We use the notation in the problem.

- 1. Suppose γ is monotone increasing. Then for any partition P, $V_P(\gamma) = \sum_i \gamma(x_i) \gamma(x_{i-1}) = \gamma(b) \gamma(a)$. Thus $V(\gamma) = \gamma(b) \gamma(a)$, so γ is of bounded variation. If γ is monotone decreasing, we can apply a similar argument. Suppose γ is Lipschitz, with constant M. Then for any P, $V_P(\gamma) \leq \sum_i M(x_i x_{i-1}) \leq M(b a)$, and γ is of bounded variation, with $V(\gamma) \leq M(b a)$.
- 2. Suppose that γ_1 and γ_2 are functions, c_1 and c_2 are constants, and P is a partition. Then if $\gamma := c_1 \gamma_1 + c_2 \gamma_2$,

$$V_{P}(\gamma) = \sum_{i} |c_{1}\gamma_{1}(x_{i}) + c_{2}\gamma_{2}(x_{i}) - c_{1}\gamma_{1}(x_{i-1}) - c_{2}\gamma_{2}(x_{i-1})$$

)
$$\leq \sum_{i} |c_{1}|(\gamma_{1}(x_{i}) - c_{1}\gamma_{1}(x_{i-1}))| + \sum_{i} |c_{1}|(\gamma_{1}(x_{i}) - c_{1}\gamma_{1}(x_{i-1}))|$$

$$\leq |c_{1}|V_{P}(\gamma_{1}) + |c_{2}|V_{P}(\gamma_{2})$$

Hence if γ_1 and γ_2 are of bounded variation, so is γ , and $V(\gamma_1 + \gamma_2) \leq V(\gamma_1) + V(\gamma_2)$. Since it is also true that $V(c\gamma) = |c|V(\gamma)$ for any γ , V defines a seminorm on BV. Finally, if $V(\gamma) = 0$, then for any partition $P, \gamma(x_i) = \gamma(x_{i-1})$ for any i, hence γ is constant, and in particular if $\gamma(a) = 0, \gamma = 0$. Thus V defines a norm on BV_0 .

- 3. It follows from the previous parts that any function which the difference between two increasing function has bounded variation. For the converse, we proceed as in the hint. Suppose γ is of bounded variation and for x ∈ [a, b], let γ_x denote the restriction of γ to [a, x]. Then for any partition P of [a, x], P' := P ∪ {b} is a partition of I and V_P(γ_x) ≤ V_{P'}(γ) ≤ V(γ). Thus γ_x is of bounded variation, and V(γ_x) ≤ V(γ). Let α(x) := V(γ_x). If x' > x, the same argument shows that V(γ_x) ≤ V(γ_{x'}) so α is an increasing function. Furthermore, if x' ≥ x, and if P is a partition of [0, x], and P' := P ∪ {x'}, then V_{P'}(γ_{x'}) = V_P(γ_x) + |γ(x') γ(x)| ≥ V_P(γ_x) + γ(x') γ(x). Hence V(γ_{x'}) ≥ V_P(γ_x) for all P, and hence V(γ_{x'}) ≥ V(γ_x)(γ_x) + γ(x') γ(x). This shows that α(x') γ(x') ≥ α(x) γ(x). In other words, β := α γ is also a monotone increasing function, and hence γ = α β is the difference between two such functions.
- 4. Suppose γ is of bounded variation and f is continuous. Write $\gamma = \alpha \beta$, where α and β are increasing. We would like to define $\int f d\gamma$ to be $\int f d\alpha \int f d\beta$. Note that if also $\gamma = \alpha' \beta'$, then $\alpha + \beta' = \alpha' + \beta$,

hence $\int f d\alpha + \int f d\beta' = \int f d\alpha' + \int f d\beta$ and hence $\int f d\alpha - \int f d\beta = \int f d\alpha' - \int f d\beta'$. Thus the expression for $\int f d\gamma$ is independent of the choices and is well-defined. Now if P is any marked partition of I, note that

$$S(P,\gamma) := \sum_{i} f(p_i) \Delta_i \gamma = S(P,\alpha) - S(P,\beta).$$

For sufficiently fine P, $S(P, \alpha)$ and $S(P, \beta)$ become arbitrarily close to $\int f d\alpha$ and $\int f d\beta$, so $S(P, \gamma)$ becomes arbitrarily close to $\int f d\gamma$. On the other hand,

$$|S(P,\gamma)| \le \sum_{i} |f(x_i)| \Delta_i \gamma| \le \sum_{i} ||f|| |\Delta_i \gamma| \le ||f|| V(\gamma).$$

Since this holds for all P, it follows that $|fd\gamma| \leq ||f||V(\gamma)$.