Zeroes and Poles of Zeta functions

The following is a "baby" version of the classic argument of Hadmard and de la Vallée Poussin, later generalized by Deligne in his second proof of the Weil conjectures.

Let $\left(\alpha_{i}\right)$ and $\left(\beta_{i}\right)$ be two finite sequences of complex numbers, with $\alpha_{i} \neq$ β_{j} for all i and j. Let

$$
Z(T):=\prod \frac{1-\alpha_{i} T}{1-\beta_{i} T} .
$$

Let

$$
f(T):=\frac{T Z^{\prime}(T)}{Z(T)}=\sum_{i}\left(\frac{\beta_{i} T}{1-\beta_{i} T}-\frac{\alpha_{i} T}{1-\alpha_{i} T}\right) .
$$

Then

$$
f(T)=\sum_{n \geq 1} a_{n} T^{n}, \quad \text { where } \quad a_{n}=\sum_{i} \beta_{i}^{n}-\alpha_{i}^{n} .
$$

Let $b: \max \left(\left|\beta_{i}\right|\right)$ and $a:=\max \left(\left|\alpha_{i}\right|\right)$.
Theorem: Suppose $a_{n} \geq 0$ for all n. Then $b \geq a$. Furthermore, if r is the cardinality of the set of i with $\alpha_{i}=b$ and s is the cardinality of the set of i with $\left|\beta_{i}\right|=b$, then $r \leq s$. If $s=1$ and $\left|\beta_{i}\right|=b$, then in fact $\beta_{i}=b$. In this case if also $r=1$, and $\left|\alpha_{j}\right|=b$, then $\alpha_{j}=-b$.

Lemma: Let $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be a finite sequence of complex numbers of absolute value 1 . Then there exists an increasing sequence of natural numbers $\left(n_{k}\right)$ such that $\left(\lambda_{i}^{n_{k}}\right)$ tends to 1 for all i.

Proof: The set of $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is a compact topological space, namely $\left(\mathbf{S}^{1}\right)^{r}$. Hence the sequence $\left(\lambda^{m}\right)$ has a convergent subsequence $\left(m_{j}\right)$. This sequence is Cauchy. So for every number i, there is a number K_{i} such that

$$
\left\|\lambda^{m_{j}}-\lambda^{m_{k}}\right\|<1 / i
$$

whenever j and k are at least K_{i}, (where $\|\|$ means for example the sup norm). Then $\left\|\lambda^{m_{j}-m_{k}}-1\right\|<1 / i$ for $j, k \geq K_{i}$. In particular, if $n_{1}:=$ $m_{K_{1}+1}-m_{K_{1}}$, then $\left\|\lambda^{n_{1}}-1\right\|<1$. Suppose that $n_{1}<n_{2}<\cdots<n_{i}$ have been chosen so that $\left\|\lambda^{n_{j}}-1\right\|<1 / j$ for $j \leq i$. Let

$$
n_{i+1}:=m_{K_{i+1}+n_{i}+1}-m_{K_{i+1}} .
$$

Then $n_{i+1}>n_{i}$ and $\left\|\lambda^{n_{i+1}}-1\right\|<1 /(i+1)$. Thus we have constructed the desired sequence by induction.

To prove the theorem, let $m:=\max (a, b)$. We assume that $m>0$, and dividing by m, we may assume that $m=1$. Let r be the number of i such that $\alpha_{i}=m$ and s the number of i such that $\beta_{i}=m$. Then for all k,

$$
a_{n_{k}}=\sum_{i} \beta_{i}^{n_{k}}-\alpha_{i}^{n_{k}} \geq 0 .
$$

Taking the limit as k tends to infinity, we see that each term converges to zero except for those with absolute value 1, which converge to 1 . Hence the limit of $a_{n_{k}}$ is $s-r$. This implies that $s-r \geq 0$, hence that $b \geq a$.

Now suppose that $s=1$ and $\left|\beta_{1}\right|=b$. Again we assume without of generality that $b=1$. Assume first that $r=0$. We have $a_{n}=\beta_{1}^{n}+\epsilon_{n}$, where ϵ_{n} tends to zero. By the lemma we find a sequence $\left(n_{k}\right)$ such that $\beta_{1}^{n_{k}}$ converge to 1 . Then $\beta^{n_{k}+1}$ converges to β and hence $a_{n_{k}+1}=\beta^{n_{k}+1}+\epsilon_{n_{k}+1}$ converges to β. Since $a_{n_{k}+1}$ is always real and nonnegative it follows that β is also. Hence $\beta=b$. Now suppose that $r=1$. By a similar argument, we find a sequence $\left(n_{k}\right)$ such that $\alpha_{1}^{n_{k}}$ and $\beta_{1}^{n_{k}}$ converge to 1 . Then

$$
a_{n_{k}+1}=\beta^{n_{k}+1}-\alpha^{n_{k}+1}+\epsilon_{n_{k}+1}
$$

converges to $\beta-\alpha$ and

$$
a_{n_{k}+2}=\beta^{n_{k}+2}-\alpha^{n_{k}+2}+\epsilon_{n_{k}+2}
$$

converges to $\beta^{2}-\alpha^{2}$. It follows that $\beta-\alpha$ and $\beta^{2}-\alpha^{2}$ are real and nonnegative. Hence $\beta+\alpha$ is also real, and hence α and β are real. Thus β and α are both plus or minus 1 , and $\alpha=-\beta$. Since $\beta \geq \alpha$, it is β that is positive.

Corollary Let X / \mathbf{F}_{q} be a smooth, proper, and geometrically connected curve of genus g. Let a_{n} be the number of $\mathbf{F}_{q^{n}}$-valued points of X / \mathbf{F}_{q}. Then $\left|\alpha_{i}\right|<q$ for all i, and there exists an $r<1$ such that

$$
\left|a_{n}-\left(q^{n}+1\right)\right| \leq 2 g q^{n r}
$$

for all $n \geq 1$.
Proof: We know that $a_{n}=1+q^{n}-\sum \alpha_{i}^{n}$ for all $n \geq 1$. The theorem says that all $\left|\alpha_{i}\right|$ are less than $|q|$, except for the possibility that for one i, $\alpha_{i}=-q$. But we know this can't happen-by making a base change to $\mathbf{F}_{q^{2}}$, for example. Hence $\left|\alpha_{i}\right|<q$ for all i. The result follows.

Corollary Let $\pi: X \rightarrow Y$ be a separable morphism of degree 2 of smooth projective curves over $P \mathbf{F}_{p}$. For each n let a_{n}^{+}be the cardinality of the set of $y \in Y\left(\mathbf{F}_{q}^{n}\right)$ with two inverse images in $X\left(\mathbf{F}_{q^{n}}\right)$ and let a_{n}^{-}be the cardinality
of the set of y with no inverse images, and let a_{n} be the cardinality of the set of all points in $Y\left(\mathbf{F}_{q^{n}}\right)$. Then

$$
\lim \frac{a_{n}^{+}}{a_{n}}=\lim \frac{a_{n}^{-}}{a_{n}}=1 / 2
$$

Proof: Let $a_{n}(X)$ be the cardinaliy of $X\left(\mathbf{F}_{q^{n}}\right)$. For each $y \in Y\left(\mathbf{F}_{q^{n}}\right.$, let c_{y} be the cardinlaity of $\pi^{-1}(y)$. Then $c_{y} \in\{0,1,2\}$. Furthermore $c_{y}=1$ if and only if y is ramified, and the total number a_{n}^{0} of such points is uniformly bounded. Hence:

$$
a_{n}(X)=\sum_{y} c_{y}=\sum_{y}\left(c_{y}-1\right)+a_{n}(Y)=a_{n}^{+}-a_{n}^{-}+a_{n}(Y)
$$

Write $a_{n}(X)=q^{n}+\epsilon_{n}(X)$ and $a_{n}(Y)=q^{n}+\epsilon_{n}(Y)$. Then

$$
\begin{gathered}
a_{n}^{+}-a_{n}^{-}=\epsilon_{n}(X)-\epsilon_{n}(Y) \text { and } \\
a_{n}^{+}+a_{n}^{-}=a_{n}(Y)+a_{n}^{0} .
\end{gathered}
$$

Our estimates imply that $\epsilon_{n}(X) / a_{n}(Y)$ and $\epsilon_{n}(Y) / a_{n}(Y)$ tend to zero with n, where ϵ_{n} means either $\epsilon_{n}(X)$ or $\epsilon_{n}(Y)$. Moreover a_{n}^{0} is bounded. It follows that

$$
\lim \frac{a_{n}^{+}-a_{n}^{-}}{a_{n}}=0 \text { and } \lim \frac{a_{n}^{+}+a_{n}^{-}}{a_{n}}=1 .
$$

The theorem follows.

