Mathematics 254a Exercises

November 2, 2007

1. Determine when the class number of $\mathbf{Q}(\sqrt{m})$ is one when m is among

$$
2,3,5,7,173,437,-1,-23,-7,-11,-19,-43,-67,-163
$$

(Just do some of these.)
2. Show that the ideal class group of $\mathbf{Q}(\sqrt{-23})$ is cyclic of order three.
3. Show that the ideal class group of $\mathbf{Q}(\sqrt{-39})$ is cyclic of order four, while the ideal class group of $\mathbf{Q}(\sqrt{-21})$ is the Klein four group.
4. Show that the class number of $\mathbf{Q}(\sqrt[3]{2})$ is one.
5. Let E be a numberfield with ring of integers \mathcal{O}_{E}. Show that there is a finite extensions E^{\prime} of E such that for every ideal I of \mathcal{O}_{E}, the ideal $I_{\mathcal{O}_{E}^{\prime}}$ is principal. Hint: If $I^{n}=\left(a \mathcal{O}_{E}\right)$, adjoin the nth root of a.
6. Let E be a real quadratic field, i.e. $E=\mathbf{Q}(\sqrt{m})$, where m is positive and square free. Then the group of units modulo ± 1 is cyclic, and so there is a unique positive unit which generates the free part. This unit is called the fundamental unit of E. Suppose $m \cong 2$ or 3 modulo 4 , and let b be the smallest integer such that $m b^{2} \pm 1$ is a square, say a^{2}, with $a>0$. Show that $a+b \sqrt{m}$ is the fundamental unit of E. Find an analogous statement when $m \cong 1 \bmod 4$. Compute the fundamental unit e.g. with $m=7$. If you have a computer, do some more.

