If $f: X \to Y$ is a morphism of schemes, $d: \mathcal{O}_X \to \Omega_{X/Y}$ the universal element of $Der_{X/Y}(\Omega_{X/Y})$. This characterizes the pair $(\Omega_{X/Y}, d)$ up to unique isomorphism. We constructed this pair explicitly by taking

$$\Omega_{X/Y} = I_{X/Y} / I_{X/Y}^2,$$

where $I_{X/Y}$ is the ideal of the diagonal $X \to X \times_Y X$, and where da is the class of $p_2^*(a) - p_1^*(a)$.

Theorem 1 Let $T \to T'$ be a first order thickening of Y-schemes with ideal I, and let $h: T \to X$ be a Y-morphism. Then under the evident action, $Def_h(T')$ becomes a pseudo-torsor under $Der_{X/Y}(h_*I)$.

There are two useful exact sequences that we need to recall.

Theorem 2 Let $g: X \to Z$ and $h: Z \to Y$ be morphisms, with $f = h \circ g$. Then there is a natural exact sequence

$$g^*\Omega_{Z/Y} \to \Omega_{X/Y} \to \Omega_{X/Z} \to 0$$

Theorem 3 If $i: Z \to X$ is a closed immersion, there is an exact sequence

$$I/I^2 \to i^* \Omega_{X/Y} \to \Omega_{Z/Y} \to 0$$

where I is the ideal of Z and the first map is induced from the derivation d: $I \rightarrow \Omega^1_{X/Y}$.

Example 4 Suppose that Z = Y and the composite $Z \to X \to Y = id_Y$. Then the sequence above induces an isomorphism

$$I/I^2 \to i^* \Omega_{X/Y}$$

Indeed, it is clear that $\Omega_{Y/Y} = 0$, and it remains only to prove that the map

$$\overline{d}: I/I^2 \to i^* \Omega_{X/Y}$$

is injective. For this it suffices to show that there is a map $h: \Omega_{X/Y} \to I/I^2$ with $h \circ \overline{d} = \text{id}$. By the universal mapping property, it suffices to construct a $D \in Der_{X/Y}(I/I^2)$ such that D(a) is the image \overline{a} of a in I/I^2 for each $a \in I$. In fact, for any $a \in \mathcal{O}_X$, $a - f^*i^*(a) \in I$, and we let D(a) be its image in I/I^2 . Then D is the desired derivation. (This can be checked directly, or by using a geometric argument involving the first infinitesimal neighborhood of i.

Example 5 If Y is the spectrum of a field k and X is a k-scheme of finite type and $Z := \{x\}$, where x is a closed point of X, then k(x) is a finite extension of k. If k = k(x), the above result gives us an isomorphism

$$m_x/m_x^2 \cong \Omega_{X/k}(x)$$

Thus in this case the Zariski tangent space of X at x, the k-dual of m_x/m_x^2 , or equivalently the set of deformations of the of the inclusion $x \to X$ to the dual numbers $D_k(\epsilon)$, becomes identified with the set of maps $\Omega_{X/k} \to i_*k(x)$, that is, with the fiber of $\mathbf{V}(\Omega_{X/k})$ over x. In general, $\mathbf{V}\Omega_{X/Y}$ is called the tangent space (or bundle) of X/Y.

Corollary 6 Let X/k be a scheme locally of finite type, where k is algebraically closed. Then the dimension of m_x/m_x^2 is an uppersemicontinuous function on the set of closed points of X.

Proof: This is because $\Omega_{X/k}$ is a quasi-coherent sheaf of finite type on X (hence coherent, since X is noetherian), and it follows from Nakayama's lemma that the dimension of $\Omega_{X/k}(x)$ is upper semicontinous. In fact:

Lemma 7 Let X be a scheme and let E be a quasi-coherent sheaf of \mathcal{O}_X -modules which is locally finitely generated. Then the dimension of E(x) is uppersemicontinuous on X. If E is locally free, it is in fact locally constant, and the converse holds if X is reduced.

Proof: Let x be a point of X, and let $(e_1(x), \ldots, e_d(x))$ be a basis for $E(x) := E_x/m_{X,x}E_x$. There exist an open affine neighborhood U of x and sections (e_1, \ldots, e_d) of E(U), such that the image of e_i in E(x) is $e_i(x)$. Replace X by U and let $(\mathcal{O}_X)^n \to E$ be the corresponding map. It follows from Nakayama's lemma that the induced map on $(\mathcal{O}_{X,x})^n \to E_x$ is surjective, and hence that is is surjective in some neighborhood of x. Then $dim E(x') \leq dim E(x)$ for all x' in this neighborhood. Suppose the dimension is in fact constant. We may assume it is constant and that X is affine, say X = Spec A, and E corresponds to a finitely generated A-module M. We have constructed a surjective map $A^n \to M$, where n is the dimension of $M \otimes k(x)$ for every $x \in \text{Spec } A$. It follows that the map $k(x)^n \to M \otimes k(x)$ is bijective for every x. Let $K \subseteq A^n$ be the kernel of $A^n \to M$, and observe that any coordinate of any element of the kernel maps to zero in A_p/PA_P for every prime P. Since A is reduced, the intersection of all the primes is zero, so K = 0.

Example 8 The map $I/I^2 \to i^* \Omega_{X/Y}$ might not be injective, even if I is the maximal ideal corresponding to a closed point of a scheme X of finite type over $Y = \operatorname{Spec} k$. For example, let k be a field of characteristic p which is not perfect, with an element t which is not a pth power, let $X := \operatorname{Spec} k[X]$ and let I be the ideal generated by $f := X^p - a$. Since this polynomial is irreducible, I is maximal and corresponds to a closed point x. But df = 0, so the map in this case is zero.