Homotopy Techniques for Tensor Decomposition and

[^0]
Tensors, Rank, and Identifiability

- A tensor of format $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ is a hypermatrix $\mathcal{T}=\left(\mathcal{T}_{i_{1}, i_{2}, \ldots, i_{d}}\right)$ (assume entries in \mathbb{C}), with $1 \leq i_{j} \leq n_{j}$ for all j.
- Since \mathcal{T} has $\prod_{j=1}^{d} n_{j}$ entries, it represents a huge set of data.
- Basic question: Find a sparse representation of \mathcal{T}.
- A rank-one tensor (a point on a Segre variety) is a tensor \mathcal{T} such that $\mathcal{T}_{i_{1}, \ldots, i_{d}}=v_{1, j_{1}} \cdot v_{2, j_{2}} \cdots v_{d, j_{d}}$ for some vectors \vec{v}_{j} of lengths n_{j}.
- Rank-one tensors only have essentially $\sum_{j=1}^{d} n_{j}$ pieces of information.
- A rank- r tensor (a general point on the r-th secant variety of the Segre variety) is the sum of r rank-one tensors.
- A rank- r tensor only contains essentially $r \cdot \sum_{j=1}^{d} n_{j}$ pieces of information, which is potentially much smaller than the full dimension $\prod_{j=1}^{d} n_{j}$.
- So a low-rank representation of \mathcal{T} is a sparse presentation.

Some Applications of Secant Varieties

- Classical Algebraic Geometry: When can a given projective variety $X \subset \mathbb{P}^{n}$ be isomorphically projected into \mathbb{P}^{n-1} ?
Determined by the dimension of the secant variety $\sigma_{2}(X)$.
- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).
For star trees / bifurcating trees this is the salmon conjecture.

- Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.
A given signal is the sum of many signals, one for each user.
Decompose the signal uniquely to recover each user's signal.
- Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

First algebraic / geometric questions for tensors

Let $X \subset \mathbb{P C}^{N}$, with $N=n_{1} \times \cdots \times n_{d}$, denote the set of rank-one tensors, and let $\sigma_{r}(X)$ denote the Zariski closure of the set of rank- r tensors.
(1) [Dimensions] What is the dimension of $\sigma_{r}(X)$?

- When does $\sigma_{r}(X)$ fill the ambient \mathbb{P}^{N} ? (defectivity)
(2) [Equations] What are the polynomial defining equations of $\sigma_{r}(X)$?
(3) [Decomposition] For my favorite $\mathcal{T} \in \mathbb{C}^{N}$, can you find an expression of \mathcal{T} as a sum of points from X ?
(1) [Specific Identifiability] For a given $\mathcal{T} \in \mathbb{C}^{N}$, does \mathcal{T} have a unique decomposition (ignoring trivialities)?
© [Generic Identifiability] For generic $\mathcal{T} \in \mathbb{C}^{N}$, does \mathcal{T} have a unique decomposition (ignoring trivialities)?

Today: Focus on Generic Identifiability

Geometric version of identifiability

Let $X \subset \mathbb{C}^{N}$, with $N=n_{1} \times \cdots \times n_{d}$, denote the set of rank-one tensors, and let $\sigma_{r}(X)$ denote the Zariski closure of the set of rank- r tensors.
Construct the incidence variety

$$
\begin{aligned}
& \mathcal{I}:=\left\{\left([\mathcal{T}],\left[\mathcal{T}^{1}\right] \ldots,\left[\mathcal{T}^{r}\right]\right) \mid\left[\mathcal{T}^{i}\right] \in X, \mathcal{T} \in\left\langle\mathcal{T}^{1}, \ldots, \mathcal{T}^{r}\right\rangle\right\}
\end{aligned}
$$

- Projection onto the first factor: $\pi(\mathcal{I})=\sigma_{r}(X)$.
- Note $\operatorname{dim}(\mathcal{I})=r \cdot \operatorname{dim}(\widehat{X})-1$. If the fiber $\pi^{-1}([\mathcal{T}])$ over a generic $[\mathcal{T}] \in \sigma_{r}(X)$ is finite, then $\operatorname{dim}\left(\sigma_{r}(X)\right)=\operatorname{dim}(\mathcal{I})$.
- If r is the smallest such that $\sigma_{r}(X)=\mathbb{P}^{N}$, say that r is the generic rank.
- Moreover, $\# \pi^{-1}([\mathcal{T}])$ is the number of decompositions of \mathcal{T}.

Definition

If $[\mathcal{T}] \in \sigma_{r}(X)$ is such that $\# \pi^{-1}([\mathcal{T}])=r$!, then we say that \mathcal{T} is identifiable and that the decomposition of \mathcal{T} is essentially unique.

Perfect identifiability for tensors

For $\mathcal{T} \in \mathbb{C}^{n_{1}} \otimes \ldots \otimes \mathbb{C}^{n_{d}}$, based on dimension count, the generic rank is at least

$$
R\left(n_{1}, \ldots, n_{d}\right):=\frac{\prod_{i=1}^{d} n_{i}}{\sum_{i=1}^{d}\left(n_{i}-1\right)+1}=\frac{\prod_{i=1}^{d} n_{i}}{\left(\sum_{i=1}^{d} n_{i}\right)+1-d}
$$

- The value $\left\lceil R\left(n_{1}, \ldots, n_{d}\right)\right\rceil$ is called the expected generic rank.
- A necessary condition for generically finitely many decompositions is for $R\left(n_{1}, \ldots, n_{d}\right)$ to be an integer, a.k.a perfect format.
- When the generic tensor of perfect format has an essentially unique decomposition, we say that perfect identifiability holds.

Known Results for "unbalanced formats"

Assume $d \geq 3$ and $2 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{d}$. If $n_{d} \geq \prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$, we say that the format $\left(n_{1}, \ldots, n_{d}\right)$ is unbalanced.

Theorem (Catalisano-Geramita-Gimigliano'02,
 Abo-Ottaviani-Peterson'09, Bocci-Chiantini-Ottaviani'13)

For formats $\left(n_{1}, \ldots, n_{d}\right)$, suppose that $n_{d} \geq \prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$.
(1) The generic rank is $\min \left(n_{d}, \prod_{i=1}^{d-1} n_{i}\right)$.
(2) A general tensor of rank r has a unique decomposition if $r<\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$.
(3) A general tensor of rank $r=\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$ has exactly $\binom{D}{r}$ different decompositions where $D=\frac{\left(\sum_{i=1}^{d-1}\left(n_{i}-1\right)\right)!}{\left(n_{1}-1\right)!\cdots\left(n_{d-1}-1\right)!}$.
This value of r coincides with the generic rank in the perfect case: $r=n_{d}$.
(1) If $n_{d}>\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$, a general tensor of rank $r>\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$ has infinitely many decompositions.

Monodromy for Tensor Identifiability (using Bertini)

The problem:

$$
\text { Given } \mathcal{T} \text { find rank-one tensors } \mathcal{T}^{i} \text { so that } \mathcal{T}=\sum_{i=1}^{r} \mathcal{T}^{i} .
$$

Asks to solve a straightforward system of polynomial equations. In general, this can be a very difficult problem.

- One method to numerically solve large systems of polynomials is to use homotopy continuation, in a software package like Bertini.
- The idea is to start with a similar system G whose solutions you know (like roots of unity). Then perform a homotopy to your system F :

$$
t \cdot G+(1-t) \cdot F \quad t \in[0,1]
$$

and numerically track the paths traced out by the solutions of G. The paths should end in solutions of the F.

- generically can construct paths that avoid singularities and end points are non-singular (real 1-dimensional path, singular locus has complex codim 1 , so real codim 2.)

Numerical Algebraic Geometry \& Bertini

input: An affine variety \mathcal{H}.
Output: $\operatorname{deg} \mathcal{H}$
(1) Choose a random linear space \mathcal{L} with $\operatorname{dim} \mathcal{L}=\operatorname{codim} \mathcal{H}$.
(2) Generate a point $x \in \mathcal{H} \cap \mathcal{L}$. Initialize $\mathcal{W}:=\{x\}$.
(3) Perform a random monodromy loop starting at the points in \mathcal{W} :
(a) Pick a random loop $\mathcal{M}(t)$ in the grassmannian of linear spaces so that $\mathcal{M}(0)=\mathcal{M}(1)=\mathcal{L}$.
(b) Trace the curves $\mathcal{H} \cap \mathcal{M}(t)$ starting at the points in \mathcal{W} at $t=0$ to compute the endpoints \mathcal{E} at $t=1$. (Hence, $\mathcal{E} \subset \mathcal{H} \cap \mathcal{L}$).
(c) Update $\mathcal{W}:=\mathcal{W} \cup \mathcal{E}$, sort \mathcal{W}, remove repeats and symmetric copies.

- Repeat (2) until $\# W$ stabilizes.
(0) Use the trace test to verify that $\mathcal{W}=\mathcal{H} \cap \mathcal{L}$.
(Return $\operatorname{deg} \mathcal{H}=\# \mathcal{H}(\cap \mathcal{L})$.
A triangular monodromy loop for random points P_{1} and P_{2} in \mathbb{C}^{N} :

Monodromy for Tensor Decomposition (using Bertini)

Start: A general tensor \mathcal{T} of format $\left(n_{1}, \ldots, n_{d}\right)$ with known minimal decomposition, $\mathcal{T}=\sum_{i=1}^{r}\left(v_{1}^{i} \otimes \ldots \otimes v_{d}^{i}\right)$. (dehomogenize): Set $\left(v_{j}^{i}\right)_{1}=1$ for $i=1, \ldots, r$ and $j=1, \ldots, d-1$.

- Input system:

$$
F_{\mathcal{T}}\left(v_{1}^{1}, \ldots, v_{d}^{r}\right)=\left[\begin{array}{c}
\mathcal{T}-\sum_{i=1}^{r}\left(v_{1}^{i} \otimes \ldots \otimes v_{d}^{i}\right) \\
\left(v_{j}^{i}\right)_{1}-1 \text { for } i=1, \ldots, r \text { and } j=1, \ldots, d-1
\end{array}\right]=0
$$

- The system $F_{\mathcal{T}}$ consists of $\prod_{j=1}^{d} n_{j}+r(d-1)$ polynomials in $r \cdot \sum_{j=1}^{d} n_{j}$ variables. Balanced format \Rightarrow square system.
- Let $\mathcal{W} \subset\left(\mathbb{C}^{n_{1}} \times \cdots \times \mathbb{C}^{n_{d}}\right)^{r}$ be the known decompositions of T.
- Homotopy: For a loop $\tau:[0,1] \rightarrow \mathbb{C}^{n_{1} \cdots n_{d}}$ with $\tau(0)=\tau(1)=\mathcal{T}$, consider the homotopy

$$
H\left(v_{1}^{1}, \ldots, v_{d}^{r}, s\right)=F_{\tau(s)}\left(v_{1}^{1}, \ldots, v_{d}^{r}\right)=0 .
$$

- Endpoints are decompositions of \mathcal{T}. If new, add results to \mathcal{W}.
- Repeat until $|\mathcal{W}|$ stabilizes (at least 20 additional randomly selected loops failed to yield any new decompositions), and possibly use AlphaCertify.

Theorem (CGG'02, AOP'09, BCC'13)

For formats $\left(n_{1}, \ldots, n_{d}\right)$, suppose that $n_{d} \geq \prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$.
(1) The generic rank is $\min \left(n_{d}, \prod_{i=1}^{d-1} n_{i}\right)$.
(0) A general tensor of rank r has a unique decomposition if $r<\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$.
(3) A general tensor of rank $r=\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$ has exactly $\binom{D}{r}$ different decompositions where

$$
D=\frac{\left(\sum_{i=1}^{d-1}\left(n_{i}-1\right)\right)!}{\left(n_{1}-1\right)!\cdots\left(n_{d-1}-1\right)!}
$$

This value of r coincides with the generic rank in the perfect case: when $r=n_{d}$.
(1) If $n_{d}>\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$, a general tensor of rank
$r>\prod_{i=1}^{d-1} n_{i}-\sum_{i=1}^{d-1}\left(n_{i}-1\right)$, e.g., a general tensor of format $\left(n_{1}, \ldots, n_{d}\right)$, has infinitely many decompositions.

Computational results: Unbalanced cases

Some known perfect cases and the number of decompositions.

$\left(n_{1}, \ldots, n_{d}\right)$	gen. rank	\# of decomp. of general tensor
$(2, n, n)$	n	(Weierstrass-Kronecker) 1
$(3,3,5)$	5	6
$(3,4,7)$	7	120
$(3,5,9)$	9	5005
$(3,6,11)$	11	352716
$(4,4,10)$	10	184756
$(2,2,2,5)$	5	6
$(2,2,3,8)$	8	495

Computational results: Perfect cases, 3 factors

All perfect, balanced tensor formats of 3 -tensors with $\prod_{i=1}^{3} n_{i} \leq 150$.

$\left(n_{1}, n_{2}, n_{3}\right)$	gen. rank	\# of decomp. of general tensor
$(3,4,5)$	6	1
$(3,6,7)$	9	38
$(4,4,6)$	8	62
$(4,5,7)$	10	$\geq 222,556$

After the numerical results, we were motivated to prove the following:

Theorem (HOOS 2015)

The general tensor of format $(3,4,5)$ has a unique decomposition as a sum of 6 decomposable summands.

Our proof relies on algebraic geometry, vector bundles and intersection theory, and relies on a notion of non-abelian polarity.

Computational results: Perfect cases, 4 factors

 All perfect, balanced tensor formats with $d \geq 4$ and $\prod_{i=1}^{d} n_{i} \leq 100$.| $\left(n_{1}, \ldots, n_{d}\right)$ | gen. rank | \# of decomp. of general tensor |
| ---: | ---: | ---: |
| $(2,2,2,3)$ | 4 | 1 |
| $(2,2,3,4)$ | 6 | 4 |
| $(2,2,4,5)$ | 8 | 68 |
| $(2,3,3,4)$ | 8 | 471 |
| $(2,3,3,5)$ | 9 | 7225 |
| $(3,3,3,3)$ | 9 | 20,596 |
| $(2,2,2,2,4)$ | 8 | 447 |
| $(2,2,2,3,3)$ | 9 | 18,854 |
| $(2,2,2,2,2,3)$ | 12 | $\geq 238,879$ |

Again, motivated by the numerical evidence we were able to prove:

Theorem (HOOS 2015)

The general tensor of format $(2,2,2,3)$ has a unique decomposition as a sum of 4 decomposable summands.

A similar proof to the $(3,4,5)$-case also works here.

A conjecture

Conjecture (HOOS 2015)

The only perfect formats $\left(n_{1}, \ldots, n_{d}\right)$ where a general tensor has a unique decomposition are
(1) $(2, k, k)$ for some k - matrix pencils, known classically by Kronecker normal form,
© $(3,4,5)$, and

- $(2,2,2,3)$.

The generic rank is known to be equal to the expected one for the cubic format (n, n, n) [Lickteig'85], which is not perfect for $n \geq 3$, and in the binary case $(2, \ldots, 2)$ for at least $k \geq 5$ factors [CGG'11], which is perfect if $k+1$ is a power of 2 . A numerical check for $k=7$ shows it is not identifiable.

Methods: Koszul Flattenings

The Koszul complex: linear maps $K_{p}: \bigwedge^{p} V \rightarrow \bigwedge^{p+1} V$ depending linearly on V.

$$
K_{p}(v)(\varphi)=\varphi \wedge v \text { for } p \geq 0, \quad K_{p}(v)(\varphi)=\varphi(v) \text { for } p<0 .
$$

Set $V_{I}=\bigwedge^{i_{1}} V_{1} \otimes \bigwedge^{i_{2}} V_{2} \otimes \cdots \otimes \bigwedge^{i_{d}} V_{d}$, and form a tensor product of Koszul maps:

$$
K_{I}: V_{I} \rightarrow V_{I+1^{d}},
$$

that depend linearly on $V_{(1, \ldots, 1)}=V_{1} \otimes \cdots \otimes V_{d}$.

Lemma (Koszul Flattening)

Suppose $T \in V_{1, \ldots, 1}$ has tensor rank r. Let $i_{j} \geq 0$ for $j=1, \ldots, h, i_{j}<0$ for $j=h+1, \ldots, d$. The Koszul flattening $K_{I}(T): V_{I} \rightarrow V_{I+1^{d}}$ has rank at most

$$
r_{I}:=r \cdot \prod_{j=1}^{h}\binom{n_{j}-1}{i_{j}} \cdot \prod_{j=h+1}^{d}\binom{n_{j}-1}{-i_{j}-1} .
$$

In particular, the $\left(r_{I}+1\right) \times\left(r_{I}+1\right)$ minors of $K_{I}(T)$ vanish.
Meaningful if $r_{I}<\min \left\{\operatorname{dim} V_{I}, \operatorname{dim} V_{I+1^{d}}\right\}$.
Basic idea: A Koszul flattening of \mathcal{T} is a matrix constructed from the entries of \mathcal{T} that has rank at most a multiple of the rank of \mathcal{T} : detect $\operatorname{Rank}(\mathcal{T})$.

The $3 \times 4 \times 5$ case

Let us denote the three factors as $A=\mathbb{C}^{3}, B=\mathbb{C}^{4}, C=\mathbb{C}^{5}$. The following are all possible non-trivial, non-redundant Koszul flattenings (up to transpose).

- usual flattenings:

$$
\begin{aligned}
& K_{(0,-1,-1)}:(B \otimes C)^{*} \rightarrow A, \\
& K_{(-1,0,-1)}:(A \otimes C)^{*} \rightarrow B, \\
& K_{(-1,-1,0)}:(A \otimes B)^{*} \rightarrow C,
\end{aligned}
$$

- Koszul flattenings:

$$
\begin{aligned}
K_{(1,-1,0)}: B^{*} \otimes A \rightarrow C \otimes \bigwedge^{2} A, & K_{(1,0,-1)}: C^{*} \otimes A \rightarrow B \otimes \bigwedge^{2} A, \\
K_{(0,1,-1)}: C^{*} \otimes B \rightarrow A \otimes \bigwedge^{2} B, & K_{(-1,1,0)}: A^{*} \otimes B \rightarrow C \otimes \Lambda^{2} B, \\
K_{(-1,0,1)}: A^{*} \otimes C \rightarrow B \otimes \Lambda^{2} C, & K_{(0,-1,1)}: B^{*} \otimes C \rightarrow A \otimes \Lambda^{2} C, \\
K_{(-1,0,2)}: A^{*} \otimes \Lambda^{2} C \rightarrow B \otimes \Lambda^{3} C, & K_{(0,-1,2)}: B^{*} \otimes \Lambda^{2} C \rightarrow A \otimes \Lambda^{3} C .
\end{aligned}
$$

An example Koszul flattening

$$
K_{(0,1,-1)}: C^{*} \otimes B \rightarrow A \otimes \bigwedge^{2} B
$$

$K_{0,1,-1}(a \otimes b \otimes c)$ has image

$$
\left(\bigwedge^{0} A \wedge a\right) \otimes\left(\bigwedge^{1} B \wedge b\right) \otimes\left(C^{*}(c)\right) \subset \bigwedge^{1} A \otimes \bigwedge^{2} B \otimes \bigwedge^{0} C
$$

The factor $C^{*}(c)$ is just a scalar that is obtained by contracting c with C^{*}.
We are left with $\left(\bigwedge^{0} A \wedge a\right)=\langle a\rangle$ tensored with $\left(\bigwedge^{1} B \wedge b\right) \subset \bigwedge^{2} B$,
but $\left(\bigwedge^{1} B \wedge b\right) \cong(B / b) \otimes\langle b\rangle$, which is 3 dimensional.

So $K_{0,1,-1}(\mathcal{T})$ has rank that is at most 3 times the rank of \mathcal{T}. And since it is 18×20, it has a chance to detect up to rank 6 tensors.

map	size	mult-factor	max tensor rank detected
$K_{(0,-1,-1)}$	3×20	1	3
$K_{(-1,0,-1)}$	4×15	1	4
$K_{(-1,-1,0)}$	5×12	1	5
$K_{(1,-1,0)}$	15×12	2	6
$K_{(1,0,-1)}$	12×15	2	6
$K_{(0,1,-1)}$	18×20	3	6
$K_{(-1,1,0)}$	12×30	3	4
$K_{(-1,0,1)}$	40×15	4	4
$K_{(0,-1,1)}$	30×20	4	5
$K_{(-1,0,2)}$	40×30	6	5
$K_{(0,-1,2)}$	30×40	6	5
$K_{(0,-1,2)}$	30×40	6	5

We see that the only maps that distinguish between tensor rank 5 and 6 are $K_{(1,-1,0)}, K_{(1,0,-1)}$, and $K_{(0,1,-1)}$. Since $\bigwedge^{2} A \cong A^{*}$, the first two maps are transposes of each other:

$$
K_{(1,-1,0)}=\left(K_{(1,0,-1)}\right)^{t} .
$$

Thus, we proceed by considering $K_{(1,0,-1)}$ and $K_{(0,1,-1)}$.

Methods: Apolarity

The definition of the Koszul Flattening implies

$$
T=v_{1} \otimes \ldots \otimes v_{d} \in \operatorname{ker} K_{I}(T) \Longleftrightarrow \bigotimes_{j=1}^{h}\left(\varphi_{j} \wedge v_{j}\right) \otimes \bigotimes_{j=h+1}^{d}\left(\varphi_{j}\left(v_{j}\right)\right)=0
$$

for all basis elements $\varphi \in V_{I}$.
Think of elements of the kernel of $K_{I}(T)$ as linear mappings.
Let $N \sqcup P=\{1, \ldots, d\}$ be the set partition such that $-I_{N} \in \mathbb{Z}_{>0}^{d}, I_{P} \in \mathbb{Z}_{\geq 0}^{d}$.

Lemma (Non-abelian Apolarity Lemma [Landsberg-Ottaviani'13:])

Suppose $T=\sum_{s=1}^{r} v_{1}^{s} \otimes \ldots \otimes v_{d}^{s}$. The kernel $\operatorname{ker} K_{I}(T)$ contains all maps $\psi \in \operatorname{Hom}\left(V_{-I_{N}}, V_{I_{P}}\right)$ such that

$$
\psi\left(V_{-I_{N}+1_{N}} \wedge \bigotimes_{j \in N} v_{j}^{s}\right) \wedge\left(\bigotimes_{j \in P} v_{j}^{s}\right)=0
$$

for $s=1, \ldots, r$.
Basic idea: the kernel of a flattening of \mathcal{T} can be used to gain information about the decomposition of \mathcal{T}.

In our case the Apolarity Lemma says that

$$
\begin{equation*}
\operatorname{ker} K_{1,0,-1}\left(\sum_{i=1}^{s} a_{i} b_{i} c_{i}\right) \supset\left\{\varphi \in \operatorname{Hom}(C, A) \mid \varphi\left(c_{i}\right) \wedge a_{i}=0 \text { for } i=1, \ldots, s\right\} . \tag{1}
\end{equation*}
$$

and

$$
\operatorname{ker} K_{0,1,-1}\left(\sum_{i=1}^{s} a_{i} b_{i} c_{i}\right) \supset\left\{\varphi \in \operatorname{Hom}(C, B) \mid \varphi\left(c_{i}\right) \wedge b_{i}=0 \text { for } i=1, \ldots, s\right\} .
$$

Equality should hold for honest decompositions.

Basic result from Oeding-Ottaviani [OO'13] and Landsberg-Ottaviani [LO'11]:
The set of eigenvectors of a general element in $\operatorname{ker}\left(K_{I}(\mathcal{T})\right)$ (interpreted as the common base locus of general sections of a certain vector bundle) contains the set of (pieces of) rank-one summands in a decomposition of \mathcal{T}.

Proof of Theorem 3-4-5: Vector Bundles

For general $\mathcal{T} \in A \otimes B \otimes C, K_{1,0,-1}(f)$ is surjective and ker $K_{1,0,-1}(\mathcal{T})$ has dimension $\operatorname{dim} \operatorname{Hom}(C, A)-\operatorname{dim} \wedge^{2} A \otimes B=15-12=3$.

Interpret $K_{1,0,-1}(\mathcal{T})$ as a map between sections of vector bundles.
Let $X=\mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$ with (pull-back) line bundle. $\mathcal{O}(\alpha, \beta, \gamma)$
Let Q_{A} be the pullback of the quotient bundle on $\mathbb{P}(A)$.
Let $E=Q_{A} \otimes \mathcal{O}(0,0,1)($ a rank 2 bundle on $X)$ and $L=\mathcal{O}(1,1,1)$.
As in [OO'13], [LO'13], the map $K_{1,0,-1}(\mathcal{T})$ can be identified with contraction $K_{1,0,-1}(\mathcal{T}): H^{0}(E) \longrightarrow H^{0}\left(E^{*} \otimes L\right)^{*}$ depending linearly on $\mathcal{T} \in H^{0}(L)^{*}$.

Apolarity: compute the common base locus of the sections of the vector bundle $\operatorname{ker}\left(K_{0,1,-2}(\mathcal{T})\right)$ to find the decomposition of \mathcal{T}.

Proof of Theorem 3-4-5: Intersection Theory I

- Have $K_{1,0,-1}(\mathcal{T}): H^{0}(E) \longrightarrow H^{0}\left(E^{*} \otimes L\right)^{*}$ depending linearly on $\mathcal{T} \in H^{0}(L)^{*}$.
- The general element in $H^{0}(E)$ vanishes on a codimension two subvariety of X which has homology class $c_{2}(E) \in H^{*}(X, \mathbb{Z})$.
- The ring $H^{*}(X, \mathbb{Z})$ can be identified with $\mathbb{Z}\left[t_{A}, t_{B}, t_{C}\right] /\left(t_{A}^{3}, t_{B}^{4}, t_{C}^{5}\right)$.
- The Chern polynomial of Q_{A} is $\frac{1}{1+t_{A}}$, so $c_{2}(E)=t_{A}^{2}+t_{A} t_{C}+t_{C}^{2}$.
- Three general sections of $H^{0}(E)$ have common base locus given by $c_{2}(E)^{3}=\left(t_{A}^{2}+t_{A} t_{C}+t_{C}^{2}\right)^{3}=6 t_{A}^{2} t_{C}^{4}$.
- This coefficient 6 coincides with the generic rank and it is the key to the computation.

Proof of Theorem 3-4-5: Intersection Theory II

- A Macaulay2 test (M2 file on arXiv) performed on a random tensor \mathcal{T} gives that the common base locus of $\operatorname{ker} K_{1,0,-1}(\mathcal{T})$ is given by 6 points $\left(a_{i}, c_{i}\right)$ for $i=1, \ldots, 6$ on the 2 -factor Segre variety $\mathbb{P}(A) \times \mathbb{P}(C)$.
- By semicontinuity, the common base locus of $\operatorname{ker} K_{1,0,-1}(\mathcal{T})$ is given by 6 points for general tensor \mathcal{T}. Hence, for the general tensor \mathcal{T}, equality holds in the Apolarity Lemma.
- In particular, the decomposition $\mathcal{T}=\sum_{i=1}^{6} a_{i} \otimes b_{i} \otimes c_{i}$ has a unique solution (up to scalar) for a_{i}, c_{i}. It follows that also the remaining vectors b_{i} can be recovered uniquely, by solving a linear system.

Thanks!

The $2 \times 2 \times 2 \times 3$ case

For this part, let $A \cong B \cong C \cong \mathbb{C}^{2}$ and $D \cong \mathbb{C}^{3}$. The only interesting Koszul flattenings for tensors in $A \otimes B \otimes C \otimes D$ are the following maps, which depend linearly on $A \otimes B \otimes C \otimes D$.
The 1-flattenings (and their transposes):

$$
\begin{array}{ll}
K_{-1,0,0,0}: A^{*} \rightarrow B \otimes C \otimes D, & K_{0,-1,0,0}: B^{*} \rightarrow A \otimes C \otimes D, \\
K_{0,0,-1,0}: C^{*} \rightarrow A \otimes B \otimes D, & K_{0,0,0,-1}: D^{*} \rightarrow A \otimes B \otimes C,
\end{array}
$$

which detect a maximum of rank 2 in the first 3 cases and a maximum of rank 3 in the last.
The 2-flattenings (and their transposes):

$$
\begin{gathered}
K_{0,0,-1,-1}: C^{*} \otimes D^{*} \rightarrow A \otimes B, \quad K_{0,-1,0,-1}: B^{*} \otimes D^{*} \rightarrow A \otimes C, \\
K_{-1,0,0,-1}: A^{*} \otimes D^{*} \rightarrow B \otimes C .
\end{gathered}
$$

The maps are all 4×6 and detect a maximum of tensor rank 4 . The higher Koszul flattenings:

$$
\begin{gathered}
K_{-1,0,0,1}: A^{*} \otimes D \rightarrow B \otimes C \otimes \bigwedge^{2} D, \quad K_{0,-1,0,1}: B^{*} \otimes C \rightarrow A \otimes C \otimes \bigwedge^{2} D, \\
K_{0,0,-1,1}: C^{*} \otimes D \rightarrow A \otimes B \otimes \bigwedge^{2} D
\end{gathered}
$$

These maps are all 12×6, and detect a maximum of rank 3 .

Proof of Theorem 2-2-2-3

Suppose $T \in A \otimes B \otimes C \otimes D$. Consider $K_{0,0,-1,-1}: C^{*} \otimes D^{*} \rightarrow A \otimes B$. If T is general of rank 4, then $\operatorname{Rank} K_{0,0,-1,-1}(T)=4$ and $\operatorname{dim} \operatorname{ker} K_{0,0,-1,-1}(T)=2$. Apolarity says that the points $\left\{c^{s} \otimes d^{s}\right\}$ are in the common base locus of the elements in the kernel of $K_{0,0,-1,-1}(T)$.
Consider line bundles $E=\mathcal{O}(0,0,1,1), L=\mathcal{O}(1,1,1,1)$ over $\operatorname{Seg}\left(\mathbb{P} C^{*} \times \mathbb{P} D^{*}\right)$. Two general sections of E have common base locus given by a cubic curve, denoted $\mathcal{C}_{C, D}$ of bi-degree $(1,2)$ on $\operatorname{Seg}(\mathbb{P} C \times \mathbb{P} D)$. The projection to $\mathbb{P} D$ is a conic, which we denote \mathcal{Q}_{C}.
Repeat the process for the next 2-flattening, $K_{0,-1,0,-1}: B^{*} \otimes D^{*} \rightarrow A \otimes C$, changing the roles of C and B, we obtain another conic \mathcal{Q}_{B} in $\mathbb{P} D^{*}$.
Finally, if \mathcal{Q}_{C} and \mathcal{Q}_{B} are general, Bézout's theorem implies that they intersect in 4 points in $\mathbb{P} D,\left\{\left[d^{1}\right],\left[d^{2}\right],\left[d^{3}\right],\left[d^{4}\right]\right\}$.
Pull back the $\left\{d_{i}\right\}$ to the curve $\mathcal{C}_{C, D}$ in $\operatorname{Seg}\left(\mathbb{P} C^{*} \times \mathbb{P} D^{*}\right)$ and project to $\mathbb{P} C$ to obtain 4 points $\left\{c_{i}\right\}$ on $\mathbb{P C}$.
Reverse the roles of B and C and repeat to find 4 points $\left\{b_{i}\right\}$ on $\mathbb{P} B$. Reverse the roles of A and B and repeat to find 4 points $\left\{a_{i}\right\}$ on $\mathbb{P} A$. The tensor products $a^{i} \otimes b^{i} \otimes c^{i} \otimes d^{i}$ obtained in this way are, up to scale, the indecomposable tensors in the decomposition of the original tensor T.
Finally we solve an easy linear system to determine the coefficients λ_{i} in the expression $T=\sum_{i=1}^{4} \lambda_{i} a^{i} \otimes b^{i} \otimes c^{i} \otimes d^{i}$.

[^0]: Luke Oeding Auburn University with Hauenstein (Notre Dame), Ottaviani (Firenze) and Sommese (Notre Dame)

