Regular local rings

Let A be a noetherian local ring, with maximal ideal m and residue field k. Then for each i, A/m^{i+1} as an A-module of finite length, $\ell_A(i)$. In fact for each i, m^i/m^{i+1} is a is a finite dimensional k-vector space, and $\ell_A(i) = \sum dim(m^j/m^{j+1}): j \leq i$. It turns out that there is a polynomial p_A with rational coefficients such that $p_A(i) = \ell_A(i)$ for i sufficiently large. Let d_A be the degree of p_A . The main theorem of dimension theory is the following:

Theorem 1 Let A be a noetherian local ring. Then d_A is the Krull dimension of A, and this number is also the minimal length of a sequence (a_1, \ldots, a_d) of elements of m such that m is nilpotent moduloo the ideal generated by (a_1, \ldots, a_d) .

Corollary 2 If A is a noetherian local ring and a is an element of the maximal ideal of A, then

$$\dim(A/(a)) \ge \dim(A) - 1,$$

with equality if a does not belong to any minimal prime of A (if and only if a does not belong to any of the minimal primes which are at the bottom of a chain of length the dimension of A).

Proof: Let (a_1, \ldots, a_d) be sequence of elements of m lifting a minimal sequence in m/(a) such that m is nilpotent modulo (a). Then d is the dimension of A/(a). But now (a_0, a_1, \ldots, a_d) is a sequence in m such that m is nilpotent. Hence the dimension of A is at most d + 1.

Let A be a noetherian local ring and let $\operatorname{Gr}_m A := \oplus m_i/m^{i+1}$ which forms a graded k-algebra, generated in degree one by $V := m/m^2$. Then there is a natural surjective map

(*)
$$S'V \to \operatorname{Gr}_m A.$$

If d is the dimension of V then the dimension of $S^i V$ is just the number of monomials of degree i in d variables, which is easily seen to be $\binom{d+i-1}{i}$ if $i \ge 0$. This is a polynomial of degree d-1. It follows that the dimension of $\operatorname{Gr}_m A$ is at most $\binom{d+i-1}{i}$ and hence that $\ell_A(i)$ is bounded by a polynomial of degree d. It follows that the dimension of A is less than or equal to the dimension of the k-vector space V.

Definition 3 Let A be a noetherian local ring with maximal ideal m and Krull dimension d. Then d is less than or equal to the dimension of m/m^2 , and the ring is said to be regular if equality holds, and in this case (*) is an isomorphism and A is an integral domain.

Proof: Note that $S^{\cdot}V$ is an integral domain. Suppose (*) is not surjective; choose a nonzer $f \in S^r V$ in the kernel K of (*). Then multiplication by f defines an injective map $S^{i-r}V \to K \cap S^i$, and it follows easily that the dimension of the quotient $\operatorname{Gr}^i A$ is less than or equal to $\binom{d+i-1}{i} - \binom{d+i-r-1}{i-r}$, a polynomial of degree d-1, so A is not regular. On the other hand, if A is regular, (*) is an isomorphism, so $\operatorname{Gr}_m A$ is an integral domain. \Box

Proposition 4 Let B be a regular local ring with maximal ideal m, and A := B/I, where I is a proper ideal of B. Then A is regular if and only if $I \cap m^2 = mI$, that is, if and only if the map $I/mI \to m/m^2$ is injective.

Proof: Let $\overline{m} := m/m \cap I$ the maximal ideal of A, and let $\overline{V} := \overline{m}/\overline{m}^2$. Then we get a diagram

Since B is regular, the middle vertical arrow is bijective. Then A is regular if and only if the map on the right is injective, which is true if and only if the map on the left is surjective. Since K is generated in degree one and the map is an isomorphism in degree one, A is regular if and only if $\operatorname{Gr}_m I$ is generated in degree one. The degree i term of $\operatorname{Gr}_m I$ is $I \cap m^i/I \cap m^{i+1}$, so regularity of A is equivalent to saying that $I \cap m^i \subseteq Im^{i-1} + I \cap m^{i+1}$ for all i. If this is true, then we see by induction that $I \cap m^2 \subseteq Im + I \cap m^{i+1}$ for all i. The Artin–Rees lemma says that $I \cap m^2 = Im$. Conversely, say $I \cap m^2 = Im$, and choose elements $(x_1, \ldots x_r)$ of I lifting a basis of $I \cap m^2$. Then the dimension of $\overline{m}/\overline{m}^2$ is N - r, where N is the dimension of B. However, since $(x_1, \ldots x_r)$ generates I/mI it follows from Nakayama that it also generates I, and then that the dimension of A is at least N - r. But then we have equality, hence A is regular.

Theorem 5 Let k be an algebraically closed field and let X/k be a scheme of finite type, and let x be a closed point of X. Then the following conditions are equivalent:

- 1. The local ring $\mathcal{O}_{X,x}$ is regular.
- 2. There is an open neighborhood U of x which is smooth over k.

Proof: We may assume without loss of generality that X is affine, say Spec A, where A is the quotient of a polynomial ring B over k by an ideal I. Let Z := Spec B and let m be the maximal ideal of B corresponding to the point $x \in X \subseteq Z$. Since the local ring B_m is regular, Proposition 4 says that A_m is regular if and only if the map $I/mI \to m/m^2$ is injective. Since x is a krational point of Z, the differential induces an isomorphism $m/m^2 \to \Omega_{Z/k}(x)$, and Corollary 3 now says that this injectivity is equivalent to (2).

Corollary 6 If X/k is of finite type over an algebraically closed field k, then the set of points of x such that $\mathcal{O}_{X,x}$ is regular is open. *Proof:* To prove this we need to check that any localization of a regular local ring is regular, which we cannot do here. \Box