
Regular local rings

Let A be a noetherian local ring, with maximal ideal m and residue field
k. Then for each i, A/mi+1 as an A-module of finite length, `A(i). In fact
for each i, mi/mi+1 is a is a finite dimensional k-vector space, and `A(i) =∑

dim(mj/mj+1) : j ≤ i. It turns out that there is a polyonomial pA with
rational coefficients such that pA(i) = `A(i) for i sufficiently large. Let dA be
the degree of pA. The main theorem of dimension theory is the following:

Theorem 1 Let A be a noetherian local ring. Then dA is the Krull dimension
of A, and this number is also the minimal length of a sequence (a1, . . . ad) of ele-
ments of m such that m is nilpotent moduloo the ideal generated by (a1, . . . , ad).

Corollary 2 If A is a noetherian local ring and a is an element of the maximal
ideal of A, then

dim(A/(a)) ≥ dim(A)− 1,

with equality if a does not belong to any minimal prime of A (if and only if a
does not belong to any of the minimal primes which are at the bottom of a chain
of length the dimension of A).

Proof: Let (a1, . . . , ad) be sequence of elements of m lifting a minimal sequence
in m/(a) such that m is nilpotent modulo (a). Then d is the dimension of A/(a).
But now (a0, a1, . . . , ad) is a sequence in m such that m is nilpotent. Hence the
dimension of A is at most d + 1.

Let A be a noetherian local ring and let Grm A := ⊕mi/mi+1 which forms
a graded k-algebra, generated in degree one by V := m/m2. Then there is a
natural surjective map

(∗) S·V → Grm A.

If d is the dimension of V then the dimension of SiV is just the number of
monomials of degree i in d variables, which is easily seen to be

(
d+i−1

i

)
if i ≥ 0.

This is a polynomial of degree d− 1. It follows that the dimension of Grm A is
at most

(
d+i−1

i

)
and hence that `A(i) is bounded by a polynomial of degree d.

It follows that the dimension of A is less than or equal to the dimension of the
k-vector space V .

Definition 3 Let A be a noetherian local ring with maximal ideal m and Krull
dimension d. Then d is less than or equal to the dimension of m/m2, and the
ring is said to be regular if equality holds, and in this case (*) is an isomorphism
and A is an integral domain.

Proof: Note that S·V is an integral domain. Suppose (*) is not surjective;
choose a nonzer f ∈ SrV in the kernel K of (*). Then multiplication by f defines
an injective map Si−rV → K ∩ Si, and it follows easily that the dimension of
the quotient Gri A is less than or equal to

(
d+i−1

i

)
−
(
d+i−r−1

i−r

)
, a polynomial of

degree d − 1, so A is not regular. On the other hand, if A is regular, (*) is an
isomorphism, so Grm A is an integral domain. One concludes easily that A is
also an integral domain.
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Proposition 4 Let B be a regular local ring with maximal ideal m, and A :=
B/I, where I is a proper ideal of B. Then A is regular if and only if I∩m2 = mI,
that is, if and only if the map I/mI → m/m2 is injective.

Proof: Let m := m/m∩ I the maximal ideal of A, and let V := m/m2. Then
we get a diagram

0 - K - S·V - S·V - 0

0 - Grm I
?

- Grm B
?

- Grm A
?

- 0

Since B is regular,the middle vertical arrow is bijective. Then A is regular
if and only if the map on the right is injective, which is true if and only if the
map on the left is surjective. Since K is generated in degree one and the map
is an isomorphism in degree one, A is regular if and only if Grm I is generated
in degree one. The degree i term of Grm I is I ∩ mi/I ∩ mi+1, so regularity
of A is equivalent to saying that I ∩mi ⊆ Imi−1 + I ∩mi+1 for all i. If this
is true, then we see by induction that I ∩m2 ⊆ Im + I ∩mi+1 for all i. The
Artin–Rees lemma says that I ∩mi+1 ⊆ mI for i sufficiently large, so we can
conlude I ∩m2 ⊆ Im, hence I ∩m2 = Im. Conversely, say I ∩m2 = Im, and
choose elements (x1, . . . xr) of I lifting a basis of I ∩m2. Then the dimension
of m/m2 is N − r, where N is the dimension of B. However, since (x1, . . . xr)
generates I/mI it follows from Nakayama that it also generates I, and then
that the dimension of A is at least N − r. But then we have equality, hence A
is regular.

Theorem 5 Let k be an algebraically closed field and let X/k be a scheme of
finite type, and let x be a closed point of X. Then the following conditions are
equivalent:

1. The local ring OX,x is regular.

2. There is an open neighborhood U of x which is smooth over k.

Proof: We may assume without loss of generality that X is affine, say Spec A,
where A is the quotient of a polynomial ring B over k by an ideal I. Let
Z := Spec B and let m be the maximal ideal of B corresponding to the point
x ∈ X ⊆ Z. Since the local ring Bm is regular, Proposition 4 says that Am

is regular if and only if the map I/mI → m/m2 is injective. Since x is a k-
rational point of Z, the differential induces an isomoprhism m/m2 → ΩZ/k(x),
and Corollary 3 now says that this injectivity is equivalent to (2).

Corollary 6 If X/k is of finite type over an algebraically closed field k, then
the set of points of x such that OX,x is regular is open.
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Proof: To prove this we need to check that any localization of a regular local
ring is regular, which we cannot do here.
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