Regular local rings

Let A be a noetherian local ring, with maximal ideal m and residue field
k. Then for each i, A/m'*t! as an A-module of finite length, £4(i). In fact
for each i, m‘/m'*! is a is a finite dimensional k-vector space, and £4(i) =
Sodim(m? /m?th) 1 j <i. Tt turns out that there is a polyonomial p4 with
rational coefficients such that pa(i) = £4(i) for i sufficiently large. Let d4 be
the degree of p4. The main theorem of dimension theory is the following;:

Theorem 1 Let A be a noetherian local ring. Then d 4 is the Krull dimension
of A, and this number is also the minimal length of a sequence (a1, . ..aq) of ele-
ments of m such that m is nilpotent moduloo the ideal generated by (a1, ...,aq).

Corollary 2 If A is a noetherian local ring and a is an element of the maximal
ideal of A, then
dim(A/(a)) > dim(A) — 1,

with equality if a does not belong to any minimal prime of A (if and only if a
does not belong to any of the minimal primes which are at the bottom of a chain
of length the dimension of A).

Proof: Let (ay,...,aq) be sequence of elements of m lifting a minimal sequence
in m/(a) such that m is nilpotent modulo (a). Then d is the dimension of A/(a).
But now (ag, a1, ...,aq) is a sequence in m such that m is nilpotent. Hence the
dimension of A is at most d + 1. O

Let A be a noetherian local ring and let Gr,, A := ®&m;/ m**t! which forms
a graded k-algebra, generated in degree one by V := m/m?. Then there is a
natural surjective map
() SV — Grp, A.

If d is the dimension of V then the dimension of SV is just the number of
monomials of degree i in d variables, which is easily seen to be (d+§71) if¢ > 0.
This is a polynomial of degree d — 1. It follows that the dimension of Gr,, A is
at most (d+2_1) and hence that £4(i) is bounded by a polynomial of degree d.
It follows that the dimension of A is less than or equal to the dimension of the
k-vector space V.

Definition 3 Let A be a noetherian local ring with mazximal ideal m and Krull
dimension d. Then d is less than or equal to the dimension of m/m?, and the
ring is said to be regular if equality holds, and in this case (*) is an isomorphism
and A is an integral domain.

Proof: Note that S'V is an integral domain. Suppose (*) is not surjective;
choose a nonzer f € S™V in the kernel K of (*). Then multiplication by f defines
an injective map S*~"V — K NS¢, and it follows easily that the dimension of
the quotient Gr’ A is less than or equal to (d+§_1) — (d+2::_1), a polynomial of
degree d — 1, so A is not regular. On the other hand, if A is regular, (*) is an
isomorphism, so Gr,, A is an integral domain. One concludes easily that A is

also an integral domain. O



Proposition 4 Let B be a reqular local ring with maximal ideal m, and A :=
B/1, where I is a proper ideal of B. Then A is regular if and only if INm? = mI,
that is, if and only if the map I/mI — m/m? is injective.

Proof: Let m := m/m NI the maximal ideal of A, and let V :=m/m>. Then
we get a diagram

0 0

Gfm,[;’GI‘mB‘ > GrmA

Since B is regular,the middle vertical arrow is bijective. Then A is regular
if and only if the map on the right is injective, which is true if and only if the
map on the left is surjective. Since K is generated in degree one and the map
is an isomorphism in degree one, A is regular if and only if Gr,, I is generated
in degree one. The degree i term of Gr,, I is I Nm*/I N m** so regularity
of A is equivalent to saying that I Nm’ C Im* ™! + I Nnm™*! for all 4. If this
is true, then we see by induction that I N m2 C Im+ I Nnm‘*! for all i. The
Artin—Rees lemma says that I N m‘T! C mI for i sufficiently large, so we can
conlude I N'm? C I'm, hence I N m? = I'm. Conversely, say I N m? = I'm, and
choose elements (x1,...x,) of I lifting a basis of I N'm?. Then the dimension
of m/m? is N — r, where N is the dimension of B. However, since (z1,...,)
generates I/ml it follows from Nakayama that it also generates I, and then
that the dimension of A is at least N — r. But then we have equality, hence A
is regular.

O

Theorem 5 Let k be an algebraically closed field and let X/k be a scheme of
finite type, and let x be a closed point of X. Then the following conditions are
equivalent:

1. The local ring Ox 4 is reqular.

2. There is an open neighborhood U of x which is smooth over k.

Proof: 'We may assume without loss of generality that X is affine, say Spec A,
where A is the quotient of a polynomial ring B over k by an ideal I. Let
Z = Spec B and let m be the maximal ideal of B corresponding to the point
x € X C Z. Since the local ring B,, is regular, Proposition 4 says that A,,
is regular if and only if the map I/mI — m/m? is injective. Since z is a k-
rational point of Z, the differential induces an isomoprhism m/m? — 7/k(),
and Corollary 3 now says that this injectivity is equivalent to (2). O

Corollary 6 If X/k is of finite type over an algebraically closed field k, then
the set of points of x such that Ox , is regular is open.



Proof: To prove this we need to check that any localization of a regular local
ring is regular, which we cannot do here. O



