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These notes were originated from the lecture notes for the graduate course Geometric
Analysis at Zhejiang University in Spring 2022. This note only covers the contents from the
first few weeks of the semester due to my laziness. Luckily, it is still largely self-contained
if you are familiar with Riemannian geometry, especially the second fundamental form, first
and second variations of arc length and Jacobi fields. The primary reference is [3].

1. Preliminaries

We recall some basic definitions to avoid ambiguity. The curvature tensor is defined as

RXY (Z) := DXDYZ −DYDXZ −D[X,Y ]Z.

The second fundamental form of a Riemannian submanifold N ⊂ M is defined as

D̄XY = DXY − II(X, Y ),

where DXY := tan D̄XY and −II(X, Y ) := nor D̄XY .

2. Second fundamental form of Geodesic Spheres

We will develop a volume comparison theorem originally proved by Bishop. Let Mm be
a complete Riemannian manifold. Take p ∈ M . In polar normal coordinates (expp; r, θ), let

G(r, θ) :=
√

det gij be the Jacobian of the exponential map, where gij = ⟨∂θi , ∂θj⟩. With a
slight abuse of notation, we have ∂r = d expp(∂r) and ∂θi = d expp(∂θi). Then we can write the
volume element as dV olBr = G(r, θ) dθ dr and by Gauss Lemma, we have dA∂Br = G(r, θ) dθ.
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Let I⃗I be the second fundamental form of ∂Bp(r) at x = (θ, r) and I⃗I(X, Y ) = II(X, Y )∂r.
Then

IIij = −⟨D∂i∂j, ∂r⟩ = ⟨∂j, D∂i∂r⟩ = ⟨∂j, D∂r∂i⟩ =
1

2
∂rgij, (2.1)

where we abbreviate ∂i := ∂θi . We further compute

∂rIIij = −∂r⟨D∂i∂j, ∂r⟩ = −⟨D∂rD∂i∂j, ∂r⟩ = −⟨∂r, R(∂r, ∂i)∂j⟩ − ⟨∂r, D∂iD∂r∂j⟩, (2.2)

where the second equality follows from the factD∂r∂r = 0 thanks to the equation of geodesics.
The first term in (2.2) is equal to −R(∂r, ∂j, ∂r, ∂i) = −Rmimj and we compute the last term
as follows.

⟨∂r, D∂iD∂r∂j⟩ = ⟨∂r, D∂iD∂j∂r⟩ = −⟨D∂i∂r, D∂j∂r⟩ = −⟨IIikgkl∂l, IIjrgrs∂s⟩ = −IIikg
krIIrj,

where the second equality follows from ⟨∂r, ∂r⟩ = 1 and the third follows from (2.1). We
write

II2ij := IIikg
klIIlj

and hence
∂rIIij = −Rmimj + IIikg

krIIrj = −Rmimj + II2ij. (2.3)

Furthermore,

(D∂rII)(∂i, ∂j) = ∂rIIij − II(D∂r∂i, ∂j)− II(∂i, D∂r∂j) = −Rmimj − II2ij

and hence for all X, Y ∈ T∂Bp(r),

(D∂rII)(X, Y ) = −R(∂r, X, ∂r, Y )−
∑
i

II(X, ei)II(ei, Y ) (2.4)

where e1, · · · , em−1 ∈ T∂Bp(r) are mutually orthonormal vector fields. Taking trace by
metric, by (2.1), we have

∂rH = ∂r(IIijg
ij) = ∂rIIijg

ij − 2II2ijg
ij = −Rmimjg

ij − II2ijg
ij,

thus
∂rH = −Ric (∂r, ∂r)− |II|2. (2.5)

3. ODE of area elements

We compute

∂rG =
1

2
gij∂rgijG = gijIIijG = HG. (3.1)

Differentiating again and use (2.5)

∂2
rG =

(
−Ric (∂r, ∂r)− |II|2 +H2

)
G. (3.2)

Since

H2 =

(
m−1∑
i=1

II(ei, ei)

)2

≤ (m−1)
m−1∑
i=1

II(ei, ei)II(ei, ei) ≤ (m−1)
m−1∑
i,j=1

II(ei, ej)II(ej, ei) ≤ (m−1)|II|2,

we get

∂2
rG ≤

(
−Ric (∂r, ∂r) +

m− 2

m− 1
H2

)
G = −Ric (∂r)G+

m− 2

m− 1
(∂rG)2/G. (3.3)
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Remark 3.1. Since any smooth metric on Mm is locally Euclidean, we have the initial con-
ditions

G ∼ rm−1, ∂rG ∼ (m− 1)rm−2

as r → 0.

Remark 3.2. If M is a simply connected space form of constant sectional curvature K, then
all the inequalities above become equalities, thus (2.5) and (3.3) become

∂rH =− (m− 1)K − 1

m− 1
H2,

∂2
rG =− (m− 1)KG+

m− 2

m− 1
(∂rG)2/G.

4. Volume comparison

Theorem 4.1 (Bishop). Fix p ∈ M . Suppose Ric (x) ≥ (m − 1)K(d(x))g(x) for some
function K, where d(x) = dg(x, p). If Ḡ is a solution of{

d2

dr2
Ḡ = −(m− 1)K(r)Ḡ+ m−2

m−1
( d
dr
Ḡ)2/Ḡ,

limr→0
Ḡ

rm−1 = 1, limr→0
d
dr
Ḡ/(m− 1)rm−2 = 1.

(4.1)

Then within the cut locus of p:

(1) G(θ, r)/Ḡ(r) is a nonincreasing function of r.
(2) H(θ, r) ≤ H̄(r) := d

dr
ln Ḡ(r).

Proof. Set

f(r, θ) = G
1

m−1 (r, θ) > 0, f̄(r) = Ḡ
1

m−1 (r).

It follows from (3.1) that

∂rf =
1

m− 1
G

1
m−1H =

1

m− 1
Hf

and hence

∂2
rf ≤ 1

m− 1

(
1

m− 1
H2f + f

(
−Ric (∂r)−

1

m− 1
H2

))
= −Kf.

As a result, {
∂2
rf ≤ −Kf,

limr→0
f(θ,r)

r
= 1, ∂rf(θ, 0) = 1,

and one can verify that {
d2

dr2
f̄ ≤ −Kf̄ ,

limr→0
f̄(r)
r

= 1, d
dr
f̄(0) = 1.

Consider F (θ, r) = f(θ, r)/f̄(r) > 0 if r ∈ (0, ρ0(θ)), where (θ, ρ0(θ)) is a cut point. We have

lim
r→0

F (θ, r) = lim
r→0

r + o(r)

r + o(r)
= 1

and

∂r lnF =
1

f
∂rf − 1

f̄
∂rf̄ =

1

m− 1

(
H − H̄

)
.
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and so

∂2
rF =F

(
∂2
r lnF + (∂r lnF )2

)
≤ 1

m− 1
F

(
−Ric (∂r)−

1

m− 1
H2 + (m− 1)K +

1

m− 1
H̄2

)
+ F

(
1

m− 1

(
H − H̄

))2

≤ 2F

(m− 1)2
(
H̄ −H

)
H̄ = − 2

m− 1
H̄∂rF = −2

∂rf̄

f̄
∂rF.

Thus,

∂r
(
f̄ 2∂rF

)
= 2f̄∂rf̄∂rF + f̄ 2∂2

rF ≤ 0,

which implies

f̄(r)2∂rF (θ, r) ≤ f̄(ε)2∂rF (θ, ε) =
(
f̄∂rf − f∂rf̄

)
(ε) → 0.

On the other hand, we get

∂rF (θ, r) =
F

m− 1

(
H − H̄

)
≤ 0,

which implies H ≤ H̄. □

Corollary 4.2 (Myers Theorem). Let Mm be a complete Riemannian manifold and Ric ≥
(m− 1)K0g for some constant K0 > 0. Then we have diamM ≤ π√

K0
.

Proof. For any p ∈ M fixed, one can check Ḡ := K
−m−1

2
0 sinm−1(

√
K0r) is a desired function

satisfies (4.1) when K = K0 in our case. Then Bishop theorem implies

G(θ, r) ≤ Ḡ(r)

and hence G(θ, π√
K0

) = 0. Thus the conjugate point appears no later than π√
K0

along any

geodesic This completes the proof thanks to the Hopf-Rinow theorem. □

Corollary 4.3. Let Mm be a complete Riemannian manifold and Ric ≥ (m − 1)K0g for
some constant K0. Let M̄K0 be a space form of sectional curvature K0.
Fix a point p ∈ M and let

A(r) = area (∂Br) , V (r) = Vol (Br) , Ā(r) = area
(
∂B̃r

)
, V̄ (r) = Vol

(
B̃r

)
,

where Br = Bp(r) and B̃r are geodesic balls in M and M̄K0, respectively. Then

(1) A(r)/Ā(r) is nonincreasing in r;
(2) V (r) ≤ V̄ (r).

Proof. Denote

C(r) :=
{
θ ∈ SpM : expp(sθ) is minimizing until s = r

}
,

then one can observe that C(r2) ⊂ C(r1) if r1 ≤ r2. By Bishop theorem, we have

G(θ, r2)

Ḡ(r2)
≤ G(θ, r1)

Ḡ(r1)
, ∀θ ∈ C(r2)
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Integrating over C(r2) gives

Ḡ(r1)A(r2) =Ḡ(r1)

∫
C(r2)

G(θ, r2) dθ ≤ Ḡ(r2)

∫
C(r2)

G(θ, r1) dθ

≤Ḡ(r2)

∫
C(r1)

G(θ, r1) dθ = Ḡ(r2)A(r1),

and hence A(r2)Ā(r1) ≤ Ā(r2)A(r1).
Moreover,

d

dr
ln

V

V̄
=

A(r)

V (r)
− Ā(r)

V̄ (r)
=

1

V (r)V̄ (r)

(∫ r

0

A(r)Ā(τ)− Ā(r)A(τ) dτ

)
≤ 0,

which implies that V (r) ≤ V̄ (r). □

5. Laplacian comparison and Hessian comparison

Let Mm be a complete manifold. Suppose p ∈ M is a fixed point and let us consider the
distance function ρ(x) = dg(p, x) to p. The distance function in general is not smooth due
to the presence of cut-points. However, it is a Lipschitz function with Lipschitz constant 1.
In particular, we have grad ρ = ∂r and |grad ρ|2 = 1 almost everywhere.

Lemma 5.1. Suppose x ∈ M is not a cut-point of p. Then the Hessian of ρ is Hρ(ei, ej) =
(D(Dρ))(ei, ej) = II(ei, ej) for all ei, ej ⊥ grad ρ(x) and ∆ρ(x) = H(x), where II is the
second fundamental form of ∂Bp(ρ(x)).

Proof. For all ei, ej ⊥ grad ρ(x),

Hρ(ei, ej) =D(Dρ)(ei, ej) = Dej(dρ)(ei) = ej (dρ(ei))− dρ(Dejei)

=ejeiρ− (Dejei)ρ = −⟨grad ρ,Dejei⟩ = IIij

Taking traces gives ∆ρ = H. □

Theorem 5.2 (Laplacian comparison theorem). Let Mm be a complete Riemannian man-
ifold and Ric ≥ (m− 1)K0g for some constant K0. Then in the sense of distributions, we
have

∆ρ(x) ≤


(m− 1)

√
K0 cot(

√
K0ρ), K0 > 0,

m−1
ρ

, K0 = 0,

(m− 1)
√
−K0 coth(

√
−K0ρ), K0 < 0.

(5.1)

Proof. If ρ is smooth at x = (r, θ), then by the lemma above and the Bishop theorem, we
have ∆ρ(x) = H(ρ, θ) ≤ H̄(ρ), where H̄ is the right hand side of (5.1).
Now we show that for all ϕ ∈ C∞

0 (M), ϕ ≥ 0, we have
∫
M
ρ(∆ϕ) ≤

∫
M
ϕH̄(ρ). In polar

coordinates,∫
M

ϕH̄(ρ) =

∫ ∞

0

∫
C(r)

ϕH̄(r)G(r, θ) dθ dr =

∫
SpM

∫ R(θ)

0

ϕH̄(r)G(r, θ) dr dθ

≥
∫
SpM

∫ R(θ)

0

ϕH(r)G(r, θ) dr dθ =

∫
SpM

∫ R(θ)

0

ϕ∂rG(r, θ) dr dθ
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where R(θ) is the cut-point on expp(sθ), that is, the maximum value of r > 0 such that
expp(sθ) minimizes up to s = r. Furthermore, we integrate by parts and get∫

M

ϕH̄(ρ) =

∫
SpM

(ϕG)(R(θ), θ)−
∫
SpM

∫ R(θ)

0

∂rϕϕG(r, θ) dr dθ

≥−
∫
M

∂rϕ = −
∫
M

⟨gradϕ, grad ρ⟩ =
∫
M

ρ∆ϕ,

which completes the proof. □

Theorem 5.3 (Hessian comparison theorem). Let Mm be a complete Riemannian manifold
such that for all p ∈ M , all X, Y ∈ TpM , K(ΠX,Y )(p) ≥ K0 for some constant K0. Then

Hρ(X,X) ≤ 1

m− 1
H̄g(X,X), ∀X ∈ TpM

at all points p = (θ, r) where ρ is smooth.

Proof. If X = f∂ρ, then

Hρ(X,X) =DX(dρ)(X) = X(Xρ)− (DXX)ρ = Xf − ⟨grad ρ,DXX⟩

=f
(
∂ρf − f⟨∂ρ, D∂ρ(f∂ρ)⟩

)
= f⟨D∂ρ∂ρ, f∂ρ⟩ =

1

2
f 2∂ρ⟨∂ρ, ∂ρ⟩ = 0,

where we use the fact ⟨∂r, ∂r⟩ = 1.
Now we can assume with loss of generality that X ⊥ ∂ρ and g(X,X) = 1. By parallel

transport, we assume X is defined on expp(sθ). Recall from (2.4) that

(D∂rII) (X,X) = −R(∂ρ, X, ∂ρ, X)−
∑
i

|II(X, ei)|2 ≤ −K0 − |II(X,X)|2,

where the last inequality follows from ⟨X,X⟩ = 1.
Let g(r) = II(X,X) and ḡ(r) = ĪI(X,X). Then by Lemma 5.1, it suffices to show

g(r) ≤ ḡ(r).
Since X is obtained from parallel transport, D∂rX = 0 and hence ∂rg = (D∂rII)(X,X) ≤

−K0 − g2. Moreover, ∂rḡ = −K0 − ḡ2. We claim that g(r) ∼ 1
r
+ O(r) and leave the

vertification of the claim in the subsequent remark. Thus, we see from

∂r(g − ḡ) ≤ −(g − ḡ)(g + ḡ)

that

(g − ḡ)(r) ≤ (g − ḡ)(ε) exp

(∫ r

ε

(g + ḡ)

)
→ 0, as ε → 0,

which proves the theorem. □

Remark 5.4. Now we show the asymptotic behaviour of II(X,X) with X ⊥ ∂r that was
used above by studying its asymptotic behavior via Jacobi fields.

Fix p ∈ M . Let v ∈ SpM and {ei} be an orthonormal frame in Sv(TpM) = SpM . Since
expp (t(v + sei)) is a variation of γ(t) := expp(tv), we know that ∂θi = ∂s|s=0 expp (t(v + sei))
is a Jacobi field along γ. Hence it satisfies

Dγ̇Dγ̇∂θi −R(γ̇, ∂θi)γ̇
6



with initial data ∂θi(0) = 0 and Dγ̇∂θi = ei. By parallel transport, we obtain a orthonormal
frame {Ei(t)} along γ such that Ei(0) = ei for i = 1, . . . ,m− 1 and Em(t) = γ̇(t). We write
∂θi =

∑m−1
j=1 θji (t)Ej(t), then {

θ̈ji (t) = −
∑

θki skj,

θji (0) = 0, θ̇ji (0) = δji ,

where skj = R(γ̇, Ek, γ̇, Ej). Now

IIij := II(∂θi , ∂θj) =
1

2
∂rgij =

∑
k

θ̇ki θ
k
j

and therefore
Aij := II(Ei, Ej) = θ̃ki IIklθ̃

l
j =

∑
r

θ̃ki θ̇
r
kθ

r
l θ̃

l
j = θ̃ki θ̇

j
k,

where Ei = θ̃ki ∂θk , θ
k
l θ̃

l
j = δkj . It follows that

θji = δji r +
1

6
sij(0)r

3 +O(r4),

θ̇ji = δji +
1

2
sij(0)r

2 +O(r3),

and hence Aij =
1
r
δij +O(r).

6. Cheng’s maximal diameter theorem

Proposition 6.1. Let Mm be a complete Riemannian manifold and Ric ≥ (m− 1)K0g for
some constant K0. Let M̄K0 be a space form of sectional curvature K0. For 0 ≤ r1 ≤ r2, r3 ≤
r4 < ∞, there holds

V (r2)− V (r1)

V̄ (r2)− V̄ (r1)
≥ V (r4)− V (r3)

V̄ (r4)− V̄ (r3)
,

and equality holds if and only if

(1) C(r1) = C(r4),
(2) and for all r ∈ [0, r4] and θ ∈ C(r1), G(θ, r) = Ḡ(r),

where C(r) is as defined in Corollary 4.3.

Proof. Two cases are needed to consider:
Case A r1 ≤ r2 ≤ r3 ≤ r4: Integrating A(t1)Ā(t2) ≥ A(t2)Ā(t1) over r1 ≤ t1 ≤ r2 and

r3 ≤ t2 ≤ r4, we find

(V (r2)− V (r1))
(
V̄ (r4)− V̄ (r3)

)
≥ (V (r4)− V (r3))

(
V̄ (r2)− V̄ (r1)

)
Case B r1 ≤ r3 < r2 ≤ r4: We have

(V (r2)− V (r1))
(
V̄ (r4)− V̄ (r3)

)
=(V (r2)− V (r3) + V (r3)− V (r1))

(
V̄ (r4)− V̄ (r2) + V̄ (r2)− V̄ (r3)

)
≥
(
V̄ (r2)− V̄ (r3) + V̄ (r3)− V̄ (r1)

)
(V (r4)− V (r2) + V (r2)− V (r3))

= (V (r4)− V (r3))
(
V̄ (r2)− V̄ (r1)

)
,

where we use case A in the inequality. □
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Theorem 6.2 (Cheng). Let Mm be a complete Riemannian manifold and Ric ≥ (m −
1)K0g for some constant K0 > 0. If the diameter of M is π√

K0
, then M is isometric to

Sm
(

1√
K0

)
.

Proof. Let p, q ∈ M such that dg(p, q) = diamM := d.
Step 1: By the volume comparison theorem (Theorem 4.1), we know that

Vol (Bd(p)) ≤
V̄ (d)

V̄ (d
2
)
Vol

(
B d

2
(p)
)
= 2Vol

(
B d

2
(p)
)
.

As a result,

Vol (Bd(p)) + Vol (Bd(q)) ≤ 2Vol
(
B d

2
(p)
)
+ 2Vol

(
B d

2
(q)
)
.

Suppose B d
2
(p)∩B d

2
(q) ̸= ∅, we take z ∈ B d

2
(p)∩B d

2
(q), then dg(p, q) ≤ dg(p, z)+dg(z, q) <

d
2
+ d

2
= d, which is a contradiction. So the intersection must be empty and hence

Vol
(
B d

2
(p)
)
+Vol

(
B d

2
(q)
)
≤ Vol (M).

On the other hand,

2Vol (M) = Vol (Bd(p)) + Vol (Bd(q)).

By combining the estimates above, we get an equality, so

Vol
(
B d

2
(p)
)
=

1

2
Vol (Bd(p)).

We write V (r) := Vol (Br(p)), then

V (d
2
)

V̄ (d
2
)
=

V (d)

V̄ (d)
=

V (d)− V (d
2
)

V̄ (d)− V̄ (d
2
)
.

By applying Proposition 6.1 with r1 = 0, r2 = r3 =
d
2
and r4 = d, we know C(d) = Sm−1 and

G(θ, r) = Ḡ(r) for all r ∈ [0, d] and all θ.
Step 2, Metrics: Since ∂rG = HG, ∂rḠ = H̄Ḡ, and G, Ḡ have the same initial

condition, we know from the conclusion of the first step that

H = H̄ = (m− 1)
√

K0 cot(
√

K0r).

We then find

∂rgij = 2IIij = 2
√
K0 cot(

√
K0r)gij,

and hence

gij =
sin2(

√
K0r)

K0

δij.

This shows that g = dr2 + sin2(
√
K0r)

K0
dσ2 holds in Bd(p).

Step 3, Diffeomorphism: It follows from C(d) = Sm−1 that Bd(p) is a normal neigh-
bourhood of p and hence exp : B := BTpM(d) ⊂ TpM → Bd(p) is diffeomorphism. In
particular, we know that Sm−1(1/

√
K0) is homeomorphic to M if the cut-locus of p is {q}
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since Sm−1(1/
√
K0) is homeomorphic to B/∂B. More specifically, we consider an isomor-

phism I : TpM → Tp̃(S
m( 1√

K0
)) for some p̃ ∈ Sm( 1√

K0
). Then

ẽxpp̃ ◦ I ◦ exp−1
p : M \ {q} = Bd(p) → Sm(

1√
K0

) \ { ¯̃p}

is a isometry, where ¯̃p is the antipodal point of p̃. By continuity, M is isometric to Sm( 1√
K0

).

So now it suffices to prove Cut(p) = {q}.
We shall prove a stronger claim that for all z ∈ M , dg(p, z) + dg(q, z) = dg(p, q) = d. This

will implies that for any z ∈ M \ {p, q}, dg(p, z) < d, which lies in Bd(p) and shows that
Cut(p) = {q}.
Suppose not, then dg(p, z) + dg(q, z) > d. Choosing δ1 < dg(p, z), δ2 < dg(q, z) such that

δ1 + δ2 = d. We mimic the arguments in step one as follows. Note that Bδ1(p) and Bδ2(q)
are disjoint, so

Vol (Bδ1(p)) + Vol (Bδ2(q)) ≤ Vol (M).

On the other hand,

V̄ (δ1) + V̄ (δ2) = Vol (Sm(
1√
K0

)).

Moreover, from the volume comparison theorem, for x ∈ {p, q}, Vol (Bδ(x))

V̄ (δ)
is a nonincreasing

function of δ within 0 ≤ δ < d, so

Vol (Bδ(x))

Vol(M)
=

Vol (Bδ(x))

Vol (Bd(x))
≥ V̄ (δ)

V̄ (d)
=

V̄ (δ)

Vol (Sm( 1√
K0

))
.

Combining the estimates above imply

1 ≥ Vol (Bδ1(p)) + Vol (Bδ2(q))

Vol (M)
≥ V̄ (δ1) + V̄ (δ2)

Vol (Sm( 1√
K0

))
= 1.

Thus the inequalities above are equalities, so in particular,

Vol
(
Bδ1(p)

)
+Vol

(
Bδ2(q)

)
Vol (Bδ1(p)) + Vol (Bδ2(q)) = Vol (M).

Hence, dg(p, z) + dg(q, z) > d shows that q /∈ Bδ1(p) ∪ Bδ2(q), and hence there is a neigh-
borhood of q disjoint from this union. However, any such neighborhood would have positive
volume, contradicting our assumption. Thus, the claim holds.

Hence, M is isometric to Sm( 1√
K0

).

□

Theorem 6.3 (Yau’s linear growth of volume). Let Mm be a complete Riemannian man-
ifold with nonnegative Ricci curvature. Then there exists Cm > 0 such that

Vol (Bρ(p)) ≥ CmVol (B1(p))ρ, ∀ρ ∈ (2, diamM), ∀p ∈ M.

Proof. Take x ∈ ∂B1+ρ(p), then by Proposition 6.1,

Vol (B2+ρ(x))− Vol (Bρ(x))

V̄ (2 + ρ)− V̄ (ρ)
≤ Vol (Bρ(x))

V̄ (ρ)
,

9



where V̄ (r) denotes the Euclidean ball with radius r. Note that B1(p) ⊂ B2+ρ(x) \Bρ(x), so
Vol (B2+ρ(x))−Vol (Bρ(x)) ≥ Vol (B1(p)). Moreover, Bρ(x) ⊂ B2ρ+1(p) implies Vol (Bρ(x)) ≤
Vol (B2ρ+1(p)). Therefore,

Vol (B1(p)) ≤
(2 + ρ)m − ρm

ρm
Vol (B2ρ+1(p)) ≤ Cmρ

−1Vol (B2ρ+1(p)).

□

7. Cheeger-Gromoll splitting theorem

This theorem is originally due to [2].

Definition 7.1. We say γ : R → M is a line if it is a normal geodesic and any γ|[a,b] is
minimal for all finite interval [a, b] ⊂ R.

Definition 7.2. We say γ+ : R+ → M is a ray if it is a normal minimizing geodesic.

Definition 7.3. For a ray γ+ in M , its buseman function is defined as

β+(x) := lim
t→∞

β+
t (x),

where β+
t (x) := t− dg(γ+(t), x).

Remark 7.4. The buseman function is well-defined due to the following two observations.
Observation 1: {β+

t }t is uniformly bounded on compact Ω.
This is because

|β+
t (x)| ≤ dg(x, γ+(0)) ≤ max

x∈Ω
dg(x, γ+(0)).

Observation 2: For any fixed x, β+
t (x) is a nondecreasing function of t.

This is because

β+
t+δ(x)− β+

t (x) = δ − dg(γ+(t+ δ), x) + dg(γ+(t), x) ≥ 0.

Hence, β+
t |Ω converges uniformly to a limit and hence β+ is well-defined.

Theorem 7.5 (Cheeger-Gromoll). Let Mm be a complete manifold with nonnegative Ricci
curvature. If there is a line in M , then M is isometric to R×N , where N is a (m− 1)-
dimensional Riemannian manifold with nonnegative Ricci curvature.

Lemma 7.6. β+(x) is a Lipschitz function with Lipschitz constant 1. In particular, |grad β+| ≤
1 if β+ ∈ C1.

Proof. For x, y ∈ M , t > 0, we have

|β+
t (x)− β+

t (y)| = |dg(γ+(t), x)− dg(γ+(t), y)| ≤ dg(x, y).

Sending t → ∞ gives the first assertion.
Now suppose β+ ∈ C1 and denote β = β+ for simplicity. To prove |gradβ(x)| ≤ 1, it

suffices to prove |⟨gradβ, v⟩| ≤ 1 for all unit vector v ∈ TxM . Choose γ such that γ(0) = x
and γ′(0) = v, then

1 ≥ β(γ(t))− β(x)

t
→ ⟨gradβ(x), v⟩

10



as t → 0, which completes the proof.
□

Lemma 7.7. Suppose γ is a line, then{
β+(x) + β−(x) = 0,∀x ∈ γ,

β+(x) + β−(x) ≤ 0,∀x ∈ M,

where β− is the buseman function of γ(−t), that is, β−(x) = limt→∞ β−
t (x), β

−
t (x) = t −

dg(γ(−t), x).

Proof. The equality for x ∈ γ is direct. On the other hand, the inequality for x ∈ M follows
from the computation

β+
t (x) + β−

t (x) = 2t− dg(γ(t), x)− dg(γ(−t), x) ≤ 2t− dg(γ(t), γ(−t)) = 0.

□

Lemma 7.8. Let Mm be a complete manifold with nonnegative Ricci curvature. Suppose f
is a Lipschitz function such that f ≥ 0. If ∆f ≤ 0 in the sense of distributions, then for all
x ∈ M and small R > 0,

f(x) ≥ n

ωn−1Rn

∫
BR(x)

f, (7.1)

where ωn−1 is the volume of the Euclidean unit (n− 1)-sphere.

Proof. Let (r, θ) be the normal coordinates centered at x, where

ds2 = dr2 + r2gij(r, θ) dθ
idθj

with θ ∈ Sn−1. We put G̃(r, θ) =
√
det(gij). Note that we factor out r2 in ds2 since it will

result in a nicer form in (7.2), and hence the volume element of ∂Br is r
n−1G̃(r, θ) dθ.

For a standard mollifier

η(x) =

{
C exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

we have fε(x) = (f ∗ ηε)(x) ≥ 0. Moreover, since ηε ∈ C∞
0 (M), ∆fε = ((∆ηε) ∗ f) (x) ≤ 0

since ηε(x − ·) is a test function. Hence, we can assume without loss of generality that
f ∈ C∞(M). Otherwise, we prove (7.1) for f = fε and then letting ε → 0 completes the
proof.

Now we suppose f ∈ C∞(M). Since ∆f ≤ 0,

0 ≥
∫
B(t)

∆f =

∫
∂B(t)

∂f

∂r
tn−1G̃ dθ,

By a simple calculation,

∆r =
n− 1

r
+

∂ ln G̃

∂r
, (7.2)

it follows from the Laplacian comparison theorem that ∂G̃
∂r

≤ 0. Therefore,

0 ≥ 1

tn−1

∫
B(t)

∆f ≥
∫
∂B(t)

∂f

∂r
G̃+ f

∂G̃

∂r
dθ =

∫
∂B(t)

∂

∂r
(fG̃) dθ =

d

dt

∫
∂B(t)

fG̃ dθ.
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The last equality holds trivially since the integral is taken over θ ∈ Sn−1. Therefore, it

follows from G̃(0) = 1 that

ωn−1f(x) ≥
∫
∂B(t)

fG̃ dθ.

Thus, ∫
B(r)

f =

∫ r

0

∫
∂B(t)

ftn−1G̃ dθ dt ≤ ωn−1f(x)

∫ r

0

tn−1 dt ≤ 1

n
ωn−1r

nf(x),

which completes the proof. □

Remark 7.9. There are different definitions about subharmonicity and the statements of the
corresponding strong maximum principle are also different. Here we follow the proof in [6].

An alternative proof of the Cheeger-Gromoll splitting theorem can be found in [4, Section
7.3.2, Page 303], which adopts another definition of subharmonicity due to [1], relying on
the idea of support functions. See [4, Section 7.1.3] for a reference of subharmonicity in the
barrier sense.

A sketch of the proof of Theorem 7.5: By Laplacian comparison theorem, in
the sense of distributions, ∆β+

t (x) ≥ m−1
dg(γ+(t),x)

. Since β+
t converges to β+(x) uniformly on

compact sets, we see

∆β+(x) ≥ − lim
t→∞

m− 1

dg(γ+(t), x)
≥ − lim

t→∞

m− 1

t− dg(γ+(0), x)
= 0

in the distributional sense.
Similarly, β− is subharmonic and hence ∆(β+ + β−) ≥ 0 in the sense of distributions. By

Lemma 7.7, β+ + β− attains its maximum in the interior of M . It then follows from the
mean value inequality (Lemma 7.8) that

β+(x) + β−(x) ≥ n

ωn−1Rn

∫
BR(x)

(
β+(x) + β−(x)

)
dx

for small R, which implies β+ + β− ≡ 0 on M by connectedness. (This can be viewed as the
strong maximum principle for β+ + β−.)
As a result,

0 ≤ ∆β+ ≤ −∆β− ≤ 0,

and then ∆β+ = ∆β− = 0 in the sense of distribution. By regularity theory, therefore,
β+, β− are harmonic, and in particular, they are smooth functions.

By Lemma 7.6, we have |gradβ+| ≤ 1. And in particular, |gradβ+| = 1 on γ since

|β+(γ+(t2))− β+(γ+(t1))| =
∣∣∣∣∫ t2

t1

⟨gradβ+, γ̇+⟩ ds
∣∣∣∣

≤
∫ t2

t1

|gradβ+||γ̇+| ds ≤
∫ t2

t1

|γ̇+| ds = dg(γ+(t2), γ+(t1))

is in fact an equality. By the Bochner formula in polar coordinates, we have

∆|gradβ+|2 = 2∆i

(
DiDkβ

+Dkβ
+
)
= 2|D(Dβ+)|2 + 2Dkβ

+DiDkDiβ
+

=2|D(Dβ+)|2 + 2Dkβ
+DkDiDiβ

+ + 2Rh
ikiDhβ

+ = 2|D(Dβ+)|2 + 2Ric (gradβ+, gradβ+) ≥ 0

Hence, by the strong maximum principle, |gradβ+|2 ≡ 1 on M .
12



Thus, D(Dβ+) = 0 and Ric (gradβ+, gradβ+) = 0. In particular, gradβ+ is a parallel
vector field on M . Finally, we show M is isometric to the product manifold of an intergral
curve of gradβ+ and a level set of β+. For more details, refer to [5, Chapter V, Lemma 3.10]
or [6, Chapter I.2]. □

8. Rauch comparison theorem

Theorem 8.1 (Rauch comparison theorem). Let Mm
1 ,Mm

2 be two Riemannian manifolds.
Let Jk be Jacobi fields along normal geodesics γk with J1(0) = J2(0) = 0, |J̇1(0)| = |J̇2(0)|,
and ⟨γ̇1, J̇1(0)⟩ = ⟨γ̇2, J̇2(0)⟩.
Suppose K+

M2
(t) ≤ K−

M1
(t) for t ∈ [0, r], where

K+
M2

(t) := max{K(Πγ2(t)) : Πγ2(t) ∋ γ̇2(t)}, K−
M1

(t) := min{K(Πγ1(t)) : Πγ1(t) ∋ γ̇1(t)}.
If γ1 does not have conjugate points, then |J1(t)| ≤ |J2(t)| for t ∈ [0, r].

Before we prove this theorem, we show some applications.

Corollary 8.2. Let γk : [0, r] → Mk be normal geodesics, k = 1, 2. Denote pk = γk(0)
for k = 1, 2. Suppose γ1 has no conjugate points and K+

M2
(t) ≤ K−

M1
(t) for t ∈ [0, r]. If

Xk ∈ TpkMk satisfies |X1| = |X2| and ⟨X1, γ̇1(0)⟩ = ⟨X2, γ̇2(0)⟩, then∣∣∣(d expp1

)
tγ̇1(0)

(X1)
∣∣∣ ≤ ∣∣∣(d expp2

)
tγ̇2(0)

(X2)
∣∣∣ .

Proof. Apply Rauch comparison theorem to the Jacobi fields

Jk(t) = ∂s|s=0

(
exppk

(t(γ̇k(0) + sXk))
)
= t
(
d exppk

)
tγ̇k(0)

(Xk)

□

Corollary 8.3. Let M be a complete manifold with non-positive sectional curvature. Then
for all p ∈ M , X ∈ TpM , Y ∈ TpM = TXTpM ,∣∣(d expp

)
X
(Y )
∣∣ ≥ |Y |.

In particular,
L(γ) ≤ L(expp ◦γ), ∀γ ⊂ TpM.

Proof. Let M2 = (M, g) and M1 = (TpM, gp). Then applying Corollay 8.2 with X1 = X2 =
Y , p1 = X, p2 = p, γ1(t) = X + tX and γ2(t) = expp(tX) will proves this corollary. □

Corollary 8.4. Let (M, g) be a simply connected complete manifold with non-positive sec-
tional curvature. Consider the geodesic triangle on M whose side lengths are a, b, c with
opposite angles A,B,C, respectively. Then

(1) a2 + b2 − 2ab cosC ≤ c2;
(2) A+B + C ≤ π.

Proof. Denote the vertex at the angle C,A,B by p, q, r respectively. In the tangent space
TpM , draw a triangle △OQR, where O is the origin of TpM , so that |OQ| = a, |OR| = b and

the angle at O is equal to C. Then we know that expp(O⃗Q) = q and expp(O⃗R) = r. Hence,
suppose η is the pre-image of the geodesic c in TpM , then the two endpoint of η are q, r.
Therefore, |PQ| ≤ L(η) ≤ c, where the second inequality follows from Corollary 8.3. Hence,
the first conclusion follows from the Euclidean cosine law. And the second conclusion follows
from Euclidean sine law by considering the triangle in R2 whose side length are a, b, c. □
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Proof of Theorem 8.1: We have

Jk = J⊥
k + tan Jk,

where tan Jk = fk(t)γ̇k and fk(t) = ⟨Jk(t), γ̇k(t)⟩. Since f1(0) = f2(0) = 0, ḟ1(0) =

⟨J̇1(t), γ̇1(t)⟩ = ⟨J̇2(t), γ̇2(t)⟩ = ḟ2(0) and f̈1(t) = f̈2(t), we have f1(t) ≡ f2(t) for t ∈ [0, r].
Then it suffices to show |J⊥

1 (t)| ≤ |J⊥
2 (t)| for all t ∈ [0, r].

We assume with loss of generality that Jk ⊥ γ̇k. We write gk(t) = |Jk(t)|2.
Step 1: Since there is no conjugate point along γ1, if there is some t0 > 0 such that

g1(t0) = 0, then g1(t) ≡ 0 for all t and we are done since g2(t) ≥ 0 = g1(t). Now we can
assume that g1(t) > 0 for all t ∈ [0, r].

Step 2: Since g1(t) = 0 only at t = 0, the ratio g2(t)
g1(t)

is well-defined except at t = 0. By

L’Hôpital’s rule,

lim
t→0

g2(t)

g1(t)
= lim

t→0

⟨J2(t), J̇2(t)⟩
⟨J1(t), J̇1(t)⟩

= lim
t→0

⟨J̇2(t), J̇2(t)⟩+R(J1(0), γ̇1(0), J1(0), γ̇1(0))

⟨J̇1(t), J̇1(t)⟩+R(J2(0), γ̇2(0), J2(0), γ̇2(0))
= 1.

thus it suffices to show d
dt
log g2(t)

g1(t)
≥ 0, which is equivalent to

⟨J̇2, J2⟩
|J2(t)|2

≥ ⟨J̇1, J1⟩
|J1(t)|2

, ∀t ∈ [0, r].

Step 3: Let l > 0 be such that g2(t) > 0 for all t ∈ (0, l) and g2(l) = 0. (Since
γ2(t)|[0,δ] has no conjugate points for δ > 0 small enough, so we know g2(t) > 0 for all

t ∈ (0, δ). Otherwise, g2(t) ≡ 0 and by limt→0
g2(t)
g1(t)

= 1 and g1(t) > 0 when t > 0, we derive

a contradiction. So such l > 0 exists. )
Fix t0 ∈ (0, l), let J t0

k (t) = 1
|Jk(t0)|

Jk(t), We claim that

Iγ1(J
t0
1 , J t0

1 ) ≤ Iγ2(J
t0
2 , J t0

2 ). (8.1)

Recall that after integration by parts,

Iγ(X,X) = ⟨Ẋ,X⟩|t00

if X is a Jacobi field along γ. Hence, if (8.1) holds, then

⟨J̇2, J2⟩(t0)
|J2(t0)|2

= ⟨J̇ t0
2 (t0), J

t0
2 (t0)⟩ ≥ ⟨J̇ t0

1 (t0), J
t0
1 (t0)⟩ =

⟨J̇1, J1⟩(t0)
|J1(t0)|2

.

Thus, |J1(t)| ≤ |J2(t)| for t ∈ (0, l). If l < r, then |J2(l)| ≥ |J1(l)| > 0, contradicting the
choice of l. Hence, l = r, that is, |J1(t)| ≤ |J2(t)| for t ∈ (0, r). This proves the theorem.

Step 4: Now we prove the claim (8.1). For reader’s convenience, we reformulate the
claim as follows. We shall show that if Jk(t) ⊥ γ̇k(t) for t ∈ [0, r] is a Jacobi field Jk(0) = 0,
|Jk(r)| = 1. Then Iγ1(J1, J1) ≤ Iγ2(J2, J2).
We choose a parallel orthonormal frame {Ej,k(t)}mj=1 such that Em,k(t) = γ̇k(t) and

E1,k(r) = Jk(r). We write J2(t) =
∑m−1

i=1 ηiEi,2(t). Put Y (t) =
∑m−1

i=1 ηiEi,1(t). Since
14



J1(0) = 0 = Y (0), J1(r) = E1,1(r) = Y (r), it follows from the basic index lemma that

Iγ1(J1, J1) ≤Iγ1(Y, Y ) =

∫ r

0

∑
(η̇i)2 −RM1(γ̇1, Ei,1, γ̇1, Ei,1)(η

i)2

≤
∫ r

0

∑
(η̇i)2 −RM2(γ̇1, Ei,1, γ̇1, Ei,1)(η

i)2 = Iγ2(J2, J2),

which completes the proof. □
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