NOTES FOR MATH 222B: PARTIAL DIFFERENTIAL EQUATIONS,
SPRING 2021

NING TANG

This note is a transcription for Math 222B| taught by Professor Maciej Zworski in Spring
2021 at UC Berkeley. I sincerely appreciate Professor Zworski for his excellent lectures and
his generous help during the office hours. However, I realized that the material was so
important and finally decided to type down the notes one year later.

As a continuation of Math 222A, this class reviews the theory of distributions and covers
the rigorous mathematical theory of calculus of variations and microlocal analysis. The
primary reference is [2] and [4].
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1. REVIEW OF DISTRIBUTION THEORY
1.1. Distributions and Sobolev Spaces.

Definition 1.1. For an open set U C R", u € D'(U) means that u : C*(U) — C,
satisfying that

VK € U,3C,N,Vp € CZ(K), lu(p)] <C  sup [0%(z)].

la|<NzeK

In other words, u is a functional on compactly supported smooth functions with this type
of estimate, and the constant depends on the compact set.

Definition 1.2 (Distributions of order k). We say u € D'®(U) if VK € U, there exists
C' such that for all p € C°(K),

lu(p)l <€ sup  [0%()|.

la|<k,xzeK

Example 1.3. Take U = (0,1) C R,
Y

where §1(p) = gp(%) Note that the sum does not converge for a smooth function compactly
supported in R, but it converges for a smooth function compactly supported in (0,1).

Example 1.4. Ifu € L} (U), we define

ulg) = [ we.

In this case, a distribution is a function.

The magic of distributions is that we can differentiate as many times as we want. The
differentiation is defined by formal integration by parts:

Definition 1.5.
8*u(p) = (=1)"*lu(8%p).
This is the basic of Sobolev spaces:
Definition 1.6.
WEP(U) = {u € L} (U) : 0%u € L*(U),V|a| < k},

where k € Ny, 1 < p < 00, and the deriwative 0%u is taken in the sense of distributions.
And
HU) =W (U)
which is a Hilbert space with (u,v) e =)<k Jyy 0%ud*v.
Definition 1.7.

Wk,p [ Y

WeP(U) ==Ce(U)" , HyU):=CgU)




Theorem 1.8 (Approximation). (1) For U € R",

k,p
C=(0) "Wre(T) = WhP(U).

(2) For U € R", 9U is C,

k,p

Co@NWre(U) = Wr(U).

Theorem 1.9 (Extension). For U € R™, oU is C*, for any open set V, such that U &
V @ R", there exists E : WYP(U) — WP(R™) bounded and linear such that Euly = u and
suppu € V. Moreover, if we want to extend a function in WP, we need OU is C*.

Theorem 1.10 (Traces). For U @ R™, oU is C!, there exists T : WYP(U) — LP(OU)

bounded and linear such that

Tu = ulgy, forue C(U).

Example 1.11 (Characterization of H}(U)). For U € R", U is C,
HY)U)={ue€ H' : Tu=0 in L*(0U)}.

Remark 1.12. The trace theorem is not optimal in the sense that we can do better for the
image, i.e. we can find a function space between the image of 7" and LP(OU). Intuitively,
restriction to the boundary loses some Sobolev regularities. We can get a feeling from
Theorem [1.23| below. That is, we will show that for U = R} with U = R"™!, we have

T: H*(R") — H 2(R" ).
We will discuss this by using Fourier transform.

1.2. Schwartz class and Tempered distributions.

Definition 1.13 (Schwartz class). Schwartz spaces is a class of functions
Z ={p € C®R") : 2°0°p € L™, Va, f € N"}.
The condition for ¢ is equivalent to
0%¢(2)| < Cna(l +[2])™N, V.

The Fourier transform of Schwartz functions ¢ € . is given by
7€) = [ ela)e eda,
And sometimes we write = Fe. Since F(10,¢) = EFg, F(wp) = —10:Fp, we have

F:.: 77— 7.
And its inverse is |
Fl'=——RF, R = (-
@ p(r) = (=),
which gives the Fourier inversion formula
1 .
— -~ ix-€ d
p(z) @n) /90(6)6 3



the cornerstone of all other things.

Definition 1.14 (Tempered distribution). We say u € " if u : . — C and there exists
C, N, such that

lu(p)| < C sup [z°0%p].
ol |BI<N

Equivalently, we can replace the RHS by (1 + |z|)Y SUD|g|<N |0 ).
Of course, ./ (R™) C D'(R") since .#(R") D C>°(R"). Define F : " — . by u(p) = u(p).

Proposition 1.15.
(w,@)r2 = 2m)"(u, o)1, u, 0 €7
[allze = 2m)% [lull2, we ..

. L? ! .
Now if u,, = u, we have u,, = u since

|(un—u) ()| = |/(un—u)<ﬁ\ < llun—ullz2llellze < fun—ull 2 (1+{2) ™l z2 sup (1 + [2]) ) -

And hence @; 25 4. This implies that F : L2 — L? and

(w,v) = (2m)"(u, v) 2.
Example 1.16.
52() = 80() = 20) = [ 19=1(0),
where 1 = (% 15 a tempered distribution.

Example 1.17. Consider R?, u(x) = ﬁ Then u is a tempered distribution since u € L;
and (1 + |x|)"*u € L', which implies

loc

y—|/ L+ Je)2u (14 [2))%0] < Csup(1 + [2])*]g].

Now we would like to compute the Fourier transform of u. We will use the trick that Fourier

transform is continuous. In order to do this, we try to find u. € L' such that u. 7 w. Take
ue(z) = ﬁe‘édw € L', e > 0. Note that

. 1 2w
ug(f) :/ E|95|2_W§ dr = / / —ﬂsr —ir COS%H_SH“%Q)T dr do

R2 \x|

2
/ Tl’/ —£ r+zcose§1+sm 9§2) (005951+Sin0£2)2 dr do
_ L (cos 0¢1+sin 0€2)? - ——7" 1 V2m |€\ (cos 0 cos p+sin §sin )2
= e 2 drdf = -—— do
0 0 2 ve Jo

/ 2
:1 27 6—2%|§\2L:os20 A6
2 e ’
where we complete the square in the third equality and we deform the contour in the fourth

euqality. We cannot calculate the last integral, but we do know the asymptotic behavior as
3




e — 0, in the following lectures. We will learn how to do asymptotics even though we cannot
evaluate this integral:

2
/ ¢ 316700 4p = 23/27 || 71 V/E(1 + Oe)).
0

And we get
2
€l

Now we need another method to find u(§). Note that u is homogeneous, which is a very
fortune property. We say a function v has homogeneity of degree a if v(tx) = t*v(x) for
t > 0. By making a change of variable,

o [vle)p@)de = [uitypta)de = [ oo dy
For distributions v, we say v € . is homogeneous of degree a if Vo € .7,
u(@G)F™) = tulp),

fort > 0. However, in practice, we can just manipulate things as if they were functions. If
v €., homogeneous of degree a, then

v(tE) = /v(x)e”'tg dr = /t“v(tx)emf t"d(tx) =t7"0(€).

This implies U is homogeneous of degree —n — a.

Now we follow the development in [7, Chapter 1]: We will call a distribution v of class a
if it is homogeneous of degree a and C* on R™\ {0}. Then we have a more powerful result
(c.f. [T, Theorem 1, Chapter 1]):

u(g)

Theorem 1.18. v is of class a if and only if v is of class —n — a.

Proof. Let vg denote the C* function on R™\ {0} that agrees with v there. Choose ¢ € C2°

such that ¢ = 1 in a neighborhood of 0. Then v(&) = %(5)—1—(1/—?)'0(&), where %(f) is C'*>
since ¥v has compact support. And using homogeneity of v, we know that AF((1—)v) € L
for £ > n + a, which implies

(AR((1 = )0))" = (—[€F)R((1 — p))"(€)

is continuous. Thus, ((1 —¥)v)"(§) is continuous on R™ \ {0}. Hence, v(§) is continuous on
R™\ {0}. O

In consequence, ﬁ is homogeneous of degree —1, that is,

u(rd) = @,

r

where 0 € S, r > 0. Moreover, u is rotational symmetric, which implies

ae) = / u(a)e ™€ dy = / w(Rox)e™ ¢ d = / u(y)e = B=08 dy = G(R_y€).

4



Then @ is invariant under rotation and homogeneity of degree —1, which implies a(0) is

constant, and hence
c

u(€) = [k

Since the only function supported only at 0 is 6§a),

for & #0.

Note that dg(x) is homogeneous of degree —2 in R?, which can be checked formally:
—-n y ) —n —-n —n
so(t) fla)dr =t [ o) () dy = do(FCI) = FOIE = £ F).
R R®
Moreover, 5éa) in R? is homogeneous of degree —2 — |a. Since —2 —|a| < —1 for all o, that
weird term cancelled and finally
I«
€ lel
Now we calculate the constant c. Note that (U, p) = (27)*(u, @) is also true foru € ' ¢ €
2

. We choose ¢ to be the Gaussian p(x) = %, and LHS should be

2 1
/ d:z:—/ / drd0—27r/ ez dr=—=(2m)2.
R2 ’93| 0 2

Since gb\(é.) = fRQ €_|-73‘ /2—Z;v~§ dx — f ) 6—%|z+25|2_%|£‘2 dl’ _ 277'6_%'&‘27

/ L oot ge — 27(;;(27)3 — (2r)? ;(2@

|

M\CAa

which implies ¢ = 2m.

1.3. Characterization of H*(R") using the Fourier transform.

Definition 1.19 (Sobolev spaces).
WE2(R™) = H*(R") = {u € D'(R") : 0%u € L?, |a| < k}.
Note that for & € N, those in H* are all functions since they are in L? (or more precisely,

they are identified with L? functions). Here we write u € D'(R") is to specify the derivative
in the definition is in the sense of distribution.

Proposition 1.20.
HYR™) = {ue & (R") : (1+ |¢2)2a € L}
Proof. Suppose 8%u € L2, |a| < k, then dou = ilelgey € L2, V]a| < k. Since (1 + |¢[2)*
k ~
Cr D 1<on €)F < Ch SUp| o<k €217, we have (1 +[¢]%)20 € L?.

Now suppose (1+|¢[2)2% € L2, and by the same type of thinking, [¢2] < |¢]l*] < (1+|¢))F <
Ci(1+ [€]2)2, for |a] < k, we know that 9%y = F~! (illgen(€)) e L2
Notation 1.21 (Japanese bracket).

1
(€)= (1+[g]*)2.

5
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The definition above does not require k € N, and it works for any real number.

Definition 1.22 (Sobolev spaces).
H(R™) = {u e L' R : (&)*ue L?}, scR.

Theorem 1.23. Suppose u € H*(R™) and s > 3, and we define Tu(y) = w(0,y) for

ue.?, ye R then T : HY(R") — H*2(R"). In particular, for u € .%, v(y) =
u(0,y) € H*"3(R*1).

Proof. Take u € ., we need to prove

< Cllu|

0]

¥ me1) Hs(R")-

Since 9(n) = [fon 1 w(0,y)e ¥ dy = = [ U(&r,n) d&r, where the last equality follows from

/ (6r, ) déy
R

/R@(&,n)(l + 1G24 )21+ € + n)?) 2 d&

=5 Je F(€) d¢ for dimension 1. We compute

" :/Rn_1<77>28_1|5(77)|2d77 - # /Rn_1<77>25_1

1 2s—1
g [
SV [ [ ) 0+ el + i) de /Ru 6] + Inf?) ™ de dn,

/(1 + 0P+ &) de = (mzsﬂ/ (1 . ’ <§]1>

Thus ||UHZS,% < gﬂ)zc f u(&, )) d&y dn =

2

0]

2

where

51 _ —25+1

Remark 1.24. This theorem tells us restriction loses half regularity.

Theorem 1.25. If s > %5, then H*(R") C Co(R"), where Co(R™) denotes the continuous
functions that tends to 0 as |x| — oo.

Proof. The steps are as follows:
(1) (&)*u e L? with s > 2 = 1 € L?
(2)uel'=ue L™
(3) u is continuous;
(4) u tends to 0 at the infinity.
Step 1: We apply the oldest trick in the book - multiply and divide,

[ = [ |

Step 2: From the Fourier inversion formula, u(z) = W@(f)e”f d¢, we have |u(z)| <
Cllal| -

6



Step 3: Since x +— @(£)e™* is continuous, x +— u(z) is continuous by the Dominated
Convergence Theorem.
Step 4: We apply the Riemann-Lebesgue Lemma. O

Lemma 1.26 (Riemann-Lebesgue Lemma). If u € L', then u(z) — 0 as |z| — oo.

Proof. Recall .(R") C L*(R") is dense. (This is an important fact. Actually, C>*(R") C
L'(R™) is dense. The proof is sketched as follows: One first truncate the L' function v
to a certain ball of radius R, denoted by vg = le(QR)(m), then we get v converges to
v in L' norm as R — oo by the Dominated Convergence Theorem. And now we take the
approximation of identity ¢ € C°,¢ >0, [ ¢ =1 with ¢.(z) = & ¢(2). Let vp. = vpx . €
C>(R"), then vg. — vg in L' as € — 0. ) Then there exists v € .7, |0 — U1 < e. Take
R such that |v(z)| < e for || > R. Then |u(z)| < |u(z) — v(z)| + |v(z)] < Ce + ¢ for

|z| > R. O

Remark 1.27 (Sanity check). When n = 1, the above two theorems imply if u € H*(R),
s > 3, then u € C(R) and u(0) is well-defined if s > 1( there is no y when n = 1 ).
These two results are consistent since you can only evaluate at one point if the function is
continuous.

1.4. GNS inequality and Morrey’s inequality.

Theorem 1.28 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 < p <n, p* = %, then
there ezists C'= C(n,p) such that

[ull o < Cl[ V]| e

for all w € CL(R™).
Furthermore, if U @ R™, OU is C', then there exists C = C(n,p,U) such that

HUHLP*(U) < CHUHW“’(U)'

Remark 1.29. We can get the value of p* by scaling (“dimensional analysis”). Take u,(z) =
u(Ar), then |[uy|| o+ < Of|Vuyl|ze. Since [[uy|| o = AP ||Ju)| o and ||V | e = ANVP|| V| 2o,
we have 1 —n/p = —n/p*.

And this is false for p = n > 1,p* = 0o where the counterexample is u(z) = loglog(1 +
|z| 7Y x(z), where x € C§° which is 1 near 0. This follows from the result [, leﬁ < oo for

a>1. It’s OK for p =n = 1, p* = oo by the fundamental theorem of calculus.

On the other hand, Morrey’s inequality treats the opposite case when p > n. We notice
that when p < n, we miss L>*. When p > n, we get more, we get Holder’s continu-

1ty.

Theorem 1.30 (Morrey’s inequality). Let n < p < oo. Then there exists C = C(p,n)
such that
[ullcon@ny < C ([lullo@ny + [ Vul| Logn) )

for allw € CY(R"), v = 1 — . Here |lullcos®ny = sup |ul + Sup#yw. More

lz—y[Y

specifically, suppose u € WIP(R™), then there exists u* € C%7(R™), vy =1 — & such that

u=u"ae and ||ullcrgny < C (||ulle@e) + |Vl Logn)) -

7



Sometimes we forget to mention u*.
This inequality comes from Berkeley. Although we will not use Morrey’s inequality in this
course, we will present a different proof using the Fourier transform while the proof in [2]
uses the real variable method. We will defer the proof to next section.

Theorem 1.31 (General formulation). Let U € R",0U is C'. For u € W*P(R"), we
have the following statements:

() k<2=ueLi(U), > 1 and |uliaw) < Cllullwrs;

([ +r-n gz en
1-94, V6>Ozf5¢N

(2) k>2=ueC o (T), where v = {

Proof. The general formulation comes from two steps. The first step is that you start with
u and you take an extension of u, and then you approximate your extension by a smooth
function of compact support of the extension. You apply this theorem with some iteration
and you will get this statement. U

Remark 1.32. Since U is bounded, the larger ¢ we have, the L? will be better, that is,
1k

L®(U) C L2(U) for ¢; > g2. Indeed, we only need to consider % =, ,in the first case.
If U is unbounded, we will get local results like u € Lj. (U) in the first case.

1.5. A different approach to prove Morrey’s inequality. Before we present the proof,
we make a quick a review for some basic inequalities at first.

Proposition 1.33. (1) Holder inequality:

1 1
fal <\ flbllglly,  —+-=1.
[ o< Ul
(2) Minkowski inequality:
Version 1: |[f + gllp < [l fll» + llgllp,

Version 2: ||/ t)dt|l, < /||F Ol dt.

(3) Young’s inequality:
1 gllp < 1f lllgllp-
More generally, for i + % =1+ %, we have

1 gllr < 17 11nllglo-

Proof. We prove Young’s inequality as follows.

(- o
g/(/rfo:—ywi|1f<x—y>|é|g<y>\dy)p r

S/Ilfllf_l/lf(x—y)llg(y)l”dydrc= [naliEge



Now we need to introduce the Littlewood-Paley decomposition.

Lemma 1.34 (Dyadic partition of identity). There exists 1y € C°(R), v € C(R\ {0}),
such that

Yo(€]) + Z¢(2—j|5|) —1

Proof. Choose ¢o € C2°((—1,1)) such that 0 < ¢y < 1 and ¢(p) =1 for |p| < 1. Then we
define

p1(p) == wolp—j) € C*(R)

JEZ

which satisfies ¢; > 1. Note that ¢1(p—k) = ¢1(p) for k € Z, we define ¢(p) := :2(1)(’)), which

implies
> plp—4) =1

JEZ

Let (1) := p(X82) € C((0,00)), then

log 2
. logr .\
S =3 (25 -4) -1

JEZ

Define ¢y(r) = 1 — Z;’iow(Q*jr), one can easily check that ¥y(r) = {

implies our desired formula. 0

Definition 1.35 (Fourier multiplier). Suppose a € L*(R"), u € ., then we define

a(D)u = F~ (a(§)u(s)),
where D = %az. Furthermore, suppose ¢ € ./ (R™), we can define the multiplier of tempered
distributions:

¢(D)u:=F~ (¢(&)u(¢)) € &', ue S
Now, with a slight abuse of notation, we denote

bo(€) = to([€1), (&) = v(I€]),

which implies
u = (D u+zw Ju, weS, (1.1)

which is called the Littlewood-Paley decomp051t10n.
Rather than write 277 all the time, we will write h = 277 for h being a small number,
representing low frequencies here.

Lemma 1.36. Suppose x € C(R"), then for u € .#(R"),
Ix(hD)ullow < ChF [[ully, X (hD)ully < Cllully,

where 1 < p < oo and the constant C' = C(n,p, x) is independent of h.
9



Proof. We compute

0D < (he)a(6)
G // Rty dy s = s [ RT ) d

The first inequality: This implies

o~ - C . n _n
x(hD)u(@)] < 2 IX()lallelly < 52 [Xlgllull, = Ch lull,.

In fact, this inequality holds in general for v € LP. Note that for u € .,

x(h&)u(§) is

a compactly supported distribution. Since F : & — C, (in fact, the Fourier transform of
compactly supported distribution is smooth and analytic,) we know that y(hD)u is a well-
defined smooth function, not merely a distribution. By density arguments, take u, € .,

such that u, = u, then u,, 7z u, and furthermore, y(hD)u, Z X(hD)u. And since x(hD)u,
is a Cauchy sequence in L*°, it converges to a unique L*>° function v € L*°, and then

X(hD)u, 2. Hence, v = x(hD)u a.e. as functions.
The second inequality: By Young’s inequality,

DY)y < s IRl < s IRl el

Theorem 1.37. Let u € LP where 1 < p < oo. Then
u e C*(R") & Vx € CE(R*\ {0}), [x(hD)ullee < CH”
where C' depends on x and v € (0,1).

Proof. Implication =: We compute

X(Dyu(e) = s [ Rty = s [ Ryt + ) dy

(2mh)"
1

= G | Rt + hy) = ) dy
where we use the assumption x(0) = 0. Then

Ix(hD)u(z)| < Clluflcon / IXW)I[hy[" dy < Ch.

Implication <: Let

M) = sup 07 (othD)ule + g (D)l ).

0<h<1

where ¢p € C®(R™ \ {0}) as in the Littlewood-Paley decomposition (L.1). And we set

YR (€) == &ab(€). Since 1 € C2(R™ \ {0}), we have
l|lull, + A, (u) is finite.

Then it suffices to prove
[ullcor@ny < C([Jullp + Ay (u)) .
10
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We consider the L® part in C% norm: From the Littlewood-Paley decomposition ((1.1]), we
know

[ulloo < [0(D UIloo+Z lv(277 Dyulloe < [lth0(D UHoo+22 A, () < Jlullp+(1-277) 7 A (w),

where we use the deﬁmtlon of A, in the second mequahty, and Lemma in the last
inequality.
Now we use the Littlewood-Paley decomposition (|1.1f) again,

u(z) — u(y) = vo(D)u(z) — )+ Z $(277D)u(x) — (277 D)u(y)) -

Let |x — y| = r. In order to prove , it sufﬁces to prove the following two claims:
Wo(D)U(fﬂ) — Yo(D)u(y)| < Cllullyr”, (1.3)
(W27 D)u(x) — (277 D)u(y)| < CA,(u)r. (1.4)

For , we compute
[Yo(D)u(x)=vo(D)u(y)| < sup (V(¢ho(D)u))r <

which implies ([1.3]) when r < 1.
For ([1.4)), the proof is a little tricky. We will prove two estimates.
Higher frequency estimates:

[Y(hD)u(x) — p(hD)u(y)| < 2| (hD)ulloc < 2h7 A (u).
Lower frequency estimates:

[ (hD)u(x) = p(hD)uly)| <Crmax || Dy, (P(AD)u)ll,, = Crh™" max [ADq, ((hD)u)]l
=Crh™! max e (RD)ul|, < Crh7~ A, (u).

(=) |uly)| dy < Cr| Vol llull,,

Now, the sum can be estimated as

Z (2~ )= (27 D)u(y)| < CA(u) | D r270 D43 277 | < CAy(u) (rs' ™ +577),
2i<s 2i>s

then choose s such that s = %, which leads to the desired estimate (|1.4). And this completes

the proof. 0

Now we turn to the proof of Morrey’s inequality.

Proof of Morrey’s inequality. Thanks to ((1.2) in the proof of the previous lemma, it suffices

to prove
Ay (u) < Cl[Vull,, (1.5)

where v =1 — %. Then by Lemma , we have
lo(hD)RDs,ull, < CH'™ 7|Vl
for any ¢ € C2°. Let ;(§) = &p(&), then ¢;(hD) = hD,,o(hD). Hence,
lp; (hD)ull, < ChY|[Vull, (1.6)
11



where v = 1 — 2. Recall that A,(u) = supgcp1 B (|| (hD)ul|oo + maxy, ||¢x(hD)ul|s), it

P
suffices to prove

[ (hD)ullo < CRY||Vullp.
Now we intend to write ¢ € C2°(R™\ {0}) as a combination of compactly supported function
of the following form

e =D &(0)

with x; € C2°. This is a precalculus problem. We choose x;(§) = é—fgw(g) and this is smooth
since 0 ¢ suppt. Hence,

[ (hD)ulloo <> 1Dy, x;(ADa, Jullo < CH|[Vull,,
J
where the last inequality follows from (1.6). And this completes our proof. O

Remark 1.38. Similar methods can be used to obtain regularity of solutions to PDEs: Sup-
pose u € LYU),Au = f € C*(U),0 < v < 1, where U is bounded. Then we have
u € C*27(V), where V@ U. See [9, Section 7.5.3]. If A is replaced by a differential
operator P whose coefficients are C*7, the statement also holds. This is useful to show the
regularities of Variational Problems.

1.6. Compactness theorems. Now we turn to compactness theorems.

Definition 1.39. Let B be a Banach space and B' C B is another Banach space. We call
B’ C B is compactly embedded (a compact inclusion) if bounded sets in B' are precompact
in B and the inclusion map is continuous. That is, if V{u,}>>, C B, ||un||p < C, then
there exists a subsequence ny — oo and u € B such that

k
ety = ulls "= 0;

and
|-z <CJ -5

Example 1.40. Let B = C([-1,1]), B' = C*([~1,1]) with |||z = supjy <, [u(x)], [Jullz =
SUp| <1 [u(2)] + supj, <1 [W' (). If [[unllor(-1,1) < M, then by the mean value theorem, we
have
|un(2)] < M, [un(z) — un(y)| < Mz —yl.
Finally, there exists u € C([—1,1]), nx — oo such that
[ung = ullog-11) =0

which follows from Arzela-Ascoli theorem.

jzl, 2> 3,
50+ g 2l <
that u, € C*([—1,1]) and |lun|cr (1)) < 2. There ezists ny = k, u(z) = |z| € C°([—1,1]) \
CH[-1,1]), up, — u in C°.

Remark 1.42. Recall that if {u : ||u|]|p < 1} C B is compact for a Banach space B, then B
is finite dimensional.

Example 1.41 (Subexample). Let u,(z) = { then one can observe

12



However, we can have a space B’ C B and {u € B : |jul|p < 1} C B is com-
pact in B even though B’ is of infinite dimension. Let B = LY(U),1 < ¢ < p*, B’ =
Whe(U).

Theorem 1.43 (Rellich-Kondrachov Theorem). For U €@ R™,dU is C'. Then the unit
ball in WYP(U) is compact in LY(U) for 1 < q < p*.

Remark 1.44. Although Gagliardo-Nirenberg-Sobolev inequality tells us W?(U) is in L4(U)
when ¢ = p*, the theorem tells us in weaker space, i.e. ¢ < p*, we have stronger statement.

And note that the boundedness of U in the assumption is essential for Rellich-Kondrachov
Theorem. One need to add some decay assumptions if U is unbounded.

Before we give a proof of Rellich-Kondrachov Theorem for the special case p = 2, we
recall some useful theorems:
Definition 1.45 (Dual space). Let B be an Banach space. Then

B*:={u: B — C:|u(z)| < C|z|g, Yz € B}

is its dual space with norm |lu|| g+ = supy ) ,=1 [u(z)|.

Theorem 1.46 (Poisson summation formula in dimension 1). Let a € R, a # 0, we have
, 2 2
Ze’k‘” = 125(9&— —Wk:), (1.7)

in the sense of distributions, that is, for all p € ./ (R),

> ftka) = 53 o). (1.9

keZ keZ

Proof. Note that both sides of (1.8 converge for ¢ € .. And by the multiply and divide trick
analogous to that in Example , we know both sides of (1.7)) are well-defined tempered
distributions. We compute

(1 _ eia:v) Z 6ikza$ _ Z eikaw . Z 6i(k+1)ax -0

kEZ keZ keZ

in the sense of distributions. Let w(z) = -, ., €%, then this implies —2ie~ 5" sin(% )w(r) =
0, which tells us suppw C { "k}rez. Moreover, since sin(%) vanishes simply at these points,

we have
Z cpd(r — —k
keZ
Since ehr = (@50 we know w(x 4 1) = w(x), which implies ¢ = ¢(a) is independent

of k. Now we proved that for all p € .7,

S Gtha) = cla) 3 o)

keZ kEZ
13



We replace ¢(+) by ¢(- + x), we get
Zelk“’” (ka) = c(a ng k—i—x
keZ keZ

Assume ¢ € C2°((0,2%)) and then integrate both sides from 0 to 2%, we have

27

T80 = cfa) | * o) do = cla)p(0)

which implies c(a) = . O
Analogously, Poisson summation formula holds for dimension n as follows.

Theorem 1.47 (Poisson summation formula in dimension n). Let a € R, a # 0, we have
> ek = (Z) 5 st Ly
kezn kezr

Take a = 1 in Poisson summation formula and pair both sides with (- + x) for ¢(-) € .7,
we have

Corollary 1.48.

where ¢ € 7.

In particular, for ¢ € C2°((—m,m)"), we have

(2m)"
Then by density arguments, we have

Corollary 1.49 (Fourier series characterization of L? norm of compact support L? func-
tions).

ﬁ S Gk = / w(z)o(@) dz

kezn
for u,v € L?, suppu,suppv C (—m,7)". In partz’cular

lullz> = Z ju(k

kezZn
for w € L? and suppu C (—m, m)".

Now we give a proof of Rellich-Kondrachov Theorem for the special case p = 2 which
is different from that in the book [2]:

Proof of Rellich-Kondrachov Theorem when p = 2. Let U C B(0, R) and we assume WLOG
that R = 1. For any ||v,|| g1y < 1, there exists u, € H'(R™), such that u, |y = vn, HunHHl(]Rn) <
1, suppu C B(0,1). Now We need to find a subsequence u,, that is a Cauchy sequence in
L? then u,, "29° win L2,

14



We claim that for w € H'(R") and suppw C B(0, 1), then
LS e <l < ¢ Y ®)
kezn kezr

Thanks tow € L? and 9w € L?, we can apply Corollary(1.49{and get ||w||2, = W > hezn [0(K)[?,
10°w|[72 = Gy 2opezn (K@D (K)[? for [a] = 1. In fact,

lwllf = /(1 +[¢) | do = / [w(@)[* + [Vw(z)[* do = (2%)” D RP@k)P,  (L9)

kezZm

forallw € H',suppw C (—, m)". Hence, for u,,, we have [, |31 gy = (2+)n > wezn (kY [n (k)2 <
1.

We define IT,, : L*([—m, 7|*) — C» (N, is finite), with IT,w = ({@0(1)});<p and
Mw(z) = > @(l)e"".
ltl<p

Here we claim our key estimate

I = Tp)wlZe < (p)llwil,

Do laOPF =Y O < (o) 2wl

|t|>p ll>p

which follows from

Now we want to find {ny} such that ||u,, — u,,||z2 — 0 as k,I — oo.

Step 1: For all p, [|[TLun|lcve < ||unllrz < |Jual|zr < 1. Since bounded closed sets in CN»
are compact, we can choose {ni“}eN C {nf}ren successively such that IL,u,» converges in
C™» for every p. And

limsup [[u,r — w,rllr2e < 2(p)~ -2

k,l—o0
since sy — g2 < 1Mty — Wyt + (T = Ty) (g — )l < Tyt — Tyttpll o +
2(p)~%.
Step 2: Choose ny = nf, then for k < I, n; € {n¥ }nen, which implies
lim sup ||tp, — Uy, || = 0.
k,l—o00
Hence, {uy, }rez is Cauchy in L?. O

Remark 1.50. We prove this in a very hands-on way without using Acsoli-Arzela theorem so
that we can see the mechanism here: Compactness means that you can reduce it to finite
dimensions modulo something small. And then you can use that something small to make
the tail go to zero.

1.7. Final comments on Sobolev spaces.
Theorem 1.51 (Poincare’s inequality Version 1). Assume U € R". Suppose u € Wy*(U)
for some 1 <p<n,1 <q<p*, then

[ull Loy < ClIVullzow)

15



Proof. By the Gagliardo-Nirenberg-Sobolev inequality,
ull Lo* ®ry < OVl Logny
for u € C°(U). Then
lull 2oy < llull oy < ClIVull o).

— __wbp
Since WHP(U) = C>(U )W , the desired result follows. O

Theorem 1.52 (Poincare’s inequality Version 2). Assume U €@ R™. For any 1 < p < 0o
and suppose u € WyP(U), then we have

Jullp@) < CVullre,

Proof. Case p < n: This is immediate from the first version of Poincare’s inequality.
Case n < p < oo: Let g =n —e. Note that ¢* = @, we chooose ¢ < 1 such that
q* > p. We apply the first version of Poincare’s inequality to get
[ull ey < ClIVullLaw) < ClIVull o).
O

Remark 1.53. Your enemy is the constant function, which has zero gradient. However, the
zero trace condition eliminates this possibility.

Theorem 1.54 (Riesz representation theorem for Hilbert space). Let H be a Hilbert space.
If ®: H— C such that |®(u)| < C||ul|, then there exists v € H such that

O(u) = (u,v)g.

Theorem 1.55. H *(R"™) is the dual space to H*(R™) in the following sense: if v €
H5(R") and u € H*(R™), then (u,v)r2 := [uv is well-defined if u,v € S (R™). And
Vo : H*(R") — C, |®(u)| < C||lul|lgs, there exists v € H™* such that ®(u) = (u,v)e.
(Note that (-, )12 here can also be viewed as the distributional pairing.)

Proof. We first assume u,v € .. Then

Jun=en [a©F@ = o o6 T,

which implies
[{u, 0) 2| < (2m)7"[|u|
By the density of . in H* and H*, [uv can be defined by approximation.
Now suppose ® as above. Theorem |1.54| Riesz representation theorem) tells us there exists
w € H? such that

Hs 'UHH—s.

B(u) = () = (21) " [(©*OTE.
We define v as

Obviously, v € H~* and ®(u) = (u,v) 2. O



When it comes to bounded domains, duality is trickier. Recall that H}(U) = {u € H'(U) :
Tu=0} = Wm, we define
Definition 1.56. Let U € R", then
H(U) ={u e D'(U) : V¢ € CZ(U), lu(p)| < Cllellm}-
with the norm |Jull -1y = sup{[u(p)| : ¢ € Hy(U), ollmy < 1}
Equivalently,
H(U) ={ueD'(U):¥p € CZ(U) : Ju(p)| < C[|[Vep] 12}
by Poincare’s inequality for Hj(U).

Example 1.57. For the distributional derivative 0,, : L* C D'(U) — D'(U), we have the
property that 9, : L> — H™'. Since,

|0, u(0)] = [w(Da;0)| < [|u]| 2|10 0|2, Vo € CZ(U),
we know Oy,u € H™' by definition.

Theorem 1.58. More generally, u € H=1(U) if and only if

Jug, ug, -, u, € L*(U), such that u = ug + Z@wjuj.

j=1
Example 1.59. In 1 dimensional case, we have
Hy((0,7) = {u = Zan sinna : Z |an|*n? < oo}
n=1 n

Note that H' C CY by Morrey’s inequality when n = 1. One can consider the odd extension
of u € H}((0,7)), then from (1.9), we know it can be represented by sine series. By duality,
we have the same type of characterization

HY(0,7) ={v= an sin nx(with convergence only in D') Z ba|*n % < o0},

n=1 n

where the formal series | b, sinnx only converge when it pairs with distributions.
In higher dimension, the analogous result

Hy((0,7)") = {u = Z a;sinlyzy - - - sin lyzy, Z 1?|a;)* < o0}
leN? leNy

also holds.

Remark 1.60. We have already used same trick when we dealt with heat equation with zero
boundary condition:

(0 — 0?)u =0,
u(0, ) = f(z),

u(t,0) = u(t,m) =0,t > 0.
17



n=1
. . . . _tn2 .
we can form Fourier series with sine terms only.) Then u(t,z) = > 7 e " a,sinnz €

Cse((0,m)),t > 0.

Let f(z) = Y07 a,sinnx € L?. (This can be done since C° is dense in L2, hence

2. CALCULUS OF VARIATIONS

Example 2.1. One would like to find a function y = f(x) such that
fla)=c, f(b) =4, (2.1)
and the graph of f has shortest length. The length of the graph is
b
L) = [ @+ Pyt e

We want to minimize it over all functions f satisfying (2.1)). If f is a minimizer, then for
Vo € C((a,b)), t — L(f + ty) has to have a minimizer at t = 0. We compute

d PP (@) (@) + 1 ()
—L = T dz,
gt e) /a (L4 (f'(z) + te'(x))?)2

when f is a “nice” function, then we have

_4 Y AN (G NP L rw N
0= 40 = [ PO l¢”<u+ﬂ@%>d’

for all p € C*((a,b)). Hence,
d ( f'(@) ) 0
o \(r papi)

which is equivalent to % = C, and finally, f'(z) = C. Thus, f(z) =ax+ 5.
+f'(x)*)2

N|=

—

Example 2.2. The area can be expressed as

Mﬁz/LﬂLWﬂ@HML



over all f satisfies f = g on OU. If f is a minimizer, then for Vo € C*(U), t — A(f +tp)
has to have a minimizer att = 0. We calculate again and derive that f satisfies

(o)
v | —=—1] =0,
L+ [V fP)z

which 1s indeed the minimal surface equation.

—
7, s f= 9
/NP, ~ U
S Dcc
/ = au ¢!

Remark 2.3. Though we will not solve this, we demonstrate the idea we will use later. Try
feHNU), Tf=geL*0U), A(f) > 0. Let m :=inf{A(f) : f € H'(U), flov = g}, which
implies 3f; € H'(U), fjlov = g such that A(f;) — m. Could we find f;, — f, which is
the minimizer? The answer is no for this example. Intuitively, we can add tentacles on the
surface while the change of area is very small. And we will make stronger assumptions on
our functionals which will guarantee that we can find such sequences. But those assumptions
will not be satisfied for the minimal surface equation.

Example 2.4. Given any two circles, what is the minimal surface whose boundary is exactly
these two circles? (The surface need not to be connected.)

When the two circles are far apart, then the minimal surface will be two flat disks. How-
ever, if they are close to each other, the minimal surface will be the catenoid.

2.1. General Setup. Assume U € R*. Let L : R® xR x U — R be a C* function,
and we write it as L(p,z,x). For the gradient, we write as D,L = (0,,L,---,0,,L). Let
Iw] = [, L(Dw(z),w(x),z) dz and we want to mimimize this among functions such that
wloy = g where g is a prescribed function.

Now suppose w is a minimizer, then for all p € C°(U), we have

d
U t=0 U

— /U (- Z (Lyp, (Dw,w, :L‘))IJ + D,L(Dw,w, x)) o(z) dz,

J=1

which implies

_ Z (ij(Dw,w,x))xj + D, L(Dw,w,z) = 0. (2.2)

And this is called the Euler-Lagrange equation.
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Example 2.5. Let L(p, z,z) = 1|p|* — f(z)z, then I[w] = [, (3|Vw|* — f(z)w(z)) dz. And
the corresponding Fuler-Lagrange equation is

- Z(wxj)zj - f(l’) =0,

—Aw = f, wlgy = g.
Hence, the Poisson equation with Dirichlet boundary condition can be solved if we find a
minimizer for the functional I[w].
There are two natural generalizations. The first direction is that we can make it nonlinear
by letting L(p, z,x) = 5|p|* + F(2) and f(t) = F'(t). Then the Euler-Lagrange equation is

—Aw = f(w).

The other direction is to have non-constant coefficients. One can consider L(p,z,z) =
2 > @ipipj + > bj()p;(x) — f(x)2, where ai;; = aji. Then the Euler-Lagrange equation is

which is the same as

= > Oy, (ay(@)0s,w(2) = f(2).

ij=1
This is nice when Z ca;i(2)&E > clé?, VE ER™ and Vr € U.

2.2. Second derivative test. Let i(t) = [[w + t¢] with ¢ € C®. If we have a local
minimizer w, then /(0) = 0,4”(0) > 0. Since
d

1 _ e
i"(0) = o

/ (Z @2, 0p, L(Dw + tDp, w + tp, x) + 00, L(Dw + tDp, w + te, x)) dx
J

t=0 Jy

/ <Z Pa,Pa; O p L(Dw,w, +2Zgog0x]8 Oy, L(Dw,w, ) + @*92L(Dw, w x)) dx
J

(2.3)
is nonnegative. In fact, makes sense for compactly supported ¢ that is merely lipschitz
continuous such that suppy C U. One can see by taking a convolution with a standard
mollifier n € C°. To be specific, by the results in [2, Appendix C.5], set ¢° = 1. * @, then
V¢ — Ve and |V¢®| is uniformly bounded for all £, which implies that holds for ¢
by replace ¢ by ¢° in and then letting ¢ — 0.

Take p(a) = sp(£5)¢(a), where p(t) = ¢ 0 * €101

2t te(L and p(t +2) = p(t).

Using this ¢, we have
e, (1) = (00, ) + & (2 0)0(0) = & (0)c(a) + O,

20



Then "(0) > 0 implies

/ (Z&z@ Pip; >|p/|2C2d$+O(€).

Since |p/(t)| = 1 almost everywhere, by letting ¢ — 0, we have

[ (e e
U\,

for all ¢ € C°(U). Moreover, for any £ € R,

> &&02 , L(Dw(x), w(z), ) > 0.
1,J

Hence, it is useful to assume convexity:
p+— L(p,z,x) is convex,

and when L is smooth, convexity is equivalent to the positive definiteness of second deriva-
tives

Z@{j o, L(s 2, 2) > 0, VE €RY, (p, 2,2) € R” xR xU.

i,j=1

Note that another useful equivalent characterization of convexity is

L(q) = L(p) + (¢ — p) - DpL(p).
Definition 2.6 (Strict convexity). We say p — L(p, z,x) is strictly convex if

Z@g] oo, L (D5 2, T) 2> clé]?, V€ €R™, (p,z,2) ER* xR x U, ¢ > 0.

i,7=1
Example 2.7. Suppose L = %Z a;jpipj, where a;; = aj;. Then strict convexity means that

Zau )€i&; > clé)”.
Moreover, the corresponding Fuler-Lagrange equation is
—~ Zaﬁ aij()0,,w) = 0.
Then the strict convexity implies the differential operator in the Fuler-Lagrange equation

Oxz a;j ()0, w
Z J J )

18 elliptic.
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Pi

(1+]p[2) 2 and

Example 2.8. For the minimal surface equation, L = (1 + |p|?)2, then L, =
ij __ pipj

(1+Pp2)2  (1+p2)

2 2 9
Zgiéﬂijipj - m <|€| 1+ |p| szp]&f]) = ’5‘ (1 i ‘p’ ) §<§,p> )

Lpipj -

7 Hence,

(1+1pl*)2
which goes to 0 as |p| — oco. Thus, it is not strict convez.

2.3. Existence of minimizers. The first condition is a lower bound of L, which is called
coercivity.

Definition 2.9 (Coercivity). We say L satisfies the coercivity condition if
Ja>0,8>0,st L(p,z,x)>alp|?!— 83, V2€R,z €U,
where 1 < q < 00.
This gives us the following bound
I[w] = al| Dwl? - Bm(U).

So we can always assume 3 = 0 by replacing L by L+ 3. Let A = {w € WH(U) : u|gy =
g} and we will minimize I[w] over A. Note that the boundedness of I[w] will imply the
boundedness of the gradient of w. And this will imply compactness in L? for p < ¢*, which
implies some kind of convergence.

The second condition is trickier.

Definition 2.10 (Lower semicontinuity in the weak sense). We say I[-] satisifes weakly
lower semicontinuity in WY4(U) if for any up — w in WY, that is, u, — u in L9,
Duy — Du in L9. we have I[u] < liminf [ug].

Before we establish the existence theorem (Theorem [2.21)), one can recall some basic facts.

Theorem 2.11 (Characterization of weak convergence in Wh4(U)). The following two
statements are equivalent:

(1) up — u in WH(U);

(2) up — w in LY, Duy — Du in L.

Proof. (1)=(2): For all v € LY (U) = (LP(U))*, we know from the Holder’s inequality that
g~ [gv, g = [(Dg)v are bounded linear functional on W4(U), respectively. Hence,
Juv — [wv, [(Dug)v — [(Du)v, which implies the weak convergence of uy, Duy, in LY.

(2)=(1): Now we view W'4(U) as a subspace of LP(U;R""!) by the isometry map
v + (v, Dv). Then for any ¢ € (Wh4(U))*, we can extend it as a bounded linear func-
tional on LP(U;R"*1) by Hahn-Banach theorem, also denoted by ¢, that is, ¢ = (¢5)i=0 €
(LP(U;R™1))" = L9(U,R™'). Then from our assumption, we have [¢our — [ dou and
f(bijjuk — f(bjDzju, j=1,---.n. And this implies

our) = ( / do, / oDty / 6n Dz, ) = (1),

which completes the proof.
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Theorem 2.12 (Banach-Alaoglu theorem). The unit ball {u € B* : ||u||p- < 1} is weak*
compact. Equivalently, suppose ||u,| g+ < M, then there ezists ny, u € B*, such that

U, () = u(z)

for all x € B, i.e. u,, 1s of weak™ convergence.

Corollary 2.13. If B is reflexive, that is, (B*)* = B, then {z : ||x||p < 1} is weak compact.
Example 2.14. We can set B = LY(U),1 < q < 00 in our corollary.
Notation 2.15. Let {z;} C B, then z; — x € B if and only if u(x;) — u(z) for allu € B*.

Theorem 2.16. Suppose B is reflexive, x; — x, then ||z|p < liminf ||z;| 5.

Proof. This follows from

|z(u)| = lim |2;(u)| = iminf |z;(u)| <

and ||z[|p = SUP||y|| g« =1 |z (u)]. O

Theorem 2.17. Suppose B is reflexive, x; — x, then there exists C such that sup; ||z;||p <

C.

Proof. Since Vu € B*, |zj(u)| < C(u). By Banach-Steinhaus theorem, sup; ||lz;||p < C. O
Then we have a corollary:

Theorem 2.18. Suppose w; — w in L9, then sup; ||wj|lre < C. Moreover, ||w|[za <
lim inf]-_mO ”w]'”Lq.

Theorem 2.19 (Special case of Mazur’s theorem). Suppose V' C B is a closed subspace,
then V' is weakly closed.

Proof. Suppose z; € V, x; — x € B, that is, for all u € B*, u(z;) — u(z). Soif x ¢ V, we
want to construct u € B*, such that u(z;) = 0 and u(z) = 1, which leads to a contradiction.

Let V =V + Cx with $ : V — C defined by oy + ax) =afory € V,a € C. Now we
prove that there exists some constant C' > 0, for all y € V,a € C, |p(y+ ax)| < C|ly+ ozl s
by contradiction. Suppose not, then for all n, there exists Y, an, |an| = |o(yn + anx)| >
n||yn + anx|| 3, which is equlvalent to £ > [|£ + z| 5. This means that V 5 —% — z € V,
which is impossible since V' is closed. So we. get a contradlctlon In other Words we can
extend ¢ by Hahn-Banach theorem to v € B* such that u|y = @. O

Theorem 2.20 (Convexity implies weakly lower semicontinuity). Suppose L > —C' and
p — L(p,z,x) is conver for all (z,2) € R x U. Then for any 1 < q < oo, w > I[w] is
weakly lower semicontinuous in WhH4(U).

This theorem makes it easier to verify weak lower semicontinuity. Before we give the proof

of this theorem, we can use this to establish the existence theorem for the minimizer.
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Theorem 2.21 (Existence of minimizers). Suppose p — L(p, z, x) is convez for all (z,z) €
R x U and L satisfies the coercivity condition. Suppose that A = {w € W(U) : w|py =
g} # @ with g € LY0U), then there exists u € A such that I[u] = minge4 I{w].

Proof. We can assume without loss of generality that 5 = 0. Put m = inf,ec4 I[w] # 0.
Choose a sequence uy, € A such that I[ug] — m. Then I[ug] > a|Duy|?, which implies that
||DUk||Lq S C.

Fix w € A, then up, —w € WO1 “(U), which allows us to use the Poincare inequality

(Theorem [1.52)) to get

lukllze < flun = wllze + lJwllze < |Dup = Dwllze + [lwllze < C + [Jwllwra.

Hence, |Jug||wre is uniformly bounded. Apply Banach-Alaoglu theorem to {u;} C L? and
{Duy} C L? respectively, we extract a subsequence, also denoted by uy, such that u;, — u in
W4, This means that u, —w — u—w in W4, Since u, —w € Wy (U), a closed subspace of
Wha(U), by the special case of Mazur’s theorem (Theorem, we know u —w € Wy 4(U),
which implies u € A.

Now from the convexity and Theorem [2.20] I is weakly lower semicontinuous. Hence,
Iu] < liminf I'[ug] = m. Thus u € A is a minimizer. O

Now it’s time to give a proof of Theorem [2.20] The proof is a little involved.

Proof of Theorem[2.20, Let u; — w in L, Du; — Du in L? and | = liminfy I{uy]. In the
following proof, we will taking subsequence many many times without changing notation.

By taking a subsequence, [ = limy [[ug]. Since weak convergence implies ||ug|pc <
C,||Dug|lzs < C, and using Theorem [1.43] we know W14(U) is compact in LY(U), we
know wu; — u in L9 by taking a subsequence. Hence, u; — u almost everywhere by taking a
subsequence by applying Riesz-fischer theorem.

And now we can apply Egorov theorem: For any € > 0, there exists E. such that m(U \
E.) < ¢ and uy converges uniformly to u on E. provided that m(U) < oo. Let F. = {z €
U : Ju(z)| 4+ |Du(z)| < L}. Then m(U \ F.) — 0 as ¢ — 0 since u, Du € L9(U) implies
{Ju(z)| = 0o or |Du(z)| = oo} is of measure zero. Let G. = E. N F., then m(U \ G.) — 0.
Without loss of generality, assuming L > 0 by adding C' to L. Now

Tug] = / L(Dug, ug, 7) > / L(Dug, up, 7) > / L(Du, ug, 2)+D, L(Du, ug, )(Dux—Du).
U Ge Ge

where the last inequality follows from convexity.

Since Du is bounded on G. and uy — u uniformly on G., we know L(Du,uy,z) —
L(Du,u, z) uniformly on G.. Then one integrate it over a set of finite measure and get the
convergence

lim | L(Du,uy,z)— L(Du,u, ).
ko Ja. Ge

For the second term, we write

D,L(Du, u, z)(Duy — Du) = (D,L(Du, ug, x) — DpyL(Du,u, x)) (Duy, — Du)

+D,L(Du,u, x)(Duy, — Du).
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Since Duy, — Du are bounded in L%, D,L(Du,ug,x) — D,L(Du,u,z) — 0 uniformly on G.,

/ (D, L(Du,ug, x) — D,L(Du, u, x)) (Du, — Du)

<sup |D,L(Du, uy,x) — DyL(Du,u, )| ||Duy — Du||11(q.)
Ge

<sup |DpL(Du, uy, x) — DyL(Du,u, x)| || Du, — Du|| rac.)
Ge

<C'sup |D,L(Du, u,x) — D,L(Du,u,z)| — 0.
Ge
Moreover, D,L(Du,u,z) is bounded on G, and Duj, — Du in L. Since L*(G.) C L7 (G.),

D,L(Du,u,x)(Duy — Du) — 0.
Ge

Hence,

[ =lim [ug] > / L(Du,u,x), Ye>0.

€

Since L > 0, we have
[ >1lim | L(Du,u,x) = / L(Du,u,z) = Iu]
¢ Ja. U
which follows from the monotone convergence theorem. 0
Example 2.22. Let L(p, z,z) = Y /', a;j(x)pip;, where a;;(x) = aji(x) and the quadratic
form L is strictly convez, i.e. a;(v)&& > 0|62, V&€ e R x € U,

In this case, we have the coercivity condition for ¢ = 2. From the last problem from the
first problem set, we know

V= Vo,
+

is a surjective bounded map from H'(R") — H2(R"Y). Then A= {u € H'(U)|uloy = g} #
& for any g € H%(U) Though the formulation is somewhat different. but if you straighten
out boundary, it’s all local. Since U is compact, you get the result.

2.4. Uniqueness of minimizers.

Theorem 2.23. Suppose L = L(p,x) independent of z and there exists @ > 0 such that
forallE e R pe R" z €U,

> Ly, (p,7)6:85 > 0E,
1,J

which means L is uniformly strictly convex. Then any minimizer of I[u] among A = {w €
Wha(U) : wloy = g} # @ is unique.

Proof. Let u,u be minimizers of I[-], v = %ﬁ Then by Taylor’s formula, uniformly strictly
convexity implies

0
L(p.w) = L(g, ) + DpL(g,z) - (0 = q) + 5lp — ql*.
25



We apply this formula with p = Du, ¢ = Du, then
m = I[u] > I[v] —i—/ (DpL <M,x) : DU+D€Z + g(Du — Dﬂ)2) dx.
For I[u], we also have
= Iu] > I[v] +/ (DpL <M,x) : M + g(Du - Dﬂ)Q) dz.
Then we add them together and get

6 ~ 7 -
2m22[[U]+Z/(Du—Du)2d$22m+1/(Du—Du)2dac,

which implies [ |Du — Dul* dz. Hence, Du = Du almost everywhere. But ulgy = @|gy, we
have u = u almost everywhere. O

2.5. Weak solution of an elliptic operator in divergence form.

Example 2.24. Let L(p,x) = 3, ai;(x)pip; > 0pf*, aij(z) = aj(x), 6 > 0. Then by
computing the deriwative of I[u+tp] att = 0, we know that the corresponding Euler-Lagrange
equation

Z O, (aij(x)0y,u) =0, u\aU—geHZ(U)

1,j=1"

is solved weakly ( in the sense of distributions) and u is unique in H'(U).
Now we consider

Zarz aj(2)0s,u) = f, uloy = g € HE(U), f € H™\(U), (2.4)

2,7=1

where 37, - agi(2)pip; > 0lp|?, aij(r) = azi(x). Let Ifw] = [, 37, 5 aij(2)0p,w0p,w — f(x)udz.
Though L(p, z,x) =), aij(x)pip; — f(z)z does not satlsfy the coercivity condition, we do

not need L > a|p|? — B to be satisfied for all p, 2 since z and p are related each other in the
actual integral. We only need I[w] > [, |Dw]* —
Now we assume f € L*(U) at ﬁrst

Lemma 2.25 (Peter-Paul inequality). For all e > 0,
1
2ab < =a? + eb?.
€
It means that “you pay Peter to rob Paul a lot”.

Fix wg € H'(U) with wo|sy = g. Using the Peter-Paul inequality, we have
1
Iw) 2/ (9|Dw|2 — |f||w|) dx > / <¢9|Dw|2 _ f|w|2 _ —|f|2> dx
U U 2 2e
1
> [ (01D = 5 = il + o) = 7P (2.5
U 2 2e
/ (0 — %) |Dw|* dz — C(e,wy, f),
U
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where w—wq € Hj. Choose € < 25 such that a = §— 5 > 0, we have I[w] > a [, |Dw|*—
Moreover, thanks to the convexity of L in p, we can apply Theorem to know there is a
solution u to this problem when f € L2.

Now we need to remedy f € L?. We consider this problem

> 0s, (aij(2)0s,u) = f € H(U), ulov = 0. (2.6)

ig=1
Since the solution u € H}(U),

1 1
!/fu\ < W lar-rllullmy < Z0F e + ellull @) < ZI -1 + el Dullz2)

where [ fu is meant as distributional pairing since H'(U) is the dual of Hgj(U). Then
we can prove an analogous estimate like , which allows us to use the same argument
conclude that there exists a solution to (2.6)) (in the weak sense) with the desired regularities.
And since we have already solved when the right hand side is zero in Example[2.24] we finally
solved (in the weak sense) by adding the two solutions together.

The discussion above implies the following theorem.

Theorem 2.26. There exists a unique solution uw € H'(U) (in the weak sense) of the
elliptic equation

> 0n, (aij(2)0n,u) = f, uloy =g € H3(U), f e H(U),

with Zzg aij(z)pip; > Opl?, aij(x) = a;i(w).

Proof. The existence follows from the discussion above. Now we prove the uniqueness. Sup-
pose not, then v =u —u € H}(U) solves

Z 8% a;;(z az]v) =

7,7=1
weakly. By the definition of weak solution, we multiply this by v and get

O_Z/aw )0, 00,0

i,7=1

However, by the ellipticity of (a;;),

Z/aw va$zv>0/ | Dv|?,

i,j=1

which implies Dv = 0 almost everywhere in U. Hence, v = 0. 0]

2.6. Weak solutions of Euler-Lagrange equation. Assume
[L(p, z,2)| < C(lpl* + |2]" + 1),
|D,L(p, z, )| < C(|Dul*™ + |u|*™" + 1), (2.7)

ID.L(p, 2, 2)| < O(|Du|*™" + [u]?™" +1).
27



for some constant C' and all p € R*,z € R,z € U. Then
|0, L(Du,u, z)| <C(|Dul’™" + |u|" "+ 1) € LY(U),
0. L(Du, u, z)| <C(|Du|?™! + |u|T + 1) € LY (U),
provided u € WH4(U).

Definition 2.27. Suppose the assumption (2.7) holds andu € A = {w € WH(U) : w|sy =
g}. We then say that the Buler-Lagrange equation holds weakly if for all u € Wy (U),

/U (i Op; L(Du, u, x)vy, + 0, L(Du, u, x)v) = 0. (2.8)

j=1

Theorem 2.28. Suppose u € A is a minimizer for L satisfying (2.7). Then u is a weak
solution to the Fuler-Lagrange equation, that is, (2.8]) holds for all v € Wol’q(U).

Proof. Let i(t) = I[u +tv], v € Wy (U). Set
L(Du+ tDv,u+ tv,z) — L(Du,u, x)
t )
then L'(x) — >, 0p, L(Du, u, v)vy; + 9. L(Du, u, z)v almost everywhere in z. Since
1

L0 =i0) = [ L) e

L'(z) ==

we want to bound L! by an L! function so that we can get the conclusion from the Dominated
Convergence Theorem. From the fundamental theorem of calculus, we know

|L(Du + tDv,u + tv,x) — L(Du, u, z)|

t
:/ E |0y, L(Du + sDv, u + sv,z)| ’vxj} + 0. L(Du + sDv,u + sv,z)| |v|ds
0y

t
§/ (|Du + sDv|" " + |u+ sv|" " + 1) (|Dv| + |v]) ds
0

<Ct (|Du|*" + [Dv]"" + [u]*™" + [v]Y) (| Dv| + |v])
<Ct (\Du|q’1(]Dv| + |v|) + |u|? (| Do| + |v]) + |Dv]? + |v]? + 1)
<Ct(|Du|? + |u|* + |Dv|? + |v]? + 1),

where we use Young’s inequality ab < % + ’;i, in the last step. Since |Du|? + |u|? + |Dv|? +

0| +1 € LY(U) is independent of ¢, we know lim,_,, ‘2740 — Jo limy o L*(x) dx. Hence,

0=1(0) = /U (Z Op, L(Du, u, x)v,, + GZL(Du,u,a:)v) :
J

Now we focus on under what circumstances the converse is true.
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Theorem 2.29. Suppose u € A is a weak solution to the Euler-Lagrange equation. If
(p,z) = L(p, z, ) is convex for all x € U, then u is a minimizer of I[].

Proof. Covexity implies
L(p,z,z) + D,L(p, z,x) - (¢ — p) + D.L(p, z,x) - (w — z) < L(q, w, x).
For all v € A, we integrate this with p = Du(z),q = Dv(x), z = u(x),w = v(x), then

Iu] + /UDPL(DU, u,x) - (Dv— Du) + D,L(Du,u,z) - (v—u)dr < I[v].

But v —u € Wy(U) and u satisfies the equation weakly, which tells us I[u] < I[v] from the
inequality above. 0

2.7. Regularities of weak solutions. Can weak solution be upgraded to strong solutions?
We consider the simplest case

Lg,22) = lpl” — 2f(2)

with U € R",0U is C*°. Suppose f € C>*(U),g € C*°(0U). which is much better than the
assumption in Theorem m, then we have u € C=(U).

We will show v € H? in the general case and C>=(U) (full regularity) only in the linear
case. It is extremely difficult to prove the full regularity in the nonlinear case so that we will
not cover that here.

In this part, we make some stronger assumptions that

L(p,z,x) = L(p) — 2f (), f€ L*(U) (2.9)

with [L(p)| < C(lpl? + 1), |D,L(p)| < C(lpl + 1), |D2L(p)| < C. Here ¢ = 2 when com-
pared to the assumptions in the previous part. Finally, we assume uniformly convexity:
Zi’j Ly, &5 > 0E]? for all p € R*, € € R™.

Theorem 2.30. Let u € H}(U) satisfies the Euler-Lagrange equation corresponding to
(2.9) weakly. Then there exists some constant C such that

lullar < Cllfla-

Proof. We use the definition of weak solution with v = u € Hj(U). Namely,

/UZij(DU)Uzj Z/Uf(x)u(x)dx.

The uniformly convexity implies (DL(p) — DL(0)) - p > 6|p|>. We use this with p = Du,
then

/Uf(x)u(x) dr = /U (D,L(Du) - Du— D,L(0) - Du) dx > 9/U | Dul|” dz,

where fU D,L(0) - Dudx = 0 by the divergence theorem. Moreover, by Cauchy inequality,
Peter-Paul inequality, Poincare inequality, we have

C
| #@uta)da) < FiDules + 31l




Hence, if we take ¢ < 1 such that % < 0 in the equality above, we get
lullm < C'|Dull 2 < C|f]| 2.

Now we consider the interior regularity with U € R".

Theorem 2.31 (Interior regularity). Suppose u € Hg(U) satifies the Euler-Lagrange equa-
tion corresponding to (12.9))
- Z (ij(Du))xj =f
j=1

weakly with f € L?. Then v € H3 (U), that is, for all K € U, u|x € H*(K).

loc

Proof. Take open sets V€ W & U. Choose a function ( € C°(W) such that ( =1 on V.
We define the difference quotients as

u(z + hey) — u(z)
- :
If A is small enough (h < d(W,U°®)), then it is well-defined on U. Note that we have the

identity
/ wD; "y = —/ vDlMw (2.10)

by a change of variable. Since —(¢2Dfu) € H(W) C H}(U), by the definition of weak
solution, we have

_ / D" (¢*Dju) dw = — / S5, (Dw) (D" (D), da
U V=1 J

Digu(z) =

— / > Ly, (Du) D" (¢°Dyu), de = / > D (Ly,(Du)) (¢*Dyu), de,
U j=1 ’ U j=1 !
where we use the fact D} ((+),,) = (D,@())x in the third equality and use the identity (2.10)
in the last equality with v := (CQDZu)x_ ,w = Ly (Du). Note that for v : R" — R", we have

DEIF()] = 1 (oo + hey)) ~ Flo(a)) = 1 / D,F (sv(x + heg) + (1 — s)o()) ds

a %/o ZFIH (sv(z + her) + (1 = s)v(x)) - (vi(x + he) — vi(x)).

Hence, use this formula with v = Du, and combine the two formulas above, we get

/fD (¢*Dpu) / Z al(x) (ug, (@ + hey,) — ug, () (CQDZu)xj dx

/Z @ij Dkuza( )(( Dku) dr =1, + Iy,

i,j=1

(2.11)
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where a?(z) := f01 Ly,p, (sDu(z + heg) + (1 — s)Du(xr)) ds, and

ij

L ::/ Za%(m)DZu%(x)DZumgzdﬁ, I ::/ ZQGZ(@DZU%(%)CCMDZU-
U

i,j=1 Uij=1

By the uniform convexity, we know
L2 [ CIDiDu() da,
U
and
C
L] < C/ ¢|DyDul|Dyul dx < g/ ¢*|DpDu(z)|* dz + —/ | Dyl dz.
w w € Jw
Furthermore, thanks to Lemma the left hand side of (2.11]) can be bounded as follows:
- [ 0 (@Dt) as| < [ 17107k
U U
C C
< [ ID@DP s+ [ (iPar<e [ ID@DRPdr+ S [ |17 ds
U € U U g U
C
§5/ C?| DI Dul? dx + 5/ |Diul? dx + —/ |f|? do
w w € Ju

Ss/ C3| Dl Dul? dx + ¢ </ |Dul? + |f|2dx) :
U € \Ju

Hence, choose ¢ < 1, then we have

5/<2\D,QDU|2d:c+9 (/ |Du!2—|—\f\2d:c) > (9—5)/g2|D2Du(x)\2dx—g/ |Djul|? de,
U € U U € Ju

which implies

/|DZDu(x)\2dx§/C2|D2Du(x)\2dx§0’/ \Dul® + |2 da.
Vv U U

Finally, we get D! Du is bounded in L*(V) for all h, so by Banach-Alaoglu theorem, we know

{DZDU} heo 18 weakly compact. Hence, by passsing to a subsequence, we know DZj Dy —
v e L*(V). Tt follows that

/Ugodx — /DZjDugodz = /Duthjcp—> —/Dugaxk dz,

for all ¢ € C>(V), which implies that v € L*(V) is the weak derivative of Du. Thus,
ue H2(U). O

Remark 2.32. The main idea in the proof is that you can estimate derivatives with cutoff
functions if you only need local results. This requires carefully choosing the width in the
difference quotients to stay away from the boundary.

Here we turn to the lemma we used to establish the estimate for (2.11]) in the proof above.
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Lemma 2.33 (L* estimate for difference quotients). Suppose 1 < p < oo and u € WP(U).
Then for each V € U,
ID"ul|zr(vy < CllDull oy

for some constant C and all h < 3d(V,0U).
Proof. We first assume u € C=(U) N WP(U). Since

_ 1 /1 1
Diu(z) = ulz + hey) — u(x) = —/ iu(w + they) dt = / Uy, (T + they) dt,
0 0

h h Jy dt
we have
1 1
/ | Du(z)|P de < / / Uy, (z+they)|P dt de < / / |tz (z+they)|P dedt < / | Du|P dx.
v v Jo o Jv U
The result for u € WP(U) follows from approximation. O

Theorem 2.34 (Boundary regularity). Suppose u € H}(U) satifies the Euler-Lagrange
equation corresponding to (2.9)

_Z (ij(Du))xj =f

weakly with f € L? and C* boudnary OU. Then u € H*(U).

We only sketch the proof here. The proof consists of several steps:

(1) We consider the special case that U is a half ball, U = B(0,1) N R%. Then when you
consider k < n, Dl is still in H}. Hence, we can perform the same type of proof for
the derivatives 0,, Du with k£ < n.

(2) For u,,,,, we use the original equation:

Z(ij(Du))xj = Ly, p. (Du)ug,,, + terms involving d,, Du
J
where L, ,, (Du) > 0 since (Ly,,) is positive definiteness. Consequently, we have bound
for wu,,, ., by 0., Du.
(3) For U is a general region, we straighten out the boundary by a map.(Need careful check.)

For higher regularity, we assume f = 0. Take w € C*(U) and put v = —w,,. We test

against this and get
Z / Lpz(Du>a’L“k (wz,) = 0.
Since u € Hf,, we can do the integration by parts

oc?
/ Z Lpp; (D) Uy W, dov.
1:7.7
Let 4 = u,, € H', then it satisfies

> " 0, (aij(2)00,) = 0
1,5

32



weakly, where a;;(z) = Ly, (Du) € L>*. Then u € C27(U) by a theorem from De-Giorgi

loc

Nash Moser. Then this implies a;; € C%7, which proves u € C*7 by Schauder estimates.

3. MICROLOCAL ANALYSIS

In this section, our main reference is [4]. And we use X to denote open sets in R".
We want to generalize expression like

(50(1)) =

1 1x-€
2y / “

which makes no sense, but it is an oscillating integral, that is, the integrand oscillates rapidly.
The integral means that

) =00) = o [ ([ e sviwyan) asv e ez

It makes sense when we test it against a function 1. We first integrate in x and then integrate
in &, then the integral makes sense. We will generalize this to more general integrals.
Generalization:
(1) Phase function: z - &2 € R € € R ~ ¢(z,0),r € R", 0 € RY, where ¢(z,\d) =
Ap(x,0), A > 0.
(2) Amplitude: ﬁ ~ a(x,0).
(3) Integral:

I(a,p) = / a(z,0)e¥ @0 qp.
RN
We will discuss what condition is needed such that I(a, ) € D'(X).

Example 3.1 (Motivation). Let X = R", N =n. Take P(§) is a homogeneous polynomial
of degree m such that P(§) # 0 when £ # 0. Choose x € C° with x = 1 near 0. Let

B) = (o) [ Fpratleeag
1—x(&)

which is a form of expression for us at this moment. Note that G is homogeneous of

degree m away from a neighborhood of 0. So if m > n, then the integral converges. Denote
D, = %6’33, we have

P(D)E(x) = ﬁ (x(w) / ) Loxe) ;é(f)zﬂ(&)emf dé + [P(D), x] / ) 1-xi6) ;é(f) ¢t d&)
1

— (@) [ e €de+ () [ (@) o [ =X s
=2 @) / 6+ (@) / (—x(£)) fdula%%a Y / O e g

Note that the first term is 0y, which we discussed before, the second term is well-defined
since the integrand is compactly supported. For the third term, notice that 0%y is compactly
supported away from 0, then we introduce

1 . .
W(w, De)e™*t = e (well-defined away from 0)
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to integrate by parts(if it can be justified) here many many times, then we get rapid decay
with respect to & in the integrand of the third term. Recall that the Fourier transform of
something with rapid decay is a smooth function. Hence, we get

P(D)E(x) = do(z) + K(z), K € C®(R).

This means that we obtained an almost fundamental solution for P(D), that is, we get
a distribution E, and P(D)E is a delta function plus something compactly supported and
smooth. Later, we will call this a parametriz for P(D). The error is extremely nice, compactly
supported and smooth.

It will help us to solve (approximately)

P(D)u= f € &'(R™).
Then
W=Exf= [ B i) dy
which is a formal way of writing, but for f € £, we can make sense of it. Finally,
P(D)w = P(D)(Ex f) = (P(D)E) * f = f + K * [,

where K x f € C*(R"™), which means that we find a solution modulo something smooth.

In this example, the amplitude a(x,§) = 1;’(‘5()5), where P(A) = N P(€),A > 0 and P(§) #

04if&#0. Then P(§) > c|&|™ for some ¢ > 0 since P is bounded from below on {|£] = 1}.
And by induction, we have |0° P(€)| < c|¢|™ Pl Thus,

This motivates the upcoming general requirements for amplitudes.
Example 3.2 (Commutator). Let P(D) = |D|* = —=A, where D = 9. Then
[P(D), xJu = x(Au) — A(xu) = x(Au) — x(Au) = 2Vy - Vu — Ayu.

Hence,
[P(D),x] = =2Vx - —Ax.

Now we turn to the general theory and we focus on amplitudes first.
3.1. Amplitudes. Let X C R” be an open set.

Definition 3.3 (Symbols). We say S s the space of symbols of order m and of type
(p,9), which is defined as

(X x RY) = {a € C®°(X x R")
stVK € X,a e N", e NV 30 = C(K, o, B), |8§8§a| < C(gym—rlBIHlely

Remark 3.4. We are only interested in 0 < p < 1,0 < § < 1. Suppose p > 1, in that case, we
claim that a has to decay rapidly in £, that is, [9f'a| < Cn.o(&)™™. We argue by dimensional
analysis to think intuitively. Set ¢ has dimension inch, a also has dimension inch®, then Ofa
has dimension inch*~1*l. However, |0¢al < C(&)m=rlel which has dimension inch™ 1ol near

00. (We can forget about the 1 inside (§) since we are focusing at infinity.) Then we have
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k —|a] = m— p|al, that implies k = m — (p — 1)|c|, the units at infinity, can be any negative
number, which means that it decays very very fast.

To make this rigorous, one can apply |0[9)g = > 1030, as polar coordinates and integrate
in |0] to obtain a decay in the initial m by (p — 1). So one can obtain any large decay by
applying |0|0jp) many many times.

Example 3.5. Note that in Example the amplitude 1]?(‘5()5) is in Sy

Let

lallkap:= sup (6) 920 al,
o (2,0)€ K xRN

then a € SJ5(X x RY) if and only if for all K € X, all multiindexes a, 8, [|a|[x.a,5 < 0.
And S75(X x R") is a Frechet space with the seminorms ||a| k5. A countable family of
seminorms defining the topology is given by the |al/x; a3, j = 1,2,--- ,a € N, 3 € NV,
where K is an increasing sequence of compact subsets of X such that X = U; Kj.

Definition 3.6 (Topology of S}; as a Frechet space). S7% is metrizable with respect to the

metric
—; If—gl;
d(f,g) =) 277 —————.
2 o,

With respect to this topology, we say
aj > a <= |la; —allkap — 0,VK, a, B,

and the space is complete, that is, S}% is a Frechet space.

The proof of the completeness is analogous to the proof that C* functions form a Frechet
space and the proof that Schwartz functions form a Frechet space.

Remark 3.7 (Why are these guys called symbols?). Suppose we have a general differential
operator of order m

P(z,D)= > an(x)D5.
o <m

If we apply it to some u € ., then
1 .
P(Z’,D)U = |Z<: aa<l’>D§U = W// |z<: aa<x> aGZ(xiy).gu(y) dy d¢,

which makes perfect sense since we first take the Fourier transform of v and then multiply
by £* then take the inverse Fourier transform. On the other hand, you can think of this as

an oscillatory integral only in &

laj<m

like the delta function. Let p(z,&) = 37, <., @a()€* and this is called the symbol of P(x, D)
defined for differential operators. Obviously, p € ST (X x R") since it is a polynomial.
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Theorem 3.8. Here are two basic properties.
(1) Letm <m',p>p',6 <&, then S C Sg}:&/.
(2) 8:‘585 is continuous from S5 to S;%_pwwla‘.

Definition 3.9. The residue space is defined as

S™®(XxRY) = {a € C®°(XxRY) : VK € X,¥YN,3C, s.t.Vz € K,|0%05a(x,0)| < C(6) ™}
Moreover, note the fact for the residue space S™(X x RY): Fix (p,d) € [0,1]?, then

S7(X x RY) = Ny S5 (X x RY).

Notation 3.10. We will abbreviate STy as S™ since it is the most useful one.

Now we present an example, a more general case compared to the amplitude function in
Example [3.1]

Example 3.11. Let a € C®(X x RY) and a(z, \0) = \™a(z,0) for || > 1,\ > 1, that is,
a is homogeneous for 0 large enough. Then a € STj.
The proof is easy. Since the homogeneily gives us

N a(x, A0) = 9; (a(x, A9)) = 9] (\™a(x,6)) = X"0ja(x,0),
which implies that
a(x, \0) = X" P15 a(x, 0)
Hence, for all § € SN=1, X > 1,
9ale, \0)| < C(K, BY ).
that is, for all B, K,
0 a(x,0)| < Ci(K, B)(6)"
holds for all x € K,|0] > 1. And for |0| < 1, x € K, there exists some Cy > 0 such that
|05 a(z,0)| < Co(K, B). Since (§)™ 18 is between 1 and 27~V there exists
C3(K7 5) - maX{Cl<K7 5)7 min{CZ(Ka ﬁ)? 02<K7 B)2m_‘6|}}
such that
0 a(x, 0)] < Cs(K, B)(6)" "
for all x € K,0 € R". Analogously, for all o, 3, K, we have
020 a(z.0)| < C(K, o, 5)(0)"
forallz € K,0 € R".
Example 3.12. Let f € C°(X x RY;[0,00)) such that f(z,\0) = \f(x,0) for X > 0,

that is, f is positively homogeneous of degree 1. Set a(x,0) = e 79 then 0 < a < 1 and
a € C®. We claim that

ROy = D all@,0)(0uf) (Duf) e, (3.1)
@l <le,|BI<I5]
where ag’g e 511 g (0:f) = (Op, [) " (Oup )2 -+ (O, f) ™. This claim can be

proved by induction. Note that we absorb terms like 8585]’ mn ag’g(a:,é) and only keep the
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worst terms like (9,.f)%, (8@f)§ in (3.1). We only write out for the case |a| = |B] = 1 to

give a sense of what to prove :
0705 (e71) = (=020, f + 0, fO7 e,

where 929 f € S° and 1 € S°.
Now we apply Landau’s inequality which is proved in Lemma then

0.1 +100f| < Cf2
for allx € K, 1< |0| <2. Thanks to the homogeneity, for A\ > 0,
A0, (2, 20)] + |0cf (2, 30)| < CA™2 f(,0)z.
Take A = |0], 6 =\, |8] = 1. Hence,
017210, (2, 0)| + 1012100 f (2,0)] < Cf(,0)2.

N[

Thus,

18] . lal+|B] |&|—|B]

a 3 — e 181 _
((@f)“(aef)ﬁe / \ <0171 = f 7 et <Cpg 5k (0)
Combined with , here we get
205 (e~ < Co)"

that is, a(z,0) € ST , (X x R™).

N

)

N= O

Lemma 3.13 (Landau’s inequality). Let g € C*(U), g > 0, where U is an open set. Then
for all compact sets K € U, there exists C > 0 such that |Vg(z)| < Cy/g(z) for all z € K.

Proof. The trick is that we use the Taylor formula here. We have
0<g(z+y) =g(x) + Vg(z) -y + O(yl*),

that is,

~Vg(x) -y < g(x) + O(|yl*).
Let y = —eVg(x), where ¢ is small enough such that  +y € U for all z € K. Furthermore,
we choose € small enough such that O(g?|Vg(z)|*) < %5|Vg(x)]2, then

e|Vg(@)* < g(z) + O(*|Vg(2)]*)
implies 1e|Vg(x)[* < g(x). Set C = 2, then the desired inequality follows. O
Remark 3.14. Take g(x) = x? in one dimension and you can see this equality is sharp.
Before we state the next theorem, we need another interesting lemma.

Lemma 3.15 (An interesting interpolation lemma). Suppose f € C*([—¢,¢€]), then
/ % 17 % 4
O] < 201l 5 + M flloo:

where ||gllco = supy<. [9(2)]
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Proof. We write
) = 50 + 27 +22 [ (-0
then ’
7O < 20l + 2171
Note that the right hand side depends on x while the left hand side does not. We minimize

1 1
this with respect to z, where the minimizer is x = min (2%,5). When ¢ > 2%,
I1£7711% 1711%

|F(0)] < 2[[flloe + £l1f"lloc < 2[|floc- Hence, combined with the two cases,

1 1 4
L O)] < 201 1131 £711% + 2l e
O

Remark 3.16. Note that we need the extra term || ||~ on the right hand side since for linear
functions, the second derivatives are zero.

Theorem 3.17. Suppose {a;} is bounded in S5 and a;(z,0) — a(x,0) for all (x,0) €
X xRN pointwisely. Then a € SJ5(X xRY) and a; — a in ;?(;(X x RY) for all m’ > m.

Proof. Take z = (x,0) € X X RY¥ and 1 <1 < n+ N. With a slight abuse of notation,
we denote || - || be the supremum with respect to a small interval near z in the I-th slot
[z — cey, z + ey

Since {a;} is bounded in S7s, {1|0.,a; — 0= ak||oo } i and {102 a; — 02 ar| o } ;. are bounded.
Moreover, we apply Arzela-Ascoli theorem, then we get the uniform convergence by passing
to a subsequence (also denoted by {a;}) if necessary, that is, ||a; — ax||cc — 0. Hence, {a;};
is a Cauchy sequence in C'(X x RY).

Furthermore, Lemma tells us

105a5(2) = 0zak(2)] < 2la; — aillool| 0% a5 — OZ ar|o + g”flj = aglloc = 0.

By the arbitrariness of z € X xRY, we know that 9,,a;(x, ) converges for all (z,6) € X xR",
that is, Ja;(z,0) converges pointwisely. Repeating the preceding argument, we will get a
subsequence by Arzela-Ascoli such that ||0a; — day|l« — 0.

This allows us to obtain by induction that {a;}; is a Cauchy sequence in C*(X x RY) for
all £ € N and hence for k = oc.

Consequently, a € C*°(X x RY) and a; — a in C=(X x RY). Then thanks to the uniform
bound of {a;}; in S we know a € S7s.

In order to prove the convergence in ;?;, we let K € X and consider (z,0) € K x RV,
Let

920, (a; — a) 1 029)(a; —a)

kj(z,0) := (6)m'—plBI+lal - (g)ym'=m — (@)ym=plBl+dlal °

9% (a;—a . .
We know that % is uniformly bounded and goes to 0 on compact sets. Moreover,

1

Gy 8oes to 0 as |#] — co. So we can estimate by two parts.
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For all € > 0, there exists R. > 0 such that |k;| < ¢ if |#] > R.. On the other hand, for
0] < R,z € K, there exists .J., such that |k;| < e if j > J.. Hence, |k;| < e if j > J. and
x € K, which implies

aj = ain Z’L(;(X x RM).
U

Now here is an example showing that convergence in S} is always true. In other words,
the preceding result is in some sense sharp.

Example 3.18. Let a = 1, a; = X(g), where x = 1 near 0. Then a;(0) — a(0) for all 6.

We know that a is smooth and in S°. Note that ||a; — a|l = 1, so a; does not converge to
a in S°. However, for any § > 0, |[{(0)~°(a; — a)|le — 0 as j — oo.

Theorem 3.19. For every m’ > m, S™°(X xRY) is dense in S™(X xRY) in the topology
of S™ (X x RN).

Proof. Set a € S™(X x RY). Let x;(6) = X(g) where x = 1 near 0 and xy € C'°. Then for
all |a] > 0,
Q (03 9
9:(0) =57 XV ).
Note that y! (—) is supported in j < |f] < 25 without loss of generality, which implies that
the right hand side is O((¢)~*!) and the bound is independent of j. This tells us x; € 59,

Then a; := xja € S} and {a;} is a uniformly bounded sequence in S7’;. Moreover, a;
is compactly supported in 0, so a; € S~>°. Furthermore, by Theorem , we know that
a; —a € (X x RY), which completes the proof. O

Remark 3.20. This theorem is the same type of thing we present before. Note that C2° or
rapidly decay functions are not dense in L* in the topology of L>°. However, they are dense
if you put some weight like (§)~° as in Example , that is, . is dense in continuous
functions in the topology of (x)°L*> for all § > 0.

Now we make some philosophical comments. Note that Z;io a;h? could converge provided
la;| < C79, where a; € C,0 < h < 1. When the sum does not converge, we say

(oo}
a~ E a; W

if for all N, there exists Cy such that |a — Z " aghi| < COnhN.

We have seen this thing in the Taylor series. The Taylor series ) -,
converge, but we have

ul™) (m)

——y" may not

N1 (n S L
uety) [ s =
where the remainder is O(|y|") so that u(x + y) ~ > “(2!(1) y".
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Theorem 3.21. Suppose a; € S, with m; — —oo and mg > my > mg > ---. Then
there exists a € S, for all k,

k—1
a—) a;€H(X xRY). (3.2)
=0
And a is unique in the sense that if (3.2)) holds for another a, then a —a € S™>°. We will

denote this by
a ~ Z aj.
j=0

Proof. Let [|-[[x; be a sequence of seminorms defining for S7'¥. Without loss of generality, we
assume mg > my > mg > ---. By density (Theorem [3.19)), for all j, there exists b; € S~
such that

laj = bjllv <277, 0<w,p<j—1.

(This is another sort of diagonal argument.) This is true because S~ is dense in S:?g in
the topology of S/Tg for v < j — 1. Hence, for all £, [, we have

I Z(Clj —bj)llxs < Z la; — bk < Z llaj — bk + Zg—j < .
>k >k j<i >l

Thus, >, (a; — b;) converges in S}’ for all k.
Now we set a := > 7 ((a; — b;) € S}y, And we check by calculating

a—Y a;j==> b+ (aj—b) €S+ C SNk
i<k i<k j=k
Note that a —a € S7'y for all k. But my — —o0, we know a —a € S™. O

3.2. Phase functions and Oscillatory integrals. We denote RN = RV\{0}.

Definition 3.22 (Non-degenerate phase function). A function ¢ = p(z,0) is called a

non-degenerate phase function if for all (z,0) € X X RN

(1) p € C®°(X x RN),

(2) p(x,A\0) = Ap(z,0) for all A >0,

(3) Im ¢(z,0) >0,

(4) dp # 0, where the differential is defined by dp =, 9,pdf; + 3. Oy, pdx;. And here
dy # 0 means that (Og,, -+ , Ogr @, Oy @y -+, Oz, ) 7 0.

Lemma 3.23. Suppose m + k < —N and ¢ is a non-degenerate phase function, then

a— I(a,p) = / a(z, 0)e @9 dp
RN

defines a continuous map from S7s(X x RN) — C*(X).
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Proof. Since I(a,¢) = [pv a(z,0)e @D df, if m < —N — ¢, then |a| < (6)~"~° and hence
the integral converges.
If we start differentiating with respect to x, then we know for |o| = 1,

Oy 1(a,p) —/ (8%a(x,0) +i0%p(x, 0)a(x, 0)) €@ dg.
]RN

Note that 0%a(z,0) € Sm”‘a' 02¢(x,0) € S C S} 5 (Example 3.11) and €™ is bounded,
we know that 021 (a, ¢ ) € C(X) whenm < —N —1—c¢.
We iterate this process and we see if m + k < —N, we have I(a,¢) € C*(X). O

Corollary 3.24. Ifa € S™, then I(a, ) € C=(X).

In the following theorem, we need to impose some restriction on p, d.

Theorem 3.25. Assume ¢ is a non-degenerate phase function. Let 0 < p < 1 and

0 < § < 1. There exists a unique way of defining I(a,p) € D’(X) for a € U, ST such that

fora € S, m < =N, I(a, ) is given by I(a,p) = [ a(z, 0)e** @9 do and for all m € R,
ZZJ%D/(X)a GHI(G,QD)

1S a continuous map.
More precisely, if k € N and m — kmin(p,1 — ) < —N, then the map

ST 3 avs I(a, ) € DW(X)

18 continuous from symbols to the distributions of order k.

Proof. Uniqueness: For all m > —N, choose m' > m, then S™ is dense in 57" 0 in the

topology of Sg?(; by Theorem ? Since Sg} — D'(X) is continuous and S} C S < I(a, )
is uniquely defined on S by density.

Existence: The main idea of the proof is to use dyp # 0 to find differential operator L
such that ‘L(e’?) = €. And then for a € 5=, I(a, p)v = [ LF(av)e™ df dz, where v € C°.
Because L¥a will improve the decay of a, we will be able to define the distribution.

The proof is based on the following lemma.

Lemma 3.26. Suppose ¢ is a non-degenerate phase function. Then there exists a; €
SPo.bi € Sig,c € Sty such that the differential operator L is defined by

N N
L = Z a/j<x7 9)893 + Z bl(x7 9>aﬂfl + c(x’ 6)

j=1 =1

such that 'L(e*?) = €. And the transpose 'L is the formal operator satisfying Lv(u) =
v(*Lu).

Proof. Choose x € C®(RY) and y = 1 near 0. Let
Io|" x| 890 &p D g
o = — 0 —| = —

Note that & € C°(X x RY ) and @ is homogeneous of degree 2. Moreover, ® # 0 if 6 #£ 0
since ¢ is non-degenerate.
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We define

=129 <|e| 28%9 >3 a“pa ) XO0) =" dids, + > V0., + ¢

where
/ 1— X(Q) 2 890 0 / 1- (‘9) 8@ 1 / — -1
= ———0]"— = XYY = x(0 >
a; 5 ||89-€S’ ! i or, eSS, d=x0)esS™cCS
since 1 — x(0) € SY, @682,23’ e sy B‘P € S'. And if we apply |0 Za“’ﬁ —i—Za to

p, we get i®. Thus, we have
PL(e"?) = e
Furthermore, *(b0,,) = —b0,, — (0,,0) and *(ads,) = —ady, — (0, a),

L="("L)==> d;0s, — > Vi0u, +¢ =D Oul;— Y g

Hence, a; = —a; € S%,b; = =0 € S™ c = =30, — > 0p,a; € S, which completes

Ti~)

the proof. 0

Now we go back to the proof of the existence in Theorem [3.25
Step 1:  We first consider the case a € S™°. Now we know I(a,p) € C>*(X) by
Corollary For u € C2°(X), we consider the distributional pairing

:// a(z, 0)u(x)e @9 dedx—// a(z, 0)u(x)(*L) e dg dx
x Jr¥ RN
:// L (a(z, 0)u(x)) €9 df dz.
RN

Step 2: Now suppose a € S5 for p > 0,6 < 1. Since a;0y,(au) € S)'5", b;0,,(au) €

S 6—(1—5) and cau € S~ 55 We have Lk(au) €Sy Rmin(p:1=0) “Gince p,1—3 > 0, we gain decays.
And the map

LF: 87 x CR(X) — STy Fmin(e1=0) (2, 0), u(x)) — LF(aw)

is continuous since we can conclude from a more precise calculation as above that for every
compact set K C (2,

sup | L (au)[(8) O <N T lallkas Y sup |0%u(z)], (3-3)
FoRS jal+181<k o<k
where || - || a5 are seminorms for S7%s. (Similar estimates hold if we put higher seminorms

for S:;_kmin(p 79 in the left hand side.)
Step 3: For a € ST, we choose k such that m — kEmin(p,1 — d) < —N, then we define

a distribution Iy (a, ) as
(Ix(a, ), u //Lk au)e™ df dz.

The integral on the right hand side converges absolutely since L*(au) € Sm—kmin(1=9) and

it is compactly supported in x. And it defines a distribution since the seminorm estimates
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gives
[(Zk(a, 0), u)| < Cogsuppu Y 10%ul,
la| <k
and more precisely, I1.(a, ) € D'®(X) and the map
(X xRY) 5 DP(X), ars Li(a,p)

is continuous. And for a € S™°°, by integration by parts in Step 1, Ix(a,¢) = I(a, p).

Step 4: To define I(a, p) for a € 7%, we need to show that if m —k'min(p, 1 —§) < =N,
Ii(a,¢) = Iy (a, ). For a € ST, we choose a; € S~ such that a; — a in S;’?; for m' > m
and m’ — K'min(p,1 — ) < —N. Since Iy(aj, ) = Ip(a;,¢), by continuity, we know
Ii(a, ) = I (a, ). Hence, we can define I(a,p) = Ix(a, ).

Step 5: In Step 4, we showed that the definition of [ is well-defined, which is independent
of k. The uniqueness tells us the definition is also independent of which L we choose as long
as coefficients satisfy the desired properties. O

Remark 3.27. Set x € C2° such that y = 1 near 0. Actually, we have
I(a,¢) = lim [ x(e8)a(z,8)e ™9 qp, (3.4)

where the limit above is taken in the sense of distribution. This fact is simply because
a. = a(z,0)x(8) € S (see the proof of Theorem [3.19) and a. — a in ZLC; for all S7's by
Theorem [3.17} Hence, we have the limit due to Theorem [3.25]

For later use, if L = > ai(x,0)0p, + 37, bij(2,0)0,, + c(x,0) with a; € SD 5, bj,c € S;;,
then for u € C§°(X), the integration by parts formula

// ' () au = / / T (au) (3.5)

holds with the understanding that these are oscillatory integrals, that is, even if those are
formally expressions (only makes sense as oscillatory integrals), we can integrate by parts
if the condition above is satisfied. The proof just follows from the proof of Theorem [3.25
as mentioned in Step 5. The proof does not rely on the specific form of L we choose and
in the preceding lemma, we just give an explicit (non-unique) construction for such an L.
In short, the proof idea is as follows. For a € S, holds obviously. Thanks to the

desired symbol spaces which a;, b;, c are in, we can prove the maps a fewZ(a-) 0 and

[ *L(e**)a df are continuous map from Sy to D'(X). Then by density, we know ({3.5]) holds
for all a € S7%.

, and note that

Example 3.28. We take 0p(x) = / w0 d0. Set V = (1 = x(x))z - Oy

n ilz|?
(1 —x(z))z

e € S°, which satisfies (3.5). Thus we can integrate by parts and get

/ 0 do = 0

away from zero (when x is away from suppx ).
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On the other hand, we can compute it using Remark . We choose x as in (3.4)). Then
for u € C°(X), we have

(/ e dh,u) = hm // (e0)u(z)e™? df dox = lir% x(ed)u(—0)do = /@(—9) df = u(0).
R™ E—

Hence, when fRn e df is meant as a oscillatory integral, it is indeed the delta function &.
Definition 3.29 (Critical set). If ¢ is a non-degenerate phase function, we call

Cp={(z,0) € X xRY : dgyp = 0}
the critical set of .

Example 3.30. For §(z) = ﬁ Jen €0 dB, where ¢ = x - 0, we have
={(0,0) : 0 € R"}.

Definition 3.31. We say C' is a cone if for all x € C, A\ > 0, we have \x € C. For
0o € RN, we call the set of the form
g

for some € > 0 a conic neighborhood of 6y. Note that a conic neighborhood is a cone.

{OGRN: b

Lemma 3.32. Suppose a € 575, p > 0,0 <1 and a =0 in a conic neighborhood of Cy(a
neighborhood which is conic in 0). Then I(a, ) € C*°(X).

Proof. First note that C, is a cone in ¢ thanks to homogeneity, then the statement makes
perfect sense. Now we claim that there exists a differential operator L defined by

L= Z a;j0p, + ¢, a;€85% ce S (3.6)

such that 'L(e*?) = (1 — b)e™ for b € S° and suppb N suppa = &. That is, 'L(e?) = €'
holds on the support of a.

Step 1: We construct a function b homogeneous of degree 0 in 6 for |#| > 1 such that
b =1 in a conic neighborhood of C, when |§] > 1 and b = 0 on suppa.

Denote the conic neighborhood in the assumption of the lemma by

CN—{(x,e):| — ] <k,

We set b(z,6) =1 in

: > 1, |2 — ! )
{(x,@) 0] > 1, |x x|< ’9, |9|‘ ,9)66@,}

In other words, we set b = 1 in a neighborhood of X x S¥~! which is disjoint from suppa
and extend it by homogeneity for |#] > 1. Then we let b = 0 outside Cy and extend it by
homogeneity in # and make it smooth. At last, we cut it off near |#| = 0. Then we obtained
the desired b € S°. (We do this since all the oscillatory nature happens at infinity. So we do
not need to consider things near 0.)

/

o] 16l

<&, V(a, 6’)60}

£
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Step 2: Let 'L = (1 — b(x,0)) < e
|0] < 1. Note that C, is the set where ¢y vanishes and but 1 — b near C,, except for ¢ near
0. However, 1 — y vanishes when 6 near 0, so tL is perfectly well-defined.

Since g € S°, 'L = Y~ a;0p, + ¢ with a; € S° and ¢ € S~ Then it follows from a similar
computation as in the proof of Lemma that L = ) a;0p, 4 c with a € S%and c e ST,
which proves the claim.

Step 3: Thus, we can integrate by parts as follows

// 2@ q(x, 0)u dxd&—// “0("”9 (x Ou(x) dx db
_// @0 [} (a2, 0)u(z)) dmd@://ew@%k (a(z, 0)) u(z) d do,

where in the second equality we use the support property in the claim at the beginning.
Hence, I(a,p) = I(L*a,yp) for any k. But we know LFa € Sm—kmin(p1=9) where m —
kmin(p,1 — ) can be sufficiently negative for k large. So I(a,¢) € CYX) for all | by
Lemma [3.23 O

<g09,89) + X(Q)), where we choose y = 1 when

Corollary 3.33. If a is supported away from Cy, then I(a,p) € C*(X).

Now we recall the definition of the singular support of a distribution.
Definition 3.34 (Singular support of a distribution). Foru € D'(X), the singular support
of u is defined by

singsuppu = C{x : 3U = a neighborhood of z,u|ly € C*(X)} \n
= the smallest closed subset L C X such that u|x\ € C™, (3.7)

where C denotes the complement of the set and here we mean the restriction of a distribution
uly by only applying this distribution to a smooth function compactly supported in U.

Theorem 3.35. Let m: X x RN — X such that n(x,0) = z. Then
singsuppl (a, p) C w(Cy).

Proof. Suppose zo ¢ 7(C,). Note that C, is closed, then 7(C,) is closed (since ¢ is homo-
geneous of degree 1 in 6, so we can CODSldel" 6 e St Compact) thus there exists ¢ € C°(X)
such that ¥ (zg) =1 and suppy N7(C,) = 2.

We observe the identity ¥1(a, p) = I(1a, ). From the support property of ¢, supp(va) N
C, = @, we can apply Lemma to obtain I(va,p) € C*(X). Therefore, zo ¢

singsuppl (a, ). O
Remark 3.36. The formula
Pl(a, ) = I(¢a, @)

we used in the previous proof can be verified by density. It holds for a € S™>° obviously.
Then we know the map a — ¥I(a,¢) and a — I(a, ) are all continuous since we can use

(3.3]) to check.
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Example 3.37. Suppose f € C*(X), Imf >0 and f = 0 implies df (x) # 0. Set N =1 in

this example, then

u(z) = /0 @ gy — /0 $(F)e O dr 4 /R (1= §()e @ ar,

where XY € C* such that X(7) =1 when 7 < 1 and x(7) =0 when 7 > 2.
Obviously, the first part foo X(7)e @7 dr is smooth and

/OO X( ) i(f(x)T+ieT) dT—>/ Zf(Z‘)T dr
0

as € — 0 by the dominated convergence theorem.

And the second part is [(1—X, f(x)7) where 1—X € S°. Note that (1—X(7))e " — 1—X(7)
in S°, then by density and continuity in Theorem and combined with the limit result
above, we have

u(r) = / @7 dr = lim e @r+ier) g7
0

e=0 J,
where the limit is taken in D'(X). Hence,
u(w) = lim =
250 f(z) +ie  f(@)+i0

A particular case of interest is when f(x) = x. From this formula and C, = {(z,7) : f(z) =
0}, it is obvious that

singsuppu C 7(Cly),
which verifies Theorem 3.5

Remark 3.38. The condition
f=0=df(z) 0

in the assumption implies that {f(z) = 0} is a hypersurface, that is, we can write it as a
function in n — 1 variable. This follows from the implicit function theorem.

Example 3.39. We consider
(0} — A)u=0, uli—o=f, Ouli=o =0,

where f € S (R"™).
We claim that

u(t, :L e @=9)€ cog =
0) = s ] (]¢]) (v) dy de =

18 a solution to the wave equation. We check this by computing

¢TI f(y) dy dE = f(x),

ei(z=y) ﬁilﬁlt)f( )dy d¢

u(0,x) =

1

=51 DS y) dy d = 0.

Ou(0,z) =




And you check the wave equation is satisfied by direct calculation. So consequently, the
solution to the wave equation is defined by the following oscillatory integral

1 .
Ult,z,y) = = / > el ge € D'(R, x R™ x R")
+

2 (2m)m

since o+ (t,x,y,&) = (x —y) - £ £ €|t are homogeneous of degree 1 in & and non-degenerate.
Now,

0
7 (€)= {00) o -y o =0k = {(tnp) sl =l = 1),
which defines the cone which we have already seen before when solving the wave equation.

3.3. Generalizations of Oscillatory integrals. Let o € C®(X xY xRY), X C R"Y C
R™, which is a non-degenerate phase function on (X x Y) x RY. Here X x Y is our “old”
X. Fora e S5(X xY xRY), p>0,d <1, we get a distribution

K(z,y) = /a(x,y,&)ew(m’y’g) dd e D'(X xY).

Then by Schwartz kernel theorem, K defines an continuous map
A:C*(Y)—D(X)
such that for all u € C*(Y),v € C*(X),
(Au,v) == (K,v ®@u). (3.8)

// a(z,y, 0)e @Dy (y) dy db, (3.9)

which is a convenient way of writing things out. However, it always denotes in the sense of
distributional pairing (3.8)).
Definition 3.40 (Fourier integral operator(FIO)). We call operators like (3.9) Fourier

integral operators.

Note that Example is an example of Fourier integral operator with X = R; x R?” and
Y =R7.
Y

Formally, we write

Definition 3.41 (Pseudodifferential operator). For the special case of p(x,y,0) = (x —
y)-0, 0 € R". We call such Fourier integral operators by pseudodifferential operators, that

18,
// a(z,y,0)e' " u(y) dy do.

The name “pseudodifferential” is motivated by the following. Suppose P(z, D) = 37, <,, @a(z) D

is a differential operator, where a, € C*(X). A direct computation gives
(P(z, D)) 2ﬁﬂ2%5Ww<mM
<m
where ) -
a(z, &) = ) };m (7)€ € S™(X x R").



So the pseudodifferential operators are generalizations of differential operators.

Remark 3.42. We will prove later that for a pseudodifferential operator Au(z), we can find
a symbol b, independent of y, such that,

// a(z,y, 0)e'™ ) dyd@-// bz, 0)e @)%y (y) dy db.

Finally, we introduce a theorem.

Theorem 3.43. Suppose A is an Fourier integral operator.

If for allz € X, (y,0) — ¢(z,y,0) is a non-degenerate phase function, that is, d, e # 0,
then

A:CE(Y) = C®(X).

If forally € X, (z,0) — p(z,y,0) is a non-degenerate phase function, that is, d, e # 0,

then
A:E'(Y)— D (X).
Note that both conditions are satisfied for pseudodifferential operators.

Proof. For the first part: Let ®(z,y,0) = |dyp* + |0]*|dop|?, which is nonzero on
X x Y x RN and homogeneous of degree 2. Set x € C°(RY) such that y =1 near 0. Let

LX) ((0,0,0,) + 101 0ne,0)) + x(6),
then ‘L(e?) = €. Note that L satisfies

L= (A0, + (B, +c,
where A € S™',B € 5° ¢ € S7'. Thanks to our theory, namely (B.5)), we can integrate by

parts and get
(Au,v) /// e“?v(z) L* (aw) dz dy db.

Since L*(au) € S}y Fmin(p10) o know the integral on the right hand side is well-defined.
Hence, Au(x) c01nc1des with the smooth function

7) = / / ¢ LF(au) dy df € C(X)

since we can choose k any large.

For the second part: We prove this by duality argument. For A : C*(Y) — D'(X),
we define A : C(X) — D'(Y) by

("Av,u) = (Au,v), ve CP(X),ue CP(Y).
The map *A is continuous by the definition of A and the estimate
[(*Av,u)| = [(K,v®@u)| < C Z Sup|8°‘86 (uv)] .
laf,|B|<N

If A is defined by using K4 € D'(X x Y), then ‘A is defined using K4, where Ke4(y,x) =
Ka(z,y). Since K4 = I(a,p), then Kiy = I(a,), where a(y,z,0) = a(z,y,0) and
Py, x,0) = p(z,y,0).

tL:
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Now the position of x and y switch, so we can apply the first part of this theorem that we
just proved to get
Kiy: CX(X) — C™(Y).

Note that the dual space of smooth functions on an open set is the compactly supported
distributions, that is, (C*(Y))" = &'(Y). Take u € E'(Y), v € C(X). We define

(Au,v) := (u, "Av).

The extension is unique thanks to the density of inclusion C°(Y) C £'(Y). (The density
can be shown by convolving it with a C2° function converging to dy in distributions thanks
to convolution mapping property C° x £ — C°. See [3, Theorem 5.2.2, 5.2.3].) O

3.4. Stationary phase method and Steepest descent method. Now we want to “eval-
uate” the oscillatory integrals.
We study

I(\) = /e“‘ﬂ(“”)a(a:) dr, a€ CX(R),p e C?R;R), (3.10)

J(\) == /e—W%(x) dr, a€ C>(R),¢ € C*(R;R), (3.11)

which corresponds to the stationary phase method and the steepest descent method, respec-
tively.

Theorem 3.44 (Steepest descent). Suppose a € C° and v has a unique non-degenerate
minimum at xoy € suppa, that is, V' (xo) = 0,¢"(xg) > 0. Then

2m 2 1 1
J(A) = /e‘wma z) dx ~ e~ (@) ( ) a(zo) + biA 2 F b A 2 2 |

This means for all N, there exists C' such that

1
2 2 1 1
‘/ewma(x) di — e—(@0) (( W ) a(ze) + A2 4. 4 bN)\2N>

)\'l/}// (xo)
< Ce*M/’(wo))\*N*% _

Proof. Take x € C2°(R) such that y is supported very close to zq. Then

‘/e—kw(m)(l o X(:L‘))a(l") dz| < e—/\(lﬂ(mo)-&-a) / |(1 — X(:L‘))CL(ZE)| d(E,

which will decay exponentially when A is large, so we have J(\) = [ e @ y(z)a(z) dx +
O(e~¥(@)+e))  Hence, we only need to consider the integral in a very small interval near .
Without loss of generality, we assume 1(xy) = 0, then using the Taylor remainder formula,

we get
1

Ylz) = 5@~ 0)%h1 (),

where ¥ (zg) = ¢ (o) > 0. So we are allowed to take y = y(z) = (z — x9)/¥1(z) near
=z

xo. Since y'(xg) # 0, x (y) is a change of variable near y = 0 and ¢(z(y)) = 3y°. We
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compute
/e_kw(z)x(x)a(x) dx = /e_2y b(y) dy.
Here i 1
b(y) = x(z(y))a(z(y)) det ’d_y" b(0) = a(xo) (4" (20)) 2.

One should notice that we need to make a clever choice for y to make this perfectly well-
defined. Since the inverse function only exists locally, we need to choose x with support
sufficiently close to zy in which the inverse exists.

Now we apply the Plancherel formula to get

[ertman= L [Vt deuga - ——— [ 5¢He
———— /3@)%%(—%)kg%d&(—ﬁ)]v/(ef) © 5)

2T _1 K
=5 a(zg >+ Z o ( QA) 82)’%)(0)> + CyAN™
More precisely, for the remalnder term, we have

|05 < cll+1¢P) DU e < € (IDPHE) e + IDV20(E) 1 )

3.12
< C(|ID*M 20| + || D*Mbl|py) < C sup |97, (3:12)
|a|<2N+2
where the constant in the last inequality depends on suppb since b € C§°. O

As an example and an application, we introduce a proof of the Stirling’s formula.

Theorem 3.45 (Stirling’s formula). We have the following approzimation for Gamma
functions

T(s) = v2rs* 7¢™* (1 - O(é)) :
Here T'(n) = (n — 1)! forn € Z.
Proof. We study the behavior of
[(s) = /000 e_tts%

as s — 00. By a change of variable t = sz, we have

F(S) — g5 /OO e—s(:v—logac) d_x
0 X
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Here our phase function is ¢)(x) = x — log z, which has a minimum at z = 1 and ¢"(x) =
=% > 0. Choose x € C2°((0,00)) such that x = 1 near z = 1. Then there exists some ¢ > 0
such that z —logz > 1+ ¢ for all = ¢ suppa. Hence,

1 d 1
/ (1_X<x>>e—s(r—log:p)_x _ / (1_X<I>)e—(s—l)(m—logm)e—x dr = O(e—(s—l)(1+€)) _ O(e—s(l—l—s))
0 Z 0
and
[ =t & oo
1 x

Now we have

© d 1 3 1
['(s) = s° </ X(l')efs(z*logx) ad + O(GS(H“))) =s%e"° (\/%5*5 +a;sTz A4+ O(s’Nﬁ)) )
0

x
0

Remark 3.46. We call it by steepest descent method due to the following reason. Note that
—1(x) will have a unique maximum and going down away from the maximum point.

This method also holds for complex functions. Take a(z),1(z) both holomorphic such
that ¢/(0) = 0. Suppose 7 is a contour in the complex plane, if we want to study the integral

/a(z)e‘w(z) dz,

v

we need to deform 7 to a contour ¥ such that the harmonic function Re(z) ~ t? on 5. For
example, for ¥(z) = 22, Rey(z) = 2% — 2, then the good contour will be the z-axis since
Rew(z) behave as x%, which has a non-degenerate minimum. So actually you want to choose
a contour on which —Ret(z) has steepest descent.

Now we turn to the stationary phase method. We first consider the case for dimension 1.
Suppose a € C°(R) and ¢ € C*°(R;R). We have the following lemma.

Lemma 3.47 (Non-stationary phase lemma). Suppose |¢'(x)| > 0 on suppa. Then for all
N, there exists Cy = C(suppa, N, @) such that
II(\)| < Cy sup |0%alAN.

la|<N

Proof. Let 'L = mgo’ - O, then ATV IL(e?) = ¢A%. Hence,

I(\) = AN/ei)‘“’(LNa)(:U) dz < |suppal AN sup [LVa| < CyA™ sup [0%al.
la|<N

O

Remark 3.48. This lemma holds for higher dimension case as well with just the same proof.

Theorem 3.49 (Stationary phase theorem for dimension 1). Suppose a € C°(R), suppa C
(a, B), and ¢ € C®°(R;R) has a unique critical point in (c, 8) which is non-degenerate,
that is, ¢'(xg) = 0,¢"(x9) # 0. Then

1

. 2 2 1T 1"
[()\) = el)\w(:vo) (l /,(7T )|> o1 5eny (:po))\f%(ao + al)\fl 4ot &Nfl/\iNJrl) + )\7N7%SN,
¥ (Zo
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where ag = a(xg) and

|Sy| < Cy  sup 0%l
la|<2N+2

Proof. The proof is the same as that of Theorem [3.44] From Lemma (3.47],
I\ = /X(:z:)a(a:) 2@ dy + O(A™).

Let ¢(z) = ¢(x0) + £5(y())?, where y(zo) = ( 0) = |¢"(xo)|z # 0, & = sgn” (o).
Without loss of generahty, we assume ¢(xg) =

() = “W/bm % dy + O ),

where b(y) = a(:v(y))x(x(y))|3—z|. Note that b € C° C ., which implies

. a2 1 /7 2 ~
]()\> _ el)‘w(m)@w%,b(y)>§ﬂ/7y + O()\foo) _ <ezgk2 7 b> i O()\foo)_
S

2m
Since
2 / 2
/eifxfe—é&ﬂe—iy{ dy — /e 2(5 €)Y+ 5ox zsz\) 2(551'5» dy — ¢€_m
d—1e— A

. ie 2
converges to 4/ 2%6756_% in . as § — 0, thanks to the dominated convergence theorem,
we have

1 i, _iegZ~

I\ = te [ e B h(e) de

V 2 ‘ R
. —1 * 7 1 ~
,/—QWAJsZ/ ;i, (;;) £0(¢) d§+>\‘N—2/O(§2N)|b(§)|d§

k<N

—_
>

_ V27 s > %(;—Q D(0) + AN [E€VB(0)]| . O(L),

which completes the proof. The remainder term can be further estimate similarly as in
(13.12)). 0

To proceed to the case when dimension is bigger than 1, we need a replacement of the
statement that

(o) = 0,¢"(w9) # 0 = (x) = p(x0) + 6%(?;(96))2, y(x0) = 0,/ (x0) = | (0)|?.

That is actually a thing that is interesting and important in its own right and goes by a
name - Morse Lemma.
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Theorem 3.50 (Morse Lemma). Suppose ¢ € C*°(R™; R), dp(xg) = 0 and the real sym-
metric matrix

62196190 8219:290 e aiuvn
Say= | Fmf T e
aa%nxl(p o o aﬁnxn

is non-degenerate, that is, det ¢"(xg) # 0. Then there exists a C* diffeomorphism (“a
change of variable”) x : nbhd(zo) — nbhd(0) such that

B 1
pox y)=v@)+= W+ -ty -y ——y2)

2
where (r,n — r) is the signature of ¢"(xo), that is, r = §{ positive eigenvalues of ¢"(xo)}.

Proof. Step 1:  Without loss of generality, we assume xy = 0, ¢(z9) = 0. Since ¢"(0) is
symmetric, we can diagonalize it as

A1
SOII(O)ZtUAUa tUU:[aA: ALy A > 0, A, A <0
An
Mk
We denote |A|z = . Let ¥ = |A|2Ux, then the Taylor formula tells us
A2
1 " 3 1 3
o) =54 (0)2,2) + O(Jsl?) = (AU, Uz) + O(|Uz )
1, ~ - — -
:5(1:12 e B = =T + 0>,
Step 2: For simplicity, we replace by x. The problem has been reduce to ¢(x) =
p(@d 4o el —apy = —ag) + O(ef).

On the other hand,

olo) = / (1= 00 ottt = 5 3l

where g (z) = 2f0 (1—t)
then

) o (t2) dt, g = arj, ix(0) = af 5 (0). Set Q(z) = (gx(2))1<jk<n,

1

—1

Now we want to find A such that A(0) = I, x — A(x) is C* and (z, Q(z)z) = (A(zx)x, Q(0)A(z)x).
So we need to solve for A such that Q(z) = *A(z)Q(0)A(x). We phrase it so that the implicit
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function theorem could be applied. Let Mat(n;R) be the space of all real n x n matrices,
Symm(n; R) be the space of real symmetric n x n matrices and consider the map

F : Mat(n;R) — Symm(n;R), A+~ "AQ(0)A.
Since F(A+ H) = F(A) +dFa(H) + o(||H||), we know
dF, : Mat(n;R) — Symm(n;R), H — "AQ(0)H + "HQ(0)A,
then dF;(H) = Q(0)H + "HQ(0), which is surjective since for all S € Symm(n;R), H =
%Q(O)*lS satisfies that dF;(H) = S. Now we can apply the implicit function theorem

(Lemma D with M = n* N = w, then there exists A such that (z,Q(x)x) =

(A(z)z, Q(0)A(z)x). Hence, let k(x) = A(x)z, then o(x) = 3(z, Q(z)x) = 5(k(x), Q(0)x(x)),
which completes the proof. 0

In the proof above, we use the lemma below.

Lemma 3.51 (Implicit function theorem). Let F : RM® — RY be a C' function such
that F(Xy) = Yy. Note that the differential is defined as dF : RM — L(RM RYN) where
L(RM RY) is all the linear transformations. If the differential dF(Xy) : RM — RY s
surjective, then we can solve F(X(Y)) =Y for X such that X (Yy) = Xo.

Remark 3.52. This is the finite dimentional case. Actually, the implicit function theorem
holds for Banach spaces.

And we would use the following Fourier transform in the proof of the theorem below.

Lemma 3.53. Suppose Q) is a symmetric matriz, det QQ # 0, then
1 T,T 2 i n — -1 5
e (e Q. >) _ (27)2 @) @ leo
[det Q)

Proof. We diagonalize the matrix (), then we manipulate it as for the 1 dimensional case n
times, which leads to this formula. O

Theorem 3.54 (Stationary phase theorem for higher dimensions). Suppose a € C2°(X),
and ¢ € C®(R™R) has a unique critical point in X which is non-degenerate, that is,
¢'(x0) = 0,¢"(xo) # 0. Then

(2m)2
det ¢/ (ao)]!

where ag = a(xg) and

]’()\) — ei)\@(IO) eingn(@”(Io)))\*%(ao + al)\il + .+ O/N71>\7N+1) + )\7N7%SN,

|ISy| < Cy  sup  |0%l.
|o|] <2N+n+1

More precisely,
ar = (Azk(z, Dy)u) (o),

where Aoy is a differential operator of order less than or equal to 2k, Ay = I.

Proof. The proof is the same as the 1 dimensional case. Without loss of generality, we assume

o(xo) = 0. From Lemma and the change of variables in Morse lemma, we select () with
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1, —1 on the diagonal such that sgn@) = sgng”(zy). Then
H»:/&@muww dz + O(A~ >—/J“@mem+ouﬂm

where b(z) = a(x™!(2))x(x ' (2))| L] with [42(0)| = | (10)|;- The last equality can be
o 2

seen from computing the second derivative of ¢ o K7 (y) = ¢(x0) + 3(Qy,y) in the change
of variable in the Morse lemma. Now, Lemma [3.53| gives

— 1 (27T)% Tsgn(Q) \ — 2 i(Q 15&)
"= e deopt” /6 b(€) dé + O(A™)

I S ¢ L P Q7'¢,¢) Ly o
(2m)" [det Q|5 A l;v/k:'( i ) b&) e + A7 /0 )[b(€)] de + O(A™)

. (27)% 7%rsgn(Q) —% 1 <Q_1D337D:1:> g —%—N 0
_|detQ|%e A ;;v’f! oY b|(0)+ A\ Sy 4+ O(A™),

where

Sy < CIE™ Bl <C D (1%l < Clsuppd) > [[9°Bl|=,

|| <2N+n+1 |o|<2N4n+1

which is a similar estimate as in (3.12)).
For the first term in the expansion, it is easy to derive the explicit formula
a(o)

b(0) = .
()IW@P

O

Let’s consider an example with the quadratic form in R?*. This example will be useful for
the study of pseudodifferential operators.

Example 3.55. Let (z,y) € R" x R", Q = _0] —()I)} then Q~' = Q, sgn(Q) = 0. Since

5:(Q " Day, Diy) = 1 27 0,0y, Theorem|3.54

gives

n N-1 n k
A —iAx- 1 1 -N
(%) /6 yU(.ﬁE, y) dx dy = E_ W ( E: ;axjﬁyj> U(O, 0) + SN)\ ,
where u € C(R" x R"), |Sn| < C 320 giconsr SuPs [050](0: - 9,)Vul.

Here is another application of the Fourier transform in Lemma [3.53]

Example 3.56. We can find a fundamental solution to the Schrodinger equation
1
(i@t + §(Q_1Dx, DI>) E = 6¢(t)do(z).

If Q=' = —2I, then it becomes the free Schrodinger equation

(10, + A) E = 6o(t)00 ().
55



Now, suppose the Fourier transform of E(t,x) in x (exists and) is equal to E(t,€), then

(10+ 51076, B = o)

which is equivalent to
id, (e QOB > = 5o(t).

So we only need to know the fundamental solution to i0;, which is the Heaviside function,
say

ieeop 2 L)
Hence, Z

E(t,€) = ze2" 970 H (1)
and finally, we apply Lemma and get

1 det Q|2 irgy, @S H(1).
i (2t7r)

3.5. Pseudodifferential Operators. Recall that we have defined the pseudodifferential
operators in Definition [3.41, Now, we introduce a new notation and only consider the case
that X =Y.

Definition 3.57. Let p > 0,0 < 1. We say A is a pseudodifferential operator of order
< 'm if there exists a € S, (X x X x R™) such that for u € C*(X),

Au( // (2, 9, €)' Eu(y) dy d

which is meant as an osczllatory zntegml. Here X C R"™ is an open set. We denote the
space of pseudodifferential operators of order < m by A € V'5(X).

E(t,z) =

Example 3.58. Here are some examples.

(1) Let A := ngm ao(x) DS be a differential operator with smooth coefficients, then for
this case, a(x,y, &) = 3 ,<m @), which follows from the Fourier inversion formula.

(2) For (I-A): Z(R") — (R"), we have an inverse (I—A)~! : S (R") — S (R"), which
gives by the Fourier inversion formula. Note that (I — A)™' € \1/;3 since a(z,y,§) =
(1+1¢*)

(3) We consider the solution v = Eu to Pv = u € &'(R"), that is P(Eu) = u, where
P =0,—A+1. Note that E € \IG}O(R"“) since a(t,x,s,y,7,&) = (it + [€]2 + 1)1
ST (R”“ X R x R™) which hzas been proved in Homework. This is an example in
which p# 1.

(4) Suppose (10, + A)(Eu) = u, where u € E'(R"). Thanks to Evample[3.56, we know

ﬁ / P H (t)ult, €)' de.

In this case, we could write formally that a;(x,y,&) = e”'f‘QH(t), where H is the Heav-

iside function. However, for all t fized, 8@“'52 = 2it&e™ | which in particular means
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that there is an extra & coming out. This is terrible so it is not a symbol and then
P ¢ Wi (R"). Bven though P is a nice operator, it is not in any pseudodifferential
operator class.

Now we recall some properties for pseudodifferential operators. Suppose A € \I/Zf(;(X ),
then Theorem [3.43] tells us
A:CX(X) = C*(X),
A E(X) =D (X).
And Theorem [3.35] implies
singsuppK4 C A(X x X) ={(x,z) : z € X}, (3.13)
where K 4 is the kernel of A, that is,

Aufy) = / Kaw,g)uly)dy, KaeD(X x X),

which is meant as the distributional pairing (Au,v) = (K4,v ® u) for v € C°(X).
Now we introduce the local property first.

Definition 3.59 (Local Property). We say the continuous map A : £'(X) — D'(X)
satisfies the local property if for all u € £'(X), suppAu C suppu.

Note that if A is a differential operator, then A satisfies the local property. In fact, it is
necessary.

Theorem 3.60 (Peetre’s theorem). Suppose the linear operator A : C*(X) — C*(X)
satisfies the local property, then locally A is a differential operator.

We follow the proof in [§] in which we need to introduce some lemmas as follows. (One
can also find this theorem in [3, Exercise 6.3].) We denote

1
ullun = — sup [0%u(z)].
Il = 3 Zysup i)

Lemma 3.61 (Lemma 1). Let f € C*°(R") such that 0“f(0) = 0 for all |a] < N. Then
for all e > 0, there exists g € C®(R") which vanishes in a neighborhood of 0 such that
1f = gllrnn < €.

Proof. Let n € C(R™) such that n > 0 and n = 0 in {|z| < 3}, n = 1if [z| > 1. For § > 0,
define gs(x) = n(%)f(z). Obviously, gs vanishes near 0, so it suffices to prove

sup [0°(g5 — £)(w)] = 0, as § =0
reR”™

for all o] < N. Note that

sup |0%(gs — f)(z)| = sup [0%(gs — f)(x)| < sup [0° f(z)| + sup [0%gs(z)],
zeR™ l2]<6 la|<6 la]<6

where the first term tends to 0. For the second term, we estimate for all |z| < ¢ :
0°gs(2)] <C Y 6PN@ @) =C Y 67Mo(6 ) = o(dV 1) = o(1)
Bty=a Bty=a

for || < N. This completes the proof. O
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Lemma 3.62 (Lemma 2). For all zo € R", there exists a small neighborhood of xo, namely
U, an integer N > 0 such that

[ Aul[n0 < Cllulrn
for allu € C*(U — {xo}).

Proof. Suppose not, then there exists an open set U; 3 xg, Uy € U — {x0} and u; € C=(U,)
such that ||Auy||gno > 4w |lgn1. Now U — U is a neighborhood of z, then there exists
an open set Us 3 xq such that Uy € U — U; — {z0} and uy € C°(U,) such that || Aug||gno >
42||ug||gn 2. Inductively, we construct a sequence of open sets {U;} such that Uy N U, = @
for k 7é [ and U € Ogo(Uk), HAuk”Rn,o 2 4kHukHRn,k

Let u = > 7, 2_’“”1L;|‘|—’D;%, where the sum is convergent in C*°(R"). So we know u €

C>®(U’) and then Au € C*®(U’), where U’ is a relatively compact neighborhood of U.
Furthermore, for all k € Z, uly, = 27| uy, @,{’kuk\yk and Auly, = 27F|lug @,{7kAuk]Uk. Since

| Augll0 = || Aukllrno > 4%||ug||lgn gk, we know [|Aul/y, 0 > 2F. In particular, |Au(zy)| > 2F
for some zy, € Uy, C U’, which is compact. This contradicts that Au € C2°(R™) by extracting
a subsequence. O

Lemma 3.63 (Lemma 3). Let U be any open set in R™, xy € U. We assume that
HAU“R",O < CH'UHRn’N (314)

holds for all v € CX(U). Let u € C*(U) such that 0*u(xg) = 0 for all || < N, then
Au(xg) = 0.
Proof. Without loss of generality, zo = 0 € U. From Lemma 1, there exists u; € C°(U)

which vanishes in a neighborhood of 0 such that ||u; — ul|gn y — 0. By (3.14), Au;, — Au
uniformly on U. Moreover, since suppAw; C suppu,, Au;(0) =0 and hence Au(0) =0. O

Now we turn to the proof of Theorem |3.60}
Proof of Theorem[3.60. For all open sets U € X, there exists 1, -+ ,z, € U such that
[Aulrno < Cllullpn,n

for all u € C=(U \ U;{z,}), thanks to Lemma 2 and a choice of finite covering of U.
Now it allows us to apply Lemma 3. For any fixed u € C°(U\U;{z,}), all zg € U\U;{z,},

let
1

fl@) =u(z) = ) 9% ulzo) (@ —x0)” € CF(U\ Uj{a}),

lo] <N
then 0% f(xy) = 0 for all |a] < N. From Lemma 3, we have

0= Af(xo) = Aulwo) = Y 58%(%) (A((z = 20)%)) (20)-

lal<N

Let aq(70) = & (A((- — 20)%)) |2y, Where we note that (A((- — 29)%)) |, is well-defined thanks

al
to the non-increase property of support. Then

Au(x) = Z o (2)0%u(z)
lal<N

for all x € U \ U;{z,}.
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Moreover, for all v € C*(X), for all z € U \ U;{z,}, choose ¢ € C°(U \ Uj{z;}), such
that ¢ = 1 near x. Then

Av(w) = A(p) (2)+A((L-p)v)(z) = Alpo) (@) = Y aa(@)0(pv)(z) = Y aa(2)0%0(2),
la|<N la|<N

which is independent of ¢.
Note that Av € C*°(X) and the right hand side is also smooth in X, we know

Av(z) = Z o (2)0%(x)

la|<N

for allv € C°(X) and all z € U. Thanks to the arbitrariness of U, we know A is a differential
operator which completes the proof. O

Now we discuss the semilocal property for pseudodifferential operators.

Theorem 3.64 (Semilocal Property). Let A € U7's(X). For all u € £'(X), we have
singsupp Au C singsupp u.

Proof. Suppose zy € X \ singsupp u. Choose ¢ € C°(X) such that ¢ = 1 near xg, ¢ €
C*(X) such that i) = 1 near singsupp u and suppy N suppy) = &. Note that

Au= Al —P)u+ AYu = AYu+g, g€ C™,

where the last inequality follows from (1 —¢)u € C2°. Since ¢ = 1 near x, it suffices to
prove pAu € C*°, then Au is smooth near xy. Moreover, it suffices to show pAypu € C*.
Since the kernel

Koap(r,y) = p(z)Ka(z,y)(y)

satisfies suppK,ayp NA(X x X) = &, we know K4 € C°(X x X)) thanks to (3.13). Hence,
by [3, Corollary 4.1.2], we know pAyu € C* for u € £'(X), which completes the proof. [

Definition 3.65. Let A be a continuous and linear operator A : C°(Y) — D'(X), then
(1) A extends to a continuous operator A : E'(Y) — C®(X) «—
(2) Ko€ C®(X xY).

We say A is a smoothing operator if and only if one of these two conditions holds.

Remark 3.66. In the definition, (2) implies (1) thanks to [3, Corollary 4.1.2], (1) implies (2)
thanks to [6l Theorem 5.2.6]. In the proof of (1) = (2) in the reference, we use a fact that
all finite linear combinations of dirac masses are dense in &', which follows from the fact
that dirac masses are dense in C'° thanks to the Riemann sum definition of integrals and
the density of C° C &',

‘ Definition 3.67. We say A € V=°(X) if and only if A is smoothing.

Proposition 3.68. We have the following fact A € V=>°(X) if and only if a € S™°(X x

X X R™) and A is the pseudodifferential operator with symbol a.
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Proof. <=: Suppose a € S™°(X x X x R"), then Ka(x,y) = ﬁf&(z,y,f)ei(z’y)f d¢ €
C®(X x X).
=: Now define
a(x,y,&) = e VR (w,y)x (6),
where y € Z(R") and [ x(£) = (27)". When you differentiate with respect to 2 and y, you
get powers of &, but they are all eaten by x(£), so a € S™°(X x X x R"). O

Now we want to discuss the composition of the pseudodifferential operators. Let A €
Umi(X), B € Ur(X). We know A : C°(X) — C*(X) and B : C°(X) — C*(X), which
is the general case. So we need to impose some assumptions to compose these operators.

Definition 3.69. A map f is called proper if and only if for all compact sets K, the
inverse image f~1(K) is compact.

To discuss composition of pseudodifferential operators, an important class is properly sup-
ported operators. First, we discuss some properties without specializing to pseudodifferntial
operators.

Definition 3.70 (Properly supported operator). We say the linear continuous operator
A:CP(Y) — C®(X) is properly supported if and only if

Tx |supprc, © SUPPK 4 — X,  m(x,y) = x is proper,

Ty |suppi 4 © SUPPK 4 — Y,  7(x,y) =y is proper.
Definition 3.71. Let C C X x Y be a relation. For allY' CY, we define the act of C
onY' by

CY") ={zreX:3x,y) eCyeY'}
Analogously, we define
CHX):={yeY: I,y eCxe X}

Definition 3.72. If C is a closed subset of X XY, we say C' is proper if the two projections

xlc:C =X, nyle:C—=Y

are proper.

Definition 3.73. Equivalently to Definition the linear continuous operator A :
CX(Y) = C>(X) is properly supported if and only if suppKa C X X Y is proper.

Lemma 3.74. For A: C>*(Y) — D'(X), we view C = suppK 4 as a relation, then suppAu C
(suppK 4)(suppu) for u € CX(Y).

Proof. We claim (suppK4)(suppu) is closed. By definition, for all z,, € C(suppu), x, —
x € X, there exists y, € suppu, (z,,y,) € C, Without loss of generality, since C' is closed
and suppu is compact, we assume y, — y € suppu and then (z,,y,) — (z,y) € C implies
x € C(suppu). Therefore it follows that C(suppu) is closed.

Now, for all zy ¢ (suppK a)(suppu), there exists a neighborhood U > z( such that U N
(suppK 4)(suppu) = @. For all ¢ € C*(U), we know (Au,¢) = (Ka,¢ ® u) = 0, which
implies xy ¢ suppAu. O
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From Lemma|3.74] we know that if A is properly supported, then A is continuous C2°(Y) —
E'(X).

Theorem 3.75. If A: C*(Y) — D'(X) is properly supported, then it uniquely extends to
A:C®Y)—=>D(X) and A: C>(Y) = £'(X).

Proof. The second part has been proved in the previous discussion. N

For the first part, we want to define Au on all open sets X such that X € X, for all
ue C®(Y).

There exists x € C°(Y) such that y =1 on

Ty <(7TX|suppKA)_1 <§>> = C_I(X)y

which is a compact set since it is the continuous image of a compact set thanks to the fact
that A is properly supported.
Now for all v € C°(X), we define

(Au, v) == (A(xu),v) = (Ka,0 @ (xu)),

which is independent of x, which completes the proof of existence.

The definition is independent of the choice of x. Suppose Y has the same property,
then ((suppKa)supp(x — X)) N X = @, where suppK 4 acts as a relation, which implies
(Ka,v® ((x — X)u)) = 0 for u € C=(Y), v e C=(X).

Moreover, the uniqueness follows from the density of C*° in C'*° in the topology of C*>°. [J

Let’s now go to specialize to pseudodifferential operators. Suppose A € \IJZ?(;(X ) is properly
supported, then this implies
A:CF(X) = CF(X), C®(X)— C™X),
A:E(X)—= & (X), D(X)—D(X),
thanks to Theorem [B.43] and Theorem B.75
Now suppose B € \IIZ;;(X ) not necessarily properly supported, then

(3.15)

AoB:C®(X) 5 c~(x) B c>(X), &X)3D(X)34D(X),
BoA:C®(X) 53 cx(X) B c>(X), &X)dex) 3D X))

The theorem below tells us in some sense, each pseudodifferential operator is properly
supported modulo smoothing operators.

Theorem 3.76. Suppose A € V's(X), then A = Ay + Ay, where Ay € V]'5(X) is properly
supported and Ay is smoothing, that is, Ay € W=2°(X).

The proof relies on the following lemma.

Lemma 3.77. There exists x € C®(X x X) such that x = 1 near A(X x X) and suppy is
proper.

Proof. If X = R", the proof is quite easy. Set x(z,y) = X(x — y), where ¥ € C°(R") and
X = 1 near 0, then one can check it is as desired. (This is enough at least intuitively.)
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Now for the general case, we need to use partitions of unity, see [3, Formula 1.4.5, p.13].
Let @;(r) € C°(X) be a locally finite partition of unity, that is, 1 = > 72, »;(z) and if
K C X is a compact set then there are only finitely many of the ¢; with K Nsuppy; # @.
Then, 1 =3, ;(x)px(y) is a locally finite partition of unity on X x X. We put

Xwy)= Y. ei@)ey),

suppy; Nsuppyp #<J

which is equal to 1 near the diagonal.
Moreover, if C' = suppy is viewed as a relation and if K C X is compact, then

C(K)=my ((7X|suppx)_1(K)) C Usuppyj,

where the union is taken over all j such that there exists k = k(j) with suppy; Nsuppyy, # @
and suppyr N K # <. In particular, the union is a finite union, so Usuppy; is compact,
which implies that the closed set C'(K) is compact. Similarly, C~!(K) is compact, hence C
is proper. 0

Proof of Theorem[3.76. Let
Ay = [ [ €0 %a(o,y (e pyuty) dy de

A= [ Kae9)(1 = xo.9))ulw) dy

Since singsupp K4 C A(X x X), the kernel for As is Ka(x,y)(1 — x(z,y)) € C*°, which
implies Ay € ¥~°(X). Moreover, K4, (z,y) = Ka(z,y)x(z,y), then suppK 4, = suppK4 N
suppy. Since suppK 4 is closed, suppy is proper, we know suppK 4, is proper, that is, A; is
properly supported. 0

Now we introduce a fundamental theorem, which will be very useful later.

Theorem 3.78. Suppose A € \I/Z?(;(X) 1s properly supported and p > 6. Then
(1) b, €) 1= e =EA(ei*€) € STH(X X RY),

(2) b<x7€> ~ ZaEN" i (agD3a<$7y7£)) |y=z; )
(3) Foru € C*(X), Au(z) = w [ b(z, &)e™ u(€) de.

Remark 3.79. The asymptotic sum above is defined by regrouping terms with the same
value of |a| and we notice that d¢ Dga(x,y,§) € S;'?{lal(p*a), where m — |a|(p — 0) — —o0 as

|| = 0o as in the assumption in Theorem [3.21]

Proof. Step 1: Firstly, we assume A € ¥~>° and A is properly supported, then it suffices
to prove the first conclusion since the second and the third conclusions are trivially valid.

Thanks to Proposition we have a € S™*°. In order to prove b(z,&) € S™°(X x R"),
we need to consider all X € X , then take x ¢ € C2° as in Theorem , and we know from
Theorem that b(z, &) := e @€ A(e**) is defined by

1 )
bz, &) = 0 / / a(z,y,0)e =y - (y) dy db
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for all x € )Af, then we can use
gogia=u0=6) _ Dol 0-8  pagie=1)(0-9) _ (_1)lel pagite—v) (-9
DEeiav-0-9) — (_1)l8I pfita-u0-9),

to integrate by parts and conclude.

Step 2: Hence, in the following steps, we can introduce a cut-off x(z,y) as in Lemmam
thanks to Step 1. (In other words, we write A = A; + Ay as in Theorem . In Step 1,
we show for Ay, where the properly supported property of Ay € U™ follows from the
assumption that A = A; 4+ Ay is properly supported. A; is automatically properly supported
by Theorem . So we focus on A; in the following steps.) After introducing this cut-off

x(x,y), one notes that for all X € X, all z € X, there exists Y € Y such that suppa(z, -, 0) C

Y. Thus the following integral in y is well-defined in

1 |
b(x, &) = 2n) /a(w,yﬁ)ez(z_y)'(e_g) dy do,

and it makes sense as an iterated integral by integration by parts using
1

1410 —¢J?

and obtain the following fact [ a(z,y,0)e~ =8 dy = O((f — &)~>), which implies b(z, &) €

C>(X x R"). By the arbitrariness of X, we know b(z,£) € C*(X x R").
Step 3:  We consider the phase function ®(y,0) = (x — y) - (¢ — ) although it is not
homogeneous. We check the Hessian by computing ®, = —({ — 6), 99 = —(z — y), and

ol 0 [), which is non-degenerate with sgn®” = 0 and det ®” = 1. These are just the

(1—(0—¢)- Dy)eﬂ'y(@fs) — o~ (0-8)

I 0
conditions needed for applying stationary phase method.

However, note that 6 is being integrated over a non-compact set. To reduce it to the case
in which we can apply stationary phase, we introduce the following cut-off functions. We
choose x € C2°([0,+00); [0, 1]) such that x(¢) =1 when t < 3 and x(t) = 0 when ¢ > 1. We
write

ba(x,§) = /a(:c,y,&) <1 - X(w‘gf‘)) '@ 0=8) dy ap, (3.16)

Since we already showed b(x, ) is smooth, we only need to consider || > 1. The integrand
in does not vanish when |6 —&| > £|¢| > %, and in particular, it does not vanish when
16— €[ ~ 1+ 16] + I¢|. Indeed, 2|0 — ¢| > 6 — €] + |¢] = (6] and |9 — ] < |6] + [¢].

Let 'L = ﬁ(f —6) - Dy, then ‘Le’® = —¢'®, and we are allowed to do integration by
parts in y since the integral in y is over a compact set when x is over a compact set. Hence,
forre X € X ,

b6 = [ 27 (ata0) (1= xEth ) ) eemo-a

where for all z € X € X,

|9 _ §| <9>|m|+N6 <€>\m\+N6
1 (aten) (13 )| < Oy S g
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where in the first step we use |6 —&| ~ 1+ |0] + |£| and in the second step we use Peetre’s
lemma([I, Lemma 6.5.6]). This implies by(x,&) = O((£)™™) for all M > 0 by taking N
sufficiently large in the equation above with M = —|m| —n — 1+ N(1 — ¢§). Moreover, we
have the same type of estimates for derivatives of by, so we conclude that by € S™>°(X x R™).

Step 4: It remains to study b; and we would like to reduce it to a form to which we can
apply the method of stationary phase

bl(x7§> = (2711')" //CL(ZL’,y,Q)X (%) 6i(m—y)-(0—§) dy do
A INzT—y)o
~ @) // a(z,y, Nw + 0)x(|o])e* 9 dy do (3.17)

— (;\Tn)n // a(z, x4+ 5, Mw + 0))x(|o])e %7 ds do,

where we make the change of variable § = § + oA, 0 € R", { = \w, w € S*~!. By the
properly supported assumption of a in (x,y), we know that for z € X € X, the integral in
s is over a compact set, and the integral in is integrated over compact sets both in s
and ¢ thanks to the cut-off function.

We can then apply the result in Example to (3.17) and get

N-1 n k
bi(z, &) = kz_o ﬁ (Zl &,J.Dsj) (a(z,z + s, \w + 0)))

+ Sn

s=0,0=0

+ SNy
s=0,0=0

—lel
= Z )\oz' 04D [a(z,x + s, N(w + 0))]

la|<N
1
=> aagD;a(x, Y, 0)|y=z9=c + Sn.
la|l<N "
Note that 95 Dya(z,y, 0)|y=z0=¢ € Sm=(p=9lel with the strictly decreasing order when p > 4,
so we only need to check the order of the remainder Sy is smaller:
[Sn(N)] <CyA™Y > 920 (9 - 95)" (alw, @ + 5, \w + 0)x(|o]))
lat+B|<2n+1,[s|<Cg lo|< 3

<Oy 3 ATNNmHaH M=) < 0§ ANl ymtdlalt -l
|a+B]<2n+1 |a+B|<2n+1
<CN)\m+2n+1—N(p—6) < CN<§>m+2n+1—N(p—6)

though the estimate is not quite good but actually it is sufficiently to show the asymp-
totic expansion for b. We summarize this in Lemma below. So now we know b ~
Paenn ar (O Dyalz,y, €) ly=-

Step 5:  Thanks to the Fourier inversion formula, u(z) = G [U(§)e™* d¢ for all
u € C°(X), and this integral can be approximated by a sequence of Riemann sums

() = (%)" ST ),

vE(eZ)™
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which converges to u in C*°(X). Since A : C*°(X) — C*(X) is continuous, we get

Au(e) = i A(u)(0) = s [ AN de = o [ e pta eyt de

which completes the proof. U

Lemma 3.80. Suppose a = Zj<M aj " + Sy and there exists some p > 0, Ny € R such
that |Syr| < Cpy ANo=PM for all M > 0, then we know

a— Z a;\?

J<N

for all N, that is, a ~ ap + ar A" 4+ -+ apAF + -

Proof. We write
a= Z a; N+ Z a; A" + Sar,
j<N N<j<M
then we can obtain a new estimate for
RN = Z CLj)\_j + SM g CN7M)\_N + OM)\NO_pM S av)\_N
N<j<M

if we choose M sufficiently large such that M > /%(NO + N), which completes the proof. [

< CyA N

Corollary 3.81 (Adjoint). Let A € W}5(X),p > & be properly supported and Au(r) =
[a(z, &)™ u(€) dE. Then the adjoint A* : C(X) — D'(X) defined by (Au,v) = (u, A*v),
u,v € CX(X) satisfies A* € W's(X) and

Atu(z) = / o* (2, £)e<a(€) de.

where a*(x, &) ~ Y L0¢ DYa(x,€).
Proof. Since K4(z,y) = [ a(z,£)e’® ¥ d¢, we have

K (a,y) = Ka(y,2) = / Ay, OV de, (3.18)

which is the previous form that K« (z,y) = [ c(z,y, £)e!@¥€ d¢, but here c(z,y, &) = a(y, §)
is independent of z. Since A is properly supported, we know suppK 4 is proper, then A* is
also properly supported thanks to (3.18). Now, we set

1 1 —
a*(2,6) ~ D — (08 Dye(.y.€)) ly=s ~ Y — 08 Dla(x,8).
aeN”? aeN?

Then Theorem implies

Ay = / a* (, ) Ea(E) de,
which completes the proof. 0]
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Definition 3.82. Suppose A € \Ilgfé(X), then we write A = Ay + Ay as in Theorem
where Ay 1s properly supported and Ay € W=>°. We call

0a(,€) 1= bz, ) = A (%)
the full symbol of A, and thanks to Theorem we have

e | A SR dE + ().

and o4 is unique modulo S™°(X x R™).

Then from the corollary above, for all A € \IJZ?(;(X ), A" is also in W7'5(X) and

Au(x) =

oa(x,&) ~ Z (95 DSou(z, £).
Now we have the following theorem for composition.

Theorem 3.83 (Composition). Suppose A € V7';(X), B € \Il;f(;(X) and either A or B are
properly supported, then Ao B € \Ifm”” (X) and

a0 (T, &) ~ Z 85 oa(z,§)Dog(x,§)

oa(2,€)op(x,€) + Y 0foa(z,€)Doop(x,€) + Shy™ 2070,
l|=1
(3.19)
We denote g 40 by 0aop = 0afl0B.

Proof. Since at least one of A, B is properly supported, we know the composition is well-
defined thanks to . We only give a proof for the case that B is properly supported and
the other case is similar.

We can write

1 .
Aue) = s [ € Cale On(ovpulo) d e + Anato),
where A, is an element of ¥~>° and A, o B is a continuous operator & — C* with a
kernel and hence in ¥~°°(X). In the equation above, x(z,y) is defined in Lemma and
CL(.I‘7 g) ~ O-A(x7 5)

We may also assume that

Bule) = o [ €. Oa(6) e, ue C(X)

where the integral can be approximated by a sequence of Riemann sums converging in C*°(X)
like the proof of Theorem [3.78, and b(z, &) ~ op(z,£). Then for u € C(X), we can obtain
that

Ao Bu(z) = (2m)" /e“fc(xjg)a(g) d§ + Az 0 B,
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where c(z,0) = e @0 A(b(-,0)e'*?), Ay o B € U=°(X). As in the proof of Theorem [3.78] we

know .
ce S, e~ ) —0fa(w,€)DIb(x,¢),

which completes the proof. (One can just view the symbol here as a(z,£)b(y, ) and apply
the theorem of finding the complete symbol.) OJ

3.6. Change of Variables.

Theorem 3.84 (Change of variables). Suppose k : X — X isa diffeomorphism, that is,
ks C° and k™' X — X is C. For z € X, we denote r(z) =7 € X.

Let ﬁ(f, Dz) = ngm ao(T)DS be a differential operator on X, and then we can define
a differential operator on X by

Pu(z) = k*P (k" H)u),
for u € C*(X), where k*u(x) = u(k(x)), K* : C"o()?) — C*(X). And P is indeed a

differential operator given by
P(z,D,) = Y an(r(x)) [("K'(x))""Da]".
la|<m
Proof. Note that Dz = ), %Dwk and (k') = (k)" = (%), so we can rewrite it as
Dz = Y(x')"'D,, which implies that
P(x,D,) =Y aa(r(x)) [('#(x)) ' Ds]" .
0J
In the theorem above, if we only look at the highest order term, we have a nice formula
that
p(x,6) = Y aa(w(@) [('F'(2)71€]" = Blr(x), ("' (2))7'€).
la)|=m

Example 3.85. We consider an example in 1 dimension. Let X,N)Z' be two disjoint intervals
and r be a diffeomorphism between intervals. Let P = D2, then P(xz,€&) = &2, then
P(z,Dy) = ['(+) 7' Da)” = (&) "Dy (1(W) 7' Ds) = (1) 2D 4" (1) 2 (5") ' Dy
And we can drop the transpose since the dimension is 1 now. So P(x,£) = (x')726* +
i(k)2(k")71E. Note that P(x,€) is more complicated than P(x,§), but if we look for the
highest order terms of P, P and denote them by p,p, we have
p(x,€) = (k)76 = pr(2), (+'(2)) 7€)

Here we present a theorem whose proof can be found in [4]. The proof is a little bit
involved but follows the same idea before.

Theorem 3.86. Let k: X — X be a diffeomorphism. Suppose A € \I/:)”()z) = \I/ZTI_p(f()
for ,(()2 >1)%, then A = r*A(kY)* € U(X) and oa(z,§) = oz(k(x), (")) mod
S

p,1—p
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Remark 3.87. The choice of 6 = 1 — p can be seen from the following computation with
n=1. For a € S7%5(X x RY), then we want to know oNL(x,f) = a(k(z), (v (x))71€) in which
symbol class it is. When we apply 0, to it, it falls on £ as well :

Opa = K'(x)0z0 — (K'(x)) °K" (2)£0za,
where the first term is bounded by (£)™* while the second term is bounded by (&)™+(1=),

So if we define the principal symbol of A as [oa(z,§)] € SJ5/S, (f,p Y which is in an

invariantly defined class. And we have some fancy language for this: The symplectic lift of
the diffeomorphism « is defined by K : X x R" — X — R", K(z,§) = (k(x), '(x/'(x))71).
This invariance helps us to define symbols on manifolds.

3.7. Characteristic set and Ellipticity. Let P € W7 (X) and denote for simplicity its
symbol by P(z,¢§).

Definition 3.88. We say P € WY\((X) is non-characteristic at (xo,&) € X x R" if there
exists a conic neighborhood I' of (xo,&), that is, I' = {(y,n) : |xo — y| < e, ||Z—‘ — é—g|| < e}
and a constant C' such that

1 m
P@,6)| 2 5(6)

for all |&] > C, (z,§) € I'. We say (xo,&) ¢ Char(P) if it is a non-characteristic point,
where Char(P) denotes the characteristic set of P.

Note that the non-characteristic condition only depends on the principal symbol and will
not be affected by modulo lower order things in Sy L

Example 3.89. Suppose the symbol of P satisfies P(x,\) = A™P(z,§) for A > 0. Then P
is non-characteristic at (xg, &) if and only if P(xg,&) # 0.

Definition 3.90. We say P € W((X) is elliptic at zg € X if P is non-characteristic at

(z0,&) for all & € R™*. And we say P € U (X) s elliptic on X if P is elliptic at all
points of X. That is, if Char(P) = &, then P is elliptic.

Example 3.91. The warhorse example for an elliptic operator is P = —A, where P(z,§) =
€17

Example 3.92 (Non-example for elliptic operator). Let P = 0, — Ay € U3 ((X), then
the symbol is P(x,&) = i& + |€'|*>. Note that the power of & is 1, so we could not expect
li& + €] > %(Ef +|€'|?) to hold for || > C. And the principal symbol here is [op] = |¢'|2.

Example 3.93. In general, suppose (a;;) > cI, then the differential operator
P ==Y 0 (ai0u,) + Y _bj0u, +c
with smooth coefficients is elliptic.

The following theorem works for general (p,d), but we only show the case (p,d) = (1,0).
It tells use modulo smoothing operators, elliptic operators are invertible.
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Theorem 3.94. Suppose P € WY'(X) is elliptic on X. Then there exists properly sup-
ported Q € V(X)) such that PoQ—1 € V™°(X), Qo P—1 € V=°(X) and Q is unique
modulo ¥~°(X).

Proof. We know that for every compact set K € X, there exists Cx such that |P(x,&)| >
é|§ |™ for € K, || > Ck. (Ellipticity implies this holds at every point, and then holds in

a neighborhood, then holds for compact sets by selecting a finite open covering.)
Then we form a locally finite partition of unity {¢;} C C2°(X) such that } °, ¢y =1 on
X. Now let

1 oo
QO ('I’ f) = m Z; ¢i(x)X{|§|ZCsuppwi}<€)7

where Yy € C'OO(R”) satisfies Yo =1on A CR” and 0 < x4 < 1. Then @y € C*(X x R")
and for every compact set K &€ X, there exists Cx = maxXgnsuppyi£e Csuppy; sSuch that
Qo(z, &) = % for z € K, |¢| > Ck. Here Ck is well-defined since the partition is locally
finite.

Moreover, for all compact sets K € X, we differentiate PQo =1 on K x {|¢| > Cx} and
use induction to prove that Qo € Sy " (X) thanks to ellipticity.

By the composition formula (3.19), we have PiQy = PQy modulo Sy, é. Moreover, since
1—PQy € S, we have
PiQo=1-R, RE€E Sy,
QotP=1-T, TESl_,é.
Let
Qr=Qof(l1+ R+ RiR+ R4R{R + - --) modulo S,
Qr =1+ R+ RER+ RER{R + - - - )#Qo modulo S~
where we use the asymptotic sum in Theorem [3.21] Then

PiQr=(1-R)i(1+ R+ R{R+ R{R{R + ---) = 1 modulo 5™,

QP =(1+ R+ R{R+ R4RER + -+ )£(1 — R) = 1 modulo S,

So Qr = Qri(PtQr) = Qr modulo S~>°. Take Q(z, D,) be a properly supported pseudodif-
ferential operator such that pseudodifferential operator with the symbol Q. (x, &) = Qgr(x, &)
modulo S™%° by introducing a cut-off x as in Lemma [3.77, Then PoQ — I and Qo P — I
are both smoothing, which completes the proof.

For the uniqueness part, suppose there are two operators (01, () as desired. Then

0=0Qr0(Po@Q—1)=(Q20P—-1)oQ1+ Q1 —Q2=Q1 — Q2

modulo ¥~>°(X), which completes the proof. What is essential here is that U~ is an ideal
in properly supported operators, that is, if R € W=, A properly supported, then AR €
U~ RA € U~ thanks to the mapping property of properly supported pseudodifferential

operators, ([3.15)). O

Corollary 3.95. Suppose P € V{((X) is elliptic and properly supported on X, then P :
D'(X)/C®(X) — D'(X)/C>(X) is an isomorphism.
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Proof. Choose a properly supported @) as in Theorem [3.94] Note that both the definition
of properly supported functions and the definition of smoothing operators, Definition |3.70
and Definition , are symmetric in z and y. Hence, we know ‘P, ‘Q are also properly
supported, hence ‘Qo 'P —1 = *(Po@ — I) is continuous &' (X) — &£'(X) and “(PoQ —I)
is still smoothing. Combined the two properties above, ‘(P o @ — I) : £'(X) — C®(X).
Thus, by taking the adjoint, we know Po @ — I : D'(X) — C*®(X). Similarly, we have
QoP—1:D'(X)— C®(X). Now we complete the proof. O

Corollary 3.96. Suppose P € ‘IITO(X) 15 elliptic and properly supported on X. Then
singsupp Pu = singsupp u for u € £'(X).

Proof. From the semilocal property Theorem [3.64, singsupp Pu C singsupp u. On the
other hand, singsupp @ o Pu C singsupp Pu. Since (Q o P — [)u € C*(X), we know
singsupp () o Pu = singsupp u, which completes the proof. 0]

3.8. Mapping properties of pseudodifferential operators between H*(R"). In or-
der to show a locally solvability theorem for differential operators with smooth coefficients,
Theorem we need to learn the mapping property on Sobolev spaces.

Definition 3.97. We define
Sps = {a € C=(R" x R") : Y, B € N, 3Cup, 10500 a] < Copf)™~vIFHok1 Y.

Note that all the previous properties we had before are true for this new class. We get a
new class of operators:

Definition 3.98. We denote @:5(]1%") for all the operators A : . — . such that

1 :

[ ate. et <u(y) dy e,

(2m)"

understood as an oscillatory integral for u € C2°(R™) or understood as an iterated integral,
then it also makes sense for u € #(R™). Here a € ?;%.

And we had a fact that is a little better than the result in Theorem B.76l

Au(z) =

Theorem 3.99. Suppose A € @Z(;(R”), then A = A1+ A,, where Ay € EZL&(R”) is properly
supported and K4, € C*(R™ x R") satisfies

0000 K a, (2, )] < Capn(z —y) ™,

that is, it has decay properties away from the diagonal.
Proof. We choose x as in Lemma [3.77] then we compute

Ky (2,y) = (1= x(z,9)) /ei(“y)’&a(%é) 3
=(1- X(%?ﬂ)/ <w> ei(x_y)'éa(x,f) d¢

|z — y|?

o 1—X—(x,y)/€i(:c—y)-£ ((LL' — y) . Dg)N a(x,f) dfa

|-y
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where the first integral is understood as an oscillatory integral and then we can do integration
by parts in the second and third equality. Though in the definition of the oscillatory integral,
we should pair it with a test function u(y) and then integration by parts is valid, we note
that the differential operator used here to integrate by parts only has Dy, so the same type of
argument in the equation above also holds if we pair it with u(y), we omit it for convenience.

Note that |Déva| < On (€)™ PN for all N, so the integration on the right hand side of

the equation above is smooth in # and y and have the bound |K 4, (z,y)| < Cy(z — )=V,

Obviously, similar estimates hold for derivatives. 0

Actually, A, in the above theorem has good mapping properties. It takes bad things like
H=M to very good things like H™ for M > 0, which will be proved in Theorem [3.101} Before
showing this, we need a lemma named after Schur.

Lemma 3.100 (Schur’s lemma). Suppose Kg(z,y) is the kernel of B and
wp [ 1Ks(e. )l dy. sup [ 1Kn(e.9)|ds < €
T Y

Then HB||L2~>L2 S C.

Proof. The proof is a direct computation as follows.

Bl = [ \ [ Kate.v)utw)dy o < / ( [ 1Kt ldy [ |KB<x,y>|u<y>2dy) da

SC/ |Kp(z,y)|u(y)? dy de < CQ/U(y)Qdy-

This lemma is nontrivial even for the case of matrices.
Theorem 3.101. Suppose K4(x,y) is the kernel of A and
1020, Ka(z,y)| < Capniz —y)~"
for all a, B, N. Then A: H"(R™) — H*(R™) for all s,r € R.

Proof. Note that it suffices to prove A : H-M(R") — HM(R") for all M € N. Thanks to
Schur’s lemma, this is true for M = 0. The kernels 0% K 4(z,y) satisfy the assumptions for
the kernel in Schur’s lemma and it is easy to verify that 0% K4(z,y) is the kernel for 0% A,
so A: L*(R") — HM(R") for all M € N. For u € H-(R"), we know that u(£)(¢)~ € L?
and there exists v € L? such that v = F~' (@(£)(€)™"), u = |V|Mv. Note that for all z,
Ky(z,-) € HY(R"), so [ Ka(z,y)u(y)dy can be understood as the distributional pairing

(u(y), Ka(z,y)) = (=1)""(v(y), IVI;" Ka(z,9)).

Since the kernel |V[)/ K4(x,y) also satisfies the assumptions for the kernel in Schur’s lemma,
we know A : H~M(R") — HM(R") for all M € N, which completes the proof. O

—=m

Now we denote ¥ (R") = W o(R™) for simplicity.
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Theorem 3.102. Suppose A € @?yO(R”), then A : L? — L2

Proof. From Theorem [3.99] and Theorem [3.101], without loss of generality, we can assume A
is properly supported in each step below.

Step 1: First, we assume that A € ¥ " (R"). We will claim that A : L? — L. In
fact, the kernel K 4 satisfies

1
(2m)"
Since Oga(z,§) € 5 for all a,

(271]-)71 /ialag‘a(x,f)ei(zy)-i dg‘ < ﬁ/@?a(m,f)\ d¢ < C, < 0.

Combining the two estimates above, we have
|Ka(z,y)] < Ona —y)™"
for all N > 0, then apply Schur’s lemma, we know A : L? — L2
Step 2: For A e ﬁfk(R”), k=1,2,---, then
| Aull3 = (Au, Au) = (A" Au, u),
where A*A € ﬁ_%(R”). Since for 0 <! < n+1, 2l > [+ 1, then by a finite induction, if we
start with [ =n + 1, we know for all k =1,2,--- ,,
[Aul3 = (A" Au, u) < Clul3,

1
()"

|Kalz,y)| =

/a(x,g)e“z—y)f dg’ < /|a(x,§)| d¢ < C < 0.

(= y)* Kalz,y)| =

that is, A : L? — L2
Step 3: For A € #(R”), choose M > 2sup |a(z,&)]?, we claim that

10
(2,€) = (M — Ja(z,6)12)} € 5"
Since M — |a(z,€)[* > M, we know ¢ € C™. Moreover,
a1 QP1 ap obp
D lattapl=lal gl 15,1151 05 O (@(2,€)%) - 679" (a(w, §)°)
(M — Ja(z, &) 5"

lal+18]
2\ 2z
< (M) Z C(g)~IBl=—IBl < )18l
a1+ +|ap|=lal,|B1]4+|8p =Bl
which implies the claim is true.
Now we look at the operator c(z, D)*c(z, D). By the expansion of the adjoint, we know
c(z,D)* = c(z, D) + e(z, D), where e € § . Hence,
c(xz, D)*c(z, D) = c(x, D)* + c(z, D)e(x, D) = c*(z, D) + f(x, D) + c¢(x, D)e(x, D),

where ¢(z, D)? = ¢2(x, D) + f(z,D) with f € 5 . So c(z, D)*c(x, D) = (M — |a|?)(z, D) +
g(z, D), where g € S . Again, |a|*(z, D) = a(z, D)*a(z, D) + h(z, D) with h € S . Thus,
we get
c(x,D)*c(x,D) = M — a(z, D)*a(z, D) + r(z, D),
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where r € § . Take u € .7, then
la(x, D)ul|? = (a(z, D)*a(z, D)u,u) = M||ul|3 — (c(x, D)*c(z, D)u, u) + (r(x, D)u,u)
= Mljull; = lle(z, D)ull3 + (r(z, Dyu,u) < MlJull; + (r(z, D)u, u).
And by the previous step, we know (r(z, D)u,u) < C||u||3. Hence, we have shown that

a(z, D) is bounded on L2.
U

Remark 3.103. This argument holds for p > §. When p = 4, the result is still true, which is
called the Calderon-Vaillancourt theorem, but we need to use a different proof.

Theorem 3.104. Suppose A € W(R”), then for all s € R, we have the mapping property
A HT™(R™) — H*(R™).

Proof. We define the operator A, := (I —A)? as a Fourier multiplier, then ||A,ul/z2 = ||ul|z-,
that is, A, : H" — L? is an isomorphism. Then it suffices to prove

1A, Aullzz < ClIAy ol
for all w € H**™(R™), and this is equivalent to

|0, A7y llss < Cllwlze,
for all w € L?. By density, it suffices to show

1A Aol < Clluo] 2,

for all w € .7.

From Theorem [3.99 and Theorem without loss of generality, we can assume A is
properly supported, then the composition formula holds for A. Moreover, A, € U°, A € ¥
and A, € U 7" so AjJAN_,_,, € @O, which implies AjAA_,_,, : L?> — L2, which
completes the proof. O

Now, we go back to the original space with an open set X.

We denote H,., = & N Hj, be the spaces of compactly supported distributions in
H*.

Theorem 3.105. Suppose A € V™ (X), then for all s € R, we have the mapping property
A Hop(X) — Hpo(X).
Proof. We just need to notice that since for all ¢ € C2°(X), ¢ € C2°(X) such that p =1 on

suppu, we have Y Ap € @m(R") due to the fact that we already localize x,y in a compact
set, so it is uniform. Then we can apply Theorem [3.104] to conclude. ([l

Theorem 3.106. Suppose A € V™(X) is properly supported, then for all s € R, we have
the mapping property

A:HIMX) = HE, (X)), A HP™MX) = Hp o (X).

comp comp loc
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Proof. The first follows directly from the preceding theorem and the property A : £'(X) —
E'(X) for properly supported operators. For the second one, we need to use the definition of
proper support by denoting C' = suppK 4. For any ¢ € C2°(X), we choose ¢ € C such that
it is 1 on C~!(suppy), which is a compact set. So YA = ¥ Ap, which implies the result by
composing ¢ : H;,/™(X) — H (X)), v A Hfm(X) — HS,,,(X) with support depending

on ¢, so it is in Hy (X). O
3.9. Local solvability of elliptic differential operators.

Theorem 3.107 (Local solvability). Suppose P is an elliptic differential operator with
smooth coefficients, that is, P(x,§) = 3_ 1< a(¥)E* with aq € C*(X). Then for every
xrg € X, there exists an open neighborhood V. C X such that for all f € C®(V) (or
feD(V)), for all open set W € V, there ezists u € C(V) (or uw € D'(V)), such that
Pu=finW.

Proof. Step 1: We claim for all compact sets K € X, there exists C', such that
Hm S C (HP*UHLQ + HUHLQ)

]
forall u € &'"(K) N H™(K).

From Theorem there exists B € W™ properly supported such that BP* = I + K
and K € U~>°. Note that the support of Kp lies exactly on the diagonal and K- is properly
supported, so Kpp- is properly supported. So we know K € W~ is properly supported and
hence B, K : Lgomp — H(p,,, satisfies the estimates

[ullzm = (| BP u — Kul g < [|BP ul g + ([ Kul[m < C ([P ul[L2 + [[ull£2)
foru e &'(K)N H™(K).

Step 2: Now we want to upgrade the a priori estimates above. Suppose V' C B(xg,¢)
and we consider v € £'(V)) N H™(R™), we claim that ||ul|z2 < Ce™||u||gm.

Recall the Poincare inequality gives us that for all v € H™(B(0,1)), suppv € B(0,1), we

have
lollz < C Y [0%0]le < Co Y 0%z < -+ < Co Y 07012
la)=1 |a|=2 |a|=m
Furthermore, rescaling tells us for all u € H™(B(xo,¢)), suppv € B(zo, ),
lullz < Cme™ > 0%l 12 < Ce™|lul

laf=m

Hm.

So if € is small enough, we combine this with the estimates in Step 1,

lellam < Cl[P*¢l| L2,
for all p € E(V)NH™.

Step 3: We claim that we can reduce the proof to the case when f € C*°(V'). Suppose
B satisfies PB = I + K such that B € =™ and K € U=, For all v € D/(V), put & = Bu,
then Pl = PBv = v + 0 where 0 = Kv € C*>(V'). This gives the solvability modulo C'*
functions. Then the problem is reduced to the case when v € C*(V).

Step 4: We can assume v € C*®(V), W &€ V, then we define a linear functional [ on
H™NE'(W) given by l(¢) = (¢, v). It satisfies the estimate

1) < Cw, W)lgllzm < ClI Pl 2.
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Let L={P*po e L?NE(W):pe H"NE (W)}, which is a linear space. Then k defined
by k(P*¢) = I(¢) is a bounded linear functional on L.
By the Hahn-Banach theorem, k has a bounded extension to L2, that is, k : L?> — C, so
there exists u € L? such that k(1)) = (¢, u). So
(p,v) = Up) = k(P*p) = (P p,u) = (¢, Pu)
for all p € H™NE'(W). So Pu=wvin W.

Step 5: Finally, from Corollary [3.96, we know singsupp Pu = singsupp u, so if v €
C>(V), we know u € C*(V). O

Remark 3.108. This proof is an example of the duality argument.
3.10. Wavefront sets. In fact, we have a more general version of Corollary|3.96|

Theorem 3.109. For P € V{(X), we have
singsupp u C singsupp Pu U m(Char(P)),
where m: X X R" — X.

We just provide a sketch of proof here. We construct a local parametrix of P near any
non-characteristic point. To be more specific, we construct () such that QR = I + R; and
PQ =1+ Ry with R;(z,&) = O((§)~*°) near (z9,&) ¢ Char(P). The idea of proof is the
same as for the elliptic case and we need to introduce some cut-off functions.

Here we can see an example of this result.

Example 3.110. Let P = Din — | D |2, which corresponds to the wave equation. Suppose
PEy = dy(x) and we consider the forward solution, then it stays in the cone {z? = |2'|*, x, >
0}. In this case, Char(P) = {(z,§) : & = |¢'|?}, then w(Char(P)) = R", so we do not get
any interesting information from the theorem above.

We need to know more information about the wave to determine where the wave lives at
some subsequent time. By Huygens Principle, we need to know in which direction the wave
is moving. So we introduce a new concept below.

Definition 3.111. The wavefront set WF(u) C X x R" of u € D'(X) is defined by
WF(u) := ﬂ Char(P).
Pewe, PucCoe

Intuitively, we are looking at all possible places where the symbol, roughly speaking, vanishes.
Note that if Char(P) = @, then Pu € C* implies u € C'*.

Example 3.112. We claim
WF(d) = {(0,6) : ¢ e RV},
Note that
P(z,D)éo(x) =

(271r)n / p(, )€’y (y) dy d = (271T)n / p(x, €)™ € de,

so if p(z,€) = p(x), then Pz, D)do(x) = p(0)do(z) & C=, if p(0) # 0. Now we can imagine
WF(5) = {(0,€) : £ € RN}. To prove this rigorously, we need the following characterization
theorem for wavefront set.
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Theorem 3.113. Let u € D'(R"), (x0,&) € R™ x R™. Then (x0,&) ¢ WF(u) if and
only if there exists ¢ € C(R™), ¢p(zo) # 0 and € > 0 such that |pu(€)] < CylE|™N for

€€Rn7|£|217 éj_% <e.
Proof. See [5, Proposition 6.19] or [4, Proposition 7.4] for a proof. O

We also have
singsupp u = (W F(u)).
See |4, Proposition 7.3] for a proof.

3.11. Parametrix construction for hyperbolic equations. One case for which we can
construct a parametrix for P (non-elliptic) are strictly hyperbolic operators.

Definition 3.114. Let P = P(z,D) = 3, <, @a(x)Dg and p(z,£) = >, _,, da(z)E”
1s the principal symbol. We say that P is strictly hyperbolic with respect to the family of
hyperplanes z,, = const if for every £ # 0, p(x,&) = 0 has ezxactly m distinct real roots

& =Nj(x,&) forj=1,--- ,m.

Example 3.115. Let P = D2 — |Dy?, then &, = £[¢/| is two distinct roots for p = 0 if
& #£0. Thus, P is strictly hyperbolic.

If P is strictly hyperbolic, then there exists f(z) # 0 such that
p(x,€) = fa) [] (€ — N2, €)).
j=1
When f # 1, we have
P(.T,f) = D;nn + Al(xa Dx’)DZjL_l + Am(.CE, D:c’)

Here is an idea of parametrix construction. For each root A = \,, we shall find a certain

operator F, : £'(w) — D’'(X) such that the kernel Po E, € C*. We write
1

ﬁ/ew”(r’”/)_iy/'”/al,(x,77’) dn,

E,(x,y) = o)

with a suitable phase function ¢, and a, € SY so ¢, is homogeneous of degree 1 in
n'. If ¢,(0,2',7) = 2’ -n and a,(0,2",n) = 1, then E,(0,2',y') = d(2’ — /). Since
(e7" D, e )u = (D, + 0yp)u, we have

p(eicpu(m’)ay(x, 77/)) _ e"@"(”’”/)by(x, 77/),
where
bV<x777/) = Z aa(x)(Dz + a’t@)a al,(x, 77/>-
|| <m

Since ¢, is homogeneous of degree 1 in 7/, we know ¢ is S' by Example|3.11}, thus b, (z,7) €
S™. However, we want b, € 5™,
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Here we shall use the WKB method, first noted by Peter Lax in 1950s for hyperbolic
equations. Modulo S™~!, we have

b, )= | D aa(@)(@ep)® | avlz,n) = plz, dup)an (@, 11),

laf=m

where p(z,§) = }_,=n @a(2)§*. In order to find a non-vanishing a with b € 57, we require
that p(x,0p,) = 0. So, it suffices to choose p,u to be the solution of ¢,(x,d.p,) = 0 with
the initial value ¢,(0,2',n') = 2’ - 1. where q, := &, — A\, (z,£’). We can use the method
of characteristics to get a local solution ¢,. (Though the method of characteristics can give
smooth solutions, shocks can form so the solutions are only local.) Then we extend the
solution on X x "2 to a smooth solution on X x R"! by homogeneity of degree 1. Hence,
be sm L.
Modulo S™~2, we have

b= Zpgj (z,0000) Dy, a0, + f,1)ay,

j=1
where pg;, f € S™1. Denote L(a,) := Y7 pe; (2, 0upy) Doy, + f (2,1 )ay,, then we want to
express a, as an asymptotic expansion a, ~ ag, + ai, + ---, where a;, € S~J. Then we

solve the first order linear PDE L(ag,) = 0 by the method of characteristics and then we
will iteratively get a sequence first order linear PDE. Finally, we shall get the desired a.
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