Ox-module in K{(X) = Ky(X).
Indeed, choose any filtration N = N° D N! > ... D N™ = 0 by Higgs
submodules such that N'/N* € HIGy(X/S). Then

(ClsmsN ) (ClsmiysN™1) 2 Coglamy s (V/N*) =

F3(N'Y/N'HY ~ FE N/ Fy N
This implies the claim.
In particular, for a Fontaine module (M, V, F"M, ¢) it follows that [M] =
F%[M]. Thus .
ci([M]) = e:(Fx[M]) = p'ei([M]),

and we are done.

]

14This fact should be compared with Katz’s formula (3.18.3). A conceptual proof of this
result can be obtained using an appropriate filtered derived category of D-modules. See,
for example [35].
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Proposition 4.19 Let X be a smooth projective curve of genus g over a field
speck = S, X' — S a lifting, and let (M,V,F",¢) belong to the category
MFon). Assume that

n(rkM —1)max{2g — 2,1} <p— 1.

Then (GrpM, k) is a semistable Higgs bundle.

Proof: 'We have to show that (GrpM, k) has no Higgs subbundles
(L, 0) — (GrpM, k)
of positive degree. Replacing (L,0) by A™E(L,0) and M by A" LM (this is
again a Fontaine module) we reduce Proposition to the following claim:
For any Fontaine module (M,V,0 = F"™'M c F"M C --- C F'M =

M, ¢), with n(2g — 2) < p — 1 the Higgs bundle (GrpM, ) does not have
one-dimensional Higgs subbundles

(L,0) — (GrpM, k) (4.19.1)

of positive degree.

Assume that this is not the case and consider such an L of the largest
possible degree d > 0. Then any morphism (L',0) — (GrpM, k), where L’ is
a line bundle of degree > d, is equal to zero. Consider the morphism

* — * — * . ¢
FYL = Cy gmys(L,0) = Cylomy s(GripM, k) =~ M
induced by (4.19.1). We will prove by induction on m that the composition
FyL— M — M/F™M (4.19.2)

is 0. Let us, first, check this for m = 1. Observe that the Higgs field s
restricted to M/F'M — GrpM is 0. Thus

(F%L,0) — (M/F'M,0) — (GrpM, r)

is a morphism of Higgs bundles. Since deg FxL = pd > d, this morphism
must be equal to zero.
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Assume that the composition F¥L — M — M/F™ M is 0. Then
(4.19.2) factors through FxL — F™ 'M/F™M. For any j, 0 < j < m,
consider the composition

P FYL — FPMFTM S FINMETIM @ (9 s)

and let jo be the smallest integer less then m, such that p;, # 0. Then pj,
induces a nonzero map of Higgs bundles

(FXL ® (Tx/s),0) — (@ F""""M/F" "M, k) — (Gri,M, k).
1270

However
deg (FxL @ (Tx/s)”°) = pd — jo(29 — 2) > pd — n(2g — 2) > d.

This contradiction completes the proof. O

Remark 4.20 Let h : Y — X be a smooth proper morphism of rela-
tive dimension d, and let ' : Y/ — X’ be a lifting. Then, for d < p,
M = R"hPEQOy is a Fontaine module on X. Thus, by Proposition 4.19 if
n(rk M —1)max {29 — 2,1} <p—1, (GrpM, k) is semistable. By the stan-
dard technique this implies the following result over the complex numbers.

Theorem 4.21 Let X be a smooth projective curve over C and let h : Y —
X be a smooth proper morphism. Then (GrpR"hPEQOy k) is a semistable
Higgs bundle.

This result was proved by analytic methods (for any polarizable variation
of Hodge structure) by Beilinson and Deligne (unpublished) and later, in a
greater generality, by Simpson [36] using a similar technique.

4.7 Proof of a theorem of Barannikov and Kontsevich

Let us recall the following striking result of Barannikov and Kontsevich, of
which the only published proof we know is due to Sabbah [34].
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Theorem 4.22 Let X/C be a quasi-projective smooth scheme over C. Sup-
pose that f € T'(X,Ox) defines a proper morphism to A'/C. Then the
hypercohomologies of the complexes

d+ Adf d+ Adf

Ox

Q,:;(/C Q?}(/C A aﬂd

—Adf —Adf

Ox

/6 2

have the same finite dimension in every degree.

We shall show how our version of nonabelian Hodge theory can be used
to give a proof of this theorem by the technique of reduction modulo p.
Since any pair (X/C, f) as in Theorem 4.22 comes from some “thickened”
situation, it is clear that the following result implies Theorem 4.22 by base
change R — C.

Theorem 4.23 Let S = Spec R be an affine, integral, and smooth scheme
over Z, let X /S be a smooth quasi-projective S-scheme, and let f be a global
section of Oy which defines a proper morphism: X — AL. Then, after
replacing & by some étale neighborhood of its generic point, the following
results are true.

1. The hypercohomology groups
H*(X,Qys,d+df) and H*(X,Qys,— Adf)

are finitely generated free R-modules whose formation commutes with
base change.

2. Let p be a prime, let X /S denote the reduction of X /S modulo p, and

Fx/s 7

let X —— X’ —— X be the usual factorization of Fx. Then for every
p, the complexes of Ox/-modules

d + Ndf d + Adf
FX/S*OX FX/S*Q;'/S FX/S*Qg(/S' .
Ox Qﬁa/s Q§<’/S

are quasi-isomorphic.
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The rest of this section will be devoted to a proof of Theorem 4.23. Along
the way we shall prove some auxiliary results which may be of independent
interest, for example the finiteness criterion given in Proposition 4.26 and
Corollary 4.27. We begin with a “cleaning” lemma.

Lemma 4.24 With the notation of Theorem 4.23, let Z C X be the reduced
zero locus of df. Then after replacing S by some étale neighborhood of its
generic point, the following conditions are satisfied.

1. The morphism Z — S is proper, flat, and generically smooth, and for
every p the reduction modulo p of Z is reduced.

2. The restriction of f to each connected component Z' of Z lies in the
image of the map I'(S, Os) — I'(Z2', Oz).

Proof: Note that formation of Z commutes with étale base change &’ — S,
so that our statement is not ambiguous. Let o be the generic point of S.
The statements are trivial if the generic fiber of Z, of Z/S is empty, so let
us assume that this is not the case. By the theorem of generic flatness [13,
6.9.1], we may assume that Z is flat over S. Then the map from each
irreducible component Z; of Z to § is dominant and the generic fiber of Z;
is an irreducible component of Z,. Localizing further if necessary, we may
assume that if Z; and Z; intersect, then so do their generic fibers. There is
a finite extension k' of k(o) such that all the connected components of Z,
are geometrically connected and have a k’-rational point. Replacing S by an
étale neighborhood of o, we may assume that &’ = k(o). Since Z, is reduced
and k(o) is a field of characteristic zero, Z, /o is generically smooth. Since
the differential of f|, vanishes, its restriction to the smooth locus Z;™ of Z,
is locally constant. Thus for each irreducible component Z; of Z, there exists
an element ¢; in k(o) (the value of f at a rational point) such that f = ¢;
on Z:". Since Z; is reduced, this holds on all of Z;. If Z; and Z; intersect,
so do Z;, and Zj,, and it follows that ¢; = ¢;. Thus ¢; depends only on the
connected component of Z, containing Z;. Furthermore, localizing on S, we
may assume that each ¢; belongs to R. Thus (2) is proved. Now if Z’ is a
connected component of Z, the composite 2’ — X — AL factors through
the section of A5/S defined by the appropriate element of R, Since X — A
is proper, so is each Z’ — S and hence the same is true of Z — S.
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We have now attained all the desired properties of Z, except for the re-
ducedness of its reductions modulo p, which is a consequence of the following
(probably standard) lemma.

Lemma 4.25 Let Z be a reduced scheme of finite type over Spec Z. Then
for almost all primes p, the reduction modulo p of Z is reduced.

Proof: 1In the course of the proof, we may without loss of generality replace
Z by the open subset defined localization by any positive integer. In partic-
ular, by the theorem of generic flatness, we may assume that Z is flat over
Z. Since Zq/Q is reduced and of finite type, it is generically smooth over
Z. Let n: Y — Z be the normalization mapping. Then )Y is also generi-
cally smooth over Z. Thus each irreducible component J° of ) contains a
proper closed subscheme V! such that Y°\ Y! — § is smooth. For almost
all p, the reduction modulo p of V! has strictly smaller dimension than that
of the reduction modulo p of Y°, and we may assume this is true for all p.
Then the map Y — SpecZ remains generically smooth modulo p for every
p. By [13, 7.7.4], n is finite, and hence the cokernel Q of n*: Oz — 1.0y
is a coherent sheaf of Oz-modules. Again by the lemma of generic flatness,
Tor?(Q,F,) = 0 for all but finitely many p. Shrinking, we may assume that
this is true for all p. It then follows that the reduction modulo p of n* remains
injective for all p. Since ) is normal, it satisfies Serre’s condition Sy, and
since each p defines a nonzero divisor on Y the fiber Y of Y over p satisfies
Si. Since Y is generically smooth over F,, it is generically reduced, and since
it satisfies 1, it is reduced. Since n* is injective mod p, the fiber Z of Z over
p is also reduced. O

]

Let £ := (Oy,d+df) € MIC(X/S) andlet £ := (Ox,df) € HIG(X/S);
we denote by just F and L their respective reductions modulo a prime p of
Z. Let J C Oy be the ideal of the scheme-theoretic zero locus of d f . This is
just the ideal generated locally by the set of partial derivatives of f in any
set of local coordinates for X'/S. The Higgs complex £ ® Q.'X/S of £ can
be locally identified with the Koszul complex of this sequence of partials,
and it follows that the cohomology sheaves of £ & €2, /s are annihilated by
J [10, 17.14]. Since the closed subscheme of X defined by the radical of J
is Z, which is proper over S, the hypercohomology groups H'(L ® ) /s)
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are finitely generated R-modules. Since R is reduced, they are free in some
neighborhood of the generic point of S, which we may assume is all of S.
Since the terms in the complex £ ® 0, /s are flat over S, the formation of its
hypercohomology will then commute with all base change. This completes
the proof of Theorem 4.23.1 for the Higgs complex.

The proof for the de Rham complex is more difficult; in general, the
de Rham cohomology groups of a coherent sheaf with integrable connection
on a smooth scheme of finite type over Z are not finitely generated. (For
example, the de Rham cohomology of the trivial connection on A} is not
finitely generated.) We will use the technique of logarithmic geometry to
study the irregularity of the connection d + df to obtain the finiteness we
need.

Let Y/S be a smooth morphism of fine saturated and noetherian log
schemes. We just write (1), ¢ for the logarithmic de Rham complex of Y'/S [17].
If m is a section of My, the set Y, of all y € Y such that m, € My is open
in Y. In fact, since a: My — Oy is a log structure, y € Y,, if and only if
ay(m) € Oy,. Let us assume that ay(m) is a nonzero divisor of Oy, so
that it defines a Cartier divisor D of Y and Y,,, = Y \ D. Suppose we are
given a torsion free coherent sheaf £ on Y and an integrable connection V
on j*E, where j: Y,, — Y is the inclusion. Then V induces a connection on
JJ*E = E(x) = hi)nE(nD) If Vmaps F to E® Q%//S, then F has regular
singular points along D; we wish to measure the extent to which this fails.
Since FE is coherent, V maps F to £ ® Q%,/S(nD) for some n; replacing m by
m" we may assume that n = 1. Since da € ]DQ§,/S(D) for all a € Oy, the
map

0p: E@Op — E® Q%//S(D)‘D
induced by V is Op-linear. It follows from the integrability of V that 6p
defines an action of the symmetric algebra S"(IpTy,s) on Ej,, so that £,
can be viewed as a module over V(IpTy/s).

The following result is inspired by of a result of Deligne [6, 11, 6.20] which
was pointed out to us by H. Esnault.

Proposition 4.26 Suppose that in the above situation 0p is noncritical,
i.e., that the support of the V(IpTy,s)-module Ep defined by (Ep,0p) is
disjoint from the zero section. Suppose further that Y/S is proper and that
S = Spec R. Then for every i, H(Y \ D, E ® Qi,/s) is a finitely generated
R-module.
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Proof: Let Qg,/s(*) = j*j*Qg//S and for each natural number n, let
Fo(E®Qy6) (%) == E® QY 4((n+¢)D) C juj"(E© Q5 ).

Then F. defines an exhaustive filtration of the complex F ® Qi//s(*) by co-

herent sheaves. Since Y/S is proper, for each n and i, H'(F,F ® Qy/5(%)) is
finitely generated over R. Thus it will suffice to show that for each n > 0,
the natural map

FuE© Qys(x) — E© Oy 5(%)

is a quasi-isomorphism, and for this it will suffice to prove that for each
n > 0, the map
FoE ® Qy/g(x) = FoE @ Q) g(x)

is a quasi-isomorphism. This will follow by induction if for every n > 0,
Crf E® Qy5(*) is acyclic.

Multiplication by ¢" defines an isomorphism F,E(x) — FyFE(*) which
induces an isomorphism

E(nD),,, = Grf E(x) — CGif E(x) = E,.

If e € F,E, then V(e) € F,E® Q%//S(D) and V(g"e) € E® Q%//S(D). Since
g = a(m) and dg = gdlogm,

V(g"e) = ng"e @ dlog(m) + "V(c) € E © O 5(D).

Since g"e®dlog(m) € E®Qy,g, V(g"e) reduces to g"V(e) in E@Qy,5(D)),.
Thus multiplication by ¢" identifies GrZ V with 6p for all n > 0. This
identification extends to an isomorphism of complexes

Gr, (B ® Qy5(%)) = Grg (B ® Qy/5(+))

But Gr%(E® Qy/5(*)) is just the Higgs (Koszul) complex of 6p, whose coho-
mology sheaves can be identified with Exty, (i.Ox, Ep), where i: X — V is
the zero section of V := V(IpTy,s). These vanish since p is noncritical. [

The following corollary then completes the proof of statement (1) of The-
orem 4.23: take (E,V) to be the constant connection on X'/S.
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Corollary 4.27 Let X/S be a smooth quasi-projective scheme over S =
Spec R, where R is a flat and finitely generated Z-algebra. Let (E,V) be
a coherent sheaf with integrable connection on X/S whose restriction to
the generic fiber of X/S has regular singularities at infinity. Suppose that
f € Ox(X) is a global function which defines a proper morphism X — A},
and let (E', V') be the df-twist of (E,V): E' = E, and V' :== V+ Adf. Then
after replacing S by some affine neighborhood of the generic point of S, the
de Rham cohomology H*(X,E ® € /s) is finitely generated and free over
R.

Proof: Let o be the generic point of S. We may find a projective compact-
ification X, of X,, and after blowing up X, outside of X, we may assume
that f extends to a morphism X, — P which we still denote by f. Af-
ter a further blowing up outside of X,, we may assume that X, is smooth
over ¢ and that the complement of X, in X, is a divisor with strict normal
crossings. Then the log scheme Y, obtained by endowing X, with the log
structure corresponding to the inclusion X, — X, is (log) smooth. Further-
more, f extends to a morphism of log schemes Y, — P}, where P! is the log
scheme P! obtained by endowing P! with the log structure corresponding to
the inclusion Al — P,

Let t be the coordinate of Al and let s := ¢!, which is a local generator
of the ideal of co. There is a unique local section m of the sheaf of monoids
Mp1 over V with s := api(m), and dlogm is basis for the stalk of OF p1 at 0o.
Let y be a point of D := f~!(c0). Then in an étale neighborhood of y, there
exists a system of coordinates (t¢1,---t,) and natural numbers r eq,...e¢,
such that such that f*(s) =¢*---t¢. Then f*(dm) = ). e;dlogt;, which is
nonvanishing in the fiber of Q%, /o At Y. (This implies that f is log smooth at

y.) Since (E, V) has regular singularities at infinity, there is a coherent (even
locally free) extension E of E to Y, and a log connection V: E — E® QY /o
extending V. Now df = f*(dt) = —s?ds = —s~' f*dlogm. Thus V' maps
E to E® Q5 Jo(D), and 0p is the map E|D — B, ® Q) ) sending e to

—eAs !dlogm. This is an isomorphism, so fp is noncritical. There exists an
affine neighborhood of the generic point of S over which all this remains true,
and without loss of generality we may assume they are true for Y/S. Then
Proposition 4.26 implies that the de Rham cohomology groups of (E, V) over
Y \ D = X are finitely generated over R; shrinking further we may assume
they are free. m
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We now turn to the proof of statement (2) of Theorem 4.23. Assume that
X /S satisfies the conditions in (1) of Theorem 4.23 and in Lemma 4.24. Fix
a prime p, let X/S be the reduction of X/S modulo p, and let S; be the
reduction of & modulo p?. Since S/Z is smooth and affine, there exists a
lifting Fs of the absolute Frobenius endomorphism of S to &; and hence a
Cartesian square:

X! X

(4.27.1)

Fs

81 81.
We shall abuse notation and write Cy /s for the Cartier transform defined by
the lifting X7/S; of X'/S.
Let (E, V) be the restriction of (£,V) to X/S. According to [19, 7.22],
the p-curvature ¢: £ — EF® F% /SQ% /g 18 multiplication by

Fx(df) = FxsCxys(df) = Fxysm (df)-

Since this is not nilpotent, we cannot apply our Cartier transform to it di-
rectly. Our approach will be to approximate E by nilpotent connections, and
we shall see that the Cartier transform of these approximations approximate
L.

In general, if (£, V) is a connection on a smooth X/S in characteristic p,
Fx/s+(E) becomes an S"Ty//¢ module via the p-curvature v, and since 9 acts
horizontally, the quotient E(,y of E by the nth power of the ideal S*Tx//s of
STy /s inherits a connection. In fact, this quotient is the maximal quotient
of E on which the connection is nilpotent of level n — 1. In the situation at
hand, we can be quite explicit. Let J C Ox be the ideal of the zeroes of df,
i.e., the ideal generated by the partial derivatives of f in any local system of
coordinates. Then E,) is the quotient of £ by F (J"). Our next goal is the
computation of the Cartier transform of a suitable quotient of F,).

Proposition 4.28 Suppose that X /S and f satisfy the conditions of Lemma 4.24,
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and let Z be the reduction of Z modulo p. Let n be a natural number and

E = (Ox,d+df) e MIC(X/S)
E, = (EJFS(I2E,d+df) e MIC(X/S)
L = (Ox,—df) € HIG(X/S)
L. = L/I}L e HIG(X/S)
L, = wL,€ HIG(X'/S).

Finally, let r be the maximum codimension of Z in X. Then if p > rn, the
Cartier transform Cx;s(k,) of E, with respect to X{/S; is isomorphic to L.

Proof: Note that, by definition, Iz is the radical of the ideal J, so F, is
indeed a quotient of E,) and Cy/s(E,) is defined. It is enough to prove the
proposition after restrlctlng to each connected component of Z. To simplify
the notation, we shall assume that Z is connected. Replacing f by f — ¢,
for a suitable ¢ € I'(Og) as in (2) of Lemma4.24, we may assume that the
restriction of f to Z vanishes.

Recall from Proposition 1.14 that the lifting 7 of 7: X’ — X determines
amap 0z: Oy — Ax/s.

Claim 4.29 Let o := 6(f) € Ax,s and let

2 Oép_l

=1 —
5 +a+2,+ =1

Then:

1. o € Fx(Iz)Axs,

2. Ya(B) = (B — &) ® Fxdf, and

3. V() = —(8 - g5y @ df.
Proof: By (1) of Lemma 4.24, Z is is reduced and in particular satisfies
Serre’s condition S7. Since X is regular, its absolute Frobenius endomor-

phism is flat, and hence the inverse image Z®) of Z by Fy still satisfies S;.
(To see this, let j: U — Z be the inclusion of any dense open subset of Z and
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observe that the map Oz — 4,70z is injective, and remains so after pull-
back by Fx.) Since Specy Ax/s is smooth over X, the inverse image of Z®)
in Specy Ax/s also satisfies ;. Thus it suffices to check (1) at the generic
points of Z, and since Z/S is generically smooth, we may assume that it is
smooth. We may work in a neighborhood of a point of Z with the aid of
a system of local coordinates (t1,...%,) for X/S such that Iz = (¢1,...1,).
Let F: Xy — X] be the lift of Fx/g sending 7*#; to # for all 4. This de-
fines a splitting of the fundamental exact sequence (1.4.1), and hence an
isomorphism
N1.A)(/$ = 5)(/5 =2 0x® F;(/SQ&’/S-

Proposition 1.14 says that, in terms of this splitting, a = (g, F.df), where
F*7 *(f) P+ [p]g. Since f € Iz f? belongs to IZ, and since F*7* maps
Iz to I%, it follows that [p]g € I%. It follows from the smoothness of Z
and X over S that the closed subscheme of X defined by I% is flat over
S, and hence that g € I, Then ¢° € I, and since Iz has s generators,
I7 C F3I;Ox, so in fact ¢° € FxI;Ox. Since df € IZQ%{/S by hypothesis,
Fidf € FX(I)Fxi)5(Qx5)- Thus o® € Fx(Iz)Ax/s, and since s < r, the
same is true of o”. This proves (1).
Recall from Proposition 1.14 that ¢ 4(«) = F%df. Hence

a o aP=?
— (18 e Y
va@) = (L4t g+t v
(5 ) e s
= — ) ® F%df.
(-1
This proves (2). Proposition 1.14 also says that V(o) = —fP7ldf, so a
similar calculation proves (3). O

Recall from Theorem 2.23 that
CX/S(L/ ) = (L;z ® FX/S*AX/‘S)%M :
As an Ox-module, L, ® Fx/s.Ax/s = Ax/s/Fx(13)Ax/s. Since o™ €
F%(I%) by (1) of the claim, this module is annihilated by a?~! if p > rn.

Hence
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Hence if we view (3 as a global section of L; ® Ax,s, we find

Vit (B) = Yr.(1) B+ Ya(B) = =@ 7df + @ n*df = 0.

Thus g € C’/;}S(L;l) = (L, ® Ax;s)¥*t, and in fact § is a basis for C’;}S(L;)

since it is a unit modulo I. Furthermore, it follows from (3) of the claim that
Via(B) = =B @ f*7Ndf € B}, @ Qs

Now consider the Artin-Hasse exponential of f, which is given formally by
g:=exp(f+ fP/p+ [V /0" +---),

and which in fact has p-adically integral coefficients. Then
g tdg = (14 77+ 7 S

Since f € Iy and p > n, fF°~1 = FL(fe-1)fr~' e Fi(Ip), so
dg=g(1+ f*N)df  mod Fy(I}).

Since ¢ is a unit, e := g is also a basis for C;}S(L;L), and

Vie) = gV(B)+p@dyg
= —gB® frldf +g(1+ fr~df)B @ df
= e®df

In other words, C’;(} s(Ly,) is isomorphic to E,, as claimed. O

We shall also need the following general result about morphisms in the
derived category.

Proposition 4.30 Let X be a noetherian scheme or formal scheme, let K’
be a perfect complex of coherent sheaves of Ox-modules, and let J be a
sheaf of ideals annihilating the cohomology sheaves of K. Then there exists
a natural number n such that for all m > 0, the map in the derived category

n+mL . mL .
J QK —-J"® K

induced from the inclusion J**™ — J" is zero.
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Proof: First we prove the statement for the induced maps on cohomology
sheaves. We may cover X by a finite number of open affines on each of
which K~ is quasi-isomorphic to a bounded complex K of locally free Ox-
modules. and it suffices to prove the local statement on each of these open
sets. Thus we may assume that X = Spec A and replace K™ by I'(X, K*).

Then J™ (Ié K =2 J"® K’ for all m. Let B? C Z9 C K7 be the boundaries,
(resp. cycles, resp. chains) of K in degree q. By the Artin-Rees lemma, there
exists an integer r such that Z¢NJ™ " K1 C J™Z% and BINJ™t" K9 C J™BY
for all m > 0. The hypothesis on J implies that JZ? C B9. Hence if n > r,
ZiNJm K1 C JZ1C B, so

ZiNJ"MKIC BIN JTT KT C ™ B

Since K1 is free, Z9(J"™K9) = Z9N J™" K% and J"B? = BI(J"K). It
follows that the map HY(J"™"K) — H(J™K) is zero.
The following lemma then completes the proof of the proposition.

fo f1 fo

Lemma 4.31 Let K, K K, ---K,11 be a sequence of
morphisms in the derived category of an category. Suppose that each K; has
cohomological amplitude in [a, a+n| and that the maps H*(K;) — H*(K;41)
are all zero. Then the composition Kqg — K, 1 is zero.

Proof:  The proof is by induction on n. If n = 0, there is nothing to prove,
since K; = H*(K;) for all i. Let 7. denote the canonical filtration [2], let
f=fifo-.., fur1, and consider the following diagram:

Ha+n
H*™(Ky)[—a — n] J)» H*™(Ky)[—a — n]
(6%
K, Jo K, / K.,
B
!
7—<a-|—n](0 7—<a—i-n}(1 T<a+nKn+1-
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Since H**"(fo) = 0, afo = 0 and since [ and « comprise a distinguished tri-
angle, it follows that f; factors through 3. The induction hypothesis implies
that f/ =0, and it follows that ff; = 0. This proves the claim. m

O
Corollary 4.32 let £ := (Ox, —df) € HIG(X/S), let L denote its formal
completion along Z, and let b: L — L,, denote the projection to the restric-
tion of L to the nth infinitesimal neighborhood of Z. Then for sufficiently

large n, there exists a map s in the derived category making the diagram
below commute.

5o b .
£®QX/S - £n®QX/S
id

L® Qs

Proof: Let us write £ for the complex L& ) /s» and consider for each
natural number n the exact sequence of complexes

0—IL —L — L, —0.
There is then a corresponding exact sequence of abelian groups
Ext’(L£,, L) — Ext®(L, L) — BExt®(I2L", L),

where Ext’ means hyperext, or equivalently, the group of morphisms in the
derived category. It will thus suffice to prove that the identity element of
Ext’(£,£") maps to zero in Ext®(J2£°,£). But the image of the iden-
tity element is just the class of the inclusion mapping, which vanishes for n
sufficiently large by Proposition 4.30. O]
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Proof of Theorem 4.23 Choose n as in Corollary 4.32 and localize S so that
all primes less than the maximum of rn and n+dim (X /S), become invertible.
Let X/S and Z/S denote the reductions of X' /S and Z/S modulo one of the
remaining primes p. Let X, denote the formal completion of X along Z, let

E:=FE;; and L= L’/Z, and consider the following diagram:

. a ~ . P .
Fx/s:(E ® Qy/g) — Fx/se(E® Qy/g) — Fxyse(EBn @ Qx/g)

h Cn

/
a b

L'® Qs L'® Qg

Ly, ® Qs

8/
Here a, p,d’, and b’ are the obvious maps, ¢, is the quasi-isomorphism coming
from Theorem 2.26, s’ is the pullback via 7 of the map s of Corollary 4.32,
and h := s'c,p. Note that we do not know if ¥’h = ¢,p. The arrow a is
a quasi-isomorphism by Proposition 2.31 and @’ is a quasi-isomorphism by
a similar (easier) argument. We shall show that A is a quasi-isomorphism,
completing the proof of Theorem 4.23.

Since our statement is local, we may restrict to an open affine subset U
of X and then choose a lifting F of Fx/s mod p?. Let C(E) be the formal
Cartier transform of E described in Proposition 2.32 with respect to this
lifting.

Claim: There exists an invertible sheaf A on X/, such that C' (E) =
L ®o,, A, where A is given the trivial Higgs field.

Indeed, the F-Higgs module corresponding to the p-curvature of C’;l(i’ )
is Fg, SIA/ , and hence the p-curvature of Hom(E, C’;l (L')) is zero. Hence there
exists an invertible sheaf A on X’ such that Hom(E, C’;l(f/)) = F s with

the Frobenius descent connection. Then C(E) = L ®o,, A, where A has
the trivial Higgs field.

By the compatibility of Cz and Cy/s, the isomorphism ay,: Cx/s(E,,) =
L of Proposition 4.28 defines a trivialization of A,. Restricting to smaller
affine if necessary, we may assume that A is trivial, and choose an extension
a of a, to an isomorphism Cz(E) — L/. Now consider the commutative
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diagram of maps in the derived category:

. . p .
Fxs5:(E ® Qy/g) — Fx/s:(En ® Q)

/!

Cr(E) @ Q. 15 — Cys(En) ® Qg

« o,

L'® Qs L, ® Qxi/g

The arrows e and c¢ are quasi-isomorphisms by Proposition 2.32 and Theo-
rem 2.26, respectively, and « and «,, are quasi-isomorphisms by construction.
Furthermore, ¢, = a,c, so

h=sc,p=5sa,cp=5sa,b'e=sbae=cae

and hence is a quasi-isomorphism. ]
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5 Appendix: Higgs fields and Higgs trans-
forms

5.1 Higgs fields over group schemes

Let X/S be a smooth morphism of schemes, let Qx/g be its sheaf of Kahler
differentials and T'x,s the dual of Q2x,s. Recall that a Higgs field on a sheaf
E of Ox-modules is any of the following equivalent sets of data:

1. an Ox-linear map 0: F — FE ® {1x/g such that the composition of
with the map F ® Qx/s — E ® A*Qy/g induced by ¢ vanishes

2. a linear map 0: Tx;s — Endop, (F) with the property that the endo-
morphisms associated to any two sections of T'x/s commute

3. an extension ¢ of the Ox-module structure on £ to an S"T’x,g-module
structure.

If E is quasi-coherent, then associated to the S'T’x/g-module £ is a quasi-
coherent sheaf E' of Or--modules on the cotangent bundle T% ¢ of X/S.

Conversely, if E is such a sheaf, its direct image on X is a quasi-coherent
sheaf of Ox-modules equipped with a Higgs field.

These definitions make sense with any locally free sheaf T"in place of T,
and with the vector bundle V1" := Specy S™T in place of cotangent bundle.
In fact, it will be useful for us to work in an even more general context, in
which the vector bundle T% /s is replaced by any commutative affine group
G scheme over X. Abusing notation, we shall denote by Og the sheaf of
Ox-bialgebras on X corresponding to G.

Definition 5.1 Let G be a commutative flat affine group scheme over X
and let E be a sheaf of Ox-modules on X. A G-field on F is a structure 0
of an Og-module on E, compatible with the given Ox-module structure via
the map Ox — Og.

We denote by G-HIG the category whose objects are sheaves of Ox-
modules E equipped with a G-field 8 and whose objects are morphisms com-
patible with the G-fields. We will often omit the 6 from the notation when
no confusion seems likely to result. As before, there is an evident equiva-
lence between the category of quasi-coherent objects in this category and the
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category of quasi-coherent sheaves on (. Since we will have to deal with
sheaves which are not quasi-coherent, we will not make use of the topological
space Specy Og. Nevertheless we will try to use geometric notation whenever
possible. Thus, if A is a sheaf of Ox-algebras, we denote by Mod(A) the
category of sheaves of A-modules on the topological space X. If v¥: A — B
is a homomorphism of sheaves of Ox-algebras, we have functors:

v Mod(A) — Mod(B): M — B4 M
Ye: Mod(B) — Mod(A): N +— N, with an :=~*a)n
v Mod(A) — Mod(B): M~ Homa(v.B, M), with (bh)(b') := h(bb'),

together with the standard adjunction isomorphisms:

Homa(M,v.N) =~ Homg(y*M,N)
Homa(v.N, M) =~ Homp(N,v' M)

Note that even if A and B are quasi-coherent, the functor 7' does not preserve
quasi-coherence, in general.

In our context we shall consider the following morphisms of X-schemes
and the corresponding morphisms of sheaves of Ox-algebras. Here all fiber
products are taken in the category of X-schemes and all tensor products in
the category of Ox-modules.

Notation 5.2

pi: GxG—G: (91, 92) = gi, p?: Oc¢ — Og ® Og
0:GXxG—-GxG: (g1,92)— (g2,91), ot 06 ® O0c — Og @ O
1:G— G g gt F:Oq — Og

p:GxG—G:  (g1,9) = qi1g2, ' Og — Og @ Og
W:GxG—G: (g1,0) — g297", 1 Og — Og® Og

. X —>G: 0, it O — Ox
p:G" =X (g1,...ga) — p(gi), P': Ox — Ogn
j:G—G: g—0 j* Oq — Og¢

These are the projections p;, the inversion mapping ¢, the group law u,
the twisted group lawy’ := po oo (v x id), the augmentation given by the
zero section of GG, the structure map G™ — X, and the map p oi. Note that
since (2 = idg, t, = ¢*. If E is any object of G-HIG, we let E* := 1,F = *E.
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5.2 Convolution

Definition 5.3 Let (F4,6,) and (E2,603) be two objects of G-HIG. Then
1. By X By = piE Qo P5E2, as an object of G x G-HIG.
2. By ® Fy := p,(E; X Ey), as an object of G-HIG.

For example, if (Ey,60,) and (Es,0) are objects of HIG(X/S), then
E1 ® Ej5 is the tensor product of F; and FEs in the category of Ox-modules,
with the Higgs field 6 defined by

0 =6, ®idg, +idp, @ 6,.

Geometrically, the object (E; ® Es,0) corresponds to the convolution of Ej
and Fs with respect to the group structure of the cotangent space of X/S.
The associative law for G implies that the standard isomorphism

(El (029 EQ) ® E3 = E1 & (EQ ® E3>
induces an isomorphism
(B ® Ey) ® B3 = By @ (B ® Ey).

Similarly, the commutativity of G' implies that the standard isomorphism
F, ® Ey =2 Fy ® Ey induces an isomorphism

Ey® Ey = Ey ® Ey.

Furthermore, if we let

U:=i.0x € G-HIG,

then the fact that ¢ is the identity section implies that the natural isomor-
phism Ox ®p, £ = E induces an isomorphism in G-HIG"

U E=E.

Thus ® makes the category G-HIG into an Ox-linear tensor category [9]
(ACU tensor category in the terminology of [32]), and U is its unit object.

Definition 5.4 Let E; and FE» be objects of G-HIG. Then

Hew(Er, By) = Homog,(piEr, pyE»)
H(El, EQ) [L;H@l’(El, EQ)
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We call Hex(E;, E3) the external Hom of F; and FE,. Its underlying
Ox-module is given by

Homoy (p« 1, peFa) = peHomog (0" p« B, E2) & pHomog (p2pi B, Ea) &
pHomog, o (D1 Er, pyEs) = poHex(Ey, Es) = pH(Ey, E»)
and the Og ® Og structure on Hex(E,, Es) is given by:

(a®b)h: By — Ey ey +— bh(aey).

Lemma 5.5 Let Fy, Ey, and E5 be objects of G-HIG. Then the standard
adjunction isomorphism in the category of Ox-modules

HOmoX (El ®@X Eg, E3) = HOmoX (El, Homox (EQ, Eg))
induces isomorphisms
Homp, (Ey ® Es, E5) = Homo,, (Ey, H(Es, Es))  (of groups)

H(El ® EQ, Eg) = H(El, H(EQ, Eg)) (IH G—H[G)

Proof: By definition,

Homoy (Ey, H(Ey, By) = Homog (Er, f,Homog, (0} B, b5 Es))
- HomOGxG(Hl*ElaHomOGxGQ?){EQap!QEB))
= HOmOGXG(/L’*El ROaxa p;EQ,p;Eg)))

Let a: G x G — G x G denote the map (i, p1), i.e., the map sending (g1, g2)
to (g29; ", g1). Note that a is an isomorphism, whose inverse 3 = (pq, it) sends
(a,b) to (b,ab). Thus G, = o*, and furthermore p/*(F;)®p; Fy = o*(E1X Es).
Hence

Homo,, (E1, H(E>, E3)) = Homo,,,(a"(E) K Ey), pyEs3))
Homog, ¢ (B« (Er K Ey), py Es))

= Home,, .(E) R Ey, 8'pyEs))
Homo,,, . (E1 X Ey, i’ B3))

Homoe,, (1« (E1 X Es), E3))

= Homoe, (E; ® Es, Es)
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This proves the first statement. The second statement just asserts that the
standard adjunction morphism is compatible with the G-Higgs fields. It
follows formally from the first. Indeed, it will suffice to check that for all F|
the adjunction isomorphism induces isomorphisms:

HOHI@G (E, H(El ® EQ, Eg)) = Hom@G (E, H(El, H(Eg, Eg)))
This follows from the first statement and the associativity of &®. m

This shows that H is the internal Hom functor of the tensor category
(G-HIG,®) in these sense of [9]. As usual, the dual of an object E of
G-HIG is defined by

EY :=H(E,U). (5.5.1)
The map
ev: BEY®FE — U

is by definition the element of
Homo,(EY ® E,U) = Homo,(E",H(E,U)) = Home.(E", EY)
corresponding to idgv; it corresponds to the usual evaluation map
Home, (E,0x) @ E — Ox.
For any Fs, one gets by functoriality maps

By = H(U, Es
HOIH(QG(EQ, (U EQ)

) H(EY ® By, E)

)
Home, (Ey ® U, E»)

)

)

Home,, (Es, H(EY ® Ey, E»))
Home, (Fy ® EY ® Fy, Fs)

Home,, (FEy ® B, H(Ey, Ey))
Home,, (E),®FE,y, H(Ey, Ey))

HOmOG<E2, 2
HOm()G <E27 E2

L

The element of Hom(Ey ® Ey, H(E1, E»)) corresponding to idg, is the map

corresponding to the usual map EY ® Ey — Home, (E, E») in the category
of Ox-modules. In particular it is a homomorphism in G-H IG and commutes
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with any endomorphism of E; or Es, in the category G-HIG. For example,
any local section of Og defines such an endomorphism on each F;. Note that
if By is locally free and F; or Ej is of finite presentation as an Ox-module,
(5.5.2) an isomorphism. For example, when G is the cotangent space of X
and 6 is a Higgs field on X, then the Higgs field #¥ on EV is given by the
usual rule, so that

<95(¢)7 €> + <¢a 9{(6» =0
for sections £ of T', ¢ of EY and e of E.

Remark 5.6 If F; and E, are objects of G-HIG, the Ox-module underly-
ing H(E1, Es) is Home, (Ey, Ey) and the Ox-module underlying Ey ® FEy is
E, ®0, E>. These Ox-modules also inherit Og-structures by “transport of
structure” from the Og-module structures of F; and Ey;. When necessary we
denote by 0, the structure coming from F; in this way and by 6, the struc-
ture defined in (5.3) and (5.4). Thus 6, is the structure on H(F1, E5) (resp.
E; ® E,) obtained from the structure on Hex(FE;, Ey) (resp. E; X Es) by
letting Og act via the morphism p;.. Note in particular that the Og-module
structure on £V is not the structure 6z corresponding to the action by trans-
port of structure on Homp, (E, Ox), rather it is given by ¢,0g. Indeed, the
O¢ ® Og-module Hex(E, Oy) is annihilated by the ideal of the graph I'; of
the zero morphism j: G — G, and p/ o I'; = ¢.

Remark 5.7 A morphism h: G’ — G of affine X-schemes induces a pair of
adjoint functors

h*: G-HIG — G'-HIG and h,: G-HIG — G-HIG.

If h is a homomorphism of group schemes, these are compatible with ® and
‘H. For example, let f: X — Y be a morphism of schemes, let 'H be a
commutative affine group scheme over Y, and let f~'H be its pullback to
X. If (E,0) is an object of H-HIG, then f*E has a natural f~'H-field f*0.
If G is an affine group scheme over X equipped with a map h: f'H — G,
then one gets by composition with A a G-field on f*E. For example, this
construction applied to the cotangent bundles, with h the differential of f,
defines a functor f*: HIG(Y/S) — HIG(X/S). Finally, note that since

t: G — (G is a group homomorphism, we find a canonical isomorphism

(Ey® Ey)' = E] ® ES.
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Remark 5.8 Let F; and E5 be object of G-HIG. Then there is a natural
isomorphism of sheaves of Ox-modules

i"H(Ey, E2) = p.Homo,(Ey, Ey).
This follows from the adjointness properties of ‘H:

i"H(E, Ey) = Homoy, (i.0x, H(E, E»))
= Homo, (U ® Ey, Ey) = Home, (Eq, Es).

We find a natural map of Ox-modules
Homo, (By, By) =2 i'H(Ey, Ey) C p.H(Ey, Es) (5.8.1)

This map is compatible with the actions of Og induced by transport of
structure via its actions on F; and Fs.

5.3 Higgs transforms

We can use an object of G-HIG as a kernel for what we shall call a Higgs
transform, of which we consider the following variants.

Definition 5.9 Let F be an object of G-HIG. Define functors from G-HIG
to itself by:

H]:(E) = HOTTLOG (f, E)

T]:(E) = JT®OGE
THE) = i(F®E)

We view these objects as G-Higgs modules, with the Higgs field induced by
transport of structure from the field on F. Note that this is the same as the
field induced from F in the first and second cases, and differs by ¢ in the
third. Indeed,

i'(F ® E) = Homo,, (i.0x, t.(F K E)) = Home,,, . (1"i.Ox, F X E)

This is an Ogxg-module, and the action of Og by transport of structure via
F corresponds to the action induced by the first projection, while the action
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via F is induced by the second projection. We claim these differ by ¢. In fact
it is enough to check this for the Ogxg-module i, " (Ox). But this is clear,
since the latter is annihilated by the ideal of the graph of ¢.

The map (5.5.2) induces a natural map of Og-modules

VT (E) — i'(H(F,E)) = Hx(E) (5.9.1)

which is an isomorphisms if F is finitely generated and projective as an Ox-
module. The presence of the ¢ is due to the fact that Og acts on T4, (E)
by transport of structure via F¥ and on Hr(FE) via F, and these structures
differ by ¢, as we saw in Remark 5.6.

Let B be any object of G-HIG. Observe that there are natural transfor-
mations:

ng: IsoHg — id and (z:id — Hg o 75,

where for any F,
NB.E - B ®OG Hom@G (B, E) — F

sends b ® h to h(b) and
(gp: E — Home,(B,B®o, E)

sends e to the homomorphism b — b ® e. Then the following result is imme-
diate.

Proposition 5.10 Let B be an object of G-HIG which is invertible as an
Og-module. Then ng and (g are inverse isomorphisms. In particular, Hp
and T are quasi-inverse equivalences of categories.

O

In our main application, B will be equipped with the structure of a co-

commutative coalgebra with counit in the category G-HIG. That is, it will
be provided with morphisms

viB—=B®B and [:B—-U (5.10.1)

satisfying the usual compatibilities. These data give the corresponding Higgs
transform additional structure. We shall be especially interested in the fol-
lowing case.
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Definition 5.11 A character sheaf'® in G-HIG is a coalgebra (B, v, 3) such
that the map v: p*B — B X B corresponding to v is an isomorphism of
Oaxc-modules and the map 3: i*B — Ox induced by 8 is an isomorphism
of Ox-modules.

Lemma 5.12 Let (B, v, 3) be a character sheaf in G. The map v induces an
isomorphism of Og-modules B ®p, B* = O¢. In particular, B is invertible
as an Og-module, with inverse B".

Proof:  Definition (5.11) implies that i*B = Oy, hence j*B = Og. Let
I',: G — G x G denote the graph of «. Pulling the isomorphism 7 back via
I',, we find an isomorphism:

BB = TI(BRB) =T (B) = j'B= Oc.
]

Remark 5.13 Giving a character sheaf is equivalent to giving a commuta-
tive extension of the group G by the multiplicative group G,,. Assume G is
finite and flat over X and denote by GV its Cartier dual. Then a GY-torsor
gives rise to a character sheaf. Indeed, GV can be identified with the group
of automorphisms of the trival extension E of G. Then if L is a GV-torsor,
we can form the “twist” L ®gv E of E by L. This defines an extension of G
by G,, and hence a character sheaf B. The functor L +— B is an equivalence
from the category of GY-torsors to the category of character sheaves which
are, locally on X, isomorphic to Og as character sheaves.

Proposition 5.14 Let (B,v, 3) be a character sheaf on G. If Ey and E, are
objects of G-HIG, the standard tensor product map ® on homomorphisms
and the comultiplication v define a commutative diagram:

&
Hi(E1) ® Hp(Ey) — Hpes(Er ® Ey)

1

Hp(E) ® Es)

Thus the functor Hp is an auto-equivalence of the tensor category G-HIG.

15This terminology is borrowed from G. Lusztig
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Proof: The diagram above can be expanded as follows.

ps (Hs(Er) W Hp(E,))

H(Fy) & Ha(Es) e (piHomoy (B, 1) ©0,, pyHomoy (B, E2))
x
Hy(Ey ® Ey) ~— o Home,, .(BR B, By K E,)

The right vertical map is an isomorphism because B is invertible, and the map
U* is an isomorphism because 7 is an isomorphism. The cocommutativity of
the coalgebra B implies that Hyz preserves the commutativity constraint of
the tensor category G-HIG. m

A change of sign allows us construct an involutive auto-equivalence of
G-HIG.

Definition 5.15 Let B be an object of G-HIG. Then Hy is the functor
G-HIG — G-HIG sending an object E to v, Home, (B, E).

For example, HbG can be identified with the involutive functor ¢,. More
generally, if (B, v, ) is a character sheaf, then by Lemma 5.12:

Hi(Hz(E)) = t.Home, (B, tusHomog (B, E)) = v Home,, (B, Hom(B, E))
= Homo, (L'B ®e, B, E) = Homo,(Og, E) = E.

The natural inclusion of Ox-modules Homp,, (B, £) C Homep, (B, E) de-
fines morphisms of Og-modules:

ve: Hg(E) — H(B,j.E) and j.Hgz(E) — H(B,E). (5.15.1)

The morphism 3: B — U and the isomorphism H (U, F) = E induce maps
of Og-modules:

Bp: E— H(B,E) and j.E — H(B,j.E). (5.15.2)
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Finally, let us consider the following diagram:

H(B, Hy(E)) 2% H(B, H(B,j.E)) H(B,j.Hy(E)) 252 H(B, H(B, E))

]/E: =~ ]/E: =~
*. VEx« . ' VEx
(5.15.3)

Here the top horizontal arrow is induced by the morphism g (5.15.1), the
right arrow is the adjunction map of Lemma 5.5, and the bottom horizontal
arrow is induced by v; the diagram defines the arrow vg.

Theorem 5.16 Let (B,v,[3) be a character sheaf for G (5.11). Then for
any object E of G-HIG, the arrow vg is an isomorphism and induces an
isomorphism rg: (Hg(Hyz(F)) — E fitting into the following commutative
diagram.

, , TH(E) o
HB(HB(E) 2 H(BJ*HB(E))
KE Vg
E be H(B, E)

Proof: Since (B,v,[3) is a character sheaf, the map 7 is an isomorphism,
and so induces an isomorphism of Og-modules:

pox(D): po, "B — po (BX B).

Since the diagram

axGc -t .q
D2 p
a—Pr | x
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is Cartesian, the natural map p*p,B — piu*B is an isomorphism. Composing
this map with po, (7), we find that v induces an isomorphism

p'p.B — po, (BRB).

Taking Home,,( , E) we find that the top arrow in the diagram below is an
isomorphism.

pHomo, (p2, (BX B), E) — pHomo, (p*psBB, E)
ady adj

Home, (B, p.Homo, (B, E)) —— Home, (B, p. E)

The vertical arrows are the adjunction isomorphisms and the bottom hori-
zontal arrow is p,(vg). It follows that vg is an isomorphism of Ox-modules,
and it is compatible with the two pairs of Og-module structures shown in
the diagrams 5.15.3. Applying the functor i' to the isomorphism vy in the
left diagram, we find an isomorphism of Ox-modules:

kit Hy(Hy(E)) — E.

But ug is also compatible with the Og-module structures in the right dia-
gram. This implies that kg is also a homomorphism of Og-modules. O

Remark 5.17 If B — B’ is a surjection of invertible Og-modules and F is
an object of G-HIG which is annihilated by the annihilator of B’, then the
natural map Hp (E) — Hg(E) is an isomorphism.

It is sometimes convenient to use the dual point of view to that taken in
Theorem 5.16. With the notation there, let {I,, : n € N} denote an inverse
system of ideals of Og defining closed subschemes G,, of G whose support
is the zero section GGy. Suppose further that each Og,, is a locally free Ox-
module of finite rank and that for all m, n, the comultiplication map fits into
commutative diagrams:

O¢ Oqg ® O¢g

Ocpivn — Oc,, ® Og,,.
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Let B, := B/I,,B and let A,, := H(B,,, Ox) Thus the map (5.9.1) induces an
isomorphism:

|
T, — Hy, =tHg,.

Let A be the direct limit of the directed system A., so that we find an
injection
Ti=lim T, — Hy. (5.17.1)

The comultiplication maps on B. induce multiplication maps A, ® A,, —
Ayim, and A inherits the structure of an algebra in the category G-HIG.
The identity element 14 is the dual of the identity section ¥ of B.

Let us say that an object E of G-HIG is I.-continuous if each local
section e of E is annihilated by [, for some n, and let us denote the full
subcategory of G-HIG consisting of such objects by G.-HIG. If E is I.-
continuous, then any Og-linear homomorphism h: B — E factors through
B,, for some n, so that (5.17.1) becomes an isomorphism. Then Theorem 5.16
can be reformulated as follows.

Theorem 5.18 Let B. and A. be as described above, and let G.-HIG denote
the full subcategory of G-HIG consisting of the I.-continuous objects.

1. For any object E of G.-HIG,
op: FE—-A®EF e—1Q®e

defines a locally split injection whose image is the annihilator of I with
respect to the Higgs field induced from the Higgs field on A.

2. The functor
T,:G-HIG — G.-HIG

is an involutive equivalence. Furthermore, the isomorphism 707} = id
fits into the following commutative diagram

! | ) 1 d )
TUTL(E) 2 AeTy(B) S Ao A0 B
KE VE
m & id
E W A®E.
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Here kg is compatible with the G-Higgs fields, and vg is a homomor-
phism with respect to the following fields:

A® 5T (E) - A®FE and A®T,(E) — A®j.E.

3. The functor T} is compatible with convolution products in the following
sense. For any two object Fy and Fy of G.-HIG, one has a canonical
commutative diagram

X
Tu(E) ® TH(E>) — Tiga(Er ® Es)

*

0

2

TH(E, ® Ey)

Proof: The first statement is clear. The diagram in the second statement
is equivalent to the diagram in Theorem 5.16, and hence it follows that the
maps indicated are isomorphisms. Let us note, however, that this can also
be proved directly by dévissage. When E is annihilated by Z this is clear.
Since the sources and targets of both arrows are exact functors, a dévissage
argument implies that the maps are isomorphisms if £ is nilpotent. But any
Z. continuous F is, locally on X, a direct limit of nilpotent objects, so the
general result follows. Similarly, (3) is a translation of Proposition 5.14, and
can also be proved by dévissage. O]

5.4 Examples and formulas

Let us return to the case in which the group scheme is the group underlying
a vector bundle VT', where T' is a locally free sheaf of Ox-modules of finite
rank, so Oy is the symmetric algebra S'T". The group law in this case is
given by the unique algebra homomorphism

pw ST —-ST®RST

such that t — 1 ®t+t® 1. Let V., := SpecI'(T) [3, Al] be the divided
power envelope of the ideal of the zero section and V.1 := SpecI'.(T) its
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completion with respect to the divided power filtration. These are also group
schemes, and the group law

W' T.(T) — T.(T) @ T.(T)

is the unique divided power homomorphism sending ¢t to 1 ® t +t ® 1.
Let Q be the dual of T" and recall from [3, A10] that there is a natural
isomorphism

Pn: S™(Q) — Hom(T,(T), Ox)

for all n, and hence an isomorphism
S (Q) — Hom/(T.(T), Ox),

where the / signifies the Matlis dual. The following proposition is essentially
contained in Theoreme V.1 of [33]; we give a slightly simpler proof here for
the reader’s convenience.

Proposition 5.19 With respect to the pairing p, S™ x I';, — Ox defined
above,

1. The algebra multiplication S*(Q2) ® S7(Q2) — S (Q) is dual to the
comultiplication of T'.(T') followed by projection:

Loy (T) = @ Tu(T)@TW(T) — T(T) @ T4(T).

a+b=i+j

2. The algebra multiplication I';(2) ® I';(2) — I';+;(2) is dual to the
comultiplication followed by projection:

SH(T)— P SUT) @ S"T) — S(T) @ S(T).

a+b=i+j

Proof:  Let ¢;: T — T';(T) be the universal polynomial law of degree i [3,
Ad4]. Then if k =i+ j, {; ® {; defines a polynomial law 7' — I';(T") @ I';(T),
and hence a linear map p; ;: Tx(T) — Ti(T) @ I';(T). Adding these up we
find a map

p:T(T) - T.(T)T.(T)
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This is the unique Ox-linear map whose restriction to I'y(7") sends each ¢4 (t)
to > ;i i(t) ® {;(t). On the other hand, the comultiplication p* of I'.(T')
is a divided power homomorphism sending t to 1 ® ¢t +t ® 1, so

pG®) =ty =tel+1enH =Y " gl
i+j=Fk
Thus, ¢/ = p*. Now recall that p; is just the standard duality map and that
wo=p pP1 18] y map
one deduces from p; a unique morphism of algebras

p: S(Q) — P(T,0x) = Hom(I'.(T), Ox),

where P(T, Ox) means the ring of polynomial laws T — Ox. Thus if x €
S{(Q) and y € S7(Q), pr(zy) is p;(z)p;(y), where this product is taken in the
algebra P(T,Ox). In other words, the following diagram commutes:

IW(T) pr(y) O«
M;,j
T/(T) ® T;(T) Piz) @ pily) Oy ® Oy

Since p/ = p* this proves (1).

Reversing the roles of 2 and T', we conclude from (1) that the multiplica-
tion map my of the algebra S™(T') is the dual of the comultiplication map pug,
of the group law of I'.(€2). Since the latter commutes with algebra structure
mg of the algebra I'.(£2), it follows that the dual m' of m§, also commutes
with mp. Thus m' is an algebra homomorphism S (7') — S (T)®S™(T'). The
same is true of the group law 1. We claim that these two homomorphisms
are equal, and it suffices to check that this is true for elements of degree one.
In other words, we have to check that the map ph: T — TROx ®Ox T is
dual to the map mg: Ox ® QS Q® Ox — (). But this is trivially true. [

It will perhaps be helpful to make everything explicit. We shall do this in
the case B = Og and A = ,B". Note that & — —¢&; induces an isomorphism

A=A

Corollary 5.20 Let T" and €) be as above. Suppose that also that T is free,
and that (&, ...&y,) is a basis for T and (wy, . . . wy,) the dual basis for Q. Let
I. denote the I-adic filtration of S"T' (resp, the PD-filtration of I'"'T.
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1. If G=VT:
Oq = ST; ¢¢/ =g
L0 = Ta=][r. ol =ul-
9571 (61 ® 62) = Z <7Z) 92(61) ® (92(62) for e1® ey € E1 ® E2
i+j=n

ng(h) = Z <7Z) (—1)J¢9é oho 92 for h S H(El, Eg)

i+j=n

2. IfG=V,T:
A I+J)
Ou = D.T: ¢llgh = %g[ml
J!
*O\/ — 5°Q: 1, J _ J-I
R N O TTT
Qg[n](el ®ey) = Z ng (e1) ® 95[.71(62) for ey ®ey € By ® By
i+j=n
Oca(h) = > (=1)0q0hobu  for heH(E, Ey)

i+j

It is also of some interest to give an explicit formula for the inverse to the
map h of Theorems 5.16 and 5.18. Let us do this when G = \A/',YT. Let k;
(the “Casimir operator”) be the element of S*Q ® I"'T corresponding to the
identity homomorphism. In terms of the bases above,

k= wedh =Y wl wiegh. gl
\I|=i \T|=i
If 0 is a G-field on F, k; defines an endomorphism
Rip = WOG - SQ9E—SQ®E
|T|=i

If 6 is locally nilpotent, so is 6, and in this case

e}

KEg = Z(—l)%i,E

1=0
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is a well-defined endomorphism of S"Q2® E. The following result is essentially
classical; we shall omit the amusing and elementary proof.

Proposition 5.21 Let (E, ) be a locally nilpotent I".T-module.

1. The Casimir operator kg: S Q ® F — S'Q ® E defined above is a
projection operator with image

T(E):= (S0 E)"".

and factors through the map o: S'Q) ® E — FE defined by the the
augmentation S'€) — Ox.

2. The map

n ::Zw‘]@(/ﬁ;oe?}]) D SOARE—SQT(E)
J

is the inverse of the map h of Theorem 5.18.

3. The map
kp: E—T(E)

induced by k is an isomorphism, inverse to the map
Np :=0pojp: Tx/s(E) — E.
These isomorphisms take the field 8 on E to 1,07. That is,
Oun o Fp = (—=1)Fg o O,

for all I.

5.5 Azumaya algebras over group schemes

Recall that if M is a locally free sheaf of finite rank on a scheme Z, then the
(matrix) algebra £ := Endp, (M) is a quasi-coherent sheaf of Oz-algebras
whose center is Oz. Furthermore, the functor £ — M ® E from the category
of sheaves of Oz-modules to the category of sheaves of left £-modules is an
equivalence, with quasi-inverse Homg(M, ). A sheaf of algebras over Oy
which locally for the fppf topology is isomorphic to Endp, (M) for some
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locally free M is called an Azumaya algebra. Note that an Azumaya algebra,
viewed as Oz-module, is locally free of rank d?, where d is a locally constant
function on Z. The function d is called the inder of the Azumaya algebra.
An Azumaya algebra £ is said to be split if it is isomorphic to Ende, (M)
for some such M; in this case M is said to be a splitting module. If A is
an Azumaya algebra of rank d? and M is a sheaf of left A-modules which
is locally free of rank d over Oy, then the natural map A — Endp, (M) is
necessarily an isomorphism, so A is split and M is a splitting module [].

Let us note for future reference that if M is an A-module which is locally
free and of finite rank as an Oz-module, then MY := Home,(M,Oz) is
a naturally a right A-module, and for any A module N there is a natural
isomorphism of Oz-modules:

Homu(M,N) C Home,(M,N) — M" @0, N — M" @4 N (5.21.1)

We have found it convenient to use the language of 2-categories to describe
the relations among Azumaya algebras.

Definition 5.22 Let A and B be Azumaya algebras over a scheme Z.

1. A 1-morphism M : A — B is a module M over A’ ® B which is locally
free over Oy of rank (indA)(indB), i.e., a splitting of the Azumaya
algebra AP @ B.

2. If M: A— Band N: B — C are I-morphisms, then NoM := N @z M

3. If M and N are 1-morphisms A — B, a 2-morphism: M — N is an
isomorphism of A°? ® B-modules M — N, with the obvious notion of
composition.

For any object A, id 4 is just the bimodule A.

If M is a 1-morphism A — B, then M := Home,(M,Oz) is a B? @ A-
module, i.e., a l-morphism B — A, and the natural maps MY o M =
Endg(M) = A = id4. Thus all 1-morphisms are equivalences (and all 2-
morphisms are isomorphisms).

If A is an Azumaya algebra over Z, let Mod(A) denote the category of
A-modules, which we may view as a stack over Z. A 1-morphism M : A — B
gives rise to an equivalence of categories:

Oyt Mod(A) ——~ Mod(B) : E+— M ®4 E,
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together with functorial isomorphisms
Cf(E®p, L) — C3/} (E) ®0, L (5.22.1)

for every Oz-module L. Conversely, every equivalence of stacks, together
with such a family of isomorphisms (satisfying suitable compatibilities), comes
from a 1-morphism.

Recall that the category of Dx/s-modules has a tensor structure: the
tensor product of Dy, g-module M and N is M ®¢, N, where the action of
the vector fields on M ®p, N is given by the Leibniz rule: Vp(m ® n) :=
V(m)@n+m®V(n). We will see that in characteristic p, the tensor structure
on MIC(X/S) comes from a more rigid structure on the Azumaya algebra
Dx/s which we will explain below. First we will give an abstract definition
on an Azumaya algebra over a group scheme, and then in Example 5.26 we
will construct a canonical tensor structure on Dx/g.

Definition 5.23 Let G be a flat affine group scheme over a scheme X and
let A be an Azumaya algebra over O¢. In the notation of (5.2), a tensor
structure on A consists of the following data:

1. A I-morphism of Azumaya algebras on G x G:

5 A — prA® piA.

2. An associativity 2-morphism « as follows. Note that p o (p,p3) =
o (p1, p) is the multiplication morphism pus: G X G x G — G. Then
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« is a 2-morphism between the 1-morphisms f and g shown below:

* f * * *
A —— piA® pyA @ pyA
§ ®id
(12, p3)*(9)
WA® p;
I «a
A — prA© psA @ piA
id ® 6
(plul'L)*((s)
AR A

The above data should satisfy the pentagon condition [9, 1.0.1].

If G is commutative, then a symmetric tensor structure on A is a ten-
sor structure as above together with an additional datum ~. Note that
o (pi AR psA) = (psA @ piA), so that the standard commutativity iso-
morphism for ® can be viewed as an isomorphism vg: o*(pi A @ phA) =
Py A ® psA. Since G is commutative, o o = p, and hence the commutative
square below exists. Then ~ is a 2-morphism

“(5
o A T OL ot A @ )

- e 2 (A A )

such that 7?2 = id. The associativity morphism « and the commutativity

morphism ~y should also satisfy the hexagon axiom [9, 1.0.2].
Azumaya algebras with (resp. symmetric) tensor structure also form a
2-category: a l-morphisms A — B is by definition a pair (M, \), where M
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is a l-morphism of the underlying Azumaya algebras as before and A is a
2-morphism

A PIA® psA A

piM)®@ps(M) Ay (M)
piB ® p3B B 5 p1B® p5B

compatible with the associativity (resp. and the commutativity) 2-morphisms.

Let (A,d,a) be an Azumaya algebra with a tensor structure. Then the
category Mod(.A) of modules over A is endowed with tensor structure: given
A-modules M; and M, we define the tensor product

Recall from [9] that a unit object of a category M with a tensor structure is
a pair (U, h), where U is an object of M and h is an isomorphism

h-U~U®U,

such that the functor ® U : M — M sending an object M to M ® U is
an equivalence of categories. It is shown in (loc.cit.) that the unit object
is unique up to a unique isomorphism and that for any object M there is a
functorial isomorphism M &® U ~ M.

Lemma 5.24 Let A be an Azumaya algebra over G equipped with a tensor
structure (0,«) (5.23). Then the restriction i*A of A to the zero section
has a canonical splitting Ny. Moreover, there is an isomorphism h : i, Ny =~
i+ No ® i, No, and the pair U := (i,No, h) is the unit object of Mod(.A).

Proof:  Since proi = p;01 = 1, the restriction dp : i* A — i* A®p, i* A of § to
the zero section of G is an i*(A”? ® A® A)-module P. Then the i*.A-module
Ny 1= Hom(aore 1) (i* A, P) gives a splitting of i*A.

Next we construct the isomorphism h . By definition,

UeU = p(6 " (piU @ psU))
= i*5()_1(N0 ® No) = Hom(ag.a) (P, No @ No)
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Evaluation of homomorphisms defines an isomorphism of i*(A” @ A ® A)-
modules i* A ® Ny — P. Thus

1%

U U i*’Homi*(AQ@A)(i*A ® No, No ® Ny)

iwHom; 4(i" A, No) = U

1%

Finally, we have to prove that the functor ® U : Mod(A) — Mod(A) is
an equivalence of categories. Let I';: G — G x G be the graph of the zero
section. Since p o'y = id, I'}(6) is a l-morphism: 6, : A — A® j*A. If
M € Mod(A),

M®U :=6"(M®p*Ny).

Since p*Nj is a splitting of j*A, the functor ®p* Ny : Mod(A) — Mod(A ®
j*A) is an equivalence. Since 6;' : Mod(A ® j*A) — Mod(A) is also an
equivalence, the lemma is proved. O

Observe that a tensor structure on A induces a canonical 1-morphism
*A = AP obtained by pulling back § by the graph of ¢, since by Lemma 5.24,
i* A is canonically split. It follows that the category Mod(.A) has inner Homs.
Let

§: A — pt AP @ piA
be the pullback of § by (¢,id) composed with the 1-morphism (*A ® A4 —
AP @ A. If E; and E, are objects of Mod(A), Hex(FEy, Es) is naturally a
pi A% ® psA-module, and

H(E, Ba) = i, (8 Hea(By, Ba))

If G is commutative and the tensor structure is endowed with a commu-
tativity morphism, then Mod(A) becomes a tensor category in the sense of
[9]. From now on, we assume this to be the case.

Definition 5.25 A tensor splitting of an Azumaya algebra A equipped with
a tensor structure over G is a I-morphism (in the category of Azumaya
algebras with symmetric tensor structure): Og — A.

Note that, in general, a 1-morphism M : A — B gives rise to equivalence
of tensor categories:

Cyf: Mod(A) ~ Mod(B), Oy} (M, ® M) = Cy (M) ® Cy (Msy).
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In particular, a tensor splitting M gives an equivalence between the tensor
categories: Cy;': Mod(Og) ~ Mod(A). Observe that Og is a commutative
coalgebra with counit in the category Mod(Og). Thus, by “transport of
structure” the splitting module M = C;'(Og) becomes a commutative coal-
gebra with counit in Mod(A). In other words, we have canonical morphisms:

M—-M®M, e: M—U.

In the case of the split Azumaya algebra A = Og with the obvious tensor
structure, the notion of a tensor splitting boils down to the notion of a
character sheaf introduced in Definition 5.11.

Example 5.26 Let us explain how the above formalism works in the case
of the Azumaya algebra of differential operators. First recall the following
lemma.

Lemma 5.27 Let M and N be objects of MIC(X/S), and let ¢y, and
n be their p-curvatures. Then the p-curvature of the tensor product and
internal Hom:

Yyven: M oy N — M Qo N®F)"(/SQ§(,/S
W: Homo, (M, N) — Homo (M, N) @ Fy,sQx/5
are given respectively by the formulas
Yuen(m®@n) =1yu(m) ®@n+meYy(n)
VYy(h) =1y oh —hoty.

]
By definition, giving a tensor structure on Dx,g¢ amounts to giving a
1-morphism of the Azumaya algebras on T%, 15 Xx T /g

0 : ;' Dxss — p1Dxs @ p3Dxys

together with the associativity and commutativity 2-morphisms a and v .
We will construct d as follows. View Dx/g as a left module over itself, and
endow A := Dx/s ®o, Dx/s with the left Dx,/g-module structure defined by
the Leibnitz rule above. Note that the right action of Dx/s on itself makes
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A a right module over the algebra Dx,g ® Fy 4Oy Dx/s or, equivalently, a

/s

left module over Dx/g RF; 0, Dx/s)°. Lemma 5.27 shows

1s0x (Dx/s Or
that the action factors through Dy/gs ®F}</SS‘Txf/s (Dx/s QF;
where the F)'(/SS'TX//S—module structure on Dx/g QF;

comultiplication:

150x Dxys)™,

15Ox Dx/s is given by

,lj,>'< : FX/SS.TX’/S — FX/S(S.TX’/S ®OX’ S.TX’/S)-

Thus, A gives rise to a module over the Azumaya algebra ;1*Dx/s®(piDx/s®
P5Dx/s)°. It is easy to see using local coordinates that as a module over the
center OT;(’/SX T g it is locally free of rank p3@™sX which is equal to the
index of the Azumaya algebra. Therefore we get a 1-morphism 6.

Next, let us construct the commutativity 2-morphism ~. Consider the
automorphism X of the algebra Dy g ®Fx/55'Tx//s (Dx/s ®F}</sox/ Dx/s)
which sends Dy ® Dy ® D3 to D1 ® D3 ® Dy. Then, giving v amounts to
giving an isomorphism

Dx/s ®oyx Dx/s — (Dx/s ®oy Dx/s)”

of modules over Dx/g ®F 5 Ty s (Dx/s ®F; O Dx/5)° The obvious per-
mutation does the trick.
To construct the associativity morphism «, we note that the two 1-

morphisms:

/S

t3Dx/s — p1Dx/s ® p3Dx/s ® p3Dx/s

in Definition(5.23) are given by the same module Dx/s ®o, Dx/s ®oy Dx/s-
With this identification, we let « be the identity morphism.

It remains to show that a and  satisfy the pentagon and hexagon axioms.
To save space, we may use the following trick. First, one can easily check
the axioms for the restriction of Dx/g to the zero section X' — T}//S.
Furthermore, since the statement is local on X and stable under a base
change T' — S, we may assume that S is reduced. Then any 2-morphism
over T%, /8 XX Ty g% xx T g 18 uniquely determined by its restriction
to zero section. This completes the proof.

Remark 5.28 If the base S is normal and reduced, one can prove that the
tensor structure on Dyx,s equipped with an isomorphism ¢ : Ny ~ Fx/5.Ox
between the canonical splitting module over the zero section X' — T%, /s
described in Lemma 5.24 and the splitting Fx/s.Ox of Remark 2.2 is a
unique (up to a unique isomorphism).
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Next we shall discuss tensor Azumaya algebras over a formal and PD
completion of a group scheme G along its zero section.

Let G (resp. G) denote the formal (resp. PD) completion of G along
its zero section, viewed as a locally ringed space. Let G" (resp. G") be
the formal (resp. PD) completion of G™ along its zero section. Then the
definition a tensor structure for Azumaya algebras over G (resp. G) is the
same as before, with these completed fiber products in place of G™.

Denote by i;, : Gj, — G (resp. i : Gy — G) the subscheme defined by
the k4 1 power (resp. divided power) of the ideal of the zero section; if M is
an Og-module (resp. Og-module), My, := iy, i; M. The multiplication map
gives rise to morphisms of schemes: p: Gy X G; — Gy (resp. p: Gp X G —
Gr+1). The category of A-modules with the convolution product defined the
formula (5.3) is not a tensor category, since the associativity constraint fails
in general. However, the subcategory Mod (A) of I.-continuous modules is
stable under the convolution product and is a tensor category. (Recall that
a module is said to be I.-continuous if each local section is locally supported
on Gy (resp. Gi), for some k.)

Let M : Og — A be a tensor splitting. The splitting module M inherits
a structure of a topological commutative coalgebra with counit, that is, a
family of maps M,, — My ® M, for any n > [+ k, and e : M — U satisfying
the obvious compatibilities.

Proposition 5.29 Let A be a tensor Azumaya algebra over G (resp G).
Then the following data are equivalent.

1. A tensor splitting of A.

2. A splitting module M for A with the structure of a topological colage-
bra with counit.

3. A splitting module M for A whose topological dual li_r)nH(Mn, U) is en-

dowed with the structure of an algebra with unit in the tensor category
Mod (A).

Proof: We will prove the result for G; the formal case is similar. The
equivalence of (2) and (3) is clear, and we have already shown how the data
of (1) give the data of (2). It remains to explain how the data of (2) give
(1). Let M be a splitting with a coalgebra structure: My, — M ® M,.
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By definition, My, ® M; = .01 (pi My, ® p3M;). Thus, using the adjointness
property of u, and u*, we get a morphism: p*M;,; — 6~ (pi My, @ psM;).
Let us consider the restriction of the above morphism to G, x G;:

iy 00) " 1" M = (i, i) " My — 0~ (0 Myp@p3My) = (ig, ia) "0~ (P M @p3 M)
(5.29.1)
These morphisms are compatible with change of £ and [, and we claim
that they are all isomorphisms. Indeed, both (ig,4;)*u* M and
(ig,41)*0 " (p; M @ ps M) are splittings of the Azumaya algebra 1* A over Gy x
G, and, in particular, they are locally free over G, x G;. Also, the existence
of counit: M — My ~ U implies that, for £ = [ = 0, the morphism (5.29.1)
is an isomorphism. Hence (5.29.1) is an isomorphism, for any & and [. Thus,
we get an isomorphism: p*M ~ 6~ (pi M ® p3M). O

Let A be an Azumaya algebra on G with a symmetric tensor structure.
Let TSP be the stack on X assigning to a scheme U etale over X the
groupoid of tensor splittings of the Azumaya algebra Ay over G x U (i.e.
1-morphisms from Ay to the trivial Azumaya algebra Ogyy ). Let SP; be
be the stack sending U to the groupoid whose objects are pairs (IV, e), where
N is a splitting of the restriction ij. Ay and e is an isomorphism e : i* N ~ Nj.

Proposition 5.30 Let G be a smooth commutative group scheme and A be
an Azumaya algebra on G with a symmetric tensor structure, which admits
a tensor splitting etale locally on X. Then the obvious restriction functor:

i1 : TSP — SPy

is an equivalence of stacks.
Remark 5.31 The stack SP; is, in fact, a gerbe. That is, there exists an
etale covering of U; of X such that, for each i, SPy, is non-empty, and, for

any etale morphism U — X, any two objects of SPy; are locally isomorphic.
Thus, the proposition implies that the stack 7SP is also a gerbe.

Proof: Recall that, for a smooth commutative group scheme G, the expo-
nential map induces an isomorphism:

exp: 7T ~@G

166



where 7 is the completed PD envelope of the zero section X < T of the Lie
algebra T'. Thus, without loss of generality we can replace G by the vector
group 1'.

To prove that ¢}, is an equivalence we will construct the inverse functor
exp : SP1 — TS8P explicitly. The reason we call it the exponential will
be clear in a moment. Given a A-module M we denote by I'*M the A-
submodule of the tensor power M ®" which consists of Sg-invariant sections.

Let (N, e) be an object of SP; over U. Define

M, =i.N, M, =T*M,.

We claim that My, is a splitting of Ay over G;. Indeed, since the statement is
local on U we may assume that A has a tensor splitting. A tensor splitting,
in turn, gives an equivalence between the tensor category of I.-continuous
Ay-modules and I-continuous Ogyp- modules. This equivalence takes M,
to a line bundle over G; xx U. Shrinking the base, if necessary, we may
assume that the line bundle is trivial. Then the claim follows from the fact
that, for smooth G, the Si-invariant multiplication morphism

gf:glxglx“'glﬁgk

induces an isomorphism I'"*Og, ~ Og, .
The morphism e : My — U gives the map:

My, — My,

and, moreover, 1, My ~ Mj,_.
We define exp(N) to be

exp(N) = lim M,

First of all, it is clear that M := exp(N) is a splitting of Ay. Furthermore, it
is a coalgebra with counit. The coalgebra structure comes from the canonical
morphism:

My =TFHM — TEM, @ TUM, = My, ® M.

By Proposition 5.29 it gives a tensor splitting.
It is clear that if(exp(/N)) = N, so it remains to construct a canonical
isomorphism
M ~ exp(i](M)), (5.31.1)
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for any tensor splitting M over U. But this is immediate: the splitting M
gives an equivalence of tensor categories: Cy @ Mod(Ay) ~ Mod(Ogx v)),
which takes M to Ogx,uv. We define (5.31.1) to be the morphism corre-
sponding under the above equivalence to the canonical isomorphism

Og ~ lim PkOgl .
]

Denote by G* the sheaf on X whose section over a scheme U etale over
X is the group of homomorphisms: Homy (G x U; G,,).

Let A be an Azumaya algebra on G with a symmetric tensor structure,
which admits a tensor splitting etale locally on X. We assign to A a class
[A] in H2(X,G*) as follows. Choose an etale covering of U; of X together
with tensor splittings N; on each U; and tensor isomorphisms ¢;; : N; ~ Nj.
Then ¢r;¢;1¢:; is a Cech cocycle with coefficients in G*. Similarly, given
an Azumaya algebra over G; together with a splitting over the zero section
we can construct an element of H%(X,07g, ) = HZ(X, T k), where Of g,
denotes the group of invertible functions on G; equal to 1 on X — Gj.

Recall that for any smooth commutative group scheme G over X we have
the isomorphism:

exp: Ofg, =To/x = G

The inverse map is the restriction ¢]. Passing to cohomologies we get a
morphism:

exp : Hth(X7 T(*;/X) = Hth(Xv Gg*) — Hth(X, Og)

Proposition 5.32 Let A be an Azumaya algebra on G with a symmetric
tensor structure, which admits a tensor splitting etale locally on X . Then

expliy Al = [A].

Since the restriction i} : H(X,G*) — HZ(X,T},y) is an isomorphism, the
proposition follows from the obvious fact: [i].A] = i}[A].
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