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1 Introduction

1.1 Motivation

Logarithmic geometry was developed to deal with two fundamental and re-
lated problems in algebraic geometry: compactification and degeneration.
One of the key aspects of algebraic geometry is that it is essentially global
in nature. Algebraic varieties can be compactified: any separated scheme S
of finite type over a field k admits an open embedding j : S �→ T , with T/k
proper and S Zariski dense in T [30]. Since proper schemes are much easier
to study than general schemes, it is often convenient to work with T even if
it is the original scheme S that is of primary interest. It then becomes neces-
sary to keep track of the complement Z := T \S and to study how functions,
differential forms, sheaves, and other geometric objects on T behave near Z,
and to somehow carry along the fact that it is S rather than T in which one
is primarily interested, in a functorial way.

This compactification problem is related to the phenomenon of degen-
eration. A scheme S often arises as a moduli space, for example a space
parameterizing smooth proper schemes of a certain type. If S is a “fine mod-
uli space,” there is a smooth proper morphism f : U → S whose fibers are
the objects one wants to classify. One can then hope to find a compacti-
fication T of S such that the boundary points parametrize reasonably nice
“degenerations” of the original objects. In this case there should be a proper
and flat (but not smooth) g : X → T extending f : U → S. Then one is
left with the problem of comparing f to g and in particular of analyzing the
behavior of g near Y := X \ U . Indeed, in many cases one can obtain im-
portant information about the original family f by studying the degenerate
family over Z. A typical example is the compactification of the moduli stack
of smooth curves by the moduli stack of stable curves.

The problems of compactification and degeneration are thus manifest in
a diagram of the form:

U ⊂ ✲ X ✛ ⊃ Y

S

f

❄
⊂ ✲ T

g

❄
✛ ⊃ Z.

g|Y

❄

The point of log geometry is that in many such cases there is a natural
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way to equip X and T with log structures, which somehow “remember” U
and S and are compatible with g. Then g : X → T becomes a morphism

of log schemes and inherits many of the nice features of f . In good cases
it is logarithmically smooth, which makes it much easier to study than the
underlying morphism of schemes g. The log structures on X and T restrict
in a natural way to Y and Z, and the resulting morphism of log schemes
g|Y : Y → Z still remembers useful information about f : U → S.

Let us illustrate how log geometry works in the most basic case of a (pos-
sibly partial) compactification. Let j : U → X be an open immersion, with
complementary closed immersion i : Y → X. Then Y (and hence U) is deter-
mined by the sheaf IY ⊆ OX consisting of those local sections of OX whose
restriction to Y vanishes, a sheaf of ideals of OX . However it is not Y but
rather U that is our primary interest, so instead we consider the subsheaf
MU/X of OX consisting of the local sections of OX whose restriction to U is
invertible. If f and g are sections of MU/X , then so is fg, but f + g need
not be. Thus MU/X is not a sheaf of rings, but it is a sheaf of multiplicative
submonoids of OX . Note that MU/X contains the sheaf of units O∗

X
, and if

X is integral, the quotient MU/X/O∗

X
is just the sheaf of effective Cartier

divisors on X with support in the complement Y of U in X. The morphism
of sheaves of monoids αU/X : MU/X → OX (inclusion) is a logarithmic struc-

ture. In good cases this log structure “remembers” the inclusion U → X
and furthermore satisfies a technical “coherence” condition which makes it
manageable. In the category of log schemes, the open immersion j fits into
a commutative diagram

U
j̃✲ (X,αU/X)

X.

τU/X

❄

j
✲

This diagram provides a relative compactification of the open immersion j:
the map τU/X is proper but the map j̃ somehow preserves much of the es-
sential nature of the original open immersion j, and in good cases behaves
like a local homotopy equivalence. We can imagine that the log structure
αU/X cuts away (or rather blows up) enough of X to make it look like U ,
but leaves enough of a boundary so that it remains compact. Indeed the
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log scheme (X,αU/X) behaves as an “algebraic variety with boundary.” For
example, in the case of the standard embedding of Gm → A1, the corre-
sponding log scheme (A1,α) behaves very much like the complex plane with
an (infinitely small) open disc about the origin removed, and one finds the
following picture.

The morphism in this picture can be identified with the multiplication map
R≥ × S1 → C, i.e., the real blowup of the origin in the plane. It plays the
role of a proper model of the inclusion Gm → A1, whose homotopy theory
it closely resembles. These ideas will be made more precise in section V.1,
where we discuss “Betti realizations” of log schemes.

More generally, if X is any scheme, a log structure on X is a morphism
of sheaves of commutative monoids α : M → OX inducing an isomorphism
α−1(O∗

X
) → O∗

X
. We do not require α to be injective. For example, let

T be the spectrum of a discrete valuation ring R with maximal ideal m,
residue field k, and fraction field K. Let t := Spec(k), let τ := Spec(K),
and let i : t → T (resp. j : S := τ → T ) be the natural closed (resp. open)
immersion. The procedure described in the previous paragraph associates to
the open immersion j a log structure (called the “standard log structure”)
αS/T : MS/T → OT . The stalk of αS,T at t is the inclusion R� → R, where
R� := R \ {0}. A more exotic example (the “hollow log structure”) is the
map R� → R which is the inclusion on the group R∗ of units of R but sends
the maximal ideal m to 0 ∈ R. The restrictions of these two log structures
to t are isomorphic, and give a log structure

α : i∗(MS/T ) → k,

where i∗(MS/T ) is the quotient of R� by the group U of units congruent to 1
modulo m. Thus, if k is the residue field of R, there is an exact sequence

1 → k∗ → i∗(MS/T ) → N → 0
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and α is the inclusion on k∗ and sends all other elements of i∗(MS/T ) to 0.
This example shows how sections m of the sheaf of monoid M keep track
of the “ghosts of vanishing coordinates.” In particular, α(m) can be zero,
although M is often integral, (so that multiplication by m is injective). The
tension between these behaviors accounts for many of the technical difficulties
of log geometry, especially those involving fiber products.

The naturality of these constructions allow them to work in appropriate
relative settings, for example in the context of semi-stable reduction. Thus,
let X be a regular scheme, let T be the spectrum of a discrete valuation ring
as above, and letf : X → T be a flat and proper morphism whose generic
fiber Xτ/τ is smooth and whose special fiber is a reduced divisor with normal
crossings. Then canonical log structures αX and αT associated as above to
the open embeddings Xτ → X and τ → T fit into a morphism of log schemes:

f : (X,αX) → (T,αT )

which is in fact “logarithmically smooth.” The concept of smoothness for log
schemes fits very naturally into Grothendieck’s geometric deformation the-
ory; furthermore Betti realizations of proper log smooth morphisms behave
in some respects like topological fibrations [24] and [31]. The fact that this
picture works so well both in topological and arithmetical settings is one of
the main justifications for the theory.

The justification for the machinery of log geometry must lie in its ap-
plications to problems in outside the theory itself. A detailed discussion of
any of these would be beyond the scope of this book, and we can only point
readers to the literature. Historically, the first (and perhaps still most strik-
ing) of such application is to the proof of what used to be called the Cst

conjecture in p-adic Hodge theory, due to Hyodo [22], Kato [28], Tsuji [41].
Faltings [10] [9], and others. Indeed, log geometry began as an attempt to
discern what additional structure on the special fiber of a semi-stable reduc-
tion was needed to define a “limiting crystalline cohomology,” in analogy to
Steenbrink’s construction of limiting mixed Hodge structures in the complex
analytic context. In �-adic cohomology, the main applications have been to
the Bloch conductor formula [37] and higher dimensional Ogg-Shavarevich
formulas [1] and Gabber’s results on resolution, purity, and duality []. Log
geometry has also been notably used to improve the theory of compactifica-
tions of moduli spaces of abelian varieties [35], K3 surfaces [34], and toric
Hilbert schemes [36].
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1.2 Roots

The development of logarithmic geometry, like that of any organism, began
well before its official birth, and was preceded by many classical methods deal-
ing with the problems of compactification and degeneration. These include
most notably the theories of toroidal embeddings, of differential forms and
equations with log poles and/or regular singularities, and of vanishing cycles
and monodromy. Logarithmic geometry was influenced by all these ideas and
provides a language which incorporates and extends them in functorial and
systematic ways. We mention in particular the powerful and subtle notion
of base change in log geometry, as well as logarithmic versions of de Rham,
Betti, étale, and crystalline cohomology, which have had major applications
to arithmetic algebraic geometry.

Logarithmic structures fit so naturally with the usual building blocks of
schemes that it is possible, and in most (but not all) cases easy and natural,
to adapt in a relatively straightforward way many of the standard techniques
and intuitions of algebraic geometry to the logarithmic context. Log geome-
try seems to be especially compatible with infinitesimal properties, including
Grothendieck’s notions of smoothness, differentials, and differential opera-
tors. For example, if X is smooth over a field k and U is the complement of
a divisor with normal crossings, then the resulting log scheme (constructed
from the compactification log structure as above) is logarithmically smooth.
The sheaf of K ahler differnetials of (X,αX), constructed from Grothendieck’s
deformation-theoretic viewpoint, coincides with the classical sheaf of differ-
ential forms of X with log poles along X \U . Furthermore, any toric variety
(with the log structure corresponding to the dense open torus it contains) is
log smooth, and the theory of toroidal embeddings is essentially equivalent
to the study of (logarithmically) smooth log schemes over a field.

1.3 Goals

Our aim in these notes is to provide an introduction to the basic notions
and techniques of log geometry, accessible to graduate students with a basic
knowledge of algebraic geometry. We hope they will also be useful to re-
searchers in other areas of geometry, to which we believe the theory can be
profitably adopted, as has already been done in the case of complex analytic
geometry. For the sake of concreteness we work systematically with schemes
as locally ringed spaces, although it certainly would have been possible and
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profitable to develop the theory for complex analytic varieties, or for alge-
braic spaces or stacks. However, even in the case of schemes, it is quite
valuable to work locally in the étale topology, and we shall allow ourselves
to do so, without systematically using the language of topos theory which
would certainly have been more powerful. (This approach is taken in the
very thorough treatment in [13].)

Just as scheme theory starts with the study of commutative rings, log
geometry starts with the study of commutative monoids. Much of this foun-
dational material is already available in the literature, but we have decided
to offer a self-contained presentation more directly suited to our purposes. In
log geometry, in an apparent contrast with toric geometry, the study of the
category of monoids, and in particular of homomorphisms of monoids, plays
a fundamental role. This difference was part of our motivation for including
this material, and we hope our treatment may be of interest apart from its
applications to log geometry per se. Thus Chapter I begins with the study of
projective and inductive limits in the category of monoids, and in particular
with the construction of pushouts, which are analogous to tensor products
in the category of rings. We then discuss monoid actions (the analog of
modules in ring theory), ideals, localization, and the spectrum of a monoid,
with its Zariski topology. After these preliminaries we turn to constructions
more familiar from toric geometry, including basic results about finiteness,
duality, and cones. Then we discuss monoid algebras and some facts about
affine toric varieties. The final section of Chapter I is devoted to a deeper
study of properties of morphisms and actions of monoids, and in particular
certain analogs of flatness. Especially important is Kato’s key concept of
exactness, which we already encountered in subsection 1.1. An example of
its importance is manifest in the “Four Point Lemma” 4.2.8, where exactness
is needed to make fiber products of logarithmically integral log schemes be-
have well. Integrality and saturation of morphisms, which we discuss next,
are refinements of the notion of exactness. We finish by showing how exact
morphisms can be made integral and saturated by a suitable base change; a
logarithmic version of semi-stable reduction. This material is more technical
than the rest of our exposition and can be skipped over in a first reading.

Chapter II discusses sheaves of monoids on topological spaces. After dis-
posing of some generalities, we define monoschemes, which are constructed
by gluing together spectra of commutative monoids just as schemes are con-
structed by gluing together spectra of commutative rings. Our monoschemes
are sometimes called “schemes over F1” in the literature [5] and are general-
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izations of the fans used to construct toric varieties. The main application we
have of this concept is a notion of blowing up, or monoidal transformation,

for monoschemes. Of special importance is Theorem 1.6.5, which explains
how a homomorphism of monoids can be made exact by a monoidal transfor-
mation. We then discuss Kato’s notions of charts and coherence for sheaves
of monoids and morphisms between them.

With the preliminaries well in hand, we are ready in Chapter III to turn
to logarithmic geometry per se, including two variants of the standard theory:
idealized log schemes and relatively coherent log structures. After explaining
the main definitions and properties of log structures, we discuss the somewhat
delicate construction of fibered products. Then we investigate properties
of morphisms of log schemes, returning again to the notions of exactness,
integrality, and saturation, as well as the Frobenius morphism for log schemes
in characteristic p.

Chapter IV is devoted to logarithmic differentials and logarithmic smooth-

ness. We begin with a purely algebraic construction of Kähler differentials
for (pre) log schemes, then explain its geometric meaning in terms of defor-
mation theory. Then we discuss smoothness for logarithmic schemes, defined
in terms of a log version of Grothendieck’s infinitesimal lifting criterion. Al-
though smooth morphisms in logarithmic geometry are much more compli-
cated than in classical geometry, locally they admit nice toric models. We
also discuss a somewhat provisional, but seemingly useful, notion of smooth-
ness for relatively coherent log structures, which we call relative smoothness.

Finally we mention briefly Kato’s notion of log regularity, which is an abso-
lute, rather than a relative, notion, useful for arithmetic algebraic geometry.

In Chapter V we discuss topology and cohomology. To provide a geomet-
ric intuition, we begin with the construction of the Betti realization Xlog of a
log scheme X over C. After giving the definition and topological properties
of Xlog, we define the sheaf of rings Olog

X
on Xlog which is obtained by ad-

joining the logarithms of sections of M in a canonical way. Then we discuss
logarithmic de Rham cohomology, beginning with an algebraic description
of the logarithmic de Rham complex of a monoid algebra and some of the
natural filtrations it carries, then the sheafification and globalization of these
constructions. We end with some basic facts about de Rham cohomology,
including the log Poincaré lemma, comparison between Betti and de Rham
cohomologies, and the Riemann–Hilbert correspondence.

Our last chapter is a somewhat scattershot collection of additional topics
that is meant to illustrate some applications and examples In particular, we
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show how log geometry can be used to give a very explicit view of vanishing
cycles and monodromy.

1.4 Organization

The goals of this text are to introduce the reader to the basic ideas of log
geometry and to provide a technical foundation for further work in the area.
These goals are somewhat contradictory, in that a good deal of the foun-
dational material depends on the algebra of monoids and the geometry of
convex bodies, the study of which can impede the momentum toward the ul-
timate goals coming from algebraic geometry. Although a fair amount of this
material can be found in the literature, we have decided to treat it carefully
here, partly because the author himself wanted to become comfortable with
it, and partly because the perspective from log geometry, in which morphisms
play a central role, is not to be found there. We have grouped nearly all of
this material in the first two chapters and consequently don’t arrive at log
geometry itself until chapter III, potentially discouraging a reader eager to
try log geometry in some specific context. Such a reader may find it prefer-
ably to skip some of the earlier sections, returning to them as necessary; we
hope our exposition will make this possible. In particular, the material on
idealized monoids and log schemes and on relative coherence, concepts whose
ultimate utility has not yet been convincingly demonstrated, can be skipped
on a first reading. Probably the same is true of monoschemes, which are
really just an alternative to the classical theory of fans from toric geometry.
A hasty reader could try to get by reading only sections 1.1, 4.1, and 4.2
of Chapter I, and then sections 1.1 and 2.1 of Chapter II, before proceeding
to Chapter III. On the other hand, readers whose primary interest is convex
rather than log geometry, may find it interesting to concentrate on the ma-
terial in Chapters I and II, since some of it may be new to them, especially
section 4 of Chapter I.
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