

Symmetry and
Large-Scale Computations for the Quadrifocal Variety

Luke Ceding
Auburn University, USA

Image reconstruction
Google "Duomo Florence"

Try to reconstruct a 3D model of this beautiful structure from 2D images.

The Pinhole Camera

Model the 3D world as projective 3 -space, \mathbb{P}^{3}.
Use homogeneous coordinates for points $[X]:=\left[X_{0}: X_{1}: X_{2}: X_{3}\right]$.
The 2D image is modeled by projective 2 -space, \mathbb{P}^{2}.
Points $[x]:=\left[x_{0}: x_{1}: x_{2}\right]$.
The standard pinhole camera is modeled by projection $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$.

The projection is induced from a linear map on affine spaces, represented by a 3×4 camera matrix A.
The projection is simply $[X] \mapsto[A . X]=[x]$
Assume A has full rank. Can choose coordinates so that $A=\left(I_{3} \mid \vec{a}_{4}\right)$, where \vec{a}_{4} will be the coordinates of the image of the focal point of the camera.

Fundamental Matrices

For 2 camera matrices A_{1}, and A_{2}, point correspondences between two images are recorded by the 3×3 fundamental matrix, F , which is defined by the following algebraic conditions:

$$
\text { If } A_{1} X=x \text { and } A_{2} X=x^{\prime} \text { (a point-point correspondence) then } x^{\top} \mathrm{F} x^{\prime}=0 .
$$

If the camera matrices are known, and the stacked camera matrix is (after change in coordinates)

$$
M=\left(A_{1}^{\top} \mid A_{2}^{\top}\right) \cong\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
x_{1,1} & x_{1,2} & x_{1,3} & x_{2,1} & x_{2,2} & x_{2,3}
\end{array}\right) .
$$

The entries of the fundamental matrix are the 4×4 minors of A using 2 columns from each block:

$$
F(M)=\left(\begin{array}{ccc}
0 & x_{1,3}-x_{2,3} & -x_{1,2}+x_{2,2} \\
-x_{1,3}+x_{2,3} & 0 & x_{1,1}-x_{2,1} \\
x_{1,2}-x_{2,2} & -x_{1,1}+x_{2,1} & 0
\end{array}\right) .
$$

Fundamental Matrices

Theorem (Hartley-Zisserman Thm. 9.10)

The fundamental matrix determines the camera matrices up to projective transformation. That is, if $\left(P, P^{\prime}\right)$ and $\left(\tilde{P}, \tilde{P}^{\prime}\right)$ are two pairs of matrices with the same fundamental matrix F, then there exists a nonsingular 4×4 matrix H such that $P=\tilde{P} H$ and $P^{\prime}=\tilde{P}^{\prime} H$.

If the camera matrices are not known, F has 9 homogeneous parameters (only defined up to scale) and must have rank 2, so it is determined by the linear conditions imposed by 7 point-point correspondences.

Once the two camera matrices are reconstructed, triangulation allows us to reconstruct the 3D world points associated to each point-point correspondence.

Typical method for camera matrix reconstruction: Random Sample Consensus (RANSAC) Algorithms.
Typical issue: sometimes difficult to determine 7 inliers in two different images.
Possible improvement: use more images to reduce the number of required inliers.

General multi-focal tensors

Stack camera matrices $A_{i}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$ to form the $N \times m \cdot n$ matrix

$$
M=\left(A_{1}^{\top}\left|A_{2}^{\top}\right| \ldots \mid A_{m}^{\top}\right)
$$

M has maximal rank on an open set of camera configurations.
Fix a partition $\pi \vdash N$, with $\# \pi \leq m$ parts, $N \leq m \cdot n$, and $\pi_{1} \leq n$: Z_{π} is the variety of the maximal minors of M using π_{i} columns from A_{i}^{\top}.

- Z_{π} is an equivariant projection from the $\operatorname{Grassmannian~} \operatorname{Gr}(N, m n)$.
- Z_{π} is invariant under the action of $\mathrm{GL}(n)^{\times \# \pi}$.
- see also [Hartley-Zisserman], [Aholt-Sturmfels-Thomas], [Heyden], [Triggs], [Faugeras-Mourrain]...

We are most interested in the case $N=4, m=4 n=3$:
$Z_{2,2}$ is the variety of fundamental matrices (skew-symmetric 3×3 matrices).
$Z_{2,1,1}$ is the variety of trifocal tensors (special $3 \times 3 \times 3$ tensors). (see [Aholt-O.'14]).
$Z_{1,1,1,1}$ is the variety of quadrifocal tensors (special $3 \times 3 \times 3 \times 3$ tensors).

Frank and Prank for trifocal tensors

A (rank 4) tensor in $A^{*} \otimes B^{*} \otimes C$:

$$
T=a_{1} \otimes b_{2} \otimes c_{1}+a_{3} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3} .
$$

3 contractions:

$$
T(A)=\left(\begin{array}{ccc}
a_{3} & 0 & 0 \\
a_{1} & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right),
$$

$$
\text { P-Rank } A=3
$$

$$
T(B)=\left(\begin{array}{ccc}
b_{2} & 0 & 0 \\
0 & b_{2} & 0 \\
b_{1} & 0 & b_{3}
\end{array}\right),
$$

$$
\text { P-Rank }{ }_{B}=3
$$

$$
T(C)=\left(\begin{array}{ccc}
0 & c_{1} & 0 \\
0 & c_{2} & 0 \\
c_{1} & 0 & c_{3}
\end{array}\right) \quad \begin{aligned}
& \text { P-Rank } c=2 \Rightarrow 10 \text { cubics }
\end{aligned}
$$

3 flattenings to 3×9 matries:

$$
F(A)=\left(\begin{array}{lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

$$
F(B)=\left(\begin{array}{lll|lll|lll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
F(C)=\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

$$
\text { F-Rank }{ }_{B}=3
$$

Polarization: how to write down 10 special cubics

Think of a $3 \times 3 \times 3$ tensor as three 3×3 matrices stacked in the rows of a matrix $T=\left(T_{1}\left|T_{2}\right| T_{3}\right)$

$$
=\left(\begin{array}{ccc|ccc|ccc}
T 000 & T 100 & T 200 & T 001 & T 101 & T 201 & T 002 & T 102 & T 202 \\
T 010 & T 110 & T 210 & T 011 & T 111 & T 211 & T 012 & T 112 & T 212 \\
T 020 & T 120 & T 220 & T 021 & T 121 & T 221 & T 022 & T 122 & T 222
\end{array}\right)
$$

Use dummy variables $z 1, z 2, z 3$ to form the generic contraction:

$$
T(z)=z 1 T_{1}+z 2 T_{2}+z 3 T_{3}
$$

$$
\left(\begin{array}{lll}
T 000 z 0+T 001 z 1+T 002 z 2 & T 100 z 0+T 101 z 1+T 102 z 2 & T 200 z 0+T 201 z 1+T 202 z 2 \\
T 010 z 0+T 011 z 1+T 012 z 2 & T 110 z 0+T 111 z 1+T 112 z 2 & T 210 z 0+T 211 z 1+T 212 z 2 \\
T 020 z 0+T 021 z 1+T 022 z 2 & T 120 z 0+T 121 z 1+T 122 z 2 & T 220 z 0+T 221 z 1+T 222 z 2
\end{array}\right)
$$

If T is a trifocal tensor then $T(z)$ is a bifocal tensor for all z.
Recall F is a bifocal tensor if and only if it has rank 2.
Therefore $\operatorname{det}(T(z)) \equiv 0$. The coefficients in z are 10 cubic equations in the entries of T.
Gives a basis of the Schur Module $\left(S^{3} V_{1} \otimes \Lambda^{3} V_{2} \otimes \Lambda^{3} V_{3}\right)^{*}$.

Polarization: how to write down 600 special cubics

Think of a $3 \times 3 \times 3 \times 3$ tensor as nine 3×3 matrices

$$
Q(x, y)=\sum_{i, j=1}^{3} x_{i} y_{j} Q_{i, j}
$$

A bilinear function in $\left(x_{i}, y_{i}\right)$.
If Q is a quadrifocal tensor then $Q(x, y)$ is a bifocal tensor for all x, y.
Therefore $\operatorname{det}(Q(x, y)) \equiv 0$. The coefficients in x, y are 100 cubic equations in the entries of Q. Gives a basis of $S^{3} S^{3} \Lambda^{3} \Lambda^{3}$ - the 6 permutations give the 600 cubic equations.

We would like to give a complete algebraic description of the quadrifocal variety Z by finding the generators of its defining ideal $I(Z)$ (the implicit defining equations of the model).

Naively, to find out if the variety Z lives in a linear subspace, put the coordinates of 81 points in the rows of a matrix $P=\left(\begin{array}{c}-Z_{1}- \\ \vdots \\ -Z_{81}-\end{array}\right)$ The null space of P is the vector space of linear forms vanishing on the 81 points (and very likely all of Z).
If $\operatorname{Null}(P)=0$, there are no linear forms in the ideal of Z.
In higher degree d we can Veronese re-embed the points and solve another linear algebra problem to find the space of degree d polynomials vanishing on Z.

But the dimensions grow quickly:
$\left(\begin{array}{lllllllllllll}1 & 81 & 3321 & 91881 & 1929501 & 32801517 & 470155077 & 5843355957 & 64276915527 & \ldots\end{array}\right)$

The ideal $I(Z)$ is a $G=\mathfrak{S}_{4} \ltimes G L(3)^{\times 4}$-submodule of $R=\mathbb{C}\left[\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right]$. R has a G-isotypic decomposition:

$$
R=\bigoplus_{d \geq 0} \bigoplus_{\pi \vdash-4 d} S_{\pi} V \otimes M_{\pi}
$$

where π is a multi-partition, the sum is over non-redundant permutations,

- Schur module: $S_{\pi} V=\bigoplus_{\sigma \in \mathfrak{G}_{4} / \sim}\left(S_{\pi_{\sigma .1}} V_{1} \otimes S_{\pi_{\sigma .2}} V_{2} \otimes S_{\pi_{\sigma .3}} V_{3} \otimes S_{\pi_{\sigma .4}} V_{4}\right)$
- Multiplicity space (Specht Module): M_{π}.

Our tasks for small degree d are the following:

- Compute a basis of M_{π} for each π.
- Evaluate the highest-weight space of $S_{\pi} V \otimes M_{\pi}$ on points of Z.
- Obtain a list of G-modules (with multiplicity) in $I(Z)$.
- Determine which modules are among the minimal generators.
- Determine the maximal degree of minimal generators.

Invariant Theory and Young Symmetrizers

Multi-partition: (221, 221, 221,221), Filling: $F=$| b | e | b | e | b | e | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| c | e | e | | | | |

Auxiliary polynomial: $\boldsymbol{p}=\left|\begin{array}{lll}a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\ b_{1}^{1} & b_{2}^{1} & b_{3}^{1} \\ c_{1}^{1} & c_{2}^{1} & c_{3}^{1}\end{array}\right|\left|\begin{array}{ll}d_{1}^{1} & d_{2}^{1} \\ e_{1}^{1} & e_{2}^{1}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ b_{1}^{2} & b_{2}^{2} & b_{3}^{2} \\ c_{1}^{2} & c_{2}^{2} & c_{3}^{2}\end{array}\right|\left|\begin{array}{ll}d_{1}^{2} & d_{2}^{2} \\ e_{1}^{2} & e_{2}^{2}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \\ b_{1}^{3} & b_{2}^{3} & b_{3}^{3} \\ c_{1}^{3} & c_{2}^{3} & c_{3}^{3}\end{array}\right|\left|\begin{array}{ll}d_{1}^{3} & d_{2}^{3} \\ e_{1}^{3} & e_{2}^{3}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{4} & a_{2}^{4} & a_{3}^{4} \\ b_{1}^{4} & b_{2}^{4} & b_{3}^{4} \\ c_{1}^{4} & c_{2}^{4} & c_{3}^{4}\end{array}\right|\left|\begin{array}{ll}d_{1}^{4} & d_{2}^{4} \\ e_{1}^{4} & e_{2}^{4}\end{array}\right|$
(1) Start with $p(a, b, c, d, e, x)$ of multi-degree $(4,4,4,4,4,0)$.
(2) Replace every $a_{i}^{1} a_{j}^{2} a_{k}^{3} a_{l}^{4}$ with $x_{i, j, k, l}$

- Produce a polynomial of multi-degree ($0,4,4,4,4,1$).
(3) Replace every $b_{i}^{1} b_{j}^{2} b_{k}^{3} b_{l}^{4}$ with $x_{i, j, k, l}$
- Produce a polynomial of multi-degree ($0,0,4,4,4,2$).
(1) Repeat for c, d, e,
- Produce $P(x)$ of multi-degree ($0,0,0,0,0,5$) (possibly zero).
(5) output: $P(x)$ highest weight vector of $S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221}$.

Evaluation of Young Symmetrizers

Auxiliary polynomial: $p=\left|\begin{array}{lll}a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\ b_{1}^{1} & b_{2}^{1} & b_{3}^{1} \\ c_{1}^{1} & c_{2}^{1} & c_{3}^{1}\end{array}\right|\left|\begin{array}{ll}d_{1}^{1} & d_{2}^{1} \\ e_{1}^{1} & e_{2}^{1}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ b_{1}^{2} & b_{2}^{2} & b_{3}^{2} \\ c_{1}^{2} & c_{2}^{2} & c_{3}^{2}\end{array}\right|\left|\begin{array}{cc}d_{1}^{2} & d_{2}^{2} \\ e_{1}^{2} & e_{2}^{2}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \\ b_{1}^{3} & b_{2}^{3} & b_{3}^{3} \\ c_{1}^{3} & c_{2}^{3} & c_{3}^{3}\end{array}\right|\left|\begin{array}{lll}d_{1}^{3} & d_{2}^{3} \\ e_{1}^{3} & e_{2}^{3}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{4} & a_{2}^{4} & a_{3}^{4} \\ b_{1}^{4} & b_{2}^{4} & b_{3}^{4} \\ c_{1}^{4} & c_{2}^{4} & c_{3}^{4}\end{array}\right|\left|\begin{array}{lll}d_{1}^{4} & d_{2}^{4} \\ e_{1}^{4} & e_{2}^{4}\end{array}\right|$
Point: $Z \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$
(1) Start with $p(a, b, c, d, e, x)$ of multi-degree $(4,4,4,4,4,0)$.
(2) Replace every $a_{i}^{1} a_{j}^{2} a_{k}^{3} a_{l}^{4}$ with $x_{i, j, k, l}$ and substitute $x_{i, j, k, l} \rightarrow Z_{i, j, k, l}$.

- Produce a polynomial of multi-degree ($0,4,4,4,4,0$).
(3) Replace every $b_{i}^{1} b_{j}^{2} b_{k}^{3} b_{l}^{4}$ with $x_{i, j, k, I}$ and substitute $x_{i, j, k, I} \rightarrow Z_{i, j, k, l}$.
- Produce a polynomial of multi-degree ($0,0,4,4,4,0$).
(4) Repeat for c, d, e,
(5) output: the value of $p(Z)$.
- Producing $p(Z)$ takes much less time and memory than $p(x)$.

Compute a basis of M_{π} for each π.

The following fillings form a basis of $M_{(221),(221),(221),(221)}$:

Check $\operatorname{rank}\left(p_{i}\left(Z_{j}\right)\right)$ for 6 random points Z_{j}, \Rightarrow independence.
A character computation \Rightarrow spanning.

Evaluate the highest-weight space of $S_{\pi} V \otimes M_{\pi}$ on Z.

Using the basis of $M_{(221),(221),(221),(221)}$ and Young symmetrizers, populate the matrix (one processor core per entry)

$$
\left(p_{i}\left(Z_{j}\right)\right)
$$

for 6 random points Z_{j} of Z.
Find null-space (kernel) is the span of

$$
\left(\begin{array}{llllll}
-11 / 12 & 1 & 0 & 1 & 0 & 1
\end{array}\right)^{\top}
$$

So $\left(S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3}\right)$ has multiplicity 1 in $I(Z)$.

Quadrifocal Hilbert Function

Compute the Hilbert function for $I(Z) \subset R=\mathbb{C}\left[x_{1}, \ldots, x_{81}\right]$ for as high a degree as possible.
Using Representation Theory and parallel computing we found:

d	$=$	0		2	3	4	5	6	7	8
$H F_{R}$	$=$	(1		3321	91881	1929501	32801517	470155077	5843355957	64276915527
$\mathrm{dim}_{/}$	$=$	(0	0	0	600	48600	1993977	54890407	1140730128	18051062139
mingens	$=$	(0	0	0	600	0	≥ 1377	37586	? 0	?162000
-- deg	\# reps			max_mult						
-- 1 \|			1		1		\}			
-- 2 \|			3		1		\} Use Sy	metry		
-- 31			9		3		\}			
-- 4 \|			25		4		\} Use Gr	d Computi		
-- 51			59		13		\}			
-- 61			163		93		\} Use Mu	ti-thread	ing	
-- 7 \|			288		301		\}			
-- 8 \|			619		608		\} Use a	High Perfo	rmance Clus	ter
-- 9 \|			205		2226		\} (deg 9	seems sli	ghtly out	f reach)

Obtain a list of G-modules (with multiplicity) in $I(Z)$.

Repeat the process for isotypic decompositions of $\mathbb{C}\left[\left(\mathbb{C}^{3}\right)^{\otimes 4}\right]_{d}$.
Obtain multiplicities of all modules in $I(Z)_{d}$ for small degree d.
For instance, $I(Z)_{d}=0$ for $d=1,2$
Input the results into SchurRings (by Stillman and Raicu) in Macaualy2.
Modules are represented as polynomials, with coefficients the multiplicities. For example $I(Z)_{3}$ is expressed as

$$
\begin{aligned}
& \left(s_{(1,1,1)} t_{(1,1,1)} u_{3}+\left(s_{(1,1,1)} t_{3}+s_{3} t_{(1,1,1)}\right) u_{(1,1,1)}\right) v_{3} \\
& +\left(\left(s_{(1,1,1)} t_{3}+s_{3} t_{(1,1,1)}\right) u_{3}+s_{3} t_{3} u_{(1,1,1)}\right) v_{(1,1,1)}
\end{aligned}
$$

or modding out by the \mathfrak{S}_{4} action, $I(Z)_{3}=s_{3} t_{3} u_{(1,1,1)} v_{(1,1,1)}$
which represents the module $\mathfrak{S}_{4} \cdot\left(S_{3} \mathbb{C}^{3} \otimes S_{3} \mathbb{C}^{3} \otimes S_{1,1,1} \mathbb{C}^{3} \otimes S_{1,1,1} \mathbb{C}^{3}\right)$.

Determine which modules are minimal generators.

Let $R=\mathbb{C}\left[\left(\mathbb{C}^{3}\right)^{\otimes 4}\right]$. Using the Young symmetrizer algorithm, $I(Z)_{4}=\left(s_{4} t_{4}+\left(s_{4}+s_{(3,1)}\right) t_{(3,1)}\right) u_{(2,1,1)} v_{(2,1,1)}$
Using SchurRings, we find that
$I(Z)_{3} \cdot R_{1}=I(Z)_{4}$.
(all multiplicities are one, and every module in $I(Z)_{4}$ occurs in $I(Z)_{3} \cdot R_{1}$)
So there are no minimal generators in degree 4.
We find two modules in $I(Z)_{5}$ that cannot occur in $I(Z)_{3} \cdot R_{2}$:
$s_{(3,1,1)} t_{(3,1,1)} u_{(3,1,1)} v_{(3,1,1)}+s_{(2,2,1)} t_{(2,2,1)} u_{(2,2,1)} v_{(2,2,1)}$
We find the following modules occur in $I(Z)_{6}$ but cannot occur in $I(Z)_{5} \cdot R_{1}$:
$\left(s_{6} t_{(3,3)} u_{(3,3)}+\left(\left(2 s_{(4,1,1)}+2 s_{(3,3)}\right) t_{(3,3)}+s_{(3,2,1)} t_{(3,2,1)}+2 s_{(2,2,2)} t_{(2,2,2)}\right) u_{(2,2,2)}\right) v_{(2,2,2)}$
We find that all modules in $I(Z)_{7}$ can occur in $I(Z)_{6} \cdot R_{1}$, strong evidence that there are no minimal generators in degree 7 .
In degree 8 we find a surprise: $S_{4,4} S_{4,4} S_{4,4} S_{4,2,2} \otimes \mathbb{C}^{2}$ must occur among the minimal generators. In degree 9 we weren't able to compute all modules because of a lack of computing time, but the modules we were able to compute produced no new necessary minimal generators.

graded piece	$\operatorname{dim} I_{d}$	necessary G modules of minimal generators	dimension of mingens
I_{2}	0	$\mathcal{M}_{2}=0$	0
I_{3}	600	$\mathcal{M}_{3}=S_{3} S_{3} S_{1,1,1} S_{1,1,1}$	600
I_{4}	48,600	$\mathcal{M}_{4}=0$	0
15	1,993,977	$\begin{aligned} \mathcal{M}_{5}= & S_{3,1,1} S_{3,1,1} S_{3,1,1} S_{3,1,1} \\ & \oplus S_{2,2,1} S_{2,2,1} S_{2,2,1} S_{2,2,1} \end{aligned}$	1,377
16	54,890,407	$\begin{aligned} \mathcal{M}_{6}= & S_{4,1,1} S_{3,3} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{3,3} S_{3,3} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{3,2,1} S_{3,2,1} S_{2,2,2} S_{2,2,2} \\ & \oplus S_{2,2,2} S_{2,2,2} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{6} S_{3,3} S_{3,3} S_{2,2,2} \end{aligned}$	37,586
I_{7}	1,140,730,128	$\mathcal{M}_{7}=0$	0
18	18,051,062,139	$\mathcal{M}_{8}=S_{4,4} S_{4,4} S_{4,4} S_{4,2,2} \otimes \mathbb{C}^{2}$	162,000
19	$\geq 188,850,321,637$	$\begin{aligned} \mathcal{M}_{9} \geq & S_{5,4} S_{5,4} S_{5,4} S_{4,3,2} \\ & \oplus S_{5,4} S_{5,4} S_{5,4} S_{5,2,2} \end{aligned}$	3,087,000

Table: The ideal of the quadrifocal variety up to degree 9 . We used M 2 to rule out many possible minimal generators and conjecture that these equations suffice to define the quadrifocal variety.

