The circle remains unbroken

- 1. Prove that very compact connected subset of **R** is a closed interval.
- 2. Prove that S^1 is compact and connected. Let $e: [0, 2\pi] \to S^1$ be defined by $\theta \mapsto (\cos \theta, \sin \theta)$. You may use the fact that e is surjective and continuous, and that its restriction to $[0, 2\pi)$ is injective.
- 3. Suppose that x and y are two distinct points of S^1 . Prove that S^1 can be written as a union of two sets A and B, with $A \cap B = \{x, y\}$, and each of which is compact and connected.
- 4. Let $f: S^1 \to \mathbf{R}$ be a continuous map. Prove that the image of f is a closed interval, say [a, b]. Prove that for each $c \in (a, b)$, there exist at least two points z of S^1 with f(z) = c.