Mathematics 254a Exercises

September 7, 2007

- 1. Let $\theta: A \to B$ be a ring homomorphism. Let $f: T \to S$ be the map Spec $B \to$ Spec A corresponding to θ . Prove that if I is an ideal of A and Z(I) is the corresponding closed subset of S, then $f^{-1}(Z(I))$ is the set Z(IB), where IB is the ideal of B generated by the image of I under θ . Show that if P is a prime ideal of A, the evident map Spec $B \otimes k(P) \to$ Spec B is injective, and its image is precisely the set of prime ideals of B which lie over A. (Recall that k(P) is the fraction field of A/P.)
- 2. Let k be a field. Classify all the two dimensional k-algebras B. Show that B/k is isomorphic to a field, to a product of two copies of k, or to $k[e]/(e^2)$. How does this relate to our study of $\mathbf{Z} \to \mathbf{Z}[i]$?