We use the notation in the problem.

1. Suppose γ is monotone increasing. Then for any partition $P, V_{P}(\gamma)=$ $\sum_{i} \gamma\left(x_{i}\right)-\gamma\left(x_{i-1}\right)=\gamma(b)-\gamma(a)$. Thus $V(\gamma)=\gamma(b)-\gamma(a)$, so γ is of bounded variation. If γ is monotone decreasing, we can apply a similar argument. Suppose γ is Lipschitz, with constant M. Then for any $P, V_{P}(\gamma) \leq \sum_{i} M\left(x_{i}-x_{i-1}\right) \leq M(b-a)$, and γ is of bounded variation, with $V(\gamma) \leq M(b-a)$.
2. Suppose that γ_{1} and γ_{2} are functions, c_{1} and c_{2} are constants, and P is a partition. Then if $\gamma:=c_{1} \gamma_{1}+c_{2} \gamma_{2}$,

$$
\begin{aligned}
V_{P}(\gamma) & =\sum_{i} \mid c_{1} \gamma_{1}\left(x_{i}\right)+c_{2} \gamma_{2}\left(x_{i}\right)-c_{1} \gamma_{1}\left(x_{i-1}\right)-c_{2} \gamma_{2}\left(x_{i-1}\right) \\
) & \leq \sum\left|c_{1}\right|\left(\gamma_{1}\left(x_{i}\right)-c_{1} \gamma_{1}\left(x_{i-1}\right)\left|+\sum_{i}\right| c_{1} \mid\left(\gamma_{1}\left(x_{i}\right)-c_{1} \gamma_{1}\left(x_{i-1}\right) \mid\right.\right. \\
& \leq\left|c_{1}\right| V_{P}\left(\gamma_{1}\right)+\left|c_{2}\right| V_{P}\left(\gamma_{2}\right)
\end{aligned}
$$

Hence if γ_{1} and γ_{2} are of bounded variation, so is γ, and $V\left(\gamma_{1}+\gamma_{2}\right) \leq$ $V\left(\gamma_{1}\right)+V\left(\gamma_{2}\right)$. Since it is also true that $V(c \gamma)=|c| V(\gamma)$ for any γ, V defines a seminorm on $B V$. Finally, if $V(\gamma)=0$, then for any partition $P, \gamma\left(x_{i}\right)=\gamma\left(x_{i-1}\right)$ for any i, hence γ is constant, and in particular if $\gamma(a)=0, \gamma=0$. Thus V defines a norm on $B V_{0}$.
3. It follows from the previous parts that any function which the difference between two increasing function has bounded variation. For the converse, we proceed as in the hint. Suppose γ is of bounded variation and for $x \in[a, b]$, let γ_{x} denote the restriction of γ to $[a, x]$. Then for any partition P of $[a, x], P^{\prime}:=P \cup\{b\}$ is a partition of I and $V_{P}\left(\gamma_{x}\right) \leq V_{P^{\prime}}(\gamma) \leq V(\gamma)$. Thus γ_{x} is of bounded variation, and $V\left(\gamma_{x}\right) \leq V(\gamma)$. Let $\alpha(x):=V\left(\gamma_{x}\right)$. If $x^{\prime}>x$, the same argument shows that $V\left(\gamma_{x}\right) \leq V\left(\gamma_{x^{\prime}}\right)$ so α is an increasing function. Furthermore, if $x^{\prime} \geq x$, and if P is a partition of $[0, x]$, and $P^{\prime}:=P \cup\left\{x^{\prime}\right\}$, then $V_{P^{\prime}}\left(\gamma_{x^{\prime}}\right)=V_{P}\left(\gamma_{x}\right)+\left|\gamma\left(x^{\prime}\right)-\gamma(x)\right| \geq V_{P}\left(\gamma_{x}\right)+\gamma\left(x^{\prime}\right)-\gamma(x)$. Hence $V\left(\gamma_{x^{\prime}}\right) \geq V_{P}\left(\gamma_{x}\right)$ for all P, and hence $V\left(\gamma_{x^{\prime}}\right) \geq V\left(\gamma_{x}\right)\left(\gamma_{x}\right)+\gamma\left(x^{\prime}\right)-\gamma(x)$. This shows that $\alpha\left(x^{\prime}\right)-\gamma\left(x^{\prime}\right) \geq \alpha(x)-\gamma(x)$. In other words, $\beta:=\alpha-\gamma$ is also a monotone increasing function, and hence $\gamma=\alpha-\beta$ is the difference between two such functions.
4. Suppose γ is of bounded variation and f is continuous. Write $\gamma=$ $\alpha-\beta$, where α and β are increasing. We would like to define $\int f d \gamma$ to be $\int f d \alpha-\int f d \beta$. Note that if also $\gamma=\alpha^{\prime}-\beta^{\prime}$, then $\alpha+\beta^{\prime}=\alpha^{\prime}+\beta$,
hence $\int f d \alpha+\int f d \beta^{\prime}=\int f d \alpha^{\prime}+\int f d \beta$ and hence $\int f d \alpha-\int f d \beta=$ $\int f d \alpha^{\prime}-\int f d \beta^{\prime}$. Thus the expression for $\int f d \gamma$ is independent of the choices and is well-defined. Now if P is any marked partition of I, note that

$$
S(P, \gamma):=\sum_{i} f\left(p_{i}\right) \Delta_{i} \gamma=S(P, \alpha)-S(P, \beta)
$$

For sufficiently fine $P, S(P, \alpha)$ and $S(P, \beta)$ become arbitrarily close to $\int f d \alpha$ and $\int f d \beta$, so $S(P, \gamma)$ becomes arbitrarily close to $\int f d \gamma$. On the other hand,

$$
|S(P, \gamma)| \leq \sum_{i}\left|f\left(x_{i}\right)\right| \Delta_{i} \gamma\left|\leq \sum_{i}\|f\|\right|\left|\Delta_{i} \gamma\right| \leq\|f\| V(\gamma)
$$

Since this holds for all P, it follows that $|f d \gamma| \leq\|f\| V(\gamma)$.

