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Let X�k be a smooth proper scheme over a perfect field of characteristic
p and let n be a natural number. A fundamental theorem of Barry Mazur
relates the Hodge numbers of X�k to the action of Frobenius on the crys-
talline cohomology H n

cris (X�W) of X over the Witt ring W of k, which can
be viewed as a linear map 8: F*W H n

cris (X�W) � H n
cris (X�W). If H n

cris (X�W)
is torsion free, then since W is a discrete valuation ring, the source and
target of 8 admit (unrelated) bases with respect to which the matrix of 8
is diagonal. For i, j # Z with i+ j=n, the (i, j ) th Hodge number hi, j (8) of
8 is defined to be the number of diagonal terms in this matrix whose p-adic
ordinal is i. Mazur's theorem [1, 8.26] asserts that if the crystalline
cohomology is torsion free and the Hodge spectral sequence of X�k
degenerates at E1 , then these ``Frobenius'' Hodge numbers coincide with
the ``geometric'' Hodge numbers:

hi, j (8)=hi, j (X�k) :=dim H j (X, 0 i
X�k). (0.0.1)

In fact, Mazur's result is more precise. When the crystalline cohomology
is torsion free, the De Rham cohomology HDR (X�k) of X�k can be iden-
tified with the reduction modulo p of the crystalline cohomology
Hcris (X�W), and using this identification, Mazur defines ``abstract'' Hodge
and conjugate filtrations M8 and N8 on the De Rham cohomology
HDR (X�k) in terms of the Frobenius action on Hcris (X�W). He then proves
that (under the above hypotheses), these abstract filtrations M8 and N8

coincide with the ``geometric'' Hodge and conjugate filtrations FHdg and
Fcon on HDR (X�k). An important consequence of his result is Katz's conjec-
ture, which asserts that the Newton polygon [5] of 8 lies on or above the
Hodge polygon (formed from the geometric Hodge numbers of X�k).

The main technical goal of this paper is to investigate what one can say
about the Frobenius Hodge numbers of X when its Hodge spectral
sequence does not degenerate. If X�k lifts to W and has dimension n<p,
then degeneracy is automatic [3]. When the weight n is large compared to p,
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however, ``pathologies'' such as nondegeneration of the Hodge spectral
sequence seem typical, and in view of increasing interest in motives of high
weight, it seems important to develop techniques to deal with these
phenomena. It has long been known [1, 8.36] that the Hodge polygon of
8 always lies over the polygon formed by the geometric Hodge numbers
hi, j (X�k). This result is not very useful, however, because when the Hodge
spectral sequence is not degenerate, �i+ j=n h i, j (X�k) is larger than the n th
Betti number, and the aforementioned inequality of polygons contains very
little information. It seems natural to ask if one can replace the numbers
hi, j (X�k) by the ``reduced'' Hodge and�or conjugate numbers:

h ij
� (X�k) :=dim Gr i

FHdg
H i+j

DR (X�k)

h� ij
� (X�k) :=dim Gr i

Fcon
H i+j

DR (X�k).

When the Hodge spectral sequence degenerates, it follows from the Cartier
isomorphism that h i, j

� =h� j, i
� , but since this fails in general, it is not a priori

clear which set of numbers to use.
It turns out that, with suitable hypotheses, we can prove that in fact

the Hodge polygon of 8 lies over the reduced Hodge polygon and under
the reduced conjugate polygon. When the Hodge spectral sequence
degenerates, the Hodge and conjugate polygons coincide, and it follows
that all three polygons are in fact equal. Thus our result generalizes the
original result of Mazur. As we shall see in a subsequent article [6], even
when this is no longer the case, it is sometimes possible to use additional
information provided by a closer examination of the spectral sequences
and�or duality to determine the Hodge numbers of 8 exactly.

Our technical results about Hodge polygons depend on a new
framework in which to place the proof and statement of Mazur's
fundamental theorem. The key is to study the Hodge and conjugate filtra-
tions on crystalline cohomology instead of De Rham cohomology. These
filtrations, which we denote again by FHdg and Fcon , are (very nearly)
p-good (1.1), and a simple abstract construction attaches to any W-module
H with a p-good filtration F:

v a W-module with an abstract p-good conjugate filtration (H� , F� )

v an abstract F-span 8

v abstract Hodge and conjugate spectral sequences EHdg and Econ .

These spectral sequences degenerate if and only if (H, F ) satisfies the p-adic
Griffiths transversality condition of [7, 2.1.2], and this is always true of the
Hodge and conjugate filtrations M8 and N8 associated to 8. Furthermore,
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F iH�M i
8H and F� iH� �N i

8H for all i, and it follows that, with suitable
indexing,

:
k

i=0

h i
� (Hdg)� :

k

i=0

h i (8)� :
n

i=n&k

h i
� (con),

for all k. The result on Hodge polygons is an immediate consequence of
these inequalities. As it turns out, equality for all k is even equivalent to
degeneration of the Hodge and conjugate spectral sequences (cf. Corollary
2.5).

In order to apply these simple constructions to crystalline cohomology,
we first generalize them to the context of complexes. It is then possible to
state a rather attractive derived category version of Mazur's theorem
(Theorem 4.2.) Passing to cohomology, we easily deduce the corresponding
estimates for crystalline cohomology. There still remains the difficulty of
comparing the p-adic versions of the Hodge and conjugate filtrations with their
better-known mod p incarnations. It is here that some hypotheses seem to be
needed, and we attempt to find some reasonably useful ones which suffice for
the applications we have in mind and which guarantee that the crystalline filtra-
tions induce the standard filtrations on De Rham cohomology. If there is no
torsion, these hypotheses are satisfied, for example, in the highest weight at
which nondegeneration occurs (cf. Theorem 4.5). With yet additional
hypotheses, it is even true that the geometric Hodge and conjugate spectral
sequences coincide with the abstract Hodge and conjugate spectral sequences
EHdg and Econ , in a suitable range.

All these results apply to cohomology with coefficients in an F-crystal,
and in a subsequent article [6] we shall analyze (as our main motivating
example) the F-crystals introduced by Scholl in his study of p-adic proper-
ties of modular forms of higher weight. It was in fact Scholl who suggested
that I apply the machinery of [7] to his crystals, and the difficulties I
encountered in attempting to carry out this calculation led eventually
to the ideas developed here. I am grateful for his suggestion, and to Ofer
Gabber for a marvelous conversation in Bures. Thanks also go to Matthew
Emerton, who read a preliminary version of the manuscript and found
many errors, and to the referee, who found many more.

1. FILTRATIONS AND SPANS

Let A be an abelian category, for example, the category of sheaves of
modules in some ringed topos. If A is an object in A and m is a natural
number, mA will denote the endomorphism of A induced by multiplication
by m, and A is said to be m-torsion free if mA is injective. To focus ideas
and simplify the terminology, we shall fix once and for all a prime number
p, and we shall suppose that mA is an isomorphism for every object A of
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A and every m relatively prime to p. Then if A and A$ are objects
of A, Hom(A$, A) is a module over the localization of Z at p, and
Q�Hom(A$, A) can be identified with the localization of Hom(A$, A) by p.

Let K be a p-torsion free object of A and let jA : A � K be a subobject
of K. For i # N, pijA : A � K is again a subobject of K; frequently we shall
just write A instead of jA and piA instead of pijA . It will be convenient to
extend this notation to negative values of i as well. Thus, if k�0, p&kjA is
an element of Q�Hom(A, K), which we usually just denote by p&kA and
shall call a virtual subobject of K. Of course, one can always find an injec-
tion u: K � K$ such that u b jA is divisible by pk, so that K, A, and p&kA can
be thought of as subobjects of K$. If A is a virtual subobject of K and i and
j are integers, then pi ( p jA)= p i+ jA. If K is p-torsion free, then by a virtual
filtration of K we mean a family F of virtual subobjects of K such that
F iK�F jK for i� j. The virtual filtrations we shall consider here will
usually have the property that there is an injection K � K$ such that
F jK�K$ for all j. Throught this paper, we will simply say ``filtration'' to
mean a virtual filtration.

If (K, F ) and (K$, F $) are (virtually) filtered torsion free objects of A, an
element 8 of Q�Hom(K$, K) is said to preserve the filtrations if for every
i, 8 induces a morphism F $iK$ � F iK. We shall say that 8 is a filtered
quasi-isomorphism if it preserves the filtrations and in addition each map
F $iK$ � F iK is an isomorphism. If (K, F ) is a (virtually) filtered object and
d is an integer, F(d ) denotes the virtual filtration of K defined by
F(d ) i K :=F i+dK.

If I is an ideal in a ring A and M is an A-module, the notion of an I-good
filtration of M is classical and widely useful. We shall consider especially
the following situation:

Definition 1.1. Let F be a (virtual) filtration on a p-torsion free object
K of A and let a and b be integers with a�b.

1. F is saturated if pF iK�F i+1K for all i # Z

2. If F is saturated, F� iK :=piF&iK for all i # Z.

3. F is good with level in [a, b] if it is saturated and in addition
F aK=F iK for i�a and pF iK=F i+1K for i�b.

For example, if K is a p-torsion free object of K, then the canonical
p-adic filtration Fp defined by

F i
p K :={piK

K
if i�0
if i�0

(1.1.2)

is good with level in [0, 0], and in fact it is the unique such filtration.
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If (K, F ) is saturated,

F� i+1K= pi+1F&i&1K= pi ( pF &i&1) K�piF&iK=F� iK,

so that F� is again a (virtual) filtration of K, called the (abstract) conjugate
of F. Moreover,

pF� iK= pi+1F&iK�pi+1F&i&1K=F� i+1K,

so (K, F� ) is again saturated.

Lemma 1.2. If F is a saturated filtration of a p-torsion free object K of
A, the following are equivalent:

1. For all i, F iK & pF i&2K= pF i&1K.

2. For all i and j with j<i, F iK & pF jK= pF i&1K.

3. For all i, j, and k with j�i&k and k�0, F iK & pkF jK= pkF i&kK.

4. For all i, multiplication by p induces an injection

F i&1K�F iK � F iK�F i+1K.

If they are satisfied, F is said to be G-transversal to p.

Proof. For ease of exposition, we just give the proof for a category of
modules, so that we can work with elements. The right side of each of the
purported equalities in (1)�(3) is contained in the left because the filtration
is saturated. Suppose that (1) holds and that x # F iK & pF jK. If j=i&1
then (2) is trivial, and if j=i&2 it is exactly the statement (1). If j<i&2,
then x :=py # F j+2K & pF jK, so by (1) with i= j+2, in fact y # F j+1K. It
follows that (2) holds in general by induction on i& j. Moreover (2)
implies (3) by induction on k. Indeed, (3) is trivial if k=0 and is exactly
(2) when k=1. If x= pky # F iK with y # F jK and k>1, let x$ :=pk&1y.
Then px$ # F iK & pF jK= pF i&1K, so that in fact x$ # F i&1K & pk&1F jK, and
by induction on k we can conclude that y # F i&kK. The equivalence of (1)
and (4) is obvious. K

Remark 1.3. For a discussion of G-transversal filtrations, and in par-
ticular the relationship with Griffiths transversality, see [7]. We should
point out that the definition of G-transversality given there is slightly dif-
ferent��the current one is better adapted to filtrations which are not
necessarily exhaustive. (For exhaustive filtrations, the two definitions are
equivalent, as the previous lemma shows.) If A has infinite direct sums,
then one can form a graded object GrFK which is in a natural way an
Fp [X] module, and (4) implies that F is G-transversal to p if and only if
GrF K is torsion free as a module over this ring.
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Let AFsat denote the category of torsion-free objects of A endowed with
a saturated filtration, with morphisms the morphisms preserving the filtra-
tions. We denote by AF b

a the full subcategory corresponding to the objects
with a good filtration with level in [a, b], and by AFg the category of
objects with a good (virtual) filtration of any level.

Proposition 1.4. Let F be a (virtual ) filtration of a p-torsion free object
K of A.

1. If F is saturated, F� is saturated, and F�� =F.

2. If (K, F ) is good with level in [a, b], then (K, F� ) is good with level
in [&b, &a].

3. If d # Z, then multiplication by pd induces an isomorphism

(K, F� (&d )) � ( pdK, F(d )).

4. If 0 � (K $, F $) � (K, F ) � (K", F") � 0 is a strict short exact
sequence in AFsat then the induced exact sequence

0 � (K $, F� $) � (K, F� ) � (K", F� ") � 0

is again strict and exact.

5. If (K, F ) is G-transversal to p, then so is (K, F� ).

6. Let h: (K $, F $) � (K, F ) be a morphism of filtered p-torsion free
objects of A, and suppose that F $ is the filtration of K $ induced by F:
F $iK $ :=h&1 (F iK) for all i. Then if F is saturated (resp. G-transveral to p),
the same is true for F $, and F� $ is the filtration of K $ induced by F� .

Proof. We have already seen that if F is a saturated virtual filtration of
K, then the same is true of F� . Moreover, the definition says that

F�� iK� = piF� &iK= pi ( p&iF iK)=F iK,

proving (1).
Suppose that (K, F ) has level in [a, b]. Then for i�&a,

pF� iK= p( piF &iK)= p( p iF &i&1K)= p i+1F &i&1K=F� i+1K,

and for i�&b,

F� i&1K= pi&1F &i+1K= pi&1pF &iK= p iF &iK=F� &iK.

Thus (K, F� ) has level in [&b, &a], proving (2).
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To prove (3), let G :=F(d ). Multiplication by pd induces an isomorphism
K � pdK, and the image of F� iK is

pd (F� iK)= pd ( piF&iK)= pd+iF d&i&dK= pd+iG&i&dK=G� i+dK=G� (d ) i K.

That is, pd
K induces a filtered isomorphism (K, F� ) � ( pdK, G� (d)), and (3)

follows by shifting.
If

0 � (K $, F $) � (K, F ) � (K", F") � 0

is strict and exact, then for all j the sequence

0 � F $ jK $ � F jK � F"jK" � 0

is exact. It follow that for any i, the sequence

0 � piF $ jK $ � piF jK � piF"jK" � 0

is again exact, so (4) holds.
Although (5) will be a consequence of Proposition (1.9) below, let us

give a direct proof here. Suppose that (K, F ) is G-transversal to p, and note
that if we write j :=2&i, then

F� iK & pF� i&2K=piF &iK & ppi&2F 2&iK

=piF &iK & p i&1F 2&iK

=pi&1 ( pF &iK & F 2&iK)

=p1& j ( pF j&2K & F jK)

=p1& jpF j&1K

=pF� 1& jK

=pF� i&1K.

The verification of the last statement is immediate. K

Remark 1.5. Fontaine, Ekedahl, and Kato have worked with F-gauges
(I suggest the terminology Fontaine-gauges) instead of filtered objects, and
it would certainly have been possible, and perhaps even preferable, to do
so here, with only a change in packaging. Recall that an F-gauge in A is
a sequence of objects Ai and maps F: Ai � Ai&1 and V: Ai � A i+1 such
that FV and VF are multiplication by p. If the objects Ai are p-torsion free,
then they define a p-saturated filtration on � Ai, and indeed, the category
of p-torsion free F-gauges is equivalent to the category of p-torsion free
saturated and exhaustively filtered objects. The operation of taking the
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conjugate of a p-saturated filtration translates, in the category of F-gauges,
to the operation of replacing A by Ai :=A&i, with F and V reversed. We
have chosen to use the language of filtered objects primarily because of the
analogy with Hodge theory.

The operation of taking the conjugate of a good filtration is also related
to Mazur's notion of a gauge, although the latter bears little resemblance
to a Fontaine-gauge. Recall from [7] that a 1-gauge is a function =: Z � Z
such that 0�=(i)&=(i+1)�1 for all i, and that if (K, F ) is a filtered object
in an abelian category with direct limits and = is a gauge,

F =K :=:
i

p=(i)F iK.

If F is good with level in [a, b], then in fact

F =K= :
b

i=a

p=(i)F iK.

The following lemma shows the relationship between forming the conjugate
of a filtration and the conjugate of a gauge, and will enable us to adapt the
results of [7] to our present language.

Lemma 1.6. Let F be a good filtration on a p-torsion free object K of A

and let =: Z � Z be a 1-gauge. Then =� : Z � Z defined by =� (i) :==(&i)&i is
again a 1-gauge, and F =� K=F� =K.

Proof. By definition,

F =� K=:
i

p=� (i)F iK

=:
i

p=(&i)&iF iK

=:
i

p=(i)+iF &iK

=:
i

p=(i)F� iK

=F� =K. K

Mazur [5] defines a span in A to be a morphism 8: H $ � H of torsion-
free objects of A. In fact it will be convenient to generalize slightly, and to
call any element 8 of Q�Hom(H $, H) a span; if 8 # Hom(H $, H), we say
that 8 is effective. A span is nondegenerate if it is an isogeny, i.e., if there
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exists a 8&1 # Q�Hom(H, H $) such that 8&1 b 8=idH $ and 8 b 8&1=
idH . If 8: H$ � H is a span and r is an integer, its rth Tate twist 8(r) is the
span p&r8: H $ � H. A nondegenerate span 8 has level in [a, b] if 8(a) and
8&1 (&b)=(8(b))&1 are effective. Associated to a nondegenerate span are
an abstract Hodge filtration M8 on H $ and an abstract conjugate filtration
N8 on H. Conversely, we can associate to any good filtration F on an
object K an abstract span 8F and a spectral sequence EHdg (K, F ):

Definition 1.7. 1. Let 8: H $ � H be an effective span in A. Then M8

is the pull-back by 8 of the standard p-adic filtration Fp on H, and N8 is
the image of the conjugate M� 8 of M, via 8. That is,

M i
8 H $ :={8&1 ( piH)

H$
if i�0
if i�0

N i
8H :={ p i8(M &iH $)

pi8(H $)
if i�0
if i�0.

2. Let F be a good filtration on K, with level in [a, b]. Then H $F :=
F aK, HF :=F� &bK, and 8F is the span 8F : H $ � H such that

H $
8F H

= =

FaK ww�
8F F� &bK

K

commutes, in Q�Hom(H $, K).

3. Let (K, F ) be a p-torsion free object of A endowed with a
saturated filtration. Then Q(K, F) is the filtered complex in degrees &1 and 0

Q(K, F ) :=(K, F(&1)) w�
d

(K, F ),

where d is the map induced by multiplication by p. The associated spectral
sequence EHdg (K, F ) is the abstract Hodge spectral sequence of (K, F ), and
Econ (K, F ) :=EHdg (K, F� ) is the abstract conjugate spectral sequence of
(K, F ).

If 8: H $ � H is an effective span and r�0, then 8$ :=8(&r) is again
effective, and M8$=M8 (&r) and N8$=N8 (r). Then if 8 is any span, we
can choose r�0 so that 8$ :=8(&r) is effective and define M8 :=M8$ (r)
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and N8 :=N8$ (&r). The resulting filtrations M8 and N8 are independent
of the choice of r and are respectively called the Frobenius Hodge filtration
and the Frobenius conjugate filtration associated to 8.

For any span 8, the filtrations M8 and N8 are saturated and G-trans-
versal to p, e.g., by (1.4). Furthermore, M8 is always exhaustive and
pN i

8=N i+1
8 for i>>0. If 8 is nondegenerate of level in [a, b], then M8 is

good with level in [a, b] and N8 is good with level in [&b, &a]. If (K, F )
has level in [a, b], then HF :=F� &bK :=p&bF bK, and since b&a�0 and F
is saturated,

pb&aH $F= pb&aF aK�F bK= pbF� &bK= pbHF .

Thus p&aH $F �HF , and so p&a8F is effective; in particular 8F is effective
if a�0. Moreover, F� has level in [&b, &a], so H $F� :=F� &bK=HF and
HF� :=F�� aK=HF , and 8F� =8&1

F . Thus pb8&1
F = pb8F� is effective, and 8F is

nondegenerate of level in [a, b]. One can easily check that if 8: H $ � H is
a nondegenerate effective span, then 8M8

is naturally isomorphic to 8, and
that the formation of the span associated to a filtration is functorial and
compatible with twists and shifts.

Proposition 1.8. 1. Let 8: H $ � H be a nondegenerate span. Then 8
induces filtered quasi-isomorphisms:

(H $, M8)$(H, N� 8)

(H $, M� 8)$(H, N8).

2. Let (K, F ) be a good filtration and let 8 :=8F be the associated
span. Then for all i,

F iK�M i
8 H$ and F� iK�N i

8H.

Proof. Because of the compatibility of the formation of the filtrations
associated to a span with twisting and shifting, it suffices to prove these
results in the effective case. It follows immediately from the definitions that
8 maps M� i

8H$ isomorphically to N i
8H, so that 8 induces a filtered quasi-

isomorphism:

(H$, M� 8)$(H, N8).

Taking conjugates, we see that it also induces a filtered quasi-isomorphism:

(H$, M8)$(H, N� 8).

This proves (1).
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Say F has level in [0, b], so that 8F is effective. Then if i�0,

(F iK)= pip&iF iK= p iF� &iK�piF� &bK= piH.

That is, 8F (F iK)�piH, so F iK�M i
8H$. If i�0, F iK=F 0K=M 0

8H$=
M i

8 H$ by definition. Thus in any case F iK�M i
8H$, and hence F� iK�

M� i
8H$=N i

8H. The general case follows by twisting. K

Proposition 1.9. Let (K, F ) be an object of A endowed with a good
filtration and let 8: H$ � H be the corresponding span. Then for each i,
multiplication by pi induces isomorphisms:

E i, &i
1 (K, F� )$E &i, i

1 (K, F )

E i, &i&1
1 (K, F� )$E &i, i&1

1 (K, F ).

Moreover, the following conditions are equivalent:

1. For all i, F iK=M i
8H$.

2. The filtration F of K is G-transversal to p.

3. For all i, E i, &i&1
1 (K, F )=0.

4. The spectral sequence E(K, F ) :=EHdg (K, F ) degenerates at E1 .

5. Any of the statements corresponding to (1)�(4) with (K, F� ) in place
of (K, F ) is true.

If F is exhaustive, these conditions are also equivalent to the statement that
the boundary map of the complex QHdg (K, F ) is strictly compatible with the
filtration F.

Proof. Deligne's definition of the spectral sequence of a filtered complex
[2] (C, F ) is:

E i, j
r (C, F )=(F iC i+ j & d &1 (F i+rC i+ j+1))

�(F i+1C i+ j & d &1 (F i+rC i+ j+1)+dF i&r+1C i+ j&1) .

In particular,

E i, j
1 (C, F )=(F iC i+ j & d &1 (F i+1C i+ j+1))�(F i+1C i+ j+dF iC i+ j&1).

Thus if i�0,

E i, &i
1 (K, F� )=F� iK�(F� i+1K+ pF� i&1K)

=piF &iK�( pi+1F &i&1K+ ppi&1F 1&iK)

=pi (F &iK�( pF &i&1K+F 1&iK))

=piE &i, i
1 (K, F ).
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Similarly,

E i, &i&1
1 (K, F� )=(F� i&1K & p&1 (F� i+1K))�F� iK

=( pi&1F 1&iK & p&1 ( pi+1F &i&1K))�piF &iK

=pi ( p&1F 1&iK & F &i&1K)�F &iK)

=piE &i, i&1
1 (K, F ).

If i<0 we can achieve the same result by reversing the roles of F and F� ,
proving the first statement of the proposition.

For the remainder of the proof we shall assume without loss of generality
that F, and hence also M8 , has level in [0, b]. Since M8 is G-transversal
to p, it is obvious that (1) implies (2). It follows from the formula above
that

E i, &i&1
1 (K, F )= p&1F 1+iK & F i&1K�F iK$F i+1K & pF i&1K�pF iK.

Thus by the definition in Lemma (1.2), F is G-transversal to p if and only
if E i, &i&1

1 (K, F )=0 for all i, so (2) and (3) are equivalent. Since E i, j
1 (K, F )

vanishes unless i+ j is 0 or 1, (3) implies that E1 (K, F )=E� (K, F ), i.e.,
that the spectral sequence degenerates at E1 . On the other hand, since K
is p-torsion free, H &1 (Q, F )=0, so if the spectral sequence degenerates at
E1 , E i, &i&1

1 (K, F )=0, and hence (3) and (4) are also equivalent.
It follows from the definitions that for i�0,

M i
8 H$=[x # F 0K : 8F (x) # piH= pi&bF bK].

In other words, M i
8 H$=F 0K & pi&bF bK. If i�b, M i

8H$= p i&bF bK=F iK
since F has level in [0, b]. Suppose that F is G-transversal to p and
x # M i

8H$ with i<b. Then y :=pb&ix # F bK, and by Lemma 1.2, x # F iK.
Thus (3) and (2) imply (1). The equivalence of (4) and (5) follows from the
fact that E i, i&1

1 (K, F )$E &i, &i&1
1 (K, F� ), or from 1.4.5.

Suppose that F is exhaustive. Then by Lemma 1.2, F is G-transversal to
p if and only if F iK & pK= pF i&1K for all i, i.e., if and only if the differen-
tial d of QHdg (K, F ) is strictly compatible with the filtrations. The equiv-
alence with the degeneration of the spectral sequence is Deligne's [2, 1.3.2].
(The statement assumes that the filtration is biregular, but the proof only
uses that it is exhaustive.) K

Let B be another abelian category in which mB is an isomorphism for
every m relatively prime to p and every object B and let T: A � B be an
additive functor. If A is an object of A, let Tf (A) denote the quotient of
T(A) by its p-torsion, and if (K, F ) is a filtered object in A, let F iT(K)
denote the image of T(F iK) � T(K).
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Proposition 1.10. Let T: A � B be an additive functor, let (K, F ) be an
object of AF b

a , and let K$ :=F aK and K� :=F� &bK. Then:

1. The map T(F iK) � F iT(K$) induces an isomorphism

Tf (F iK)$F iTf (K$).

2. The filtration F on Tf (K$) is good, with level in [a, b].

3. For every i, the image of T(F� iK) in Tf (K� ) is piF &iTf (K). That is,
the filtration on Tf (K) induced by the filtration F� of K can be identified with
the conjugate of the filtration F of Tf (K$).

4. If 8F : H$F � HF is the span associated to F, then Tf (8F) can be
identified with the span associated to (Tf (K$), F ).

Proof. If i=a+ j with j�0, then p jK$= p jF aK�F iK, and hence there
are commutative diagrams

F iK ww�: K$ Tf (F iK ) ww�:* Tf (K$ )

pj ; p j ;*

F iK Tf (F iK )

Thus :* is injective, and Tf (F iK) can be identified with its image F iTf (K)
in Tf (K). Since the filtration on K is saturated, there are also commutative
diagrams

F iK ww�
p F iK Tf (F iK ) ww�

p Tf (F iK )

#
$

#*
$*

F i+1K Tf (F i+1K )

Thus the filtration F of Tf (K$) is saturated. Furthermore, : and #, hence
:* and #*, are isomorphisms for i�b, and it follows that (Tf (K$), F ) is
good, with level in [a, b].

If i�0, there are commutative diagrams

F&iK ww�$ F� iK Tf (F&iK) ww�$ Tf (F� iK )

pi pi

F&iK Tf (F&iK )
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This shows that the image of Tf (F� iK) in Tf (F &iK) can be identified with
piTf (F &iK). When i�0, we use the same diagram with F and F� inter-
changed, and (3) follows; (4) is an immediate consequence. K

Corollary 1.11. Let 1: A � B be a left exact functor of abelian
categories as above. Then 1 induces a functor 1g : AFg � BFg , and 1g com-
mutes with formation of conjugates and spans.

Proof. Since 1 is left exact, 1(K) is torsion free whenever K is, so the
corollary follows immediately from Proposition (1.10). K

2. ESTIMATES

Definition 2.1. Let F be a filtration of an object V of A of finite
length. Then

hi (V, F ) :=ln(Gr i
F (V))

qi (V, F ) :=ln(V�F i)=hi&1 (V, F )+hi&2 (V, F )+ } } } = :
j<i

h j (V, F )

li (V, F ) :=ln(F iV)=hi (V, F )+hi+1 (V, F )+ } } } = :
j�i

h j (F, V)

li (V, F ) :=ln(F 1&iV)=h1&i (V, F)+h2&i (V, F )+ } } } = :
j<i

h& j (V, F ).

If 8: H$ � H is a span in A and H$0 :=H�pH has finite length, the Hodge
numbers of 8 are the numbers hi (8) :=hi (H$0 , M8), and qi (8), li (8), and
li (8) are defined similarly.

We have chosen the notation because qi and li are increasing functions
of i, while li is decreasing. Note that li (V, F )=l1&i (V, F ), and that if F and
F $ are filtrations on V which are n-opposed [2], then for all i F $n&i+1V$
V�F iV, so that qi (V, F )=li&n (V, F $). On the other hand, if F�F $, there
are surjections V�F i � V�F $i for all i, hence qi (V, F )�qi (V, F $), and
li (V, F )�li (V, F $).

Theorem 2.2. Let (K, F ) be an object of AFg , let 8: H$ � H be the
corresponding span, and let E(K, F ) be the corresponding Hodge spectral
sequence (1.7.3). Then H$0 and H0 have the same length, and if this length is
finite, then the lengths e i, j

r (K, F ) of E i, j
r (K, F ) and E i, j

r (K, F� ) of E i, j
r (K, F� )

are finite for all i, j and r. Furthermore, for any i,
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1. hi (H$0 , M8)=h&i (H0 , N8) and qi (H$0 , M8)=li (H0 , N8).

2. qi (H$0 , F )�qi (8)�li (H0 , F� ).

3. qi (H0 , F� )�l i (8)�l i (H$0 , F ).

Proof. The filtrations M8 of H$ and N8 of H are G-transversal to p and
exhaustive, and N8 $M� 8 . Thus by Proposition (1.9), the spectral sequen-
ces EHdg (H$, M8) and EHdg (H, N8) degenerate at E1 , and multiplication
by p&i induces an isomorphism Gr i

M8
(H$0) � Gr&i

N8
(H0). It follows that

hi (H$0 , M8)=h&i (H0 , N8) and that qi (H$0 , M8)=li (H0 , N8) for all i.
Moreover, M8 and N8 are good, so the filtrations they induce on H$0
and H0 are biregular. Thus ln(H$0)=qi (H$0 , M8) for i>>0 and
ln(H0)=li (H0 , N8) for i>>0, so H$0 and H0 have the same length. If this
length is finite, then F iK�pF iK=H$�pH$=H$0 has finite length for i�a.
For i�a there is an exact sequence

F i&1K�pF i&1K w�: F iK�pF iK w�; F i&1K�pF i&1K,

where : is induced by multiplication by p and ; by the inclusions. Thus it
follows by induction that F iK�pF iK has finite length for all i, and hence so
does its quotient F iK�F i+1K. Then the explicit description of the E1 term
of the spectral sequences (see the proof of (1.6)) shows that E i, j

1 (K, F ) and
E i, j

1 (K, F� ) have finite length for all i and j.
By Proposition (1.8), F�M8 and F� �N8 , and the same remains true of

the induced filtrations on H$0 and H0 . Consequently qi (H $0 , F )�
qi (H$0 , M8)=qi (8) and qi (8)=li (H0 , N8)�l i (H0 , F� ). This proves (2),
and (3) can be proved in the same way, or by subtracting (2) from the
equality ln(H$0)=ln(H0), or by interchanging F and F� . K

Remark 2.3. The Hodge polygon associated with a sequence of integers
hi is formed by concatenating the line segments of slope i over the intervals
[qi , qi+1]. That is, qi is the abscissa of the i th breakpoint of the Hodge
polygon. Thus (2.2.2) says that the breakpoints of the 8-Hodge polygon lie
to the left of those of the F-Hodge polygon, so that the 8-Hodge polygon
lies above the F-Hodge polygon. If one creates a polygon using the
numbers li (H0 , F� ), which amounts to using the Hodge numbers of (H0 , F� )
in reverse order, then (2.2.2) also implies that the corresponding polygon
lies above the 8-Hodge polygon.

Mazur's original result (in the form proved in [1]) stated that the
Frobenius Hodge numbers and the geometric Hodge numbers agree when
the Hodge spectral sequence degenerates. Our next result gives a similar
result when one has degeneracy in a suitable range.
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Theorem 2.4. Let (K, F ) be an object of AFg , let 8: H$ � H be the
corresponding span, and suppose that H$0 has finite length. Fix an integer k,
and consider the following conditions:

1. e i, &i
1 (K, F )=e i, &i

� (K, F ) for all i>k.

2. hi (H$, F )=h&i (H, F� ) for all i>k.

3. hi (H$, F )=hi (8)=h&i (H, F� ) for all i>k.

4. F iH$0=M i
8H$0 for all i>k and F� iH0=N i

8H0 for all i�&k

5. hi (H, F� )=h&i (8) for all i< &k.

6. F� iH0=N i
8H0 for all i� &k.

7. F� iK=N i
8H for all i�&k.

8. E i, &i&1
1 (K, F� )=0 for all i� &k.

9. E i, &i&1
1 (K, F )=0 for all i�k.

Then (1) O (2) � (3) � (4) O (5) � (6) � (7) O (8) � (9).

Proof. For any j, e j, &j
1 (K, F� )�e j, &j

� (K, F� )=h j (H0 , F� ). Hence state-
ment (3) of Theorem (2.2) implies, with the obvious abbreviations, that for
any i,

:
j<i

e j, &j
1 (F� )� :

j<i

h j (F� )� :
j<i

h& j (8)� :
j<i

h& j (F ).

Replace i by &i and j by & j to get that for any i,

:
j>i

e& j, j
1 (F� )� :

j>i

h j (F� )� :
j>i

h j (8)� :
j>i

h j (F )= :
j>i

e j, &j
� (F ). (2.4.3)

If (1) holds and k�i, then by Proposition (1.9),

:
j>k

e j, &j
� (F )= :

j>k

e j, &j
1 (F )= :

j>k

e& j, j
1 (F� ).

Then all the inequalities in (2.4.3) are equalities, and it follows by induction
that hi (F )=hi (8)=h&i (F� ) for all i>k. This argument shows that in fact
(1) implies (2) and that (2) and (3) are equivalent. The implications
(7) O (6) � (5) o (3) � (4) are obvious. Supposing that (6) holds, we
prove that F� iK=N i

8H for all i�&k by induction on i. If F has level
[a, b], then F� iK=H=N8

i H for any i�&b. Assume that i� &k and that
F� i&1K=N8

i&1H. If x # N8
i H, then by (6) there exist y # F� iK and z # H such

that x= y+ pz. Then pz # N i
8H, and since N8 is G-transversal to p,

z # N i&1
8 H=F� i&1K. Then pz # F� iK, and it follows that x # F� iK also. This

completes the proof that (5)�(7) are equivalent. Assume that (7) holds and
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x # F� i&1K & p&1F� i+1K with i� &k. Then px # F� i+1K�N i+1
8 H, so x #

N i
8 H=F� iK. Thus

E i, &i&1
1 (K, F� )=(F� i&1K & p&1F� i+1K)�F� iK=0,

so (7) O (8), which is equivalent to (9) by Proposition (1.9). K

Corollary 2.5. Let F be an exhaustive good filtration on an object K of
A such that K0 has finite length. Then the following conditions are equiv-
alent:

1. For all i, hi (8)=hi (H$0 , F).

2. For all i, hi (8)=h&i (H0 , F� ).
3. For all i, F iK=M i

8H$.

4. The Hodge spectral sequence of (K, F ) degenerates at E1 .

5. The conjugate spectral sequence of (K, F ) degenerates at E1 .

Proposition 2.6. Let F be an exhaustive good filtration of an object K
of A, and let Q :=Q(K, F ) as in (1.7.3). Then for any k the following are
equivalent:

1. For all i>k, the map H0 (F i+1Q) � H0 (Q) is injective.

2. For all i>k, H&1 (Q�F i+1Q)=0

3. For all i�k, F iK=M8
iK

Proof. Since K is p-torsion free, H &1 (Q)=0, and the equivalence of (1)
and (2) follows from this and the long exact sequence of cohomology. The
equivalence of (2) and (3) can be proved by induction, using the following
lemma. K

Lemma 2.7. In the situation of (2.6), suppose that F i+1K=M8
i+1H$.

Then

H&1 (Q�F i+1Q)$M i
8H$�F iK.

Proof. Note that since F is exhaustive, K$=K and M8 can be regarded
as an exhaustive filtration of K. It follows from the definitions that

H&1 (Q�F i+1Q)$(K & p&1F i+1K)�F iK.

If F i+1K=M i+1
8 H$, then since M8 is G-transversal to p,

K & p&1F i+1K=K & p&1M i+1
8 H$=M i

8H$. K
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3. COMPLEXES AND COHOMOLOGY

As in the previous sections, A will denote an abelian category and p a
prime such that mA is invertible for every object A of A and every integer
m relatively prime to p. If K is a complex in A such that each Kq is p-tor-
sion free, than a virtual filtration of K is a family of virtual filtrations of
each Kq stable under the boundary maps. If F is a saturated virtual filtra-
tion of K, then its conjugate F� is again a saturated virtual filtration of K.
A filtration F is good with level in [a, b] if each (Kq, F ) is good with level
in [a, b]. A good filtration of a complex induces a span of complexes, as
in (1.7).

Let KFsat (resp. KFg) denote the category whose objects are complexes
K endowed with a saturated (resp. good) virtual filtration F and whose
morphisms are the filtered homotopy classes of maps. If (K, F ) is an object
of KFsat , its translate (K, F )[1] is again an object of KFsat , and if u is a
morphism in KFsat , its mapping cone C(u) is an object of KFsat . Thus KFsat

has the structure of a triangulated category, and KFg is a triangulated
subcategory.

A morphism u: (K$, F ) � (K, F ) of filtered complexes is said to be a
filtered quasi-isomorphism if for every i and n the map

Hn (u): H n (F iK$) � Hn (F iK)

is an isomorphism. The set Qis of quasi-isomorphisms is a multiplicative
system compatible with the triangulation [4, I, 4.2] and we define DFsat

and DFg to be the triangulated categories obtained from KFsat and KFg by
localizing by Qis.

Remark 3.1. It is not clear whether or not the functor from DFsat to the
filtered derived category DF is fully faithful. However, it follows from [4,
I, 3.3] that DFg is a full subcategory of DFsat . Indeed, suppose that
s: (K$, F ) � (K, F ) is a filtered quasi-isomorphism, with (K, F ) good with
level in [a, b] and (K$, F ) saturated. Define a new filtration G on K$ by let-
ting GiK$ :=F aK$ if i�a and GiK$ :=pi&bF bK$ if i�b. Since F is
saturated, G is finer than F, so there is a morphism f: (K$, G) � (K$, F ).
Furthermore, (K$, G) is good, and the arrow (K$, G) � (K, F ) is a filtered
quasi-isomorphism.

Let us say that (K, F ) has quasi-level in [a, b] if the maps F aK � F iK are
quasi-isomorphisms for i�a and the maps pF iK � F i+1K are quasi-
isomorphisms for i�b, and let KFqg denote the full subcategory of KFsat

consisting of those objects which have quasi-level [a, b] for some [a, b].

18 ARTHUR OGUS



Then the construction in (3.1) shows that an object of KFsat is quasi-
isomorphic to an object of KFg if and only if it belongs to KFqg , so that
the derived categories DFg and DFqg are equivalent.

The operation

(K, F ) [ (K, F )& :=(K, F� )

defines a functor from KFg to itself, compatible with translation and forma-
tion of mapping cones. Furthermore, it follows from (1.4.4) that (K, F )& is
filtered acyclic if (K, F ) is, and consequently that conjugation takes quasi-
isomorphisms to quasi-isomorphisms and localizes to a triangulated
functor DFg � DFg .

The following construction of derived functors although not the most
general possible statement, will suffice for our purposes. It applies, for
example, if A is the category of sheaves of W-modules on a topological
space and 1 is the global section functor, since one can in that case take
G to be Godement's sheaf of discontinuous sections functor.

Proposition 3.2. Let 1: A � B be a left exact functor. Suppose there
exists an exact functor G: A � A and an injective natural transformation
=: idA � G such that G(A) is acyclic for 1 for every object A of A. Then the
right derived functor R+1g of 1g : AFg � BFg exists and fits into a com-
mutative diagram (up to isomorphisms of functors):

D+Fg (A) ww� D+F(A)

R+1g R+1

D+Fg (B) ww� D+F(B)

Moreover, R+1g commutes with formation of conjugates and spans.

Proof. Since 1 is left exact, 1(E) is torsion free if E is, and it follows
from (1.11) that if (K, F ) # AFg , then 1(K, F ) # BFg . Thus 1 induces a
functor KFg (A) � KFg (B). Since we do not know that D+Fg (A) is a full
subcategory of D+F(A), the construction of R+1g requires an additional
argument. By [4, I, 5.1], it will suffice to show that every object (K, F ) of
KF+

g (A) is quasi-isomorphic to an object (K$, F ) in KFg (A) such that
each F iK$ is acyclic for 1. Since G is left exact, it induces a functor
AFg � AFg , and if (K, F ) # KF +

g (A), (K, F ) is quasi-isomorphic to the
filtered complex (K$, F ) obtained by taking the associated simple complex
to the filtered double complex G(K, F ). It is clear that formation of con-
jugates and spans commutes with 1 and G and hence with R+1g . K
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Example 3.3. Let K be any complex in A and let F be a filtration of
K. Then the de� cale� [2] Fdec of F is defined by

F i
decKq :=[| # F i+qKq : d| # F i+q+1K q+1].

Suppose that K is p-torsion free. Then Fdec is saturated (resp. G-transversal
to p) if F is. Furthermore, if F is G-transversal to p and has level in [a, b],
then F i

dec Kq has level in [a&q, b&q]. Thus if K is bounded, then if F is
G-transversal to p and good, the same is true of Fdec . For example, the con-
jugate filtration Fcon of K is by definition the de� cale� of the canonical p-adic
filtration (1.1.2):

F i
conKq :={| # pi+qKq : d| # p i+q+1Kq+1

| # K q

if i�&q
if i<&q.

The filtration induced by Fcon on the reduction K0 of K modulo p is the
``filtration canonique'' [2, 1.4.6], associated with the second spectral
sequence of hypercohomology. We shall call the conjugate of Fcon the
standard filtration of K; it is given by

F i
stdK q :=F� i

conKq={| # pqKq : d| # pq+1K q+1

| # p iKq

if i�q
if i>q.

The next result shows that the formation of the span associated to a
filtration is compatible with passing to cohomology. Although the proof is
an immediate consequence of (1.10) and the definitions, we state it as a
theorem, because of its central role.

Theorem 3.4. Let (K, F ) be an object of KFg , of level in [a, b], let
K$ :=F aK, K� :=F� &bK, and let 8: K$ � K� be corresponding span. Then for
any integer n, the map

H n
f (8) : H n

f (K$) � H n
f (K� )

is a nondegenerate span and coincides with the span

8n : H$F � H� F

associated to the good filtration induced by F on H :=H n
f (K). The filtrations

F of H$F and F� of HF are finer than the filtrations M8n
and N8n

, respec-
tively. K
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Remark 3.5. In the situation of (3.4), suppose that H i (K$) and H i (K� )
are p-torsion free when i=n and n+1. Then the natural maps

H$0 � H n (K$0) and H� 0 � Hn (K� 0)

are isomorphisms, and it is easy to see that the filtration F (resp. F� )
induced on H$0 (resp. H� $0) is finer than the filtration corresponding to the
filtered complex (K0 , F ) (resp. (K� 0 , F� )). Assuming that the cohomology
modules have finite length, it follows that

qi (H$, F )�qi (8)�li (H� , F� ),

and that

qi (H$, F )�qi (H(K$0), F ) and li (H, F )�li (H(K� 0), F� ).

Thus we cannot in general use the Hodge numbers derived from (K$0 , F )
and (K� 0 , F� ) to bound the Hodge numbers of 8. In practice it is these mod
p Hodge numbers that are more amenable to calculation than the Hodge
numbers of (K, F). This difficulty motivates the next result, which shows
that, with some additional hypotheses, the two sets of numbers coincide.

Proposition 3.6. Let (K, F ) be an object of KFg , let 8: K$ � K� be the
corresponding span, and suppose that F is G-transversal to p and that n is an
integer such that Hn+1 (K$) is torsion free. Consider the following conditions:

1. For all i, the map Hn+1 (F iK$0) � H n+1 (K$0) is injective
2. For all i, the map Hn+1 (F iK) � H n+1 (K$) is injective
3. For all i, H n+1 (F iK) is torsion free.

Then (1) O (2) � (3), and (2) and (3) imply that the natural map

Hn (K$)0 � Hn (K$0)

is an isomorphism and takes

F iHn (K)0 :=Im Hn (F iK) � H n (K$)0

isomorphically onto

F iHn (K0) :=Im Hn (F iK$0) � Hn (K$0)

Proof. Lemma (4.4.4) of [7] shows that (1) implies (2). (The
hypothesis of compatibility with direct limits is not needed here.) Since
Hn+1 (K$) is torsion free, (2) implies (3), and it follows from Proposition
(1.10.1) that (3) implies (2). The universal coefficient theorem shows that
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if Hn+1 (K$) is torsion free, H n (K$)0 $H n (K$0). The G-transversality of
(K, F ) to p implies the existence of an exact sequence

0 � F i&1K � F iK � F iK$0 � 0

and hence also

Hn (F iK) � Hn (F iK$0) � H n+1 (F i&1K) � H n+1 (F iK).

Then (2) implies that the map Hn (F iK) � H n (F iK$0) is surjective. K

Corollary 3.7. Let (K, F ) be an object of KFg which is G-transversal to
p, let n be an integer for which (2) and (3) of Proposition (3.6) above hold,
and let 8: H$ � H� be the span Hn (8). Then the filtrations of H$0 and H� 0

induced by (K$0 , F ) and (K� 0 , F� ) are respectively finer than the Frobenius
Hodge and conjugate filtrations M8 and N8 on H$0 and H� 0 . If H$0 has finite
length,

qi (H(K$0), F)�qi (8)�l i (H(K� 0), F� ) and qi (H� 0 , F� )�li (8)�li (H$0 , F ).

Under some circumstances it is even possible to identify (a portion of)
the spectral sequences of the filtered complexes (K$0 , F ) and (K� 0 , F� ) with
the Hodge and conjugate spectral sequences of the filtered object (H$, F ).
For the application we have in mind, the following result will suffice.

Definition 3.8. Let (K, F ) be an object of KFg and let n be an integer.
Then (K, F ) is cohomologically concentrated in degree n if Hn (K$) is torsion
free and for all i, the maps Hn (F iK) � Hn (K$) are injective and H q (F iK)
vanishes for q{n.

Proposition 3.9. Let 8: K$ � K� be the span associated to an object
(K, F ) of KFg and let H$ :=H n (K$) with the filtration F induced by the
filtration F of K. Then if (K, F ) is cohomologically concentrated in degree n,

1. If (H$, F ) is regarded as a filtered complex placed in degree n, then
(H$, F ) is good, and there is an isomorphism in DFg

(K$, F )[ (H$, F ).

2. The filtered complex (K� , F� ) is cohomologically concentrated in
degree n, and there is an isomorphism in DFg

(K� , F� )[ (H� , F� ).
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3. If (K, F ) is G-transversal to p, then there is an isomorphism in the
filtered derived category of A

(K$0 , F )[Q(H$, F ).

Proof. The first two statements will follow from the following simple
lemma.

Lemma 3.10. If (K, F ) is an object of KFg and n is an integer, let
(T�n K, F ) denote the filtered complex which is (K i, F ) in degrees <n,
Ker(d n, F ) in degree n, and zero in degrees greater than n. Then (T�nK, F )
is good, and the natural map

(T�nK, F ) � (K, F )

is a filtered quasi-isomorphism if Hq (F iK)=0 for q>n.

Proof. Let (C, F ) :=(T�nK, F ). Then C is torsion free, and if x # F iC,
px # F i+1C so (C, F ) is saturated. Evidently F iC=F i&1C if F iK=F i&1K,
and if F i+1K= pF iK and x # F i+1Cn, then x= py with y # F iKn and
dx= pdy=0. Since K is torsion free, dy=0 and x # pF iC. Thus (C, F ) is
good. It is standard that Hq (F iC)$H q (F iK) if q�n and is zero if q>n,
and the lemma follows. K

It follows from the lemma that the natural map (T�nK$, F ) � (K$, F ) is
a filtered quasi-isomorphism because of the fact that Hq (F iK)=0 for q>n.
Furthermore, because Hn (F iK)$F iH$, and H q (F iT�n K)$Hq (F iK)=0
for q<n, the natural map (T�nK, F ) � (H$, F ) is a filtered quasi-
isomorphism. This proves the first statement of the Proposition (3.9).
Because K is p-torsion free, multiplication by pi induces an isomorphism
F &iK � F� iK� , and hence its cohomology vanishes except in degree n and is
torsion free. Since F� is saturated, for any i there are commutative diagrams

F� i+1K ww� F� iK H n(F� i+1K) ww� H n(F� iK )

p p p p

F� i+1K ww� F� iK H n(F� i+1K) ww� H n(F� iK )

Since Hn (F� i+1K) is torsion free, the maps H n (F� i+1K) � Hn (F� iK) are
injective.

To prove (3.9.3), we need the following lemma:
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Lemma 3.11. If (K, F ) is a p-torsion free complex equipped with a good
filtration F, let u be the morphism of filtered complexes

u: (K, F(&1)) � (K, F )

induced by multiplication by p, let C(u) denote its mapping cone, and let
Q(K, F ) :=C(u). Then the natural morphism in DFg

Q(K, F ) � (K$0 , F )

is a quasi-isomorphism if F is G-transversal to p.

Proof. Since (K, F ) is good, the natural map (K$, F ) � (K, F ) is a
quasi-isomorphism, and hence Q(K$, F )$Q(K, F ) in DFg . Thus we may
assume without loss of generality that K=K$. Because K is torsion free, u
is a monomorphism. Let C denote its cokernel, with the filtration induced
from F, i.e., (C, F )=(K0 , F ). Then the natural map C(u) � (C, F ) is com-
patible with the filtrations, and is a filtered quasi-isomorphism if u is
strictly compatible with the filtrations. By (1.2), this is the case if (and
only) if F is G-transversal to p. K

If (K, F ) is cohomologically concentrated in degree n, there is a diagram
of distinguished triangles in the filtered derived category DFg ,

(K, F(&1)) ww� (K, F ) ww� Q(K, F ) ww� (K, F(&1))[1] ww�

(H$, F(&1)) ww� (H$, F ) ww� Q(H$, F ) ww� (H$, F(&1))[1] ww�

and by the 5-lemma, the arrow Q(K, F ) � Q(H$, F ) is a filtered quasi-
isomorphism. If F is G-transversal to p, Q(K, F )$(K$0 , F ). This proves
(3.9.3). K

Corollary 3.12. Let 8: K$ � K� be the span associated to an object
(K, F ) of KFg which is G-transversal to p and cohomologically concentrated
in degree n. Then the spectral sequence of the filtered complex (K$0 , F) can
be identified with the spectral sequence EHdg (H$, F ), and the spectral
sequence of the filtered complex (K� 0 , F� ) can be identified with the spectral
sequence Econ (H$, F ).

Remark 3.13. If (K, F ) is a complex satisfying the hypotheses of (3.6),
then it is easy to see that the map (T�n K0 , F ) � (K0 , F ) induces a map of
spectral sequences which is an isomorphism on all terms E i, j

r with i+ j�n
and r�1. Moreover, for any k, the following are equivalent:
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1. For all i�k, the map Hn (F iK0) � Hn (K0) is injective.

2. For all i�k, E i, n&i
1 (K0 , F )=E i, n&i

� (K0 , F ).

The following result is helpful in establishing the validity of the
hypotheses of Proposition (3.9)

Proposition 3.14. Let 8: K$ � K� be the span corresponding to an object
(K, F ) of KFg which is G-transversal to p and such that H m (K$) and Hm (K� )
are p-adically separated for all m, and let n be an integer.

1. If Hn+1 (Gri
FK0) vanishes for all i, then Hn+1(F iK) and Hn+1 (F iK0)

vanish for all i. Furthermore, (K� , F� ) satisfies the same hypotheses and
conclusions.

2. Suppose that Hn&1 (K� 0), Hn&1 (K$0), and H n&2 (Gr i
F K$0) vanish for

all i. Then Hn&1 (K$) vanishes, H n (K$) is torsion free, and the maps
Hn (F iK) � H n (K$) are injective for all i. Furthermore, (K� , F� ) satisfies the
same hypotheses and conclusions.

Proof. Without loss of generality we may assume that K=K$. Suppose
that K has level in [a, b] and that Hn+1 (Gr i

FK0) vanishes for all i. Since
F iK0=0 for i>b, it follows from the exact sequences

Hn+1 (F i+1K0) � Hn+1 (F iK0) � H n+1 (Gr i
FK0)

and descending induction on i that H n+1 (F iK0) vanishes for all i. Since
(K, F ) is G-transversal to p, there are exact sequences

Hn+1 (F i&1K) w�: Hn+1 (F iK) � H n+1 (F iK0),

where : is induced by multiplication by p. Then in fact : is surjective, and
applying this with i=a, we see that multiplication by p is a surjective
endomorphism of Hn+1 (K). Since this object is p-adically separated, it
must vanish, and it follows by induction and the surjectivity of : that the
same is true of Hn+1 (F iK) for every i. The isomorphisms Gr i

FK0 $Gr&i
F� K� 0

show that (K� , F� ) inherits the hypotheses from (K, F ). This proves (1).
Suppose the hypotheses of (2) are satisfied. Then the exact sequence

Hn&1 (K� ) w�
p Hn&1 (K� ) � Hn&1 (K� 0) � H n (K� ) w�

p H n (K� )

and the vanishing of Hn&1 (K� 0) show that Hn (K� ) is torsion free and that
Hn&1 (K� )0 vanishes. Since Hn&1 (K� ) is p-adically separated, it follows that
it vanishes. Furthermore, F bK$K� , and K� 0 $F bK�pF bK$Gr i

FK for i�b,
so Hn&1 (Grb

F K)$Hn&1 (K$0)$0. Now the G-transversality of (K, F )
implies that there is an exact sequence

Hn&2 (Gr i
FK0) � Hn&1 (Gr i&1

F K) w�
p Hn&1 (Gr i

FK).
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Thus the vanishing of Hn&2 (Gr i
FK0) implies that Hn&1 (Gr i&1

F K) is con-
tained in Hn&1 (Gr i

FK) for all i; since Hn&1 (Gr i
F K) vanishes for i�b, we

see by descending induction on i that in fact it vanishes for all i. It then
follows that the maps Hn (F iK) � Hn (K) are injective for all i. Again, the
hypotheses and conclusion are invariant under replacing K$ by K� . K

Corollary 3.15. Let (K, F ) be an object of KFg which is G-transversal
to p and such that H m (K$) and Hm (K� ) are p-adically separated for all m.
Suppose also that n is an integer such that Hn&1 (K� 0), H n&1 (K$0), and
Hq (Gr i

F K$0) vanish for all i and all q{n, n&1. Then (K, F ) is cohomologi-
cally concentrated in degree n. Furthermore,

1. The filtrations F on H$0 and F� on H� 0 induced by F and F� coincide
with the filtrations induced by the filtered complexes (K$0 , F ) and (K� 0 , F� ),
respectively.

2. The spectral sequences of the filtered complexes (K$0 , F ) and
(K� 0 , F� ) coincide with the abstract Hodge and conjugate spectral sequences of
(H$, F ).

4. CRYSTALS AND THEIR COHOMOLOGY

Let X�k be a smooth scheme over a perfect field k of characteristic p>0,
let W be the Witt ring of k, and let uX�W : Xcris � Xzar be the standard map
from Xcris to Xzar [1, Sect. 5]. Then the crystalline cohomology Hcris (X�W)
of X�W can be viewed as the cohomology of a canonical object

C }
X�W :=RuX�W*OX�W

in the derived category of the abelian category AX of sheaves of W-modules
on Xzar . If X can be embedded as a closed subscheme of a smooth formal
scheme Y�W and if D is the divided power envelope of X in Y, then C }

X�W

is canonically isomorphic to the De Rham complex 0 }
D�W [1, 6.4], a

bounded complex of p-torsion free objects of AX . In fact C }
X�W admits

canonical filtrations, which allow one to construct objects in suitable filtered
derived categories. In particular, one has:

1. (C }
X�W , Fp), where Fp is the canonical p-adic filtration (1.1.2).

2. (C }
X�W , Fcon), where Fcon (the conjugate filtration), is the de� cale� of

Fp (3.3).

3. (C }
X�W , Fstd), where Fstd is the conjugate of Fcon (3.3).
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4. (C }
X�W , Fspd), where Fspd is the divided power saturation of Fstd ,

defined by F k
spd :=F =� k, where =k is the maximal tame gauge which vanishes

at k [7, 4.2.4].

5. (C }
X�W , FHdg), where FHdg is the Hodge filtration. If X�Y�W as

above, then FHdg corresponds to the filtration on 0 }
D�W given by

F i
Hdg0q

D�W=J [i&q]
D 0q

D�W ,

where JD is the ideal of X in D.

Remark 4.1. The reduction modulo p C }
X�k of C }

X�W can be identified
with the De Rham complex 0 }

X�k , and the filtration induced on C }
X�k by

Fcon is the ``canonical filtration'' of [2, 1.4.6]. Thus:

Gr i
Fcon

C }
X�k $H&i (0 }

X�k).

If one is interested in cohomology in weight n, it is more usual to shift the
filtration by n. For r�1, the Er term of the spectral sequence associated
with Fcon identifies with the Er+1 term of the usual ``conjugate spectral
sequence.'' See [2, 1.3.4].

In fact it is convenient to consider filtrations indexed not just by the
integers, but by Mazur's gauges [7, Sect. 4], as we have already mentioned
in (1.6). Thus, (C }

X�W , Fcon) and (C } , Fstd) can be regarded as objects in the
filtered derived category D+F1 (AX) of sheaves of W-modules on X, with
filtrations indexed by the 1-gauges, and (C }

X�W , FHdg) is an object in the
filtered derived category D+Ftg (AX) of tame gauges. (See [7, Sect. 4.3] for
the definition of these.)

Let X$ be the pull-back of X�k via the Frobenius endomorphism Fk of
k, so that there is a commutative diagram

X ww�
FX�k X$ ww�

?X�k X

Spec k ww� Spec k

Then the relative Frobenius morphism FX�k induces a morphism

8: C }
X$�W � FX�k*C }

X�W .

Since FX�k is a homeomorphism, the derived functor of FX�k* exists and can
be identified with FX�k* .
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Theorem 4.2. Let X�k be a smooth scheme and let FX�k : X � X$ be its
relative Frobenius morphism. Then FX�k induces an isomorphism

9: (C }
X$�W , FH dg) � FX�k* (C }

X�W , Fstd) (in D+Ftg (AX$))

Consequently:

1. There is a filtered quasi-isomorphism

9: (C }
X$�W , FH dg) � FX�k* (C }

X�W , Fspd) in D+F(AX$).

2. The morphism 8: C }
X$�W � FX�k*C }

X�W can be identified with the
span associated to FX�k* (C }

X�W , Fstd) # D+Fg (AX$).

3. There are isomorphisms in the filtered derived categories D+F(AX$)
and D+F(AX):

(C }
X$�k , FH dg)$FX�k* (Q(C }

X�W , Fstd))$FX�k* (C }
X�k , Fstd) and

(C }
X�k , Fcon)$Q(C }

X�W , Fcon),

where Q is the construction (3.11).

Proof. Theorem (7.3.1) of [7] asserts that F*X�W induces a filtered quasi-
isomorphism:

9: (C }
X$�W , FH dg) � FX�k* (C }

X�W , F $con),

where F $con is the filtration sending a gauge = to F =�
conC }

X�W . By (1.6),

F =�
conC }

X�W=F =
stdC }

X�W ,

and this proves the main statement of the theorem. If we apply this to the
maximal tame gauge which vanishes at i, we see that for every i, 9 induces
a quasi-isomorphism

9: (C }
X$�W , F i

H dg) � FX�k* (C }
X�W , F i

spd),

proving consequence (1).
Let d be the dimension of X. Then Fstd is quasi-good, with quasi-level in

[0, d], so the associated span is the morphism

F 0
stdC }

X�W � F� &d
std C }

X�W=F &d
con C }

X�W $C }
X�W .

Pushing forward by the homeomorphism FX�W* and composing with the
quasi-isomorphism C }

X$�W � FX�W*F 0
stdC }

X�W , we obtain consequence (2).
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For (3), define 1k by

1k (i) :={1
0

if i<k
if i�k

and let c1 (i) :=1 for all i. Then 1k and c1 are tame gauges, and if F is FHdg

or Fstd , there is a distinguished triangle

� F c1C � F 1kC � F kC0 � ,

where C0 is the reduction of C modulo p. It follows that 9 induces a
filtered quasi-isomorphism

(C }
X$�k , FHdg)$FX�k* (C }

X�k , Fstd).

Furthermore, (C }
X�k , Fstd)$(Q(C }

X�W , Fstd)) because Fstd is G-transversal to
p (3.11). The statement with Fcon is proved in the same way. K

Next we pass to cohomology. It follows from (3.2) that there is a functor
R+1g : DF +

g (AX) � DF +
g (A), where A is the category of W-modules.

Remark 4.3. Let D be the PD-envelope of X in a smooth formal
scheme Y�W, let U be an affine hypercovering of Y, and let (KU , F ) denote
the simple complex associated to the Cech double complex of (C }

D�W , F )
with respect to U, where F=Fcon or Fstd . Then R+1(C }

X�W , F )$(KU , F ) #
D+Fsat (W). To see this, it suffices to prove that the terms in the above
complexes have no higher cohomology. Thus we need to prove that if X is
affine, Hq (X, F iC j

X�W)=0 for q>0. When F=Fcon , it seems easiest to use
induction on i. For i<<0, F i

con 0 j
D�W $0 j

D�W , whose higher cohomology
vanishes, and because the filtration is G-transversal to p we have an exact
sequence:

0 � F i&1
con 0 j

D�W w�
p F i

con 0 j
D�W � F i

con 0 j
D0�k � 0

But F i
con 0 j

D0�k is quasi-coherent when viewed as an OD0
-module via the

Frobenius map, so it too has no higher cohomology. The result for Fstd

follows by conjugating.

The following result is then an immediate consequence of Theorem (4.2),
together with the fact that R+1g commutes with conjugation, formation of
spans, and (as is easily seen), the construction Q.

Corollary 4.4. Let X�k be a smooth scheme. Then there are iso-
morphisms:
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R+1sat (C }
X�W , Fstd)&$R+1g (C }

X�W , Fcon) in D+Fg(A)

QR+1sat (C }
X�W , Fstd)$R+1(C }

X$�k , FHdg) in D+F(A)

QR+1sat (C }
X�W , Fcon)$R+1(C }

X�k , Fcon) in D+F(A).

Furthermore, the Frobenius morphism R+1(C }
X$�W) � R+1(C }

X�W) can be
identified with the span associated to R+1g (C }

X�W , Fstd).

Theorem 4.5. Let X�k be a smooth proper scheme, let n be an integer,
let H$ :=H n

cris (X$�W) and H :=H n
cris (X�W), and let 8: F*W H$ � H be the

map induced by the relative Frobenius morphism X � X$. Suppose that
H n

cris (X�W) and H n+1
cris (X�W) are torsion free and that the maps

Hn+1 (X$, F i
Hdg0 }

X�k) � H n+1 (X$, 0 }
X$�k)

H n+1 (X, F i
con 0 }

X�k) � H n+1 (X, 0 }
X�k)

are injective for all i.

1. There are natural filtered isomorphisms

(H n
cris (X�W)�k, Fstd)$(H n

DR (X$�k), FHdg),

(H n
cris (X$�W)�k, Fcon)$(H n

DR (X�k), Fcon).

2. For each i,

qi (H n
DR (X$�k), FHdg)�q i (8)�l i (H n

DR (X�k), Fcon),

and

qi (HDR (X�k), Fcon)�qi (8)�li (H n
DR (X$�k), FHdg).

3. Suppose k is an integer such that, in the Hodge spectral sequence of
X�k, e i, n&i

� =e i, n&i
1 for all i�k. Then h i, n&i (8)=h i, n&i (X�k) for all i�k.

Proof. Let (K, F ) :=R+1g (C }
X�W , Fstd), and let (K0 , F ) :=R+1(C }

X�k ,
Fstd). It follows from (4.4) that (K0 , F )$R+1(C }

X$�k , FHdg), and hence that
we can identify the Hodge spectral sequence of X$�k with the spectral
sequence of the filtered complex (K0 , F ). Then the maps Hn+1 (F i

stdK0) �
Hn+1 (K0) are injective for all i, and Hn (K) and H n+1 (K) are torsion free.
By Proposition (3.6), the filtration induced by Fstd on H n (K0)$H n (K)0 is
the same as the filtration of Hn (K0) induced by the filtration Fstd of the
filtered complex Hn (K0), i.e., the Hodge filtration of H n

DR (X$�k). A similar
argument works with the conjugate filtration. This proves statement (1) of
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the theorem. Moreover, by (4.4), the Frobenius morphism F*WH n (X$�W)
� Hn (X�W) can be identified with the n th cohomology of the span of
complexes associated to the object R+1g (C }

X�W , Fstd). Then Corollary (3.7)
implies statement (2) of the current theorem. Finally, (3) is proved in the
same way as Theorem (2.4), using (2) and the fact that (as a consequence
of the Cartier isomorphism), e i, j

1, Hdg (X$�k)=e j, i
1, con (X�k). (Note that our

indexing of the conjugate spectral sequence is shifted by n from the usual
indexing.) K

As a consequence of statement (1) of Proposition (3.14), we have:

Corollary 4.6. The hypotheses and conclusions of the previous result
hold if n is an integer such that H j (X, 0 i

X�k)=0 whenever i+ j=n+1 and
Hn (X�W) is torsion free.

More generally, let X�k be a fine saturated log scheme which is smooth
and of Cartier type [7] (also called ``perfectly smooth'' in [7]). The main
result of [7] holds also for X�k and hence so do Theorem (4.2) and its
corollaries (4.5) and (4.6). In fact, these results also hold with coefficients
in an F-crystal 8: F*X�k E$ � E, provided one gives the proper definitions of
the Hodge and conjugate filtrations. Recall from [7] that M8 is the inverse
image via 8 of the p-adic filtration on E and N8 is the image via 8 of the
conjugate of M8 , as in (1.7). Thus N8 is a good filtration of E by subcrys-
tals and M8 is a good filtration of F*X�k E$ by subcrystals. The construction
of the filtration A8 of E$ by subsheaves in the crystalline topos requires
descent through Frobenius and is more delicate, and we have to refer to
the discussion of [7, Sect. 5]. Let F� 8 denote the de� cale� of the filtration N8

of RuX�W* (E), let F8 be the conjugate of F� 8 , and let FHdg denote the filtra-
tion of RuX$�W*E$ coming from A8 . For example if E=OX�W with its
standard structure of an F-crystal, M8 and N8 are both just the p-adic
filtration of OX�W , while A8 is given by the PD powers of the ideal JX�W ;
on RuX�W*OX�W , F� 8=Fcon and F8=Fstd .

Let us state the following consequence explicitly:

Theorem 4.7. Let X�k be a fine saturated and perfectly smooth log
scheme, let 8: F*X E � E be an admissible F-crystal on X�W, and let
E$ :=?*X�k E. Let C }

E$�W and C }
E�W denote the De Rham complexes of E$ and

E, respectively, with the filtrations FHdg and F8 described above. Suppose
that n is an integer such that H q

cris (X$�k, Gr i
FHdg

E$0) and H n&1
cris (X$�k, E$0)

vanish for all i and all q{n, n&1. Then the results of (4.5) hold for
the cohomology of X with coefficients in E in degree n. Moreover,
R+1g (C }

E$�W , F8) is cohomologically concentrated in degree n, and its
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Hodge and conjugate spectral sequences coincide with the Hodge and con-
jugate spectral sequences of X�k with coefficients in E and with the Hodge and
conjugate spectral sequences (1.7.3) of the filtered object (H n

cris (X$�W, E), F8)).

Proof. This theorem follows immediately from the above remarks and
Proposition (3.14). Notice that

H n&1
cris (X$�k, E$0)$Fk*H n&1

cris (X�k, E0)

so that the vanishing of H n&1
cris (X$�k, E$0) is equivalent to the vanishing of

H n&1
cris (X�k, E0). K
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