Let $I=:[a, b]$ let γ be a function $I \rightarrow R$ and let $P:=\left(x_{0}, \cdots x_{n}\right)$ be a partition of I. Define the variation $V_{P}(\gamma)$ of γ over P to be the sum $\sum_{i} \mid \gamma\left(x_{i}\right)-$ $\gamma\left(x_{i-1}\right) \mid$. Then γ is said to be of bounded variation if $\left\{V_{P}(\gamma)\right\}$, as P ranges over the set of all partitions, is bounded, and in this case we define $V(\gamma)$ to be the least upper bound. Let $B V(I)$ denote the set of all functions of bounded variation, and prove the following:

1. If γ is monotone, $\gamma \in B V(I)$. If γ is Lipschitz, for example if γ^{\prime} exists and is bounded, then $\gamma \in B V(I)$.
2. $B V(I)$ is a linear subspace of $B(I)$. If $V(\gamma)=0, f$ is constant. If $B V_{0}(I)$ is the set subset of all $\gamma \in B V(I)$ such that $\gamma(a)=0$, then V defines a norm on $B V_{0}(I)$.
3. $B V(I)$ is exactly the set of all functions on I which can be written as a difference of two monotone functions. (Hint: If $\gamma \in B V(I)$ and $x \in I$, then the restriction γ_{x} of γ to $[a, x]$ is of bounded variation, and $V\left(\gamma_{x}\right)$ is an increasing function of x.
4. It follows from (c) that we can define, for any continuous function f on I and any function γ of bounded variation on I, the integral $\int f d \gamma$. Prove that $\left|\int f d \gamma\right| \leq \| f| | V(\gamma)$.
