Homotopy Techniques for Tensor Decomposition and

Luke Oeding Auburn University with Hauenstein (Notre Dame), Ottaviani (Firenze) and Sommese (Notre Dame)

Oeding (Auburn)

Homotopy and Identifiability

Tensors, Rank, and Identifiability

- A tensor of format (n_1, n_2, \ldots, n_d) is a hypermatrix $\mathcal{T} = (\mathcal{T}_{i_1, i_2, \ldots, i_d})$ (assume entries in \mathbb{C}), with $1 \leq i_j \leq n_j$ for all j.
- Since \mathcal{T} has $\prod_{j=1}^{d} n_j$ entries, it represents a huge set of data.
- Basic question: Find a sparse representation of \mathcal{T} .
- A rank-one tensor (a point on a Segre variety) is a tensor \mathcal{T} such that $\mathcal{T}_{i_1,\ldots,i_d} = v_{1,j_1} \cdot v_{2,j_2} \cdots v_{d,j_d}$ for some vectors \vec{v}_j of lengths n_j .
- Rank-one tensors only have essentially $\sum_{j=1}^{d} n_j$ pieces of information.
- A rank-r tensor (a general point on the r-th secant variety of the Segre variety) is the sum of r rank-one tensors.
- A rank-*r* tensor only contains essentially $r \cdot \sum_{j=1}^{d} n_j$ pieces of information, which is potentially much smaller than the full dimension $\prod_{j=1}^{d} n_j$.
- So a low-rank representation of \mathcal{T} is a *sparse* presentation.

Some Applications of Secant Varieties

• Classical Algebraic Geometry: When can a given projective variety $\overline{X \subset \mathbb{P}^n}$ be isomorphically projected into \mathbb{P}^{n-1} ?

Determined by the dimension of the secant variety $\sigma_2(X)$.

- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

• Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user's signal.

• Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

First algebraic / geometric questions for tensors

Let $X \subset \mathbb{PC}^N$, with $N = n_1 \times \cdots \times n_d$, denote the set of rank-one tensors, and let $\sigma_r(X)$ denote the Zariski closure of the set of rank-*r* tensors.

- [Dimensions] What is the dimension of $\sigma_r(X)$? – When does $\sigma_r(X)$ fill the ambient \mathbb{PC}^N ? (defectivity)
- **2** [Equations] What are the polynomial defining equations of $\sigma_r(X)$?
- **3** [Decomposition] For my favorite $\mathcal{T} \in \mathbb{C}^N$, can you find an expression of \mathcal{T} as a sum of points from X?
- Specific Identifiability] For a given $\mathcal{T} \in \mathbb{C}^N$, does \mathcal{T} have a unique decomposition (ignoring trivialities)?
- [Generic Identifiability] For generic $\mathcal{T} \in \mathbb{C}^N$, does \mathcal{T} have a unique decomposition (ignoring trivialities)?

Today: Focus on Generic Identifiability

Geometric version of identifiability

Let $X \subset \mathbb{C}^N$, with $N = n_1 \times \cdots \times n_d$, denote the set of rank-one tensors, and let $\sigma_r(X)$ denote the Zariski closure of the set of rank-*r* tensors. Construct the *incidence variety*

$$\mathcal{I} := \{ ([\mathcal{T}], [\mathcal{T}^1] \dots, [\mathcal{T}^r]) \mid [\mathcal{T}^i] \in X, \mathcal{T} \in \langle \mathcal{T}^1, \dots, \mathcal{T}^r \rangle \}$$
$$\mathcal{I} \subset \mathbb{P}^N \times X \times \dots \times X$$
$$\downarrow_{\pi}$$
$$\sigma_r(X)$$

- Projection onto the first factor: $\pi(\mathcal{I}) = \sigma_r(X)$.
- Note $\dim(\mathcal{I}) = r \cdot \dim(\widehat{X}) 1$. If the fiber $\pi^{-1}([\mathcal{T}])$ over a generic $[\mathcal{T}] \in \sigma_r(X)$ is finite, then $\dim(\sigma_r(X)) = \dim(\mathcal{I})$.
- If r is the smallest such that $\sigma_r(X) = \mathbb{P}^N$, say that r is the generic rank.
- Moreover, $\#\pi^{-1}([\mathcal{T}])$ is the number of decompositions of \mathcal{T} .

Definition

If $[\mathcal{T}] \in \sigma_r(X)$ is such that $\#\pi^{-1}([\mathcal{T}]) = r!$, then we say that \mathcal{T} is identifiable and that the decomposition of \mathcal{T} is essentially unique.

Perfect identifiability for tensors

For $\mathcal{T} \in \mathbb{C}^{n_1} \otimes \ldots \otimes \mathbb{C}^{n_d}$, based on dimension count, the generic rank is at least

$$R(n_1, \dots, n_d) := \frac{\prod_{i=1}^d n_i}{\sum_{i=1}^d (n_i - 1) + 1} = \frac{\prod_{i=1}^d n_i}{\left(\sum_{i=1}^d n_i\right) + 1 - d}$$

• The value $\lceil R(n_1, \ldots, n_d) \rceil$ is called the expected generic rank.

- A necessary condition for generically finitely many decompositions is for $R(n_1, \ldots, n_d)$ to be an integer, a.k.a perfect format.
- When the generic tensor of perfect format has an essentially unique decomposition, we say that perfect identifiability holds.

Known Results for "unbalanced formats" Assume $d \ge 3$ and $2 \le n_1 \le n_2 \le \ldots \le n_d$. If $n_d \ge \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$, we say that the format (n_1, \ldots, n_d) is unbalanced.

Theorem (Catalisano-Geramita-Gimigliano'02, Abo-Ottaviani-Peterson'09, Bocci-Chiantini-Ottaviani'13)

For formats (n_1, \ldots, n_d) , suppose that $n_d \ge \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$. The generic rank is $\min\left(n_d, \prod_{i=1}^{d-1} n_i\right)$.

2 A general tensor of rank r has a unique decomposition if $r < \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1).$

A general tensor of rank $r = \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$ has exactly $\binom{D}{r}$ different decompositions where $D = \frac{\left(\sum_{i=1}^{d-1} (n_i - 1)\right)!}{(n_1 - 1)! \cdots (n_{d-1} - 1)!}$.
 This value of r coincides with the generic rank in the perfect case: $r = n_d$.

• If $n_d > \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$, a general tensor of rank $r > \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$ has infinitely many decompositions.

Monodromy for Tensor Identifiability (using Bertini)

The problem:

Given \mathcal{T} find rank-one tensors \mathcal{T}^i so that $\mathcal{T} = \sum_{i=1}^r \mathcal{T}^i$.

Asks to solve a straightforward system of polynomial equations. In general, this can be a very difficult problem.

- One method to numerically solve large systems of polynomials is to use homotopy continuation, in a software package like Bertini.
- The idea is to start with a similar system G whose solutions you know (like roots of unity). Then perform a homotopy to your system F:

$$t\cdot G + (1-t)\cdot F \qquad t\in [0,1]$$

and numerically track the paths traced out by the solutions of G. The paths should end in solutions of the F.

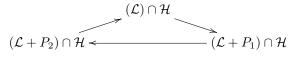
• generically can construct paths that avoid singularities and end points are non-singular (real 1-dimensional path, singular locus has complex codim 1, so real codim 2.)

Numerical Algebraic Geometry & Bertini

input: An affine variety \mathcal{H} . **Output:** deg \mathcal{H}

- Choose a random linear space \mathcal{L} with dim $\mathcal{L} = \operatorname{codim} \mathcal{H}$.
- **2** Generate a point $x \in \mathcal{H} \cap \mathcal{L}$. Initialize $\mathcal{W} := \{x\}$.
- O Perform a random monodromy loop starting at the points in \mathcal{W} :
 - (a) Pick a random loop $\mathcal{M}(t)$ in the grassmannian of linear spaces so that $\mathcal{M}(0) = \mathcal{M}(1) = \mathcal{L}.$
 - (b) Trace the curves $\mathcal{H} \cap \mathcal{M}(t)$ starting at the points in \mathcal{W} at t = 0 to compute the endpoints \mathcal{E} at t = 1. (Hence, $\mathcal{E} \subset \mathcal{H} \cap \mathcal{L}$).
 - (c) Update $\mathcal{W} := \mathcal{W} \cup \mathcal{E}$, sort \mathcal{W} , remove repeats and symmetric copies.
- Repeat (2) until #W stabilizes.
- **(3)** Use the trace test to verify that $\mathcal{W} = \mathcal{H} \cap \mathcal{L}$.
- Return deg $\mathcal{H} = \#\mathcal{H}(\cap \mathcal{L})$.

A triangular monodromy loop for random points P_1 and P_2 in \mathbb{C}^N :



Monodromy for Tensor Decomposition (using Bertini)

Start: A general tensor \mathcal{T} of format (n_1, \ldots, n_d) with known minimal decomposition, $\mathcal{T} = \sum_{i=1}^r (v_1^i \otimes \ldots \otimes v_d^i)$. (dehomogenize): Set $(v_j^i)_1 = 1$ for $i = 1, \ldots, r$ and $j = 1, \ldots, d-1$.

• Input system:

$$F_{\mathcal{T}}(v_1^1,\ldots,v_d^r) = \begin{bmatrix} \mathcal{T} - \sum_{i=1}^r (v_1^i \otimes \ldots \otimes v_d^i) \\ (v_j^i)_1 - 1 & \text{for } i = 1,\ldots,r \text{ and } j = 1,\ldots,d-1 \end{bmatrix} = 0$$

- The system $F_{\mathcal{T}}$ consists of $\prod_{j=1}^{d} n_j + r(d-1)$ polynomials in $r \cdot \sum_{j=1}^{d} n_j$ variables. Balanced format \Rightarrow square system.
- Let $\mathcal{W} \subset (\mathbb{C}^{n_1} \times \cdots \times \mathbb{C}^{n_d})^r$ be the known decompositions of T.
- Homotopy: For a loop $\tau : [0,1] \to \mathbb{C}^{n_1 \cdots n_d}$ with $\tau(0) = \tau(1) = \mathcal{T}$, consider the homotopy

$$H(v_1^1, \dots, v_d^r, s) = F_{\tau(s)}(v_1^1, \dots, v_d^r) = 0.$$

- Endpoints are decompositions of \mathcal{T} . If new, add results to \mathcal{W} .
- Repeat until $|\mathcal{W}|$ stabilizes (at least 20 additional randomly selected loops failed to yield any new decompositions), and possibly use AlphaCertify.

Theorem (CGG'02, AOP'09, BCC'13)

For formats (n_1, \ldots, n_d) , suppose that $n_d \ge \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$. • The generic rank is $\min\left(n_d, \prod_{i=1}^{d-1} n_i\right)$.

- A general tensor of rank r has a unique decomposition if $r < \prod_{i=1}^{d-1} n_i \sum_{i=1}^{d-1} (n_i 1).$
- 3 A general tensor of rank $r = \prod_{i=1}^{d-1} n_i \sum_{i=1}^{d-1} (n_i 1)$ has exactly $\binom{D}{r}$ different decompositions where

$$D = \frac{\left(\sum_{i=1}^{d-1} (n_i - 1)\right)!}{(n_1 - 1)! \cdots (n_{d-1} - 1)!}.$$

This value of r coincides with the generic rank in the perfect case: when $r = n_d$.

• If $n_d > \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$, a general tensor of rank $r > \prod_{i=1}^{d-1} n_i - \sum_{i=1}^{d-1} (n_i - 1)$, e.g., a general tensor of format (n_1, \ldots, n_d) , has infinitely many decompositions.

Computational results: Unbalanced cases

Some known perfect cases and the number of decompositions.

(n_1,\ldots,n_d)	gen. rank	# of decomp. of general tensor
(2, n, n)	n	(Weierstrass-Kronecker) 1
(3, 3, 5)	5	6
(3, 4, 7)	7	120
(3, 5, 9)	9	5005
(3, 6, 11)	11	352716
(4, 4, 10)	10	184756
(2, 2, 2, 5)	5	6
(2, 2, 3, 8)	8	495

Computational results: Perfect cases, 3 factors

All perfect, balanced tensor formats of 3-tensors with $\prod_{i=1}^{3} n_i \leq 150$.

(n_1, n_2, n_3)	gen. rank	# of decomp. of general tensor
(3, 4, 5)	6	1
(3, 6, 7)	9	38
(4, 4, 6)	8	62
(4, 5, 7)	10	$\geq 222,556$

After the numerical results, we were motivated to prove the following:

Theorem (HOOS 2015)

The general tensor of format (3, 4, 5) has a unique decomposition as a sum of 6 decomposable summands.

Our proof relies on algebraic geometry, vector bundles and intersection theory, and relies on a notion of *non-abelian polarity*.

Computational results: Perfect cases, 4 factors All perfect, balanced tensor formats with $d \ge 4$ and $\prod_{i=1}^{d} n_i \le 100$.

(n_1,\ldots,n_d)	gen. rank	# of decomp. of general tensor
(2, 2, 2, 3)	4	1
(2, 2, 3, 4)	6	4
(2, 2, 4, 5)	8	68
(2, 3, 3, 4)	8	471
(2, 3, 3, 5)	9	7225
(3,3,3,3)	9	20,596
(2, 2, 2, 2, 4)	8	447
(2, 2, 2, 3, 3)	9	18,854
(2, 2, 2, 2, 2, 3)	12	$\geq 238,879$

Again, motivated by the numerical evidence we were able to prove:

Theorem (HOOS 2015)

The general tensor of format (2, 2, 2, 3) has a unique decomposition as a sum of 4 decomposable summands.

A similar proof to the (3, 4, 5)-case also works here.

A conjecture

Conjecture (HOOS 2015)

The only perfect formats (n_1, \ldots, n_d) where a general tensor has a unique decomposition are

- **(2**, k, k) for some k matrix pencils, known classically by Kronecker normal form,
- (3, 4, 5), and
- **3** (2, 2, 2, 3).

The generic rank is known to be equal to the expected one for the cubic format (n, n, n) [Lickteig'85], which is not perfect for $n \ge 3$, and in the binary case $(2, \ldots, 2)$ for at least $k \ge 5$ factors [CGG'11], which is perfect if k + 1 is a power of 2. A numerical check for k = 7 shows it is not identifiable.

Methods: Koszul Flattenings

The Koszul complex: linear maps $K_p: \bigwedge^p V \to \bigwedge^{p+1} V$ depending linearly on V.

$$K_p(v)(\varphi) = \varphi \wedge v \text{ for } p \ge 0, \qquad K_p(v)(\varphi) = \varphi(v) \text{ for } p < 0.$$

Set $V_I = \bigwedge^{i_1} V_1 \otimes \bigwedge^{i_2} V_2 \otimes \cdots \otimes \bigwedge^{i_d} V_d$, and form a tensor product of Koszul maps:

$$K_I \colon V_I \to V_{I+1^d}$$

that depend linearly on $V_{(1,\ldots,1)} = V_1 \otimes \cdots \otimes V_d$.

Lemma (Koszul Flattening)

Suppose $T \in V_{1,...,1}$ has tensor rank r. Let $i_j \ge 0$ for j = 1,...,h, $i_j < 0$ for j = h + 1,...,d. The Koszul flattening $K_I(T) \colon V_I \to V_{I+1^d}$ has rank at most

$$r_I := r \cdot \prod_{j=1}^h {n_j - 1 \choose i_j} \cdot \prod_{j=h+1}^d {n_j - 1 \choose -i_j - 1}.$$

In particular, the $(r_I + 1) \times (r_I + 1)$ minors of $K_I(T)$ vanish. Meaningful if $r_I < \min\{\dim V_I, \dim V_{I+1^d}\}$.

Basic idea: A Koszul flattening of \mathcal{T} is a matrix constructed from the entries of \mathcal{T} that has rank at most a multiple of the rank of \mathcal{T} : detect $\operatorname{Rank}(\mathcal{T})$.

Oeding (Auburn)

Homotopy and Identifiability

October 15, 2020 16 / 27

The $3 \times 4 \times 5$ case

Let us denote the three factors as $A = \mathbb{C}^3$, $B = \mathbb{C}^4$, $C = \mathbb{C}^5$. The following are all possible non-trivial, non-redundant Koszul flattenings (up to transpose).

• usual flattenings:

$$\begin{split} &K_{(0,-1,-1)} \colon (B \otimes C)^* \to A \ , \\ &K_{(-1,0,-1)} \colon (A \otimes C)^* \to B \ , \\ &K_{(-1,-1,0)} \colon (A \otimes B)^* \to C \ , \end{split}$$

• Koszul flattenings:

$$\begin{split} K_{(1,-1,0)} &: B^* \otimes A \to C \otimes \bigwedge^2 A , \qquad K_{(1,0,-1)} :: C^* \otimes A \to B \otimes \bigwedge^2 A , \\ K_{(0,1,-1)} &: C^* \otimes B \to A \otimes \bigwedge^2 B , \qquad K_{(-1,1,0)} :: A^* \otimes B \to C \otimes \bigwedge^2 B , \\ K_{(-1,0,1)} &: A^* \otimes C \to B \otimes \bigwedge^2 C , \qquad K_{(0,-1,1)} :: B^* \otimes C \to A \otimes \bigwedge^2 C , \\ K_{(-1,0,2)} &: A^* \otimes \bigwedge^2 C \to B \otimes \bigwedge^3 C , \qquad K_{(0,-1,2)} :: B^* \otimes \bigwedge^2 C \to A \otimes \bigwedge^3 C . \end{split}$$

An example Koszul flattening

$$K_{(0,1,-1)} \colon C^* \otimes B \to A \otimes \bigwedge^2 B$$

 $K_{0,1,-1}(a \otimes b \otimes c)$ has image

$$(\bigwedge^0 A \wedge a) \otimes (\bigwedge^1 B \wedge b) \otimes (C^*(c)) \subset \bigwedge^1 A \otimes \bigwedge^2 B \otimes \bigwedge^0 C.$$

The factor $C^*(c)$ is just a scalar that is obtained by contracting c with C^* .

We are left with $(\bigwedge^0 A \wedge a) = \langle a \rangle$ tensored with $(\bigwedge^1 B \wedge b) \subset \bigwedge^2 B$,

but $(\bigwedge^1 B \wedge b) \cong (B/b) \otimes \langle b \rangle$, which is 3 dimensional.

So $K_{0,1,-1}(\mathcal{T})$ has rank that is at most 3 times the rank of \mathcal{T} . And since it is 18×20 , it has a chance to detect up to rank 6 tensors.

map	size	mult-factor	max tensor rank detected
$K_{(0,-1,-1)}$	3×20	1	3
$K_{(-1,0,-1)}$	4×15	1	4
$K_{(-1,-1,0)}$	5×12	1	5
$K_{(1,-1,0)}$	15×12	2	6
$K_{(1,0,-1)}$	12×15	2	6
$K_{(0,1,-1)}$	18×20	3	6
$K_{(-1,1,0)}$	12×30	3	4
$K_{(-1,0,1)}$	40×15	4	4
$K_{(0,-1,1)}$	30×20	4	5
$K_{(-1,0,2)}$	40×30	6	5
$K_{(0,-1,2)}$	30×40	6	5
$K_{(0,-1,2)}$	30×40	6	5

We see that the only maps that distinguish between tensor rank 5 and 6 are $K_{(1,-1,0)}$, $K_{(1,0,-1)}$, and $K_{(0,1,-1)}$. Since $\bigwedge^2 A \cong A^*$, the first two maps are transposes of each other:

$$K_{(1,-1,0)} = (K_{(1,0,-1)})^t.$$

Thus, we proceed by considering $K_{(1,0,-1)}$ and $K_{(0,1,-1)}$.

Methods: Apolarity

The definition of the Koszul Flattening implies

$$T = v_1 \otimes \ldots \otimes v_d \in \ker K_I(T) \iff \bigotimes_{j=1}^h (\varphi_j \wedge v_j) \otimes \bigotimes_{j=h+1}^d (\varphi_j(v_j)) = 0$$

for all basis elements $\varphi \in V_I$. Think of elements of the kernel of $K_I(T)$ as linear mappings. Let $N \sqcup P = \{1, \ldots, d\}$ be the set partition such that $-I_N \in \mathbb{Z}_{>0}^d$, $I_P \in \mathbb{Z}_{>0}^d$.

Lemma (Non-abelian Apolarity Lemma [Landsberg-Ottaviani'13:])

Suppose $T = \sum_{s=1}^{r} v_1^s \otimes \ldots \otimes v_d^s$. The kernel ker $K_I(T)$ contains all maps $\psi \in \operatorname{Hom}(V_{-I_N}, V_{I_P})$ such that

$$\psi \big(V_{-I_N+1_N} \land \bigotimes_{j \in N} v_j^s \big) \land \big(\bigotimes_{j \in P} v_j^s \big) = 0$$

for s = 1, ..., r.

Basic idea: the kernel of a flattening of \mathcal{T} can be used to gain information about the decomposition of \mathcal{T} .

Oeding (Auburn)

Homotopy and Identifiability

In our case the Apolarity Lemma says that

$$\ker K_{1,0,-1}(\sum_{i=1}^{s} a_i b_i c_i) \supset \{\varphi \in Hom(C,A) | \varphi(c_i) \land a_i = 0 \text{ for } i = 1,\dots,s\}.$$
(1)
and

ker $K_{0,1,-1}(\sum_{i=1}^{s} a_i b_i c_i) \supset \{\varphi \in Hom(C, B) | \varphi(c_i) \land b_i = 0 \text{ for } i = 1, \dots, s\}.$ Equality should hold for honest decompositions.

Basic result from Oeding-Ottaviani [OO'13] and Landsberg-Ottaviani [LO'11]:

The set of eigenvectors of a general element in $\ker(K_I(\mathcal{T}))$ (interpreted as the common base locus of general sections of a certain vector bundle) contains the set of (pieces of) rank-one summands in a decomposition of \mathcal{T} .

Proof of Theorem 3-4-5: Vector Bundles

For general $\mathcal{T} \in A \otimes B \otimes C$, $K_{1,0,-1}(f)$ is surjective and ker $K_{1,0,-1}(\mathcal{T})$ has dimension dim $Hom(C, A) - \dim \wedge^2 A \otimes B = 15 - 12 = 3$.

Interpret $K_{1,0,-1}(\mathcal{T})$ as a map between sections of vector bundles.

Let $X = \mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$ with (pull-back) line bundle. $\mathcal{O}(\alpha, \beta, \gamma)$

Let Q_A be the pullback of the quotient bundle on $\mathbb{P}(A)$.

Let $E = Q_A \otimes \mathcal{O}(0, 0, 1)$ (a rank 2 bundle on X) and $L = \mathcal{O}(1, 1, 1)$.

As in [OO'13], [LO'13], the map $K_{1,0,-1}(\mathcal{T})$ can be identified with contraction $K_{1,0,-1}(\mathcal{T}): H^0(E) \longrightarrow H^0(E^* \otimes L)^*$ depending linearly on $\mathcal{T} \in H^0(L)^*$.

Apolarity: compute the common base locus of the sections of the vector bundle $\ker(K_{0,1,-2}(\mathcal{T}))$ to find the decomposition of \mathcal{T} .

Proof of Theorem 3-4-5: Intersection Theory I

- Have $K_{1,0,-1}(\mathcal{T}): H^0(E) \longrightarrow H^0(E^* \otimes L)^*$ depending linearly on $\mathcal{T} \in H^0(L)^*$.
- The general element in $H^0(E)$ vanishes on a codimension two subvariety of X which has homology class $c_2(E) \in H^*(X, \mathbb{Z})$.
- The ring $H^*(X,\mathbb{Z})$ can be identified with $\mathbb{Z}[t_A, t_B, t_C]/(t_A^3, t_B^4, t_C^5)$.
- The Chern polynomial of Q_A is $\frac{1}{1+t_A}$, so $c_2(E) = t_A^2 + t_A t_C + t_C^2$.
- Three general sections of $H^0(E)$ have common base locus given by $c_2(E)^3 = (t_A^2 + t_A t_C + t_C^2)^3 = 6t_A^2 t_C^4$.
- This coefficient 6 coincides with the generic rank and it is the key to the computation.

Proof of Theorem 3-4-5: Intersection Theory II

- A Macaulay2 test (M2 file on arXiv) performed on a random tensor \mathcal{T} gives that the common base locus of ker $K_{1,0,-1}(\mathcal{T})$ is given by 6 points (a_i, c_i) for $i = 1, \ldots, 6$ on the 2-factor Segre variety $\mathbb{P}(A) \times \mathbb{P}(C)$.
- By semicontinuity, the common base locus of ker $K_{1,0,-1}(\mathcal{T})$ is given by 6 points for general tensor \mathcal{T} . Hence, for the general tensor \mathcal{T} , equality holds in the Apolarity Lemma.
- In particular, the decomposition $\mathcal{T} = \sum_{i=1}^{6} a_i \otimes b_i \otimes c_i$ has a unique solution (up to scalar) for a_i , c_i . It follows that also the remaining vectors b_i can be recovered uniquely, by solving a linear system.

Thanks!

The $2 \times 2 \times 2 \times 3$ case

For this part, let $A \cong B \cong C \cong \mathbb{C}^2$ and $D \cong \mathbb{C}^3$. The only interesting Koszul flattenings for tensors in $A \otimes B \otimes C \otimes D$ are the following maps, which depend linearly on $A \otimes B \otimes C \otimes D$.

The 1-flattenings (and their transposes):

$$\begin{split} &K_{-1,0,0,0} \colon A^* \to B \otimes C \otimes D, \quad K_{0,-1,0,0} \colon B^* \to A \otimes C \otimes D, \\ &K_{0,0,-1,0} \colon C^* \to A \otimes B \otimes D, \quad K_{0,0,0,-1} \colon D^* \to A \otimes B \otimes C, \end{split}$$

which detect a maximum of rank 2 in the first 3 cases and a maximum of rank 3 in the last.

The 2-flattenings (and their transposes):

$$K_{0,0,-1,-1} \colon C^* \otimes D^* \to A \otimes B, \quad K_{0,-1,0,-1} \colon B^* \otimes D^* \to A \otimes C,$$
$$K_{-1,0,0,-1} \colon A^* \otimes D^* \to B \otimes C.$$

The maps are all 4×6 and detect a maximum of tensor rank 4. The higher Koszul flattenings:

$$\begin{split} K_{-1,0,0,1} \colon A^* \otimes D \to B \otimes C \otimes \bigwedge^2 D, \quad K_{0,-1,0,1} \colon B^* \otimes C \to A \otimes C \otimes \bigwedge^2 D, \\ K_{0,0,-1,1} \colon C^* \otimes D \to A \otimes B \otimes \bigwedge^2 D \end{split}$$

These maps are all 12×6 , and detect a maximum of rank 3.

Oeding (Auburn)

Proof of Theorem 2-2-2-3

Suppose $T \in A \otimes B \otimes C \otimes D$. Consider $K_{0,0,-1,-1} \colon C^* \otimes D^* \to A \otimes B$. If T is general of rank 4, then Rank $K_{0,0,-1,-1}(T) = 4$ and dim ker $K_{0,0,-1,-1}(T) = 2$. Apolarity says that the points $\{c^s \otimes d^s\}$ are in the common base locus of the elements in the kernel of $K_{0,0,-1,-1}(T)$.

Consider line bundles $E = \mathcal{O}(0, 0, 1, 1), L = \mathcal{O}(1, 1, 1, 1)$ over $\operatorname{Seg}(\mathbb{P}C^* \times \mathbb{P}D^*)$. Two general sections of E have common base locus given by a cubic curve, denoted $\mathcal{C}_{C,D}$ of bi-degree (1,2) on $\operatorname{Seg}(\mathbb{P}C \times \mathbb{P}D)$. The projection to $\mathbb{P}D$ is a conic, which we denote \mathcal{Q}_C .

Repeat the process for the next 2-flattening, $K_{0,-1,0,-1}: B^* \otimes D^* \to A \otimes C_{,,}$ changing the roles of C and B, we obtain another conic \mathcal{Q}_B in $\mathbb{P}D^*$. Finally, if \mathcal{Q}_C and \mathcal{Q}_B are general, Bézout's theorem implies that they intersect in 4 points in $\mathbb{P}D$, $\{[d^1], [d^2], [d^3], [d^4]\}$.

Pull back the $\{d_i\}$ to the curve $\mathcal{C}_{C,D}$ in Seg $(\mathbb{P}C^* \times \mathbb{P}D^*)$ and project to $\mathbb{P}C$ to obtain 4 points $\{c_i\}$ on $\mathbb{P}C$.

Reverse the roles of B and C and repeat to find 4 points $\{b_i\}$ on $\mathbb{P}B$. Reverse the roles of A and B and repeat to find 4 points $\{a_i\}$ on $\mathbb{P}A$. The tensor products $a^i \otimes b^i \otimes c^i \otimes d^i$ obtained in this way are, up to scale, the indecomposable tensors in the decomposition of the original tensor T. Finally we solve an easy linear system to determine the coefficients λ_i in the expression $T = \sum_{i=1}^{4} \lambda_i a^i \otimes b^i \otimes c^i \otimes d^i$.