Midterm II Solutions

1. Suppose that f is a differentiable function on [0, 1] such that f' never vanishes and f(0) = 0 and f(1) = 1. Prove that f is strictly increasing.

By the intermediate value theorem for derivatives, f' is always positive or always negative. If were always negative, f would be strictly decreasing, by the mean value theorem, contradciting the hypothesis. Hence f' is postiive and f is increasing.

2. Let $f: [-1,1] \to \mathbf{R}$ be a bounded function which is integrable with respect to the function α , where $\alpha(x) = 0$ if $x \leq 0$ and $\alpha(x) = 1$ if x > 0. Is f necessarily continuous at 0? Proof or counterexample (with a proof that your example works.)

No, f need not be continuous. For example, consider the function f such that f(x) = 0 if x < 0 and f(x) = 1 if $x \ge 0$. Let P be any partial of [-1, 1] containing 0, say $x_{i-1} = 0$. Then $\Delta \alpha_j = 0$ if $i \ne j$, but $m_i = M_i$ since f is constant on I_i . Hence L(f, P) = U(f, P) = 1 and f is integrable.

- 3. Let X and Y be metric spaces and let $f: X \to Y$ be a continuous function.
 - (a) Prove that f is uniformly continuous if X is compact, directly from the definition of compactness. If $\epsilon > 0$, then for each $x \in X$ there is a δ_x such that $d(f(x), f(x')) < \epsilon$ if $d(x', x) \leq \delta_x$. Since X is compact, there is a finite set of x_i such that the set of balls of the form $B_{\delta_{x_i}/2}$ covers X. Let δ be the minimum of these radii and let x and x' be two points of Xwith $d(x, x') < \delta$. Then there exists some i such that $x \in B_{\delta_{x_i}/2}$ Since $d(x, x') < \delta_{x_i}/2$, $x' \in B_{\delta_{x_i}}$. Hence $d(f(x,)f(x_i)) < \epsilon$ and $d(f(x'), f(x_i)) < \epsilon$, so $d(f(x), f(x') < 2\epsilon$.
 - (b) Show by example that f need not be uniformly continuous if X is not compact, even if Y is bounded. You need not prove your example works.

The function sin(1/x) for $x \in [1, \infty)$ is an example.

4. For which values of $x \in \mathbf{C}$ and $s \in \mathbf{R}$ does the series $\sum x^n n^{-s}$ converge absolutely, converge conditionally, or diverge? Explain and justify each case.

If |x| < 1, then for any *s*, the series converges absolutely. Indeed, if x = 0 this is trivial, and if x > 0 the ratio of two successive terms is $|x|(1+1/n)^s$, which approaches |x|. Thus the ratio test applies.

If |x| > 1, the series diverges, as the ratio test above shows.

If |x| = 1 and $s \le 0$, the *n*th term doesn't approach zero, so the series diverges.

If x = 1 and $x \in (0, 1)$, Cauchy's test applies. Namely, $\sum_k 2^k (2^{-ks})$ becomes a geometric series with ratio 2^{1-s} , which diverges if $s \leq 1$ and converges if s > 1, so the same is true of the original series.

Suppose |x| = 1 but $x \neq 1$. Then the series converges absolutely if s > 1 by the previous part. It remains only to prove that it converges (hence conditionally) if $s \in (0, 1]$. This follows from Abel's theorem. Namely, the sequence of partial sums of the series $\sum x^n$ is bounded, and the sequence n^{-s} goes to zero.