Pointwise convergence

Let X be a set, let Y be a topological space, and let Y^{X} denote the set of all functions $f: X \rightarrow Y$. Recall that for each $x \in X$ and each open set U in Y, $B(x, U):=\left\{f \in Y^{X}: f(x) \in U\right\}$. Then \mathcal{B} is the set of finite intersections of sets of the form $B(x, U), \mathcal{T}$ is the set of all unions of elements of \mathcal{B}, and \mathcal{T} is a topology on Y^{X}. A net in $\left(Y^{X}, \mathcal{T}\right)$ converges if and only if for each $x \in X$, the corresponding net in Y converges.

Now suppose Y is \mathbf{R} with its usual topology and let \mathcal{T} again denote the above topology on $\mathcal{F}:=\mathbf{R}^{X}$.

1. If X is finite, \mathcal{T} is the topology associated with the metric sending $f \in \mathcal{F}$ to $\sum_{x}|f(x)|$.
2. If X is countable, \mathcal{T} is the topology associated with the metric sending $f \in \mathcal{F}$ to $\sum_{n} 2^{-n}\left|f\left(x_{n}\right)\right|$, for any enumeration x. of X.
3. If X is uncountable, \mathcal{T} is not associated with any metric, as it does not satisfy the first axiom of countability.

The following exercises elucidate, I hope, (3) above. Let $X=[0,1]$, for $n \in \mathbf{Z}^{+}$, let $f_{n}(x)=\sin (2 \pi n x)$, and let $E:=\left\{f_{n}: n \in \mathbf{Z}^{+}\right\}$. (Thanks to G. Bergman and M. Christ for help with these.)

1. The constant function 0 is in the closure of E.

Hint: We have to prove that for every $\epsilon>0$ and every finite subset S of X, there exists an n such that $\left|f_{n}(x)\right|<\epsilon$ for all $x \in S$. For each $x \in X$, let $z:=e^{2 \pi i x}$, a complex number of absolute value 1 , and note that $f_{n}(x)$ is the imaginary part of z^{n}. For each natural number m, let T_{m} denote the set of m-tuples of complex numbers of absolute value 1 Then it is enough to prove the following result:
Theorem: Let m be a natural number, let $\epsilon>0$ be any positive number, and let $z \in T_{m}$ be any point. Then there exists a natural number $n>0$ such that $\left|z^{n}-1\right|<\epsilon$.
To prove this use the fact that T_{m} is compact to show that the sequence $\left(z^{k}\right)$ has a convergent subsequence. Hence there exist two distinct numbers k, j with z^{k} and z^{j} within ϵ of each other.
2. The sequence $(f$.$) has no convergent subsequences. This follows from$ the following result:
Theorem: Let n. be any strictly increasing sequence of natural numbers and let s, t be any two elements of $[-1,1]$. Then there exist an
$x \in[0,1]$ and subsequences n^{\prime}. and $n^{\prime \prime}$. of n. such that $f_{n_{k}^{\prime}}(x)$ converges to s and $f_{n_{k}^{\prime \prime}}(x)$ converges to t.
Hint. First prove:
Claim: Let $J \subseteq[0,1]$ be a closed interval of length $\delta>0$ and let y be in $[0,1]$. Then for every $n>1 / \delta \mathrm{m}$ there exists an $x \in J$ and a $k \in \mathbf{Z}$ such that $y=n x+k$. Hence for every $n>1 / \delta$ and every $\epsilon>0$, there exists a closed interval $J^{\prime} \subseteq J$ of positive length such that for every $x^{\prime} \in J^{\prime}$, there exists a $k \in \mathbf{Z}$ such that $\left|y-n x^{\prime}-k\right|<\epsilon$.

Now if n. is given, use the claim to construct by induction a subsequence m. of n. and a nested sequence J. of closed subintervals such that for all $i, J_{i+1} \subseteq J_{i}$, the length of J_{i} is less than $1 / i$, and for every $x \in J_{i}$ there exists k such that $\left|s-m_{i} x-k\right|<1 / i$ if i is odd, and such that $\left|t-m_{i} x-k\right|<1 / i$ if i is even.
Remark: The above argument in fact proves the following statement, which perhaps looks more natural. Let n. be any strictly increasing sequence of natural numbers and let s, t be any two complex numbers of absolute value 1 . Then there exist a complex number x of absolute value 1 and subsequences n^{\prime}. and $n^{\prime \prime}$. of n. such that $f_{n_{k}^{\prime}}(x)$ converges to s and $f_{n_{k}^{\prime \prime}}(x)$ converges to t.

