Midterm I

1. Define the following terms. Be as precise as you can.
(a) An open subset of a metric space.

A subset U of a metric space is open if every for $p \in U$, there exists an open ball around p contained in U.
(b) A compact subset of a metric space.

A compact subset of a metric space is a set for which every open cover has a finite subcover.
(c) A convergent sequence in a metric space.

A sequence x. coverges to x if x. is eventually in every neighborhood W of x, that is, if for every W, there exists an N such that $x_{n} \in W$ for all $n \geq N$.
(d) A limit point of a subset of a metric space.

A point x is a limit point of E if every neighborhood of x meets E in some point other than x.
2. Give an example of the following, or prove that no such example exists. If you give an example, prove that it works.
(a) A nonempty bounded subset of the reals with no maximum.

The set $(0,1)$ is nonempty and bounded and has no maximum.
Indeed, if $x \in(0,1)$, then $x<1$, but $\frac{1+x}{2} \in(0,1)$ and is greater than x.
(b) An uncountable subset of the reals with no limit point.

Every uncountable subset E of \mathbf{R} has a limit point. Indeed, if E is such a set, then for some n, the set $E_{n}:=E \cap[n, n+1]$ is infinite. Since $[n, n+1]$ is compact, E_{n} has a limit point.
(c) A nonempty proper subset of the closed interval $[0,1]$ which is both open and closed. Do not use a theorem which makes the proof trivial.
No such set exists. Suppose A is a nonempty subset of $[0,1]$ which is both open and closed. Since it is nonempty and bounded, it has a supremum, call it c. Since A is closed, $c \in A$. If $c<1$, then since A is open, it contains a neighborhood of c, hence a point which is larger than c, a contradiction. This shows that $1 \in A$. If the complement of A were not empty, the same argument would show that it would also contain 1. Contradiction.
3. (Zeno). Suppose the sequence x. is defined inductively as follows. $x_{0}=$ 0 and x_{n+1} is half way between x_{n} and 1 .
(a) Prove that the limit of x. exists.

It is clear that x. is an increasing and bounded sequence, hence has a limit.
(b) Evaluate the limit of x.

This limit must be 1.
(c) Prove that your answer in part b is correct.

We have $x_{n+1}=\frac{x_{n}+1}{2}$. Since limits are compatible with sums and subsequences, $x=\frac{x+1}{2}$, where x is the limit. Hence $x=1$.

