There are 5 problems on this exam, with 12 parts in all. All problems have short solutions, except (5b). Work efficiently. If you don't know how to attack a problem, go on and come back to it later.
(1a) 7 points. Use limit rules to evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$. Show your steps.
(1b) 3 points. Let $f(x)=\sqrt{x}$, with its natural domain. Does $f^{\prime}(9)$ exist? Justify very briefly. You may use problem (1a)!
(2a) 6 points. Let $f(x)=\frac{(x-2)(x-4)(x-8)}{3(x-1)(x-2)(x-8)}$, with its natural domain. Find all asymptotes of the graph of f. (You need not sketch the graph, just indicate the types and locations of the asymptotes.)
(2b) 6 points. Find $\lim _{x \rightarrow 0} x^{2} \sin \left(e^{1 / x}\right)$. Justify your answer briefly, using any limit rules or theorems from this course.
(3) 6 points. Show that there is at least one real number x which satisfies $x^{6}=$ $1+\sin (x)$.
Short answer questions. Only very brief answers are required for these questions. You need not show your work or reasoning. Each part is worth 2 points.
(4a) Let $t>0$. How is $\log _{r}(2)$ defined?
(4b) Let $f(x)=\tan (x)$ with domain $\left(-\pi,-\frac{\pi}{2}\right)$. Does f have an inverse? If so, what are the domain and range of the inverse function?
(4c) If some vertical line intersects a graph at more than one point, what does this say about the graph?
(4d) Simplify: $\ln (5 e \sqrt{x})$, assuming that $x>0$.
(4e) If the domain of f contains $(-1,1)$, and if f is continuous at 0 , must $f^{\prime}(0)$ exist? Either explain in words why it must exist, or give an example of a function for which it does not exist.
(5a) 5 points. Let $f(x)=x^{2}$. Find $\delta>0$ such that $|f(x)-36|<\frac{1}{1000}$ whenever $|x-6|<\delta$, and show your reasoning in full detail. You need not simplify any numbers which arise, and there is no penalty if your δ is smaller than necessary.
(5b) 7 points. Show, using the precise definition of a limit, that

$$
\lim _{x \rightarrow \frac{1}{3}}\left(9 x-\frac{1}{x}\right)=0
$$

(Here"show" means "prove".)

