Midterm II Solutions

1. Suppose that f is a differentiable function on $[0,1]$ such that f^{\prime} never vanishes and $f(0)=0$ and $f(1)=1$. Prove that f is strictly increasing.

By the intermediate value theorem for derivatives, f^{\prime} is always positive or always negative. If were always negative, f would be strictly decreasing, by the mean value theorem, contradciting the hypothesis. Hence f^{\prime} is postiive and f is increasing.
2. Let $f:[-1,1] \rightarrow \mathbf{R}$ be a bounded function which is integrable with respect to the function α, where $\alpha(x)=0$ if $x \leq 0$ and $\alpha(x)=1$ if $x>0$. Is f necessarily continuous at 0 ? Proof or counterexample (with a proof that your example works.)

No, f need not be continuous. For example, consider the function f such that $f(x)=0$ if $x<0$ and $f(x)=1$ if $x \geq 0$. Let P be any partion of $[-1,1]$ containing 0 , say $x_{i-1}=0$. Then $\Delta \alpha_{j}=0$ if $i \neq j$, but $m_{i}=M_{i}$ since f is constant on I_{i}. Hence $L(f, P)=U(f, P)=1$ and f is integrable.
3. Let X and Y be metric spaces and let $f: X \rightarrow Y$ be a continuous function.
(a) Prove that f is uniformly continuous if X is compact, directly from the definition of compactness.
If $\epsilon>0$, then for each $x \in X$ there is a δ_{x} such that $d\left(f(x), f\left(x^{\prime}\right)\right)<$ ϵ if $d\left(x^{\prime}, x\right) \leq \delta_{x}$. Since X is compact, there is a finite set of x_{i} such that the set of balls of the form $B_{\delta_{x_{i}} / 2}$ covers X. Let δ be the minimum of these radii and let x and x^{\prime} be two points of X with $d\left(x, x^{\prime}\right)<\delta$. Then there exists some i such that $x \in B_{\delta_{x_{i}} / 2}$ Since $d\left(x, x^{\prime}\right)<\delta_{x_{i}} / 2, x^{\prime} \in B_{\delta_{x_{i}}}$. Hence $d\left(f(x) f,\left(x_{i}\right)\right)<\epsilon$ and $d\left(f\left(x^{\prime}\right), f\left(x_{i}\right)\right)<\epsilon$, so $d\left(f(x), f\left(x^{\prime}\right)<2 \epsilon\right.$.
(b) Show by example that f need not be uniformly continuous if X is not compact, even if Y is bounded. You need not prove your example works.
The function $\sin (1 / x)$ for $x \in[1, \infty)$ is an example.
4. For which values of $x \in \mathbf{C}$ and $s \in \mathbf{R}$ does the series $\sum x^{n} n^{-s}$ converge absolutely, converge conditionally, or diverge? Explain and justify each case.

If $|x|<1$, then for any s, the series converges absolutely. Indeed, if $x=0$ this is trivial, and if $x>0$ the ratio of two successive terms is $|x|(1+1 / n)^{s}$, which approaches $|x|$. Thus the ratio test applies.

If $|x|>1$, the series diverges, as the ratio test above shows.
If $|x|=1$ and $s \leq 0$, the nth term doesn't approach zero, so the series diverges.

If $x=1$ and $x \in(0,1)$, Cauchy's test applies. Namely, $\sum_{k} 2^{k}\left(2^{-k s}\right)$ becomes a geometric series with ratio 2^{1-s}, which diverges if $s \leq 1$ and converges if $s>1$, so the same is true of the original series.

Suppose $|x|=1$ but $x \neq 1$. Then the series converges absolutely if $s>1$ by the previous part. It remains only to prove that it converges (hence conditionally) if $s \in(0,1]$. This follows from Abel's theorem. Namely, the sequence of partial sums of the series $\sum x^{n}$ is bounded, and the sequence n^{-s} goes to zero.

