Pointwise convergence

Let X be a set, let Y be a topological space, and let Y^X denote the set of all functions $f: X \to Y$. Recall that for each $x \in X$ and each open set U in Y, $B(x,U) := \{f \in Y^X : f(x) \in U\}$. Then \mathcal{B} is the set of finite intersections of sets of the form $B(x,U), \mathcal{T}$ is the set of all unions of elements of \mathcal{B} , and \mathcal{T} is a topology on Y^X . A net in (Y^X, \mathcal{T}) converges if and only if for each $x \in X$, the corresponding net in Y converges.

Now suppose Y is **R** with its usual topology and let \mathcal{T} again denote the above topology on $\mathcal{F} := \mathbf{R}^X$.

- 1. If X is finite, \mathcal{T} is the topology associated with the metric sending $f \in \mathcal{F}$ to $\sum_{x} |f(x)|$.
- 2. If X is countable, \mathcal{T} is the topology associated with the metric sending $f \in \mathcal{F}$ to $\sum_{n} 2^{-n} |f(x_n)|$, for any enumeration x. of X.
- 3. If X is uncountable, \mathcal{T} is not associated with any metric, as it does not satisfy the first axiom of countability.

The following exercises elucidate, I hope, (3) above. Let X = [0, 1], for $n \in \mathbf{Z}^+$, let $f_n(x) = \sin(2\pi nx)$, and let $E := \{f_n : n \in \mathbf{Z}^+\}$. (Thanks to G. Bergman and M. Christ for help with these.)

1. The constant function 0 is in the closure of E.

Hint: We have to prove that for every $\epsilon > 0$ and every finite subset S of X, there exists an n such that $|f_n(x)| < \epsilon$ for all $x \in S$. For each $x \in X$, let $z := e^{2\pi i x}$, a complex number of absolute value 1, and note that $f_n(x)$ is the imaginary part of z^n . For each natural number m, let T_m denote the set of m-tuples of complex numbers of absolute value 1 Then it is enough to prove the following result:

Theorem: Let m be a natural number, let $\epsilon > 0$ be any positive number, and let $z \in T_m$ be any point. Then there exists a natural number n > 0 such that $|z^n - 1| < \epsilon$.

To prove this use the fact that T_m is compact to show that the sequence (z^k) has a convergent subsequence. Hence there exist two distinct numbers k, j with z^k and z^j within ϵ of each other.

2. The sequence (f_{\cdot}) has no convergent subsequences. This follows from the following result:

Theorem: Let n, be any strictly increasing sequence of natural numbers and let s, t be any two elements of [-1, 1]. Then there exist an

 $x \in [0, 1]$ and subsequences n'_{\cdot} and n''_{\cdot} of n_{\cdot} such that $f_{n'_k}(x)$ converges to s and $f_{n''_k}(x)$ converges to t.

Hint. First prove:

Claim: Let $J \subseteq [0, 1]$ be a closed interval of length $\delta > 0$ and let y be in [0, 1]. Then for every $n > 1/\delta m$ there exists an $x \in J$ and a $k \in \mathbb{Z}$ such that y = nx + k. Hence for every $n > 1/\delta$ and every $\epsilon > 0$, there exists a closed interval $J' \subseteq J$ of positive length such that for every $x' \in J'$, there exists a $k \in \mathbb{Z}$ such that $|y - nx' - k| < \epsilon$.

Now if n is given, use the claim to construct by induction a subsequence m of n and a nested sequence J of closed subintervals such that for all i, $J_{i+1} \subseteq J_i$, the length of J_i is less than 1/i, and for every $x \in J_i$ there exists k such that $|s - m_i x - k| < 1/i$ if i is odd, and such that $|t - m_i x - k| < 1/i$ if i is even.

Remark: The above argument in fact proves the following statement, which perhaps looks more natural. Let n be any strictly increasing sequence of natural numbers and let s, t be any two complex numbers of absolute value 1. Then there exist a complex number x of absolute value 1 and subsequences n'_{\cdot} and n''_{\cdot} of n such that $f_{n'_{k}}(x)$ converges to s and $f_{n''_{k}}(x)$ converges to t.