1. Let (X, d) be a metric space (or more generally, any Hausdorff topological space). Let A and B be disjoint compact subsets of X. Prove that there exist disjoint open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$.
2. Proof for Hausdorff spaces: Let (a, b) be a point of $A \times B$. Since X is Hausdorff, there exist disjoint neighborhoods $U_{a b}$ of a and $V_{a b}$ of b. Fix b, and consider $\left\{U_{a b}: a \in A\right\}$, which is an open cover of A. Hence there exists a finite number of a_{i} such that $\left\{U_{a_{i}, b}\right\}$ covers A. Let $V_{b}:=\cap V_{a_{i}, b}$. Then V_{b} is a neighborhood of b and doesn't meet $U_{b}:=\cup U_{a_{i}, b}$. Now the set of all V_{b} is an open cover of B, hence has a finite subcover $\left\{V_{b_{1}} \ldots V_{b_{n}}\right\}$. Each $U_{b_{i}}$ is an open set containing A, and hence so is their intersection U. Since $V_{b_{i}} \cap U_{b_{i}}=\emptyset, V_{b_{i}} \cap U=\emptyset$. Hence $V:=\cup V_{b_{i}}$ is an open neighborhood of B which doesn't meet U.
