1. Prove that very compact connected subset of \mathbf{R} is a closed interval.
2. Prove that S^{1} is compact and connected. Let $e:[0,2 \pi] \rightarrow S^{1}$ be defined by $\theta \mapsto(\cos \theta, \sin \theta)$. You may use the fact that e is surjective and continuous, and that its restriction to $[0,2 \pi)$ is injective.
3. Suppose that x and y are two distinct points of S^{1}. Prove that S^{1} can be written as a union of two sets A and B, with $A \cap B=\{x, y\}$, and each of which is compact and connected.
4. Let $f: S^{1} \rightarrow \mathbf{R}$ be a continuous map. Prove that the image of f is a closed interval, say $[a, b]$. Prove that for each $c \in(a, b)$, there exist at least two points z of S^{1} with $f(z)=c$.
