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Syllabus

The prerequisites for this course are:

• Real Analysis(Math 202A-B)
• Complex Analysis(Math 185)
• Fundamental theorem of ODE(Picard-Lindlöf, Cauchy-Lipschitz, Well-posedness of IVP)

There will be two major parts of this course. In each part, our plan is as follows:

• Part I. Linear ODE and spectral theory: We will study Sturm-Liouville type problem.
To be more specific, set Lf = 1

r

(
− d
dx

(
p d
dx
f
)
+ q
)
, where p, q, r are real-valued functions

on I. Then we consider Lf = λf with certain boundary conditions. Here, L is formally
symmetric with respect to ⟨·, ·⟩r in the sense that for all f, g ∈ C∞

c (I), ⟨f,Lg⟩r =
⟨Lf, g⟩r, where ⟨f, g⟩r =

∫
I
f̄ gr dx.

This part will be useful since many natural problems arises in physics and geometry
can be reduced to this form and be fruitful since some can be explicitly solvable.
– Regular Sturm-Liouville problems (Dirichlet, Neumann, Robin boundary condition)
– Singular Sturm-Liouville problems (Many problems in the whole space Rd can be
reduced to this kind of problem)

– Special functions (This part may need some complex analysis)
For instance, you will study something like □ϕ = ∂ϕ∂ϕ := N(ϕ) when ϕ is small, so
you want to approximate solutions ϕ to the solution ψ to the wave equation □ψ = 0,
where □ = −∂2t + ∆. Usually, solutions to the wave equation disperse. If I snap the
fingers, then the energy disperses. But the solitons are something stable, which is very
different from the linear phenomenon. Solitons Q shall satisfy □Q = N(Q), ∂tQ = 0,
Q ̸= 0. To analyze this, one can linearize the equation by writing ϕ = Q + ψ and you

hope ψ is small. Now we get □ψ −N(Q)ψ = Ñ(ψ) from □(Q + ψ) = N(Q + ψ). One
may expect the asymptotic behavior of a solution is like the sum of a solution solution
and a radiation.

• Part II. Nonlinear ODE and dynamics: We will study ODEs in the form of d
dt
u = F (u),

which is related to evolutionary problem.
– Linearization and invariant manifolds
– Periodic solutions
– Bifurcation, center manifolds

For Part I, the main references are [12, Chapter 5] for regular Sturm-Liouville problem, [13,
Chapter 3, 9] for singular Sturm-Liouville problem, [8, Chapter 5, 7] for special functions.

For Part II, the references according to our tenative plan are [10, Chapter 7-10] and [4,
Chapter 2].
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1. Sturm-Liouville problems

We denote the operator introduced in the previous section by the following operator no-
tation

L =
1

r

(
− d

dx
p
d

dx
+ q

)
,

where p, q, r are real-valued functions.

Definition 1.1 (Regular Sturm-Liouville problem). Suppose I = (a, b) ⊂ R, −∞ < a <
b <∞, where L is said to be regular if p, p′, q, r ∈ C(Ī;R) and p > 0, r > 0.

Then following question is motivated by separation of variable in PDEs, especially in the
one-dimensional wave equations. We consider{

Lu = zu, z ∈ C,
+ separated boundary conditions: BCa(u) = 0, BCb(u) = 0,

(1.1)

where the BC operator of u at a and b are defined as

BCa(u) :=α0u(a)− α1p(a)
d

dx
u(a), (α0, α1) ̸= 0,

BCb(u) :=β0u(b)− β1p(b)
d

dx
u(b), (β0, β1) ̸= 0,

respectively. This boundary condition is called separated boundary conditions. Then our
question is trying to determine that for which z ∈ C, there exists u ̸= 0 solving (1.1).

The first approach to solve this problem is to note that we can simplify the boundary
condition as follows. Without loss of generality, one can assume |(α0, α1)| = 1 and (α0, α1)
lies in the upper half circle except (−1, 0). Then by a change of variable, we assume

(α0, α1) = (cosα, sinα), (β0, β1) = (cos β, sin β), α, β ∈ [0, π).

Let ua be the solution to {
Lua = zua,

ua(a) = sinα, p(a)u′a(a) = cosα,

where ua exists and is unique due to the fundamental theorem of ODEs. Clearly, ua satisfies
BCa(ua) = 0. Moreover, any solution u to{

Lu = zu,

BCa(u) = 0,

satisfies u = cua for some constant c, that is, we get a one-parameter family of solutions
to this ODE. If we do the same thing by replacing a by b, then we get two one-parameter
family of solutions, which sometime may match with each other to be a solution of (1.1).
This kind of problem is called a shooting problem. Since (1.1) is a second order linear ODE,
all its solutions form a two dimensional vector space. Heuristically, the shooting problem is
kind of like matching two stuffs of one-dimensional in a two dimensional space. This is why
it is called a shooting problem.
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So the problem whether (1.1) has nonzero solutions can be transformed to thinking whether
ua ∝ ub. To prove the main theorem of regular Sturm-Liouville problems, that is, there exists
eigenvectors, we borrow tools from functional analysis.

1.1. A primer on bounded symmetric operators.

Definition 1.2. We say ⟨u, v⟩ is a sesquilinear form on a complex vector space H if it is
linear in v and linear conjugation in u, that is,

⟨u, c1v1 + c2v2⟩ = c1⟨u, v1⟩+ c2⟨u, v2⟩, ⟨c1u1 + c2u2, v⟩ = c̄1⟨u1, v⟩+ c̄2⟨u2, v⟩.
This is in line with the convention in physics.

Definition 1.3. ⟨ , ⟩ is a (complex) inner product if ⟨u, u⟩ ≥ 0 and = 0 iff u = 0, ⟨u, v⟩ =
⟨v, u⟩.
Suppose (H, ⟨·, ·⟩) is an inner product space.

Lemma 1.4. Let u ∈ H, X ⊂ H such that X is spanned by (e1, . . . , en) and ⟨ej, ek⟩ = δjk.
Let un =

∑n
j=1⟨u, ej⟩ej be the orthonormal projection of u to X, then for any ũ ∈ X, the

error
∥u− ũ∥ ≥ ∥u⊥∥,

where the equality holds iff ũ = un, where u
⊥ = u− un.

Proof. The proof is elementary by writing

∥u− ũ∥2 = ∥un + u⊥ − ũ∥2 = ∥un − ũ∥2 + ∥u⊥∥2 ≥ ∥u⊥∥2,
where the second equality follows from the fact that ⟨u⊥, ek⟩ = 0 for all 1 ≤ k ≤ n. □

Example 1.5. Here are two examples of inner product spaces:

(Cn, ⟨u, v⟩ =
∑

ūjvj), (L2(I;C), ⟨u, v⟩ =
∫
I

ūv dx).

Definition 1.6. We say the linear operator A : H → H is bounded if sup∥u∥=1 ∥Au∥ <
+∞. A is symmetric if ⟨u,Av⟩ = ⟨Au, v⟩ for all u, v ∈ H.

Lemma 1.7. If A is bounded and symmetric, then any Au1 = z1u1, Au2 = z2u2 for u1 ̸=
0, u2 ̸= 0, z1 ̸= z2, then u1 ⊥ u2 and any eigenvalue is real.

Remark 1.8 (Spectral theorem on Cn). Suppose A is a Hermitian (conjugate symmetric)
matrix, then we know that A is diagonalizable, that is, n eigenvalues are real and there
exists eigenvectors that form an orthonormal basis.

The reason why this is interesting is that we can develop functional calculus for A. Suppose
D = diag (λ1, . . . , λn). For a measurable function f : C → C, it is presumably that f(A) is
related to diag (f(λ1), . . . , f(λn)). This gives a formal way to view the operators as constants,
which would be extremely useful if one can make it rigorous as shown in the following
example. If L were a positive number, then one can solve the wave equation ∂2t = −Lu by

u = a sin t
√
L+ b cos t

√
L.
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Definition 1.9. A : H → H is compact if for any bounded sequence {un} ⊂ H (∥un∥ ≤ C),
then {Aun} is compact in the sense that Aun admits a converging subsequence.

Example 1.10. A : H → H is a compact operator if dim range (A) < +∞.

Remark 1.11. Actually, we have a stronger theorem that tells us that in a separable Hilbert
space with countable basis, finite dimensional operators are dense in compact operators with
respect to the operator norms.

Theorem 1.12 (Spectral theorem for compact symmetric operators). Suppose A is a
compact symmetric linear operator, then the eigenvalues are discrete except possibly at 0.
More precisely,

∥A∥ = |α0| ≥ |α1| ≥ · · · ≥ 0,

can only accumulate possibly at 0, where αi are all the eigenvalues. (All eigenvalues are
real as discussed before.) And there exists eigenfunctions {en} that are real-valued and

form an orthonormal basis of range (A)

Remark 1.13. In the definition of compactness, we don’t assume the completeness of H.
However, under completeness, there’s even a spectral theorem for compact operators without
inner product structure for A : X → X compact on Banach spaces, where the statement is
more like a generalization of Jordan canonical form.

The proof of the spectral theorem uses essentially the same idea as the proof that Hermitian
matrices are diagonalizable.

With the same condition for A as in Theorem 1.12, the following lemmas hold.

Lemma 1.14 (Existence of an eigenvalue for A). Suppose A : H → H is linear, compact
and symmetric. There exists an eigenvalue λ such that |λ| = ∥A∥. And hence by symmetry,
λ ∈ R.

Proof. We want to find the extremizer of {∥Au∥ : ∥u∥ = 1}. By definition of supremum,
there exists un such that ∥un∥ = 1 and ∥Aun∥ ↗ Λ := ∥A∥. By compactness of A, Aun → v
by passing to a subsequence. Up to a subsequence, A2un → ṽ.
Since ∥Aun∥2 = ⟨Aun, Aun⟩ = ⟨A2un, un⟩ → Λ2, we know

∥A2un∥ = sup
∥w∥=1

⟨A2un, w⟩ ≥ ⟨A2un, un⟩ → Λ2.

On the other hand, ∥A2un∥ ≤ Λ2. Hence, ∥A2un∥ → Λ2, and in particular, ∥ṽ∥ = Λ2.
Suppose ṽ = Λ2u, ∥u∥ = 1, then we want to show A2u = Λ2u. Since

∥(A2 − Λ2)un∥2 = ∥A2un∥2 − 2Re⟨A2Λ2un, un⟩+ Λ4∥un∥2 → 0

as n → ∞, Λ2u = limn→∞A2un = limn→∞ Λ2un and hence A2u = Λ2u, which implies
(A− Λ)(A+ Λ)u = 0, so either Λ or −Λ is an eigenvalue. □

Proof of the Spectral theorem, Theorem 1.12. Using Lemma 1.14, we can find a real-valued
eigenvalue λ0 and a corresponding eigenfunction e0 of A. Without loss of generality, we can
assume e0 is real-valued. Otherwise, we replace by normalizing e0 + ē0, which is also an
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eigenfunction corresponds to λ0 thanks to the symmetry of L or more precisely, it follows
from the property that p, p′, q, r are real-valued. And then consider the restriction A|(e0)⊥ ,
and by the symmetry of A, we know that ran(A|(e0)⊥) ⊂ (e0)

⊥. Then applying Lemma 1.14
to A|(e0)⊥ will help us find λ1, e1. By repeating this argument, we get possibly infinitely
many eigenvalues and eigenfunctions.

If the sequence is infinite, we want to show that λn → 0. Suppose not, there exists δ > 0
such that |λnj

| > δ by passing to a subsequence and Aunj
= λnj

unj
. Since vj = 1

λnj
unj

is a bounded sequence, by compactness, Avj = unj
should have a convergent subsequence.

However, unj
is orthonormal to each other, so ∥unj

− unl
∥2 = 2, therefore it does not have

any convergent subsequences, contradiction!
Finally, if v ∈ ran(A), then there exists w such that v = Aw. Let vn =

∑n
k=1⟨ek, v⟩ek and

wn =
∑n

k=1⟨ek, w⟩ek. Since Awn =
∑n

k=1⟨Aek, w⟩ek = vn, we have

∥v − vn∥ = ∥A(w − wn)∥ ≤ |λn+1|∥w − wn∥ ≤ 2|λn+1|∥w∥ → 0.

If v ∈ ran(A), then for all ε > 0, there exists vε ∈ ran(A) such that ∥v− vϵ∥ < ε/2. Using

the result in the preceding paragraph, there exists vε,N =
∑N

k=1 ckek such that ∥vϵ− vϵ,N∥ <
ε/2. From Lemma 1.4 shown in our last lecture, ∥v − vN∥ ≤ ∥v − vϵ,N∥ < ε, so vN → v,

where vN =
∑N

k=1⟨ek, v⟩ek. □

Unfortunately, we cannot apply the spectral theorem directly to L in our Sturm-Liouville
problem. We will show that the resolvent (L − z)−1 for z ∈ C turns out to be compact and
symmetric and it will suffice to understanding (1.1).

1.2. Regular Sturm-Liouville problem. For the sake of convenience, we restate the prob-
lem here. We consider{

Lu = zu, z ∈ C,
+ separated boundary conditions: BCa(u) = 0, BCb(u) = 0,

(1.2)

where

L =
1

r

(
− d

dx
p
d

dx
+ q

)
,

with p, p′, q, r ∈ C(Ī;R) and p > 0, r > 0, I = (a, b) ⊂ R.
Put H = (L2(I; rdx); ⟨f, g⟩ =

∫
I
f̄ gr dx). Set D(L) = {f ∈ C2(Ī;C) : BCa(f) =

0, BCb(f) = 0}. We say z is an eigenvalue for (1.2) with an eigenfunction u, if there exists
u ̸= 0, u ∈ D(L) such that Lu = zu.

Theorem 1.15. For a regular Sturm-Liouville problem, there are countably many eigen-
values, which are real and simple and accumulate only at ∞. And there exists real-valued
eigenfunctions which form an orthonormal basis {uj} of H, that is, every f ∈ H can be
written as

f(x) =
∞∑
j=0

⟨uj, f⟩uj(x).

In this subsection, our goal is to prove this theorem.
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Example 1.16. Suppose L = − d2

dx2
, BCa(u) = u(a), BCb(u) = u(b) with I = (0, π). Then

by solving explicitly, we get {
λ1 = 1, u1 = sinx, . . . ,

λn = n2, un = sinnx

Now we consider some ODEs and will heavily rely on integration by parts.

Lemma 1.17.∫ β

α

fLgr dx =

∫ β

α

Lfgr dx+p(β)f ′(β)g(β)−f(β)p(β)g′(β)−(p(α)f ′(α)g(α)− f(α)p(α)g′(α)) .

Proof. A direct integration by parts. □

Corollary 1.18 (Symmetry of L). Suppose u, v ∈ D(L), then ⟨u,Lv⟩ = ⟨Lu, v⟩.

Proof. Use the lemma with f = ū, g = v, α = a, β = b. □

Note that if f, g are solutions to L = 0, then we know from the lemma that the bound-
ary terms shall vanish, which motivates the following definition of the modified Wron-
skian.

Definition 1.19 (Modified Wronskian). The modified Wronskian is defined as

Wx(u, v) := u(x)p(x)v′(x)− p(x)u′(x)v(x) = det

(
u(x) v(x)
pu′(x) pv′(x)

)
.

Thus the lemma above can be restated as

Wβ(u, v)−Wα(u, v) =

∫ β

α

(Lu) vr dx−
∫ β

α

u (Lv) r dx. (1.3)

Corollary 1.20. If Lu = zu, Lv = zv, then Wx(u, v) is independent of x. Moreover, u and
v are linearly dependent if and only if Wx(u, v) = 0 for some x.

Recall that respectively, ua(x; z) and ub(x; z) satisfies
Lua( ; z) = zua( ; z),

ua(a; z) = sinα,

p(a)u′a(a; z) = cosα,


Lub( ; z) = zub( ; z),

ub(b; z) = sin β,

p(b)u′b(b; z) = cos β.

Corollary 1.21. z is an eigenvalue of L in D(L) if and only if Wx(ua( ; z), ub( ; z)) = 0 for
some x.

Definition 1.22. We define W (z) = Wx(ua( ; z), ub( ; z)).

Let us study {
Lu = zu,

BCa(u) = BCb(u) = 0,
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ifW (z) ̸= 0, L−z has trivial kernel. Actually, one can show that A : D(A) → H has following
properties. For finite dimensional cases, Ran(A) = (kerA∗)⊥, so when A is symmetric, then

it is surjective. In the infinite dimensional cases, we have Ran(A) = (kerA∗)⊥. Moreover, A

is coercive, then Ran(A) = Ran(A). These properties can be found at [3, Proposition 9.12,
9.14].

We expect, on abstract grounds that{
(L − z)u = f,

BCa(u) = BCb(u) = 0
(1.4)

should be solvable for f ∈ H.
To see this, let us work by hand and construct Green’s function:

Definition 1.23. The function G(x, y) is said to be a Green’s function if the solution to
is given by

u(x) =

∫ b

a

G(x, y)f(y)r(y) dy.

Take f(y) = 1
r(y)

δ0(y − y0), then the corresponding solution if u(x) = G(x, y0). Since

r(·)(L− z)G(·, y0) = δ0(· − y0), where the right hand side vanishes away from y0. Then from
the discussion at the very beginning of the section, the solution for G(x, y0) is proportional
to ua when x < y0 and proportional to ub when x > y0. Moreover, from the equation
(L − z)G(·, y0) = δ0(· − y0), we expect that G(x, y0) is continuous at x = y0 since if we
integrate δ function two times, we will get a continuous function. Thus, we expect

G(x, y) =

{
cua(x; z)ub(y; z), x < y,

cua(y; z)ub(x; z), x > y,

for some c. Now we compute c as follows. By (1.3),∫ b

a

ua(x; z) ((L − z)G) r dx =

∫ b

a

((L − z)ua)Gr dx+Wb(ua, G)−Wa(ua, G).

Since ua and G are proportional at x = a, we know Wa(ua, G) = 0. Since (L− z)ua = 0 and
r(L − z)G = δ0(· − y), we get

ua(y; z) = Wb(ua, G) = Wb(ua( ; z), ub( ; z))cua(y; z) = cW (z)ua(y; z)

which implies that c = 1/W (z).

Definition 1.24. Suppose W (z) ̸= 0, then the operator RL(z) defined by

RL(z)f :=

∫ b

a

G(x, y)f(y)r(y) dy

is a operator RL(z) : H → D(L), where

G(x, y) :=

{
1

W (z)
ua(x; z)ub(y; z), x < y,

1
W (z)

ua(y; z)ub(x; z), x > y.
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One should note that the RL(z) is well-defined as an operator

RL(z) : H → H ∩H2(I) or RL(z) : H ∩ C(Ī) → D(L),

where C(Ī) ∩ H means the space C(Ī) with ⟨f, g⟩ =
∫
f̄ gr dx. This is because that for all

f ∈ H, one can compute the distributional derivative of RL(z)f explicitly up to second order
by pairing with a test function and using the definition. We have

∂x (RL(z)f) (x) =

∫ b

a

∂xG(x, y)f(y)r(y) dy,

where ∂xG(x, y) is just the pointwise derivative in L∞ and

∂2x (RL(z)f) (x) =
1

W (z)

(∫ b

x

∂2xua(x; z)ub(y; z)f(y)r(y) dy +

∫ x

a

ua(y; z)∂
2
xub(x; z)f(y)r(y) dy

)
+

1

W (z)
(−∂xua(x; z)ub(x; z)f(x)r(x) + ua(x; z)∂xub(x; z)f(x)r(x))

which implies that RL(z)f ∈ C2(Ī) provided f ∈ C0(Ī) while RL(z)f ∈ H2(I) provided
f ∈ L2(I) and in both cases, we can find that (L − z)RL(z)f = f .

And RL(z) : C(Ī)∩H → D(L) is surjective since for all u ∈ D(L), by a direct computation
using (1.3), one can see RL(z)(L−z)u = u. Hence, it is natural to denote RL(z) by (L−z)−1.

Proposition 1.25. (L − z)−1 is well-defined on C(Ī) ∩H for z such that W (z) ̸= 0 and it
is compact from C(I) ∩H to C(Ī) ∩H and symmetric when z = z̄.

Proof. The well-definedness of (L − z)−1 is shown in the preceding paragraph.
Now we show the compactness. Fix z such that W (z) ̸= 0 and note that G(x, y) is

continuous on [a, b] × [a, b] and hence uniformly continuous. For f ∈ C(Ī) ∩H, set g(x) =

(L − z)−1f , then by ∂xG(x, y) ∈ L∞(I × I) and g′(x) =
∫ b
a
∂xG(x, y)f(y)r(y) dy, we know

that
|g(x1)− g(x2)| ≤ C|x1 − x2|∥f∥L2(I;rdx).

Hence, if {fn} ⊂ H is a bounded sequence, then {gn} is equicontinuous and hence has a
uniformly convergent subsequence by the Arzelà-Ascoli theorem. Moreover,

∥fn − fm∥2L2(I;r dx) ≤ sup
x∈[a,b]

|fn(x)− fm(x)|2
∫ b

a

r(x) dx ≤ Cr

(
sup
x∈[a,b]

|fn(x)− fm(x)|

)2

implies the convergence of {fn} in H, which shows that (L − z)−1 is compact.
Finally, we show that (L − z)−1 is symmetric if z = z̄. If suffices to show (L − z̄)−1 =

((L − z)−1)
∗
. Then it suffices to show G(x, y; z) = G(y, x; z̄) since this would imply

⟨g, (L − z)−1f⟩ =
∫ b

a

g(x)

(∫ b

a

G(x, y; z)f(y)r(y) dy

)
r(x) dx

=

∫ b

a

(∫ b

a

G(x, y; z)g(x)r(x) dx

)
f(y)r(y) dy

=

∫ b

a

(∫ b

a

G(y, x; z̄)g(x)r(x) dx

)
f(y)r(y) dy = ⟨(L − z̄)−1g, f⟩.
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Since G(x, y) = G(y, x), it suffices to show ua(x; z) = ua(x; z̄), ub(x; z) = ub(x; z̄) and

W (z̄) = W (z), which is obvious. Thus, this completes the proof. □

Proof of Theorem 1.15. • We claim that for z0 ∈ R sufficiently negative, W (z0) ̸= 0. It
suffices to show there does not exist a solution u to the Sturm-Liouville problem with
separated boundary condition. Suppose not, noting that p, r > 0 on Ī, integration by
parts shows that there exists some M > 0 such that

⟨Lu, u⟩ ≥
∫
q(x)|u(x)|2 dx ≥ −M⟨u, u⟩.

Then it is obvious that for z0 < −M , u cannot be a solution to Lu = z0u, which implies
W (z0) ̸= 0.

• Then one can apply the spectral theorem to (L− z0)
−1 : C(Ī) ∩H → D(L) for z0 ∈ R.

Therefore, we know that there exists a countable number of eigenvalues αn → 0 plus
corresponding orthonormal eigenfunctions un that form a basis of C(Ī) ∩H = D(L).

• Since (L−z0)−1un = αnun, we have Lun =
(
z0 +

1
αn

)
un, which shows that En = z0+

1
αn

are eigenvalues of L with corresponding eigenfunctions un.
• Now we only need to show all eigenvalues are simple. Suppose not, then there exists
eigenvalues λ with two eigenfunctions u, v. In particular, BCa(u) = BCb(v) = 0 and
hence Wa(u, v) = 0, which implies that u and v are linearly dependent, contradiction!

□

Remark 1.26. In the statement of Theorem 1.15 and the proof above, we use the inner
product space H ∩ C0(I) to be our space. (We don’t need completeness throughout this
subsection.) And as noted in the calculation of resolvent RL(z), we konw that we can
replace all H ∩ C0(I) by H and all D(L) by {H2(I) : BCa = BCb = 0} at the same time to
derive another version of the theorem.

1.3. Nodal set and zeros of eigenfunctions : Variational approach. This approach
is more general and can be applied to PDEs.

Theorem 1.27 (Variational characterization of eigenvalues, known as the Rayleigh-Ritz
principle). Let L be an operator in the setting of a regular Sturm-Liouville problem with
BCa, BCb. Suppose λ0 < λ1 < . . . are eigenvalues to the following Sturm-Liouville problem{

Lu = λu,

BCa(u) = BCb(u) = 0,

then

λ0 = min
D(L)

⟨u,Lu⟩
⟨u, u⟩

,

where D(L) = C2(Ī;R) ∩ {BCa(u) = BCb(u) = 0}. The minimum is realized if and only
if u ∝ e0. Moreover,

λk = min
u∈D(L),u∈(e0,...,ek−1)⊥

⟨u,Lu⟩
⟨u, u⟩

,

and the minimum is realized if and only if u ∝ ek.
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Proof. By Theorem 1.15, we know that each f ∈ D(L) can be expressed as

f(x) =
∞∑
j=0

⟨un, f⟩un.

Since Ran((L − z)−1) = D(L), we take g ∈ H such that f = (L − z)−1g. Then it follows
from f = (L − z)−1g and the boundedness of (L − z)−1 : H → H that ⟨un, f⟩ = αn⟨un, g⟩.
Hence, (L − z)f = g =

∑∞
j=0⟨un, f⟩

1
αn
un, which implies

Lf =
∞∑
j=0

(z +
1

αn
)⟨un, f⟩un.

Put λn = z + 1
αn
, en = un/∥un∥, cn = ⟨un, f⟩. Then one can find that the Rayleigh quotient

⟨Lf, f⟩
⟨f, f⟩

=

∑∞
j=0 λ

2
nc

2
n∑∞

j=0 c
2
n

,

which can reaches its minimum when taking the minimum over f ∈ D(L) at f ∝ e0, which
completes the proof. □

Definition 1.28. For f : I → R, the nodal set of f is {x ∈ I : f(x) = 0}. And a nodal
domain of f is a component of I \ {x ∈ I : f(x) = 0}.

Corollary 1.29 (Courant nodal domain theorem). Suppose ek is the eigenfunction to (k+1)-
th smallest eigenvalue λk has at most (k + 1) nodal domains (k zeros in (a, b))

Proof. Suppose e ∈ D(L) with n zeros such that Le = λe, then it has n + 1 nodal domains
I0, I1, . . . , In whose left endpoints are denoted by x0, . . . , xn, respectively. It suffices to show
λ ≥ λn.

Set uj = e|Ij for 0 ≤ j ≤ n. Clearly, uj is orthogonal to each other since their supports

are distinct and
⟨uj ,Luj⟩
⟨uj ,uj⟩ = λ. Note that uj /∈ D(L), but we proceed the proof to see what’s

the main idea first without manipulating the domain. Then pointwisely,

Luj =

{
λuj, x ∈ Ij,

0 = λuj, x /∈ Ij.

Set f =
∑n

j=0 cjuj. Then by linear algebra, one can choose cj such that

⟨ej, f⟩ = 0, 0 ≤ j ≤ n− 1,

that is, f ∈ (e0, . . . , en−1)
⊥. And ⟨Lf, f⟩/⟨f, f⟩ = λ. Hence, λ ≥ λn, which completes the

proof.
Now, we resolve the problem of uj /∈ D(L). Since x1, . . . , xn are zeros of e, so we know

that the pointwise derivative of f almost everywhere is equal to its distributional derivative.
Hence, by the fact that f ′ is well-defined and bounded almost everywhere, we have f ∈ H1(I).
Moreover, by integration by parts on each subinterval(each nodal domain) respectively,

⟨Lf, f⟩ =
∫
p(x)(f ′(x))2 + q(x)f(x) dx
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makes perfect sense. And one can find f ε ∈ C∞
c (I) ⊂ D(L) such that f ε → f in H1, which

implies that ⟨Lf ε, f ε⟩ → ⟨Lf, f⟩ and ⟨f ε, f ε⟩ → ⟨f, f⟩. Moreover, by modifying f ε a little
bit to

gε = f ε −
n−1∑
j=1

⟨f ε, ej⟩ej ∈ D(L) ∩ (e0, . . . , en−1)
⊥,

we know that the Rayleigh quotient

⟨Lgε, gε⟩
⟨gε, gε⟩

→ λ

and hence λ ≥ λn, that is, there exist at least n + 1 eigenvalues that are less than or equal
to λ, which completes the proof. □

Remark 1.30. This argument is very general and can be applied if the eigenvalues can be
realized as Rayleigh quotients. The result concerning the upper bound of the number of nodal
domains can be generalized to multi-dimensional settings, where you also need some technical
estimates about the on the regularity of the nodal domains in order to use the divergence
theorem. This is just a basic result in the study of nodal domains for eigenfunctions of
Laplace-Beltrami operator on manifolds, which is a story that is still very active. There’s
a famous conjecture, Yau’s conjecture, on the asymptotic number of nodal domains versus
the location of eigenvalues.

1.4. Nodal set and zeros of eigenfunctions : ODE approach. For specific problems
like Sturm-Liouville problem, we can say more about the nodal domains.

Theorem 1.31 (Sturm oscillation theorem). Consider the regular Sturm-Liouville problem
and order the eigenvalues as λ0 < λ1 < . . ., which corresponds to e0, e1, . . . with ∥ej∥ = 1,
respectively. Then ek has exactly k zeros in (a, b).

Throughout this subsection, Our basic tool for the proof is to introduce polar coordinates in
phase space, which is known as Prüfer variables:(

u(x)
pu′(x)

)
=

(
ρu(x) sin (θu(x))
ρu(x) cos (θu(x))

)
,

where u : Ī → R, p : Ī → R, p > 0. Without loss of generality, we assume

(
u(x)
pu′(x)

)
̸= 0,

that is, ρu(x) ̸= 0. Otherwise, if u is a solution to the regular Sturm-Liouville problem, then
u ≡ 0. Though θu(x) is defined only up to multiples of 2π, it can be uniquely determined as
a continuous function once an initial value at some point c is given. This angle θu measures
the angle between (u, pu′) and the axis pu′.

Note that zeros x0 of u corresponds to values of x0 such that θu(x0) ≡ 0 mod π. Thus,
counting the zeros of a solution u to the regular Sturm-Liouville problem can be transformed
into the counting problem of how many times the θu passes the vertical axis. Moreover,
BCa(u) = cosαu(a)−sinαp(a)u′(a) = 0 if and only if θu(a) ≡ α mod π. Similarly, BCb(u) =
0 holds if and only if θu(b) ≡ β mod π.
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Take ua(x;λ) to be solution to the eigenvalue equation Lu(·;λ) = λu(·;λ) with initial
value ua(a;λ) = sinα, p(a)u′a(a;λ) = cosα. Put θa(x;λ) := θua(·;λ)(x). Fix θa(a;λ) = α with
α ∈ [0, π), then ua(·;λ) is an eigenfunction if and only if θa(b;λ) ≡ β mod π.
Here is a way to visualize the idea of our method, though very heuristic.

However, θa is not linear, so we need to make our idea rigorously make sense. Now we
derive the ODE for θa. Combining the following three formulas

0 = −(pu′)′ + qu− λru,

pu′ + iu = ρue
iθu ,

(pu′)′ + iu′ = ρ′ue
iθu + iρuθ

′
ue
iθu ,

we have

(−λr + q)u+ iu′

ρu
e−iθu = (−λr + q) sin(θu) + i

1

p
cos(θu)e

−iθu =
ρ′u
ρu

+ iθ′u.

By taking the imaginary part, we have

θ′u = (λr − q) sin2 θu +
1

p
cos2 θu, (1.5)

which is the ODE satisfied by θu corresponding to a solution u of the eigenvalue problem.

Theorem 1.32 (Comparison for (1.5)). Consider θ0, θ1 solving (1.5) with coefficients
p0, q0, r0, λ0 and p1, q1, r1, λ1 respectively under the regular Sturm-Liouville assumptions.
Suppose

1

p0
≤ 1

p1
( ⇐⇒ p1 ≤ p0) and λ0r0 − q0 ≤ λ1r1 − q1,

then

(1) if θ0(x0) ≤ θ1(x0), then for all x ∈ [x0, b], we have θ0(x) ≤ θ1(x);
(2) if θ0(x1) ≥ θ1(x1), then for all x ∈ [a, x1], we have θ0(x) ≥ θ1(x);
(3) if θ0(x0) = θ1(x0) and θ0(x1) = θ1(x1) for a ≤ x0 ≤ x1 ≤ b, then there is rigidity, that

is, p0 = p1 and λ0r0 − q0 = λ1r1 − q1 on [x0, x1].

The key tool to prove Theorem 1.32 is to set up some ODE comparisons. This is basically
the idea behind weak maximum principle, but here you are just concerned with first order
ODEs.

Lemma 1.33 (Comparison lemma). Let F (t, y) : [a, b]× R → R satisfies

• g′ > F (t, g(t)) on [a, b], a strict supersolution of the ODE;
• f ′ = F (t, f(t)) on [a, b], a solution to the ODE.
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If g(t0) ≥ f(t0) for some t0 ∈ [a, b], then g(t) ≥ f(t) for all t ∈ [t0, b] and if g(t1) ≤ f(t1) for
some t1 ∈ [a, b], then g(t) ≤ f(t) for all t ∈ [a, t1]

Proof. Suppose not, then there exists t∗ such that g(t∗) = f(t∗) and g(t) < f(t) for all t > t∗.
However, g′(t∗) > F (t∗, g(t∗)) = F (t∗, f(t∗)) = f ′(t∗), which is a contradiction.
For the second statement, the result follows from reversing the time. □

Proof of the Theorem 1.32. Let

F (x, φ) = (λ0(x)r0(x)− q0(x)) sin
2 φ+

1

p0(x)
cos2 φ.

• Step 1: First, we assume the inequalities in the assumption are strict,

1

p0
<

1

p1
and λ0r0 − q0 < λ1r1 − q1.

Then {
θ′1 = (λ1r1 − q1) sin

2 θ1 +
1
p0
cos2 θ1 > F (x, θ1(x)),

θ′0 = F (x, θ0(x)),

and the result follows.
• Step 2: Now we eliminate the assumption that inequalities are all strict, and then prove
by approximation. We take (λε1, p

ε
1, q

ε
1, r

ε
1), such that it converges to (λ1, p1, q1, r1) on

[a, b] with 1
pε1

≥ 1
p1
+ ε and λε1r

ε
1− qε1 ≥ λ1r1− q1+ ε. Then by applying the result proved

in the preceding step, we know θ0(x) ≤ θε1(x) on [x0, b] for all ε > 0. By passing to the
limit, the result follows.

• Step 3: The second assertion follows from reversing the time.
• Step 4: By the first two assertions, we know θ0(x) = θ1(x) := θ(x) for all x ∈ [x0, x1].
This implies that

(λ0(x)r0(x)−q0(x)) sin2 θ(x)+
1

p0(x)
cos2 θ(x) = (λ1(x)r1(x)−q1(x)) sin2 θ(x)+

1

p1(x)
cos2 θ(x)

holds for all x ∈ [x0, x1]. The result follows by plugging in any two distinct x’s.

□

Corollary 1.34. θa(x;λ) must be strictly increasing in λ for all x ∈ (a, b].

Proof. Suppose λ0 < λ1, Since θa(a, λ0) = θa(a, λ1), then by Theorem 1.32(1), θa(x, λ0) ≤
θa(x, λ1) and the inequality is strict thanks to Theorem 1.32(3). □

The following lemma tells us θu can only cross a multiple of π from below and hence will
always increase by π between two consecutive zeros.

Lemma 1.35. If θu(x0) = 0, then θ′u(x0) =
1

p(x0)
> 0.

Proof. This follows directly from (1.5). □

Lemma 1.36. The function θa(x;λ) satisfies

lim
λ→−∞

θa(x;λ) = 0,

for all x ∈ (a, b].
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Proof. By Lemma 1.34, the limit exists. Moreover, θa is always positive since it cannot cross
zero from above thanks to Corollary 1.35 and we have θa(a) ∈ [0, π).

Fix x0 ∈ (a, b], ε > 0, put Θ(x) = α− (α− ε) x−a
x0−a . We want to show

Θ′ > (λr − q) sin2Θ+
1

p
cos2Θ

on [a, x0]. Assuming this claim, by comparison lemma, Θ is a supersolution such that
Θ(a) = θa(a), which implies θa(x;λ) ≤ Θ(x) on [a, x0]. In particular, θa(x0;λ) ≤ ε. Hence,
lim supλ→−∞ θa(x0;λ) = 0 and therefore limλ→−∞ θa(x0;λ) = 0.

Proof of claim: Since Θ ≥ ε, sin2Θ ≥ Cε2. Let λ be sufficiently negative such that
(λr − q) sin2Θ ≤ A − 1

p
for some A ∈ R to be determined. Since Θ′ = −(α − ε), the claim

holds if A − 1
p
+ 1

p
cos2Θ ≤ A is less than −(α − ε), and then choosing A = −α would

work. □

Now we are armed with all the tools needed to prove the Sturm oscillation theorem.

Proof of Theorem 1.31. By Lemma 1.36, as λ→ −∞, θa(b;λ) → 0. Thanks to Lemma 1.34,
and the existence of eigenvalues, by increasing λ, the minimal λ such that θa(b, λ0) = β0
shall be the first eigenvalue λ = λ0, , where β0 ≡ β mod π and β0 ∈ (0, π]. Since β0 ∈ (0, π],
θa(·, λ0) stays in between (0, π) on (a, b], which has no zeros.

Increasing λ again until θa(b;λ) = β0 + π, for some λ = λ1, which shall be the second
eigenvalue.

By performing this argument repeatedly, the theorem follows. □

1.5. Floquet theory and Sturm Liouville problems with periodic coefficients. We
study the same operator L with p, q, r, p′ ∈ C1(Ī;R) with p, r > 0 on Ī, where I = (0, l).
Moreover, we require that p, q, r are l-periodic. There are two naturally associated problems.
One is the periodic boundary value problem:{

Lu = λu,

u is periodic with period l,
(1.6)

and the other is the problem on (−∞,∞) with periodic coefficients. We can see later that
the first one can be used to study the second.

The typical example of a periodic boundary value problem is L = − d2

dx2
with l = 2π. The

solution will be λ = n and en = sinnx, cosnx.

1.5.1. Floquet theory. This is the structure of solutions to linear ODEs on (−∞,∞) with
periodic coefficients. In this part, we consider

y⃗ ′ = A(x)y⃗, (1.7)

where y⃗ ∈ Rn, A : R → Rn×n has period l, that is, A(x) = A(x+ l).
Note that in view of the case A = const ̸= 0, we need to allow exponential growth or

decay of solutions. We will see in a moment that Floquet’s theorem tells us once we factor
out such exponential behaviors out, the solution is periodic.
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Definition 1.37. We say Π(x, x0) is a principal matrix solution to the problem (1.7) (at
x0) if it satisfies

d

dx
Π(x, x0) = A(x)Π(x, x0), Π(x0, x0) = I, (1.8)

which is uniquely defined thanks to the fundamental theorem of ODEs.

For each y⃗0 ∈ Rn, y⃗ = Π(x, x0)y⃗0 is the solution to (1.7) with the initial value y⃗(x0) = y⃗0.

Lemma 1.38. The principal matrix solution satisfies

Π(x, x1)Π(x1, x0) = Π(x, x0). (1.9)

In particular, Π(x1, x0)
−1 = Π(x0, x1).

Proof. Note that both side of (1.9) solves the ODE in (1.8) and coincide at x = x1. □

By periodicity of A, we have Π(x + l, x0 + l) = Π(x, x0), which suggests the key to
understand dynamics is the principal solution starting at x0 and evaluated after l, that is
Π(x0 + l, x0) :=Mx0 .

Definition 1.39. The matrix Mx0 := Π(x0 + l, x0) is called the monodromy matrix for
(1.7).

Note that if Mx0 = Π(x0 + l, x0) = I, then

Π(x+ l, x0) = Π(x+ l, x0 + l)Π(x0 + l, x0) = Π(x, x0)

and hence the solutions to (1.7) will be periodic. But as we mentioned above, this fails to
hold in one-dimension with constant matrix A. Fortunately, we have

Π(x0+kl, x0) = Π(x0+kl, x0+(k−1)l)Π(x0+(k−1)l, x0) =Mx0Π(x0+(k−1)l, x0) = · · · =Mk
x0

for any integer k. Thus Π(x, x0) exhibits an exponential behavior if we move on by one
period in each step.

So we want to find P (x, x0) such that P (x0, x0) = I and P (x0 + l, x0) = M−1
x0

Π(x, x0).
Heuristically, P (x, x0) is the matrix we expect after factoring out the exponential behavior
of Π(x, x0).

We want to find Qx0 such thatMx0 = exp (lQx0) and define P (x, x0) = Π(x, x0)e
−(x−x0)Qx0 .

If so, then P will be l-periodic, which is because

P (x+ l, x0) =Π(x+ l, x0)e
−(x+l−x0)Qx0 = Π(x+ l, x0 + l)Π(x0 + l, x0)e

−(x+l−x0)Qx0

=Π(x+ l, x0 + l)Mx0e
−lQx0e−(x−x0)Qx0 = Π(x+ l, x0 + l)e−(x−x0)Qx0 = P (x, x0).

It remains to find Qx0 , which heuristically the log of Mx0 . Thanks to (1.9), Mx0 has no
zero eigenvalues.

Using the Jordan canonical form, logMx0 is well-defined. A fancy way to do this is
holomorphic functional calculus. A more hands-on way to do this is using the series

log(1 + x) = x− 1

2
x2 +

1

3
x2 − · · · .
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Without loss of generality, we assume Mx0 only has one Jordan block, Mx0 ∼ (α0I + N).
Then log(αI +N) = logα + log

(
I + 1

α
N
)
can be defined using series expansion, where the

sequence is finite since N is nilpotent.
Now we can conclude by the following theorem.

Theorem 1.40 (Floquet’s theorem). Suppose A(·) is l-periodic, then the principal matrix
solution has the form Π(x, x0) = P (x, x0)e

l(x−x0)Qx0 , where P (·, x0) is also l-periodic and
P (x0, x0) = I.

From the characterization above, one only need to focus on Qx0 to see whether it is
bounded. Using this, we can formulate the question of stability of solutions to (1.7), using
Qx0 , or equivalently Mx0 .

Lemma 1.41. Mx1 and Mx2 are similar for all x1, x2.

Proof. We write

Mx0 = Π(x0 + l, x0) = Π(x0 + l, x1 + l)Π(x1 + l, x1)Π(x1, x0)

= Π(x0, x1)Mx1Π(x1, x0) = Π(x1, x0)
−1Mx1Π(x1, x0).

□

Thus, the eigenvalues of Mx0 are independent of the choice of x0 and the same holds for
the eigenvalues of Qx0 .

Definition 1.42. The Floquet multipliers ρj are defined as eigenvalues of Mx0, and the
Floquet exponents rj are defined as eigenvalues of Qx0 with ρj = elrj .

Definition 1.43. A linear system is called stable to the future if all solutions remain
bounded as t→ +∞.

Theorem 1.44. The system (1.7) is stable to the future if and only if |ρj| ≤ 1 (Re(rj) ≤ 0)
and the Jordan blocks of Mx0 corresponding to |ρj| = 1 (Re(rj) ≤ 0) has no nilpotent part.
Likewise, to get the characterization for backward stable, you just need to replace ≤ by ≥.

Proof. By Floquet’s theorem, (1.7) is stable to the future if and only if el(x−x0)Qx0 y⃗0 is stable
to the future for all y⃗0. Since for any generalized eigenvectors of Qx0 , it is bounded for all
x > x0 respectively, then we know the requirements for the eigenvalues of Qx0 are as in the
statement of the theorem. □

1.5.2. Sturm-Liouville problem with periodic coefficients. Now we specialize to Sturm-Liouville
problem with periodic coefficients (1.10). Our goal is to determine the set

{λ ∈ R : Lu = λu is stable}.
And we will see in the following weeks that this set is somehow equal to Spec(L) on
L2(−∞,∞).

Our set-up is as follows. The eigenvalue equation Lu = zu is equivalent to(
u
pu′

)′

=

(
0 1

p

zr − q 0

)(
u
pu′

)
:= A(x)

(
u
pu′

)
(1.10)
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and we take x0 = 0. The corresponding principal matrix solution is given by

Π(x, 0; z) =

(
c(x; z) s(x; z)
pc′(x; z) ps′(x; z)

)
,

where c, s are the solution to{
Lc = zc, c(0) = 1, pc′(0) = 0,

Ls = zs, s(0) = 0, ps′(0) = 1.

Here we use the notation c, s to denote since they are initials of cos, sin.
With a slight abuse of notation, we denote the monodromy matrix by

M(z) := Π(l, 0; z) =

(
c(l; z) s(l; z)
pc′(l; z) ps′(l; z)

)
.

We are interested in the two eigenvalues of M(z). Here’s an observation that detM(z) = 1,
which follows from the property of modified Wronskian, Corollary 1.20, that

detM(z) = det

(
c(l; z) s(l; z)
pc′(l; z) ps′(l; z)

)
= Wl(c, s) = W0(c, s) = 1. (1.11)

Definition 1.45. The Floquet discriminant is defined by ∆(z) = trM(z)
2

. Then the Floquet

multipliers are given as ρ±(z) = ∆(z)±
√

∆(z)2 − 1.

Definition 1.46. The stability set is given by

Σ = {λ ∈ R : |∆(λ)| ≤ 1}.

Lemma 1.47. The stability set Σ indeed characterizes the stability of (1.10). More precisely,

Σ = {λ ∈ R : (1.10) is forward and backward stable}.

Proof. For λ real, ∆(λ) is real, and then

ρ± =


∆(λ)± i

√
1−∆(λ)2, |∆(λ)| < 1,

∆(λ), ∆(λ) = ±1,

∆(λ)±
√
∆(λ)2 − 1, |∆(λ)| > 1.

(1.12)

Now we apply the characterization for stability in Theorem 1.44 and hence if |∆(λ)| < 1,
then |ρ±| = 1 implies (1.10) is forward and backward stable while if |∆(λ)| > 1, then
|ρ+| > 1, |ρ−| < 1, implies (1.10) is forward and backward unstable. □

Our goal is to study the stability set Σ. The basic approach is to start from λ = −∞
and study ∆(λ) as λ → ∞. We claim that if λ ∈ ∂Σ, that is, |∆(λ)| = 1, then λ is an
eigenvalue for Sturm-Liouville problem associated with L for periodic (∆(λ) = 1) functions
or anti-periodic (∆(λ) = −1) functions, that is, f(x+ l) = −f(x).

Recall that ∆(λ) = ±1 implies that M(λ) has eigenvalues ±1. If ∆(λ) = 1, then there
exists a solution such that(

u
pu′

)
(l) =M(λ)

(
u
pu′

)
(0) =

(
u
pu′

)
(0),
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which is exactly the periodic condition. Likewise, if ∆(λ) = −1, then there exists a solution
such that (

u
pu′

)
(l) =M(λ)

(
u
pu′

)
(0) = −

(
u
pu′

)
(0).

More precisely, we define the periodic (antiperiodic) H2 functions as

H2
p,± := {f ∈ H2(0, l) : ∃f̃ ∈ H2

loc(R), f̃ : R → R, f̃(x+ l) = ±f̃(x),

p(x+ l)f̃ ′(x+ l) = ±p(x)f̃ ′(x) s.t. f̃ |(0,l) = f}
We construct L± : D(L±) → L2(0, l) with D(L±) = H2

p,±(0, l), such that L±f = Lf .
Lemma 1.48. ∆(λ) = ±1 if and only if λ is an eigenvalue for L± and there exists a sequence
of real eigenvalues with no finite accumulation point.

Proof. Obviously, L± is symmetric on D(L±). Note that by constructing the Green’s func-
tions as in Section 1.2, (see [12, Chapter 5, Problem 5.33]) one can show that L± has compact
resolvent for z real and sufficiently negative, then L± has countably many eigenvalues for
L+ : λ0 ≤ λ1 ≤ λ2 ≤ . . . and for L− : µ0 ≤ µ1 ≤ µ2 ≤ . . . that accumulates at ∞. □

Theorem 1.49. We have λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < . . . and Σ = [λ0, µ0] ∪
[µ1, λ1] ∪ [λ2, µ2] ∪ . . ..
To prove this theorem, we make the following claims :

(1) If λ is sufficiently negative, then ∆(λ) > 1.
(2) If λ ∈ ΣInt, that is |∆(λ)| < 1, then d

dλ
∆(λ) ̸= 0.

(3) If λ ∈ ∂Σ, that is, |∆(λ)| = 1, then either d
dλ
∆(λ) ̸= 0 or ∆(λ) d

2

dλ2
∆(λ) < 0, d

dλ
∆(λ) = 0.

Given these claims, this theorem follows.

Proof of Theorem 1.49. It’s a direct but somewhat tedious proof. It’s easy to see the idea
and how to make it rigorous from the picture below.

□

For the rest of this subsection, we prove these three claims.
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Theorem 1.50 (Claim 1). If λ is sufficiently negative, then ∆(λ) > 1.

Proof.

∆(λ) =
1

2
trM =

1

2
(c(l, λ) + p(l)s′(l, λ))

Take λ sufficiently negative so that λr − q < 0 on [c, l], since (pu′)′ = −(λr − q)u.
We claim that if u(0) ≥ 0, pu′(0) ≥ 0, then

u(x) ≥ 0, pu′(x) ≥ 0, (pu′)′(x) ≥ 0,∀x > 0,

which can be proved using continuous induction or proved by contradiction. If at least
one in the condition is strict inequality, then all the conclusions are strict. In particular,
c(x;λ) > c(0;λ) = 1, p(x)s′(x;λ) > p(0)s(0;λ) = 1, which implies that ∆(λ) > 1. □

We write u⃗ =

(
u
pu′

)
, then M(λ) =

(
c⃗(l;λ) s⃗(l;λ)

)
. Note ∆̇(λ) = 1

2
(ċ(l;λ) + pṡ(l;λ))

and 
(L − λ)ċ = c,

ċ(0;λ) = 0,

pċ′(0;λ) = 0,


(L − λ)ṡ = s,

ṡ(0;λ) = 0,

pṡ′(0;λ) = 0.

A key intermediate goal is to compute ∆̇(λ) and hence we need to compute ċ(l;λ) and
ṡ(l;λ). The idea is to use the fact below. For any u⃗, v⃗, w⃗ such that {u⃗, v⃗} is linearly
independent at x = l, then

w⃗ =
Wl(w⃗, v⃗)

Wl(u⃗, v⃗)
u⃗+

Wl(w⃗, u⃗)

Wl(v⃗, u⃗)
v⃗, (1.13)

where the coefficients in the equation above are obtained by pairing w⃗ with u⃗ and v⃗ respec-
tively and using the property that Wl(u⃗, u⃗) = Wl(v⃗, v⃗) = 0. Note that the Wronskian of two
solutions u, v to L − λ = 0 are easily computed as follows∫ l

0

(L − λ)uv dx−
∫ l

0

u(L − λ)v dx = Wl(u, v)−W0(u, v).

The obvious choice of {u, v} is {c, s}, which will work but it is tedious to compute. We need
to complete the square in some middle step. However, there is a better choice to let {u, v}
to be the eigenvectors of M(λ). Let (

1
m±(λ)

)
be eigenvectors of M(λ) corresponding to ρ±, then

M − ρ±I =

(
c(l;λ)− ρ±(λ) s(l;λ)
p(l)c′(l;λ) p(l)s′(l;λ)− ρ±(λ)

)
and hence the Weyl-Titchmarsh functions are

m±(λ) = −c(l;λ)− ρ±(λ)

s(l;λ)
= − p(l)c′(l;λ)

p(l)s′(l;λ)− ρ±(λ)
. (1.14)
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Then we say

u±(x;λ) = c(x, λ) +m±(λ)s(x;λ) (1.15)

are the Floquet solutions. Let {u, v} = {u+, u−} and note that(
u±(l;λ)

p(l)u′±(l;λ)

)
=M(λ)

(
u±(0;λ)

p(0)u′±(l;λ)

)
=M(λ)

(
1

m±(λ)

)
= ρ±

(
1

m±(λ)

)
(1.16)

and (L − λ)u± = 0.

Lemma 1.51. W (u+(·;λ), u−(·;λ)) = −2
√

∆(λ)2−1

s(l;λ)
.

Proof. We write

W0(u+, u−) = det

(
1 1
m+ m−

)
= m− −m+ =

ρ−(λ)− ρ+(λ)

s(l;λ)
= −

2
√

∆(λ)2 − 1

s(l;λ)
.

□

Lemma 1.52. If λ ∈ R satisfies s(l;λ) = 0, then |∆(λ)| ≥ 1.

Proof. If s(l;λ) = 0, then M(λ) is upper triangular and hence has real eigenvalues since
c(l;λ), ps′(l;λ) are real. Hence, by (1.12), |∆(λ)| ≥ 1. □

Theorem 1.53 (Claim 2). If λ ∈ ΣInt, that is |∆(λ)| < 1, then d
dλ
∆(λ) ̸= 0.

Proof. Now we compute

Wl(ċ, u±)−W0(ċ, u±) =

∫ l

0

(L − λ)ċu±r dx−
∫
ċ (L − λ)u±r dx.

Thanks to (L − λ)u± = 0, ċ(0) = 0 and (L − λ)ċ = c, we have

Wl(ċ, u±) =

∫ l

0

cu±r dx, Wl(ṡ, u±) =

∫ l

0

su±r dx,

and finally

⃗̇c(l;λ) =

(
ċ(l;λ)

p(l)ċ(l;λ)

)
=

−s(l;λ)
2
√
∆2 − 1

(∫ l

0

cu−r

(
ρ+

ρ+m+

)
−
∫ l

0

cu+r

(
ρ−

ρ−m−

))
,

⃗̇s(l;λ) =

(
ṡ(l;λ)

p(l)ṡ(l;λ)

)
=

−s(l;λ)
2
√
∆2 − 1

(∫ l

0

su−r

(
ρ+

ρ+m+

)
−
∫ l

0

su+r

(
ρ−

ρ−m−

))
.
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Hence,

∆̇(λ) =
1

2

−s(l;λ)
2
√
∆2 − 1

(ċ(l;λ) + p(l)ṡ(l;λ))

=
1

2

−s(l;λ)
2
√
∆2 − 1

(∫ l

0

cu−rρ+ − cu+rρ− + su−rρ+m+ − su+rρ−m−

)
=
1

2

−s(l;λ)
2
√
∆2 − 1

(∫ l

0

ρ+(c+m+s)u−r − ρ−(c+m−s)u+r dx

)
=
1

2

−s(l;λ)
2
√
∆2 − 1

∫ l

0

(ρ+ − ρ−)u+u−r dx = −1

2
s(l;λ)

∫ l

0

u+u−r dx.

(1.17)

Note that if λ ∈ Σint, then (1.12) implies ρ+(λ) = ρ−(λ) and u+(λ) = u−(λ). Thus,∫
u+u−r dx =

∫ l

0

|u+|2r dx > 0.

Moreover, s(l;λ) ̸= 0 if |∆(λ)| < 1, which completes the proof. □

Theorem 1.54 (Claim 3). If λ ∈ ∂Σ, that is, |∆(λ)| = 1, then either

(1) d
dλ
∆(λ) ̸= 0;

(2) ∆(λ) d
2

dλ2
∆(λ) < 0, d

dλ
∆(λ) = 0.

Proof. Recall that

∆̇(λ) =− 1

2
s(l;λ)

∫ l

0

(c(x) +m+s(x)) (c(x) +m−s(x)) r dx

=− 1

2
s(l;λ)

∫ l

0

(
c(x)2 + (m+ +m−)s(x) +m+m−s(x)

2
)
r dx

By (1.12) and (1.14), we have

m+ +m− =
(ρ+(λ) + ρ−(λ))− 2c(l;λ)

s(l;λ)
=

2∆(λ)− 2c(l;λ)

s(l;λ)
=
p(l)s′(l;λ)− c(l;λ)

s(l;λ)

and

m+m− =
(ρ+(λ)− c(l;λ))(ρ−(λ)− c(l;λ))

s(l;λ)2
=

1− (c(l;λ) + p(l)s′(l;λ))c(l;λ) + c(l;λ)2

s(l;λ)2

=
1− p(l)s′(l;λ)c(l;λ)

s(l;λ)2
= −p(l)c

′(l;λ)

s(l;λ)
,

where we use (1.11) in the last step. Now

∆̇(λ) = −1

2

∫ l

0

(
s(l;λ)c(x;λ)2 + (p(l)s′(l;λ)− c(l;λ)) c(x;λ)s(x;λ)− p(l)c′(l;λ)s(x;λ)2

)
r(x) dx.

(1.18)
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Note that in the preceding derivation of (1.18), we didn’t use the fact λ ∈ ∂Σ and hence
we can differentiate this formula with respect to λ. On the other hand, we claim that for
λ = E ∈ ∂Σ, if ∆̇(E) = 0, then M(E) = ∆(E)I = ±I.

From (1.12), ρ+(E) = ρ−(E) = ±1. Then the claim is true by writing

∆̇(E) = −1

2
s(l;E)

∫ l

0

u+u−r dx = −1

2
s(l;E)

∫ l

0

|u±|2r(x) dx

thanks to (1.16) and (1.17), which implies s(l;E) = 0. Hence, M(E) = ∆(E)I = ±I and in
particular,

s(l;E) = 0, p(l)c′(l;E) = 0, p(l)s′(l;E) = c(l;E) = ±1. (1.19)

Now we differentiate (1.18) and evaluating at λ = E ∈ ∂Σ, using (1.19), we get

∆̈(λ) = −1

2

∫ l

0

(
ṡ(l)c(x;λ)2 + (p(l)ṡ′(l)− ċ(l)) c(x;λ)s(x;λ)− p(l)ċ′(l)s(x)2

)
r(x) dx.

(1.20)
By (1.3),

Wl(ṡ, s) =

∫ l

0

(s+ Eṡ)sr dx−
∫ l

0

ṡEs dx =

∫ l

0

s(x)2r(x) dx

On the other hand, by (1.19),

Wl(ṡ, s) = p(l) (ṡ(l;E)s′(l;E)− s(l;E)ṡ′(l;E)) = ±ṡ(l;E),
that is,

ṡ(l;E) = ±
∫ l

0

s(x)2r(x) dx.

Similarly, we have

p(l)ṡ′(l) = −ċ(l) = ∓
∫ l

0

c(x)s(x)r(x) dx, −p(l)ċ′(l) = ±
∫ l

0

c(x)2r(x) dx.

By plugging this into (1.20), we get

∆∆̈ =

(∫ l

0

c(x)s(x)r(x) dx

)2

−
(∫ l

0

c(x)2r(x) dx

)(∫ l

0

s(x)2r(x) dx

)
,

which is strictly negative by the Cauchy-Schwarz inequality.
□
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2. Singular Sturm-Liouville problems

Let L = 1
r

(
− d
dx
p d
dx

+ q
)
on I, where either I is finite but p, q, r, p′ are singular or I is

infinite.

2.1. Unbounded operators. In this subsection, we assume H is a complex Hilbert space
H. An unbounded operator with the domain is (A,D(A)) such that D(A) ⊂ H, which is
assumed to be dense with A : D(A) → H.
We say B is an extension of A if A ⊂ B, that is, D(B) ⊃ D(A) and B|D(A) = A. Given

an unbounded operator A, its graph is defined as

Γ(A) := {(u,Au) ∈ H ×H : u ∈ D(A)}.
Then we say A is closed if Γ(A) is a closed set and A is closable if there exists a closed
extension of A. If A is closable, there exists a smallest closed extension Ā, called the closure
of A.

Lemma 2.1. A is closable if and only if Γ(A) is a graph of an operator. In particular,

Γ(A) = Γ(Ā).

Definition 2.2 (Adjoint of A). Given A,D(A), define A∗,D(A∗) as

D(A∗) := {u : ∃C > 0 such that |⟨u,Av⟩| ≤ C∥v∥ for all v ∈ D(A)},
Then for u ∈ D(A∗), A∗u is the unique element obtained by Riesz representation theorem.
In particular, ⟨u,Av⟩ = ⟨A∗u, v⟩ for all u ∈ D(A∗), v ∈ D(A).

We say A is symmetric if for all u, v ∈ D(A), ⟨u,Av⟩ = ⟨Au, v⟩. And we say A is self-
adjoint if A = A∗, or equivalently, A is symmetric and D(A) = D(A∗). An equivalent
definition for symmetric operator is that A ⊂ A∗.

Lemma 2.3. A∗ is closed. In fact, Γ(A∗) = (JΓ(A))⊥.

Proof. On H × H, the inner product is just ⟨(u, v), (w, z)⟩ = ⟨u,w⟩ + ⟨v, z⟩. Note that
(u, v) ∈ Γ(A∗) holds if and only if ⟨u,Aw⟩ = ⟨v, w⟩ for all w ∈ D(A), which is equivalent to
⟨(u, v), (−Aw,w)⟩ = 0 for all w ∈ D(A). Define J : H ×H → H ×H as (w, z) 7→ (−z, w),
then we know that Γ(A∗) = (JΓ(A))⊥, which is closed. □

In the proof of the following lemma, the following basic fact for arbirary subspace W ⊂ H
that

W⊥⊥ = W (2.1)

will be applied several times.

Lemma 2.4. A is closable if and only if D(A∗) is dense. In fact, in this case

Γ(Ā) = (JΓ(A∗))⊥ (2.2)

and Ā = A∗∗.

Proof. If D(A∗) is dense, then A∗∗ is well-defined. And A∗∗ ⊃ A.

Thanks to Lemma 2.3, (2.1) and J2 = 1, (JΓ(A∗))⊥ = Γ(A). If D(A∗) is not dense, then

there exists 0 ̸= u ∈ D(A∗)⊥. However, this implies (0, u) ∈ (JΓ(A∗))⊥ = Γ(A), which is
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impossible for Γ(A) to be a graph of any linear operator. Hence, D(A∗) is dense provided A
is closable.

Using Lemma 2.3 again, we get

Γ(A∗∗) = (JΓ(A∗))⊥ =
(
J (JΓ(A))⊥

)⊥
=
(
J2
(
Γ(A)⊥

))
= Γ(A)⊥⊥ = Γ(A),

and hence Ā = A∗∗. □

Example 2.5 (A non-trivial example of non-closed operators). Let v ∈ Lp([0, 1]), 1 < p < 2
and v /∈ L2([0, 1]). Then for 0 ̸= v0 ∈ L2([0, 1]), we define Au := ⟨u, v⟩v0 with domain
D(A) = Lp

′
([0, 1]) ⊂ L2([0, 1]).

For u ∈ D(A∗), u need to satisfy

|⟨u,Aw⟩| = |⟨u, v0⟩⟨w, v⟩| ≤ Cu∥w∥
for all w ∈ D(A), which is true only if u ⊥ v0. That is to say, D(A∗) = {v0}⊥, which is not
dense obviously. Hence, A is not closable thanks to Lemma 2.4.

Theorem 2.6 (Basic criterion for self-adjointness). If A is a symmetric unbounded oper-
ator, then for any fixed z ∈ C \ R, the following are equivalent:

• A is self-adjoint;
• ker(A∗ − z) = ker(A∗ − z̄) = {0};
• Ran(A− z) = Ran(A− z̄) = H.

Proof. • If A is self-adjoint, then for z = x+ iy, y ̸= 0,

∥(A∗ − z)u∥2 = ∥(A∗ − x)u∥2 + y2∥u∥2 ≥ y2∥u∥2, (2.3)

where we use the self-adjointness of A∗−x in the first step. Then the second one holds.
• For (2) ⇒ (3), we use the fact Ran(A− z) = ker(A∗−z̄)⊥. We claim that if ∥(A−z)u∥ ≥
ε∥u∥ for some ε > 0 and A − z is closed, then Ran(A − z) is closed. This fact follows
from the coercivity condition that if {(A− z)un} ⊂ Ran(A− z) is Cauchy, then {un} is
Cauchy and hence Ran(A− z) is closed.

In fact, the assumption in the claim holds since we can show

∥(A− z)u∥2 ≥ (Imz)2∥u∥2, (2.4)

by an analogous argument as (2.3) due to symmetry of A.
• For (3) ⇒ (1), we want to show u ∈ D(A) for any u ∈ D(A∗). For w ∈ D(A) ⊂ D(A∗),
there exists u ∈ D(A) such that (A∗−z)w = (A−z)u = (A∗−z)u due to the assumption
on the range, which implies w − u ∈ ker(A∗ − z) = Ran(A − z̄)⊥ = {0}. Therefore,
u = w ∈ D(A).

□

Definition 2.7. For a closed operator, the resolvent set of A is defined as

ρ(A) = {z ∈ C : A− z is bijective D(A) → H},
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Then the resolvent of A at z ∈ ρ(A), RA(z) := (A − z)−1, is a linear operator H → H,
which is bounded by the closed graph theorem. If A − z fail to be injective, then we say z
is an eigenvalue, then we say z is in the point spectrum

σp(A) := {z ∈ C : z is an eigenvalue}.
The spectrum of A is defined as σ(A) := C \ ρ(A).

Corollary 2.8. If A is symmetric, then A is self-adjoint if and only if σ(A) ⊂ R. Moreover,
∥RA(z)∥ ≤ 1

|Imz| .

Proof. The first part follows from Theorem 2.6 directly. The second part follows from (2.4).
□

Example 2.9. Suppose H = L2([0, 2π]) and A = 1
i
d
dx
, D(A) = C∞

c ((0, 2π)), then A∗u =
1
i
d
dx
u with D(A∗) = H1([0, 2π]). Moreover, σ(A∗) = C since u = ez·x ∈ D(A∗) solves

(A− 1
i
z)u = 0.

2.2. Spectral theory for unbounded operators. Now we would follow [13, Chapter 3]
to develop the Spectral theory and throughout this subsection, we shall develop the Spectral
theory of unbounded (linear) operators on a complex separable Hilbert space H.

For the finite dimensional case, for any symmetric matrix A, there exists a unitary matrix
U such that A = U−1DU with D diagonal with real entries. The diagonal matrix in finite
dimensional case can be viewed as

u : {1, . . . , n} → C,
which can be generalized to the infinite dimensional case by a function u : X → C given by
the multiplication by a(x).
The following example is taken from [13, Chapter 2.2, 2.4].

Proposition 2.10. For H = L2(X, dµ), a : X → R is measurable and a is finite µ-a.e. on
X. Then set Mau = a(x)u(x) with D(Ma) := {u ∈ L2(X, dµ) : au ∈ L2(X, dµ)}. Then Ma

is self-adjoint and σ(Ma) equals the essential range of a, denoted by essran(a).

Proof. By definition, it is obvious that Ma is symmetric. In particular, D(Ma) ⊂ D(M∗
a ).

Now we want to show the reverse inclusion. If h ∈ D(M∗
a ), then there is some g ∈ L2(X, dµ)

such that ∫
h(x)a(x)f(x) dµ(x) =

∫
g(x)f(x) dµ(x),∀f ∈ D(Ma),

and thus ∫
(h(x)a(x)− g(x))f(x) dµ(x) = 0,∀f ∈ D(Ma).

If we take f(x) = f̃(x)χΩn(x) in the equation above, where f̃ ∈ L2(X, dµ) and χΩn(x) is the
characteristic function for Ωn = {x ∈ X : |a(x)| ≤ n}, then we get

χΩn(x)(h(x)a(x)− g(x)) = 0 ∈ L2(X, dµ)

since f̃ ∈ L2(X, dµ) is arbitrary. Moreover, since n is also arbitrary, we know h(x)a(x) =
g(x) ∈ L2(X, dµ), which implies h ∈ D(Ma). This completes the proof of self-adjointness.
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It is obvious that

(Ma−z)−1f(x) =
1

a(x)− z
f(x), D((Ma−z)−1) = {f ∈ L2(X, dµ) :

1

a(x)− z
f(x) ∈ L2(X, dµ)}

whenever (Ma− z)−1 is bounded. Note that ∥(Ma− z)−1∥ =

∥∥∥∥ 1

a(x)− z

∥∥∥∥
L∞

implies that the

resolvent set is given by

ρ(Ma) = {z ∈ C : ∃ε > 0 such that µ({x : |a(x)− z| < ε}) = 0},
and hence

σ(Ma) = {z ∈ C : ∀ε > 0, µ({x : |a(x)− z| < ε}) > 0} = essran(a).

□

Remark 2.11. Unless a is bounded, Ma is unbounded.

Theorem 2.12 (Spectral theorem - multiplication version). Let A : H → H be a self-
adjoint operator, there exists some measure space (X,µ) and an unitary operator U : H →
L2(X, dµ) such that there exists a function a : X → R measurable and finite µ-a.e. as in
the preceding proposition such that A = U−1MaU .

This theorem gives ways to make sense of

f(A) = U−1Mf◦aU.

Example 2.13. For A =
1

i

d

dx
, H = L2(−∞,∞), then

F : L2((−∞,∞), dx) → L2((−∞,∞), dξ/2π)

is a unitary operator defined as

Fu(x) =
∫
u(x)e−ixξ dx, u ∈ S (R).

Then A = F−1MξF .

A drawback of this version of spectral theorem is that it is too abstract. The following
alternative version is called the functional calculus version, which can be used to make sense

of eitA, cos t
√
A,

sin t
√
A√

A
, e−tA. It is more useful in our setting.

Theorem 2.14 (Spectral theorem - functional calculus version). Let A : H → H be a
self-adjoint operator. We denote all the Borel measurable, bounded functions by Bb. Then
there exists a unique FA given by

FA : Bb → L(H), f 7→ f(A) = FA(f)

such that

• FA is a homomorphism as C∗-algebras, that is, FA(fg) = FA(f)FA(g) and FA(f̄) =

FA(f);
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• ∥FA(f)∥H→H ≤ ∥f∥L∞;
• if fn → f pointwisely and ∥fn∥L∞ ≤ M , then for all u ∈ H, FA(fn)u → FA(f)u,
which is called the strong convergence or convergence in strong operator topology;

• if fn ∈ Bb satisfies fn(x) → x pointwisely and |fn(x)| ≤ |x| for all n, x, then for all
u ∈ D(A), FA(fn)u→ Au.

Definition 2.15. Let B be the Borel σ-algebra on R. A projection-valued measure is a
map P : B → L(H) such that

• P is an orthogonal projection, that is, P (Ω)2 = P (Ω), P (Ω)∗ = P (Ω);
• P (R) = id;
• (strong σ-additivity) if Ω = ∪Ωk and Ωn ∩Ωm = ∅ for all n ̸= m, then for all u ∈ H,

P (Ω)u = lim
N→∞

N∑
n=1

P (Ωn)u.

In fact, the operator FA in the preceding theorem can be expressed explicitly by assigning
a projection-valued measure PA such that

FA(f) =

∫
R
f(λ)dPA(λ),

where PA satisfies PA(Ω) = 1Ω(A). Then we can use this projection-valued measure PA to
extend FA to unbounded Borel measurable functions in the following discussion.

For u ∈ H, P : B → L(H) is a projection-valued measure,

µu(Ω) := ⟨u, P (Ω)u⟩
is well-defined as a positive measure thanks to the first property. Given µu, we can construct
u, v ∈ H

µu,v(Ω) = ⟨u, P (Ω)v⟩.
By polarization,

µu,v(Ω) =
1

4

(
µu+v(Ω)− µu−v(Ω) +

1

i
µu+iv(Ω)−

1

i
µu−iv(Ω)

)
.

Given any f ∈ Bb, we can make sense of∫
R
f dµu =: ⟨u,

(∫
f dP

)
u⟩,

and then using polarization to make sense of

⟨u,
(∫

f dP

)
v⟩ :=

∫
R

f dµu,v,

which implies we can define
∫
f dP ∈ L(H) and |

∫
f(λ) dµu,v(λ)| ≤ ∥f∥L∞∥u∥∥v∥. Further-

more, we obtain the following isometric property.

Lemma 2.16. Suppose P is a projection-valued measure, then for all u ∈ H, and f ∈ Bb,

∥
(∫

f dP

)
u∥2 =

∫
|f |2 dµu.



NOTES FOR ORDINARY DIFFERENTIAL EQUATIONS 27

And Theorem 2.14 implies ∥FA(f)u∥2 =
∫
|f |2 dµA,u.

Lemma 2.17. Given an unbounded Borel-measurable function f with

D(FA(f)) = {u ∈ H : f ∈ L2(R, dµ)}
and we can make sense of the functional calculus of unbounded functions as

FA(f)u =

∫
f(λ) dµu(λ) := lim

n→∞
fn(λ) dµu

for fn → f in L2(R, dµ) with fn ∈ Bb.

Theorem 2.18 (Spectral theorem - projection-valued version). Let A : H → H is a self-
adjoint operator, then there exists a unique projection-valued measure PA : B → L(H) such
that

A =

∫
R
λ dPA(λ), D(A) = {u ∈ H :

∫
λ2 dµu,A < +∞}.

In particular, ⟨u,Au⟩ =
∫
λ dµu,A.

Now we can prove the multiplication version of spectral theorem from the projection-valued
measure version.

Given a projection-valued measure P . First, we construct (X,µ) and a unitary operator
U : H → L2(X,µ) and a function a : X → R such that A = U−1MaU . Given u ∈ H,
consider L2(R, dµu) and

H̃u = {(
∫
fdP )u : ∀f ∈ Bb}.

Lemma 2.16 tells us the map

H̃u ∋ (

∫
f dP )u 7→ f ∈ L2(R, dµu)

extends to a unirary map Hu → L2(R, dµu), where Hu := {(
∫
f dP )u : f ∈ L2(R, dµu)}.

If there exists u ∈ H such that Hu = H, then the proof is done and we say u is a cyclic
vector. In general, this does not need to be true and we need to introduce the spectral
bases.

Definition 2.19 (Spectral bases). Suppose H is separable and {un} is a spectral basis if

• ∥un∥ = 1, un ⊥ un′ if n ̸= n′;
• H = ⊕nHun.

Theorem 2.20. For any separable Hilbert space H and a projection-valued measure P ,
there exist a spectral basis.

Proof. We start with a countable basis {ũn} of H and do the Gram-Schmidt process, then
we can assume {ũn} is an orthonormal basis without loss of generality.
The key observation is that if v ⊥ Hu for some u, then the space generated by v, namely

Hv, is orthogonal to Hu. By polarization, Lemma 2.16 implies

⟨(
∫
f dP )u, (

∫
g dP )v⟩ =

∫
f̄ g dµu,v.
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Then v ⊥ Hu implies

⟨(
∫
g dP )v, (

∫
f dP )u⟩ = ⟨v, (

∫
ḡ dP )(

∫
f dP )u⟩ = ⟨v, (

∫
ḡf dP )u⟩ = 0,

and hence Hv ⊥ Hu.
Hence, we can construct a spectral basis by iteration. To be more specific, we choose

u1 = ũ1 and then move on to the first ũj’s which is not in Hu1 . Project this element to H⊥
u1
,

normalize it, and we choose the result to be u2. Proceeding this procedure, we get a set of
spectral vectors {uj} such that span{ũj} ⊂ ⊕jHuj .
Note that Hu is closed since L2 is and ψn = (

∫
fndP )u converges in H if and only if fn

converges in L2 by Lemma 2.16. Hence, H = span{ũj} ⊂ ⊕jHuj . □

Definition 2.21. The minimal cardinality of spectral basis is called the spectral multiplicity
of P .

By the theorem, there exists a unitary map U : H → ⊕nL
2(R, dµun) with a spectral

basis {un}. If P = PA is given by the spectral theorem in the projection-valued form,
then (UAU−1)n =Mλ since

∫
λ dPA = A, where Mλ denotes the multiplication operator on

L2(R, dµun) respectively. Finally, we can combine

⊕nL
2(R, dµn) = L2(

⊔
n

(R, dµn)),

which means that the L2 space is defined on the disjoint union of R’s and assign each R the
measure µn.

Now we give a sketch of proof for the projection-valued measure version. The key step is
to construct the projection-valued measure.

We observe that to every projection-valued measure P we can assign a self-adjoint operator∫
R λ dP . The question is whether we can invert this map. To do this, we consider the
resolvent RA(z) := (A− z)−1 for z ∈ ρ(A). If A is self-adjoint, then thanks to Theorem 2.6,
RA(z) makes sense for any z /∈ R. We write Fu(z) = ⟨u,RA(z)u⟩ when Imz > 0. It

follows from Corollary 2.8 that |Fu(z)| = |⟨u,RA(z)u⟩| ≤ ∥u∥2
Imz

. On the other hand, Fu(z) is
holomorphic on H := {Im(z) > 0} thanks to the expansion of resolvent operator.

Lemma 2.22. Fu(z) is holomorphic on H := {Im(z) > 0}.
Proof. First, by calculating in a formal way of writing RA(z) as

1
A−z , it is easy to check

RA(z)−RA(z
′) = (z − z′)RA(z)RA(z

′), (2.5)

and the argument is in fact rigorous thanks to the commutativity of these operators.
Then one can use this iteratively to get

RA(z) =
n∑
j=0

(z−z0)jRA(z0)
j+1+(z−z0)n+1RA(z0)

n+1RA(z) :=
n∑
j=0

Rn(z)+(z−z0)n+1RA(z0)
n+1RA(z).

For z0 ∈ H fixed, |z − z0| < ∥RA(z0)∥−1, Rn(z) converges to a bounded operator R∞. One
can show that R∞ = RA(z) and this implies that Fu(z) is holomorphic by the convergent
power series expansion. One can consult [13, Chapter 2.4] for details. □
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Moreover, thanks to RA(z)
∗ = RA(z̄) and applying (2.5) in the third step, we have

ImFu(z) =Im⟨u,RA(z)u⟩ =
1

2i
⟨u, (RA(z)−RA(z̄))u⟩

=(Imz)⟨u,RA(z)RA(z̄)u⟩ = (Imz)∥RA(z)u∥2 ≥ 0,

which implies Fu : H → H. Then Fu is a Herglotz-Nevanlinna function. Now the claim is
that there exists a positive measure µ on R such that

Fu(z) = ⟨u,RA(z)u⟩ =
∫
R

1

λ− z
dµ(λ).

Set h(z) = ImFu(z). Note
Im(z)

|λ− z|2
= Im

1

λ− z
, then for z = x+ iy, we have

∫ b

a

h(x+ iy) dx =

∫ b

a

∫
y

(x− λ)2 + y2
dµ(λ) dx =

∫ (∫ b

a

y

(x− λ)2 + y2
dx

)
dµ(λ).

Since

lim
y→0+

(
arctan(

b− λ

y
)− arctan(

a− λ

y
)

)
=


π, λ ∈ (a, b),
π
2
, λ ∈ {a, b},

0, λ ∈ [a, b],

we know

lim
y→0+

∫ b

a

ImFu(x+ iy) dx =
π

2
(µu((a, b)) + µu([a, b])) ,

then we define

µu(λ) =
1

π
lim
δ→0+

lim
y→0+

∫ λ+δ

−∞
ImFu(x+ iy) dx

which is called the Stieltjes inversion formula. The function µu(λ) we get from this formula
is right continuous, and hence the integration with respect to dµu(λ) is well-defined as a
Stieltjes integral. Moreover, polarization gives µφ,ψ(λ) and we can define a projection-valued
measure PA by

⟨φ, PA(Ω)ψ⟩ =
∫
R
χΩ(λ)dµφ,ψ(λ),

which will regenerate A by the uniqueness.
In fact, one can prove an operator-valued version of the Stieltjes inversion formula. We

refer to [13, Chapter 4.1] for details of proof. Let µu(Ω) = ⟨u, PA(Ω)u⟩, Fu = ⟨u,RA(z)u⟩.

Theorem 2.23 (Stone’s formula). Suppose z = x+ iy, then

lim
y→0+

1

π

∫ b

a

1

2i
(RA(z)−RA(z̄)) dx =

1

2
(PA([a, b]) + PA((a, b))) ,

where the limit exists in the strong topology.
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2.3. Singular Sturm-Liouville problems. For I = (a, b),−∞ ≤ a < b ≤ ∞, we have

L =
1

r

(
− d

dx
p
d

dx
+ q

)
with 1

p
, q, r ∈ L1

loc(I) and p, r > 0 almost everywhere on I. Moreover, if a is finite and
1
p
, q, r ∈ L1((a, a + δ)) for some δ > 0, then L is said to be regular at a. Similarly for

b.

Theorem 2.24. Consider {
Lu = f,

u(t0) = η0, p(t0)u
′(t0) = η1

(2.6)

with rf ∈ L1
loc(I) for some t0 ∈ (a, b), then there exists a unique solution u to (2.6) with

regularity u ∈ ACloc(I) and pu′ ∈ ACloc(I), that is, u′, (pu′)′ ∈ L1
loc(I). If in addition,

L is regular at a, then u ∈ AC((a, a + δ)) and pu′ ∈ AC((a, a + δ)), that is, u′, (pu′)′ ∈
L1((a, a+ δ)). Moreover, t0 may be a in this case.

Proof. Integrating
d

dx

(
u
pu′

)
=

(
0 1

p

q 0

)(
u
pu′

)
−
(

0
rf

)
,

we get a Volterra integral equation. Then for any x ∈ I, there exists x ∈ (c, d) such that we
can apply the contraction mapping theorem on the Banach space C([c, d]) and hence we get a
unique solution on C([c, d]). By using the integral equation again, we get u, pu′ ∈ AC([c, d]).
Finally, by uniqueness, u, pu′ ∈ ACloc(I). □

In view of the following lemma, we take H = L2(I, rdx).

Lemma 2.25 (Lagrange’s formula). Suppose [c, d] ⊂ I, we have∫ d

c

ūLv rdx−
∫ d

c

Luv rdx = −Wd[ū, v] +Wc[ū, v]

provided u, v, pu′, pv′ ∈ ACloc(I), where Wx[u, v] = puv′(x)− pu′v(x).

Proof. The proof follows directly from integration by parts, which is in the same spirit as
(1.3). □

But L is not bounded onH, therefore we need to carefully consider the domain of definition
of L. In view of Theorem 2.24, we set

D(L) =
{
u ∈ L2(I; rdx) :

(
u
pu′

)
∈ ACloc(I),Lu ∈ L2(I; rdx)

}
.

The reason why we ask for the ACloc property is that any solution to (2.6) satisfies this
thanks to Theorem 2.24.

Corollary 2.26. If u, v ∈ D(L), then
⟨u,Lv⟩ − ⟨Lu, v⟩ = −Wb[ū, v] +Wa[ū, v].
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In particular, limx→a+ Wx[ū, v] and limx→b− Wx[ū, v] exist and we denote these byWa[ū, v],Wb[ū, v]
respectively for simplicity.

But (L,D(L)) is not even symmetric since the boundary terms would be nonzero in general.
So define

D(Lc) := D(L) ∩ L2
c(I; rdx),

where the subscript c means compact support. Then by Lagrange’s formula, (Lc,D(Lc)) is
symmetric.

Now we study the relation between the operators defined just now and show that the
domains we gave before make them densely defined on H.

Theorem 2.27. Let L0 = Lc, then we have

D(L0) := {u ∈ D(L) : ∀v ∈ D(L),Wb[ū, v] = Wa[ū, v] = 0}, (2.7)

and L = L∗
c = L∗

0. In particular, D(Lc) and D(L) are dense in H.

Here, L0 is called the minimal operator associated with the differential operator and L
is called the maximal operator associated with the differential operator. We abuse notation
for the differential operator and the maximal operator.

Remark 2.28. Any self-adjoint operator extension L of Lc, would satisfy L0 ⊂ L ⊂ L since
L = L∗ implies L∗ is closed. Then L0 = Lc ⊂ L ⊂ L∗

c = L. This explains why L0 is called
the minimal operator and L is called the maximal operator.

Proof. Step 1:

• First, we assume D(Lc) is dense and compute D(L∗
c) by examining the definition for the

adjoint.
• Recall that v ∈ D(L∗

c) if and only if there exists g ∈ H such that

⟨v,Lu⟩ = ⟨g, u⟩, ∀u ∈ D(Lc). (2.8)

If v ∈ D(L), then for all u ∈ D(Lc), one can use Corollary 2.26 to get ⟨v,Lu⟩ =
⟨Lv, u⟩. Moreover, since u is compactly supported, we can take g = χLv such that
χ ≡ 1 on suppu and χ ∈ C∞

c (I), then Lv ∈ L1
loc(I) implies g ∈ H, which shows that

v ∈ D(L∗
c).

• Now suppose v ∈ D(L∗
c), then there exists g ∈ H such that (2.8) holds. Since∣∣∣∣∫ d

c

rg dx

∣∣∣∣ ≤ (∫ d

c

r dx

) 1
2
(∫ d

c

g2r dx

) 1
2

,∀[c, d] ⊂ I,

that is, rg ∈ L1
loc(I), and by Theorem 2.24, we know that there exists some ṽ satisfying

all the regularity required in that theorem such that Lṽ = g. Let vn = v − ṽ. Now it
suffices to prove vn is a solution to L = 0.
Define a linear functional

l : L2
c(I; rdx) → C, f 7→ ⟨v − ṽ, f⟩
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and introduce a fundamental system of solutions u1, u2 for L on I, that is, Luj = 0,(
u1(c)
pu′1(c)

)
=

(
1
0

)
and

(
u2(c)
pu′2(c)

)
=

(
0
1

)
for some c ∈ I. Moreover, we define

lj : L
2
c(I; rdx) → C, f 7→ ⟨uj, f⟩,

then we want to show l = c1l1 + c2l2, which is equivalent to ker l1 ∩ ker l2 ⊂ ker l.
• Now we show ker l1 ∩ ker l2 ⊂ ker l. Suppose f ∈ ker l1 ∩ ker l2 ⊂ L2

c(I; rdx), that is,∫ b
a
ū1f rdx =

∫ b
a
ū2f rdx = 0. In fact, we do not need bars in the formula since u1, u2 are

real solutions. Thanks to Duhamel’s principle, We take a solution u to Lu = f given by

u(x) =±
∫ x

a

(u1(x)u2(y)− u2(x)u1(y)) f(y)r(y) dy

=± u1(x)

∫ x

a

u2(y)f(y)r(y) dy ∓ u2(x)

∫ x

a

u1(y)f(y)r(y) dy

=∓ u1(x)

∫ b

x

u2(y)f(y)r(y) dy ± u2(x)

∫ b

x

u1(y)f(y)r(y) dy.

In view of the last two equivalent formulas respectively at a and b, we know u ∈
L2
c(I; rdx)∩D(L) = D(Lc). Hence, l(f) = ⟨v− ṽ,Lu⟩ = 0 by (2.8) and the construction

Lṽ = g.
• Since l = c1l1 + c2l2 on L2

c(I; rdx), we know v − ṽ = c1u1 + c2u2, which implies that
vn = v − ṽ is a solution to L = 0.

• Now it suffices to show ker l1 ∩ ker l2 ⊂ ker l implies l = c1l1 + c2l2. Assume l1, . . . , ln
are linear functionals V → C such that ∩ ker lj ⊂ ker l, then we show that l ∈ span{lj}.
Without loss of generality, we can assume l1, . . . , ln are linearly independent since we can
just discard some lj’s such that those left are linearly independent. The map L : V → Cn

given by f 7→ (l1(f), . . . , ln(f)) is surjective since x ∈ Ran(L)⊥ implies
∑n

j=1 xjlj(f) = 0
for all f .
Hence, there are vectors fk ∈ V such that lj(fk) = 0 for j ̸= k and lj(fj) = 1. Then

f −
∑n

j=1 lj(f)fj ∈ ∩nj=1 ker lj and hence l(f) = l(f1)l1(f)+ l(f2)l2(f)+ · · ·+ l(fn)ln(f),

which implies l = l(f1)l1 + · · ·+ l(fn)ln.

Step 2: So far, under the assumption that D(Lc) is dense, we showed D(L∗
c) = D(L).

Now suppose D(Lc) is not dense, then D(Lc)⊥ is nonempty. Hence, there exists g ̸= g∗ ∈ H
such that

⟨v,Lu⟩ = ⟨g, u⟩ = ⟨g∗, u⟩
for all u ∈ D(Lc). Likewise, we can obtain ṽ, ṽ∗ from Theorem 2.24 as in step 1 and using
exactly the same argument implies

v = ṽ + c1u1 + c2u2 = ṽ∗ + c∗1u1 + c∗2u2,

for some constant c1, c2, c∗1, c∗2. Then L(ṽ − ṽ∗) = 0 and hence g = Lṽ = Lṽ∗ = g̃, which
contradicts the assumption.

Step 3: Denote the right hand side of (2.7) by D. Finally, we will show D(Lc) = D.

• Thanks to the Lagrange formula in Corollary 2.26, it is easy to see D ⊂ D(L∗∗
c ) = D(Lc).
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• For every v ∈ D(Lc) ⊂ D(L∗), ⟨v,Lu⟩ = ⟨Lv, u⟩ for all u ∈ D(L), that is, Wb[v̄, u] =
Wa[v̄, u] for all v ∈ D(Lc), u ∈ D(L) = D(L∗

c). Note that for all u ∈ D(L), there exists
ũ ∈ D(L) such that u = ũ near a and ũ = 0 near b by introducing a cut-off function,
and hence Wa[v̄, u] = Wa[v̄, ũ] = Wb[v̄, ũ] = 0. Similarly for b. Hence, v ∈ D.

□

2.4. Limit circles and limit points. Self-adjointness has something to do with making
the boundary terms vanish, which is related to terms Wa and Wb. Note that u(a) and pu

′(a)
are not well-defined for u ∈ D(L), therefore, we need to introduce something else to describe
the boundary behavior.

Given any u⃗(x) =

(
u(x)
pu′(x)

)
, v⃗, w⃗ and σ⃗. What we expect is

u⃗(x) =
Wx[u,w]

Wx[v, w]
v⃗(x)− Wx[u, v]

Wx[v, w]
w⃗(x), (2.9)

like what we did as in (1.13) for the regular Sturm-Liouville problem. However, for u, v ∈
D(L), limx→a+ u(x) and limx→b− u(x) are not well-defined, but the Wronskian can be made
sense of at the boundary thanks to Corollary 2.26. What we have is the relation between
Wronskians

Wx[u, σ]Wx[v, w] = Wx[u,w]Wx[v, σ]−Wx[u, v]Wx[w, σ], ∀x ∈ Ī , (2.10)

which is called the Plücker’s formula and this also holds for boundary points. The proof is
quite simple. Since (2.9) holds for interior points, we obtain (2.10) for interior points, and
it is still valid after we take the limit.

Definition 2.29 (Limit circle, limit point). We define the limit circle and limit point of
L respectively as follows.

• We say L is a limit circle (LC) at a (resp. b) if there exists a real-valued v ∈ D(L) such
that there exists at least one w ∈ D(L) such that Wa[v, w] ̸= 0 (resp. Wb[v, w] ̸= 0).

• L is a limit point (LP) at a if it is not a limit circle at a (resp. b).

Example 2.30. If L is regular at a, then L is a limit circle of a since we can talk about the
solution at a thanks to Theorem 2.24. More specifically, we take v to be a solution to Lv = 0
with v(a) = 1, pv′(a) = 0 and w to be a solution to Lw = 0 with w(a) = 0, pw′(a) = 1, then
Wa[v, w] ̸= 0.

Example 2.31. Suppose L = − d2

dx2
, I = (−∞,∞). In view of the Fourier side, we know

D(L) = H2(−∞,∞). One can easily check L is a limit point at +∞ by the regularity given
by the domain D(L). In this case, (L,D(L)) is already self-adjoint and we do not need to
prescribe any boundary conditions. Heuristically speaking, this phenomenon just follows from
the regularity given by the domain.

In fact, the self-adjointness result of (L,D(L)) is a direct conclusion of Theorem 2.32.
And the phenomenon that we need to have some prescribed boundary condition if L is LC at
a gives an intuitive explanation for Weyl alternative, Theorem 2.35.
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Theorem 2.32. If L is LC at a, then set va to be the v in the definition. If L is LC at b,
then set vb to be the v in the definition.

Let Lu = Lu with

D(L) = {u ∈ D(L) : if L is LC at a,Wa[va, u] = 0; if L is LC at b,Wb[vb, u] = 0}
is self-adjoint.

Proof. We proceed in several steps.

• First, we show (L,D(L)) is symmetric. For any u1, u2 ∈ D(L), if L is LP at a, then
Wa[u1, u2] = 0. On the other hand, if L is LC at a, then for the real-valued va ∈
D(L) there exists a function w ∈ D(L) Wa[va, w] ̸= 0 and by the definition of D(L),
Wa[va, u1] = Wa[va, u2] = 0. Since va is real-valued, we haveWa[va, ū1] = Wa[va, ū2] = 0.
Then thanks to (2.10), we have

Wa[ū1, u2]Wa[va, w] = Wa[ū1, w]Wa[va, u2]−Wa[ū1, va]Wa[w, u2] = 0,

which implies Wa[ū1, u2] = 0. Similarly, we get Wb[ū1, u2] = 0. Therefore, (L,D(L)) is
symmetric thanks to Corollary 2.26.

• Hence, L ⊂ L∗ ⊂ L∗
c Now it suffices to show D(L∗) ⊂ D(L).

For any g ∈ D(L∗), there exists v ∈ H such that

⟨g, Lf⟩ = ⟨v, f⟩, ∀f ∈ D(L).

On the other hand, for g ∈ D(L∗) ⊂ D(L∗
c) = D(L), we have

⟨g,Lf⟩ = ⟨Lg, f⟩, ∀f ∈ D(Lc) ⊂ D(L),

we know v = Lg. Hence, for any u ∈ D(L∗), ⟨u, Lv⟩ = ⟨Lu, v⟩ for all v ∈ D(L).
• And it’s equivalent to Wa[ū, v] = Wb[ū, v] for all v ∈ D(L). Take any u ∈ D(L∗), if L
is LP at a, then there is nothing to prove. If L is LC at a, then there exists w ∈ D(L)
such that Wa[va, w] ̸= 0. And then we just truncate w to produce w̃ ∈ D(L) such that
w = w̃ near a and w̃ = 0 near b. And we still use w to denote the function w̃ ∈ D(L),
we know Wa[ū, w] = 0.

• Then the basic idea is: Wa[ū, w] = 0 and Wa[va, w] = 0 will imply va ∝ w ∝ ū and
henceWa[ū, va] = 0. However, this argument does not work for singular Sturm-Liouville
problem directly. Fortunately, we still can use the Plücker’s formula (2.10) to derive
Wa[ū, va] = 0, which follows directly from

Wx[ū, va]Wx[va, w] = Wx[ū, w]Wx[va, va]−Wx[ū, va]Wx[w, va] = 0.

• And repeat the process in the last two bullets for b, we getWb[ū, vb] = 0, then u ∈ D(L),
which completes the proof.

□

In the following discussion, we show a connection between LC, LP and square integrability
of solutions called the Weyl alternative theorem, stated as in Theorem 2.35.

The proof is based on the solvability of Lu = z0u for z0 ∈ ρ(L) in D(L).
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Proposition 2.33. Suppose z ∈ ρ(L), then there exists a nontrivial ua = ua(x; z) such that
ua is in L2((a, a + δ), rdx) for some δ > 0, ua ∈ D(L) and Lua = zua. Moreover, if L is
LC at a, then ua satisfies the boundary condition in the sense that Wa[ua, va] = 0 where va
is the v in Definition 2.29.

Similar result is true for b, there exists a nontrivial ub = ub(x; z) such that ub is in
L2((b − δ, b), rdx) for some δ > 0, ub ∈ D(L) and Lub = zub. Moreover, if L is LC at b,
then ub satisfies the boundary condition.

Proof. We only prove for the existence of such ua. Similar argument works for ub.

• For g ∈ C∞
c (I), set ũ = RL(z)g. Then by the definition of resolvent set ρ(L) as in

Definition 2.7, Lũ = zũ + g and ũ ∈ D(L) ⊂ H. Hence, Wa[¯̃u, va] = 0, where va is the
v in the definition of LC, provided L is LC. Then if one set

ua(x) =

{
ũ(x), x near a such that g = 0 on this region,

extended by using the differential equation,

we know Wa[¯̃u, va] = 0 still holds.
• Now it suffices to check that ũ ̸= 0 near a for a suitable choice of g ∈ C∞

c (I) in order
to make ua not identically zero on I. Moreover, we need to show the local L2(rdx)
property near a for ua.

• To do this, we use Duhamel’s principle. Fixed any c ∈ (a, b), (L − z)uj = 0 with

u⃗1(c) =

(
1
0

)
, u⃗2(c) =

(
0
1

)
. Thanks to Corollary 2.26, Wx[u1, u2] = Wc[u1, u2] = 1 for

all x ∈ I. Set

ũ =αu1 + βu2 +

∫ x

c

(u1(x)u2(y)− u1(y)u2(x)) g(y) rdy

=u1(x)

(
α +

∫ x

c

u2(y)g(y) rdy

)
+ u2(x)

(
β −

∫ x

c

u1(y)g(y) rdy

)
,

which is a solution to (L − z)ũ = g. Without loss of generality, we assume suppg ⊂
(c, d) ⊊ I, then

ũ =u1(x)

(
α +

∫ x

a

u2(y)g(y) rdy

)
+ u2(x)

(
β −

∫ x

a

u1(y)g(y) rdy

)
=u1(x)

(
α̃ +

∫ x

a

u2(y)g(y) rdy

)
+ u2(x)

(
β̃ +

∫ b

x

u1(y)g(y) rdy

)
.

(2.11)

• Put α′ = α̃ +
∫ b
a
u2(y)g(y) rdy and β′ = β̃ +

∫ b
a
u1(y)g(y) rdy. If ũ(x) ≡ 0 near a ( for

a < x < c ), then α̃u1(x)+β
′u2(x) = 0 for all a < x < c. Then 0 = Wx[u1, α̃u1+β

′u2] =
βWx[u1, u2] = β′ and hence α̃ = 0.
On the other hand, using the same argument, if ũ ≡ 0 near b ( for d < x < b ), then

β̃ = 0 and α′ = 0.

• If ũ ≡ 0 near a and b, then α̃ = β̃ = 0,
∫ b
a
u1g rdy =

∫ b
a
u2g rdy = 0. However, this can

be easily avoided by choosing g appropriately. For such a g, ũ ̸= 0 near a or ũ ̸= 0 near
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b. Without loss of generality, we assume ũ ̸= 0 near a, that is, we choose g appropriately
such that β′ ̸= 0.

• Now we define ua using the argument in the first bullet, which completes the proof for
the existence of ua.

• Similar argument in the last step by choosing a different g will let us find ub as desired.

□

Now we can write down the Green’s function for z ∈ ρ(L).

Corollary 2.34. For z ∈ ρ(L), the Green’s function defined as

G(x, y; z) = − 1

W [ua, ub]

{
ua(x)ub(y), x < y,

ua(y)ub(x), y < x,

satisfies (L− z)−1g(x) =
∫ b
a
G(x, y; z)g(y)r(y) dy.

Proof. We can prove this corollary following the similar manner as in the proof of the pre-
ceding theorem, see [13, Lemma 9.7].

A more direct way is to use distributional theory to check by a direct computation. We
omit the details here. □

Now we can prove the Weyl’s alternative.

Theorem 2.35 (Weyl alternative). L is LC at a (resp. b) if and only if there exists z0 ∈ C
such that all solutions u to Lu = z0u are in L2((a, a + δ); rdx) (resp. L2((b− δ, b); rdx)).
(Here, “any solution” can be any solution to the differential equation and do not require
this solution to be in D(L).)

Proof. • The “if” part is quite easy. We take two arbitrary solutions v, w to Lu = z0u
such that W [v, w] ̸= 0 and in particular, Wa[v, w] ̸= 0. One should note that we have
implicitly used our assumption that v, w ∈ L2((a, a + δ); rdx) since this assumption,
combined with Theorem 2.24, allows us to make a cut-off near a for v, w such that they
are in D(L) and hence Wx is independent of x near a thanks to Corollary 2.26. Such
v, w exist since we can take arbitrary linearly independent solutions to ensure W [v, w]
does not vanish.

Then at least one of Wa[Re v, w] ̸= 0, Wa[Im v, w] ̸= 0 holds, which implies L is LC
at a.

• Without loss of generality, assume L is regular at b, otherwise, we can choose some
c ∈ (a, b) such that L is regular at c and replace b by c. In particular, L is LC at
b by Example 2.30. Since L is LC at a, there exist at least two different real-valued
va, ṽa ∈ D(L) such that Wa[va, ṽa] ̸= 0. Consider the extension of Lc to two self-adjoint
operators L and L̃ by using va and ṽa by Theorem 2.32 (using the same wa for definition)
respectively. We assume Wa[va, ṽa] ̸= 0, then D(L) and D(L̃) are not the same thanks
to the Plucker’s formula( or see [13, Lemma 9.5] ).

By Proposition 2.33, we construct ua(; z) and ũa(; z) from L and L̃, respectively. Since
Wa(va, ua) = 0,Wa(ṽa, ũa) = 0, we know Wa(ua, ũa) ̸= 0. Otherwise, D(L) = D(L̃)
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thanks to the Plucker’s formula( or see [13, Lemma 9.5] ). That is to say, these two
solutions are linearly independent. Since any other solution can be written as a linear
combination of those two near a, every solution is square integrable near a.

□

Example 2.36. As an application of the Weyl alternative, we consider L = − d2

dx2
with

I = (0,∞). Then we know all solutions are of the form u = c1 + c2x, which implies L is LC
of a and L is LP of b.

2.5. Spectral Transformation. In this subsection, we want to introduce a fundamental
tool called the Spectral transformation for investigating the spectra of Sturm-Liouville op-
erators and, at the same time, give some nice illustrations of the spectral theorem.

Example 2.37. Suppose L = − d2

dx2
, I = (−∞,∞), D(L) = {u ∈ L2 : u, u′ ∈ ACloc, u

′′ ∈
L2} = H2(−∞,∞) is self-adjoint. This is the case that L is LP at ±∞.

By taking the unitary Fourier transform F : L2 → L2((−∞,∞); 1√
2π
dξ), we have FLF−1 =

Mξ2.
On the other hand, the multiplication version of the spectral theorem, Theorem 2.12, states

that a function λ and a measure µ such that L2(R; dµ) and L is conjugate to Mλ. What we
expect is that we can transform the multiplication by Mξ2 we get to the multiplication by Mλ.
A naive try is to take λ = ξ2.
Set U : L2((−∞,∞), dx) → ⊕2

j=1L
2((−∞,∞), dµj) with

u 7→

(∫
e−i

√
λxu(x) dx∫

e+i
√
λxu(x) dx.

)
We choose a change of variable such that

dµ1 = dµ2 =
1

2π
χ[0,∞)(λ) d

√
λ =

1

4π
√
λ
χ[0,∞)(λ) dλ.

Our goal is to generalize such a U . What we care are the spectral basis {e−i
√
λx, e+i

√
λx}

and the spectral measure dµ1, dµ2. Observe that e±
√
λx solves the eigenvalue equation with

eigenvalue λ, it will turn out that this is something that can be generalized to find a general
U .

2.5.1. Spectral transformation.

Proposition 2.38 (Spectral transformation). Let L be as above and L is a self-adjoint
realization as discussed before. By the spectral theorem, there exists a unitary map

U : L2(I; rdx) → ⊕k
j=1L

2(R, dµj)

such that

ULU−1 =

Mλ 0 0

0
. . . 0

0 0 Mλ


Then
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(1) there exists u⃗(x, λ) =

u1(x, λ)...
uk(x, λ)

 such that

Uf(λ) =

∫
I

u⃗(x, λ)f(x) rdx.

such that for µj-almost every λ, Luj(x, λ) = λuj(x, λ). Moreover, the preceding integral
is taken in the sense that

lim
c→a,d→b

∫ d

c

u⃗(x, λ)f(x) rdx

in ⊕k
j=1L

2(R, dµj). (This is similar to the Fourier transform on L2 can only be expressed
by integral formula using such kind of limit.)

If L is LC at one of the endpoint, then uj(x, λ) would satisfy the boundary condition
(Wa[va, uj] = 0).

(2) U−1 has the form

U−1F (x) =
k∑
j=1

∫
R
uj(x, λ)Fj(λ) dµj(λ)

with F⃗ (λ) = (F1(λ), . . . , Fk(λ))
T and the integral is taken in the sense of∫

R
dµj(λ) = lim

c→−∞,d→+∞

∫ d

c

dµ(λ)

in L2(I; rdx).
(3) Assume furthermore that µj’s are ordered, that is, µj ≪ µj−1 for all j > 1. Then for

µl-almost every λ, {uj(x, λ)}lj=1 are linearly independent.

Corollary 2.39. Suppose µj’s are ordered, then k is at most 2. Moreover, if L is LC at one
endpoint, then k = 1.

Proof. By Proposition 2.38 (3), k ≤ 2 since there are at most two linearly independent
solutions to (L − λ)u = 0.
Moreover, there is only one linearly independent solution if there is a prescribed boundary

condition. □

Corollary 2.40. Given a self-adjoint L, there exists U such that µj’s are ordered.

Proof. Recall that U is constructed using a spectral basis {uj} constructed by Theorem 2.20.
with uj ⊥ Huj′

for j′ < j, and H = ⊕∞
j=1Huj .

We say v is a maximal spectral vector for H if µu ≪ µv for all u ∈ H. It is easy to check
that there always exists a maximal spectral vector for a self-adjoint operator L by setting
v =

∑
j εjuj with εj ̸= 0 such that

∑
j |εj|2 = 1. (See [13, Lemma 3.15].)

Using this observation, we can find a spectral basis {ũj} such that ũk is maximal spectral
vector for L restricted to (⊕k−1

j=1Hũj)
⊥ during the Gram-Schmidt process as in Theorem 2.20.

Then µj’s are ordered by definition, which completes the proof. □
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Proof of Proposition 2.38. We claim that for any compact interval [c, d] ⊂ I, there exist

measurable uj(x, λ)’s on I × R such that U(χ[c,d]f) =
∫ d
c
u⃗(x, λ)f(x) rdx Moreover, if L is

LC at a, then we can take c to be a. Assuming this claim, the rest of the proposition is
proved as follows.

• Since U is chosen from the spectral theorem, ULf = λUf for all f ∈ D(Lc). Thanks to
the claim above, this is equivalent to∫

u⃗(x, λ)Lf(x) rdx =

∫
λu⃗(x, λ)f(x) rdx,

which implies∫ d

c

uj(x, λ)(L − λ)f(x)r(x) dx = 0, ∀f ∈ D((L|[c,d])c), for all µj − a.e. λ,

then uj(x, λ) ∈ D((L|[c,d])∗c) and hence Luj|[c,d] = (L|[c,d])∗cuj|[c,d] = λuj. In particular,
uj is a solution to L − λ = 0.

If L is LC at a, then c can be taken to be a and f can be taken to be all functions
in D(L) which satisfy boundary condition at a and vanish near b, then uj satisfies BC
near a.

• Part (2) is quite easy, which follows readily from U−1 = U∗ by writing out

⟨F,Ug⟩ = ⟨U−1F, g⟩
explicitly as∑

j

∫
R
Fj(λ)

∫ b

a

uj(x, λ)g(x) rdx dµ(λ) =

∫ b

a

(U−1F )(x)g(x) rdx

for F, g with compact support. Then part (2) is true since compactly supported functions
are dense in L2.

• Suppose {µj} are ordered and fix some l ≤ k. Suppose λ ∈ suppµl and
∑l

j=1 cj(λ)uj(x, λ) =

0, which implies
∑l

j=1 cj(λ)Fj(λ) = 0 since Fj(λ) =
∫
I
uj(x, λ)f(x)r(x) dx.

For any fixed j0, since λ ∈ suppµl, µl ≪ µl−1 . . . ≪ µ1 and U is surjective, we can
arrange Fj(λ) ≡ δj,j0 on suppµl. (Recall that µj(R) = ∥uj∥ = 1 is finite.) Then cj0 = 0.
Thus {uj} is linearly independent.

Now we prove the claim. We want to prove that for all [c, d] ⊂ I, there exists u⃗ such that

U(1[c,d]f) =

∫ d

c

u⃗(x, λ)f(x) rdx.

Since URL(z)U
−1 =

1

λ− z
, we have U = (λ− z)URL(z). Then

U1[c,d] = (λ− z)URL(z)1[c,d],

where RL(z)1[c,d] can be expressed by the Green’s function

RL(z)1[c,d]f =

∫
G(x, y, z)1[c,d](y)f(y) rdy.



40 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR SUNG-JIN OH

Then one can easily check RL(z)1[c,d] is a Hilbert-Schmidt operator since∫ d

c

∫ b

a

G2(x, y, z)r(x) dxr(y) dy < +∞,

which follows from a direct computation using the expression for G(x, y, z) in Corollary 2.34
and the properties of ua, ub derived from Proposition 2.33.

Moreover, since U is unitary, (URL(z)1[c,d])
∗URL(z)1[c,d] = (RL(z)1[c,d])

∗RL(z)1[c,d], we
know U1[c,d] = (λ − z)URL(z)1[c,d] is a Hilbert-Schmidt operator. Thus, there exists a
corresponding kernel u⃗ defined on [c, d] such that

(Uj1[c,d]f)(λ) =

∫ d

c

uj(x, λ)f(x) rdx.

Moreover, one can easily check that for [c′, d′] ⊃ [c, d], the new uj’s we construct using this
procedure coincide with the previous ones on [c, d]. Therefore, we get a measurable u⃗ on I
satisfying the property of the claim. □

We provide the definition of a Hilbert-Schmidt operator and some crucial properties here
for reader’s references.

Theorem 2.41. Suppose A : H → H is a bounded linear operator on a Hilbert space H,
then the following are equivalent:

(1) {ej} is an orthonormal basis for H,
∑

j ∥Aej∥2 < +∞;

(2) A is compact and {sj(A)} are eigenvalues of A∗A such that
∑

j sj(A)
2 <∞;

(3) if H = L2(X, dµ(x)), then

Af(x) =

∫
X

K(x, y)f(y) dµ(y),

where
∫∫

|K(x, y)|2 dµ(x) dµ(y) < +∞.

Then we say such an A is a Hilbert-Schmidt operator, and the three quantities above are
equal to each other and we denote it by ∥A∥2HS.

Proof. The proof of the implication (2) ⇒ (3) would use the singular value decomposition.
The other implications are easy to check. □

Henceforth we stick to the case µj’s are ordered and hence k ≥ 2.

2.5.2. Computing spectral measures with L LC at one endpoint. We will start with a simpler
case. Suppose L is LC at a and D(L) is defined with a boundary condition at a, then we
know k = 1 thanks to Corollary 2.39. By Proposition 2.33, ua satisfying the boundary
condition at a with ua ∈ L2((a, a+ δ); rdx).
Using the same notation as before, va is the one in the definition of LC, thenWa [ua, va] = 0

with va ∈ D(L). Moreover, take ṽa to be another solution such that {va, ṽa} is linearly
independent and Wa [ua, ṽa] = 1. (Such ṽa exists since we can solve the differential equation
at c ∈ I such that Wc [ua, ṽa] = 1 and Wx is independent of x. )

Since k = 1, for any u(x, λ) solving Lu − λu = 0 with desired boundary condition,
u(x, λ) ∝ ua, that is, u(x, λ) = γa(λ)ua(x, λ) for some γa(λ). This implies that for u = u1 in
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Proposition 2.38, there is some measure µ̃ such that dµ̃(λ) = |γa(λ)|2dµ1(λ). Furthermore,
this corresponds to a unitary operator Ũ : L2(I; rdx) → L2(R, dµ̃),

Ũf =

∫ b

a

ua(x, λ)f(x) rdx,

which is a spectral transformation. This rescaling gets rid of the unknown factor γa. From
now on, we remove the tilde notation. One should keep in mind that µ here may not be a
finite measure anymore.

In order to compute dµ, we take z ∈ C \ R such that there exists a ub(x, z) ∈ L2((b −
δ, b); rdx) by Proposition 2.33 such that ub satisfies the boundary condition at b if L is LC
at b. Note that {ua, ub} is linearly independent. Suppose not, then u = ub = cua will imply
that u satisfies Lu = zu and u satisfy the boundary condition at a and b if there is any.
Hence, u ∈ D(L) and it is an eigenfunction, which contradicts z ∈ C \ R ⊂ ρ(L).
Hence ub is a linear combination of ṽa and ua with nonzero coefficient corresponding to

ṽa, that is,

ub(x, z) = γb(z) (ṽa(x, z) +mb(z)ua(x, z))

for some γb(z).
Let us ub be normalized such that γb(z) ≡ 1, that is,

ub = ṽa(x, z) +mb(z)ua(x, z).

This is called a shooting problem or a connection formula since it connects functions with
good bahavior at a and functions with good bahavior at b. The function m(z) is called the
Weyl-Titchmarsh function.

Recall that

Uf =

∫ b

a

ua(x, λ)f(x)r(x) dx,

∫ b

a

UfUf dµ(λ) =

∫ b

a

f(x)f(x)r(x) dx.

In order to compute dµ, we need to select some f such that the expression for Uf is fairly
simple. To do that, we first compute in a formal way to give some heuristic idea. Since
UL =MλU ,

Uh(L) =Mh(x)U,

and hence Uh(L)f = h(λ)Uf . Then formally, we write

U(
δ(x− y)

r(x)
) =

∫
ua(x, λ)δ(x− y) dx = ua(y, λ).

Let h(L) = 1
L−z for z ∈ ρ(L) and fy(x) =

δ(x−y)
r(x)

, then

Uh(L)fy = h(λ)Ufy =
1

λ− z
ua(y, λ).

Since (L− z)G =
δ0(x− y)

r(x)
, h(L)fy = G(·, y, z) and hence

UG(·, y, z) = 1

λ− z
ua(y, λ).
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Now it would be a nice formula since G is in L2 though the computation above is just
heuristics.

Note that we can normalized ub such that W [ua, ub] = 1. Then the Green function of L
can be expressed by

G(x, y, z) =

{
ua(x, z)ub(y, z), y ≥ x,

ua(y, z)ub(x, z), y < x.

Lemma 2.42. For z ∈ ρ(L), the following identities hold:

(UG(·, y, z))(λ) = ua(y, λ)

λ− z
, U(p(y)∂yG(·, y, z))(λ) =

p(y)∂yua(y, λ)

λ− z
.

Proof. Since U : L2(I; rdx) → L2(R, dµ) is unitary and

RL(z)f = U−1 1

λ− z
Uf,

we have ∫ b

a

G(x, y, z)f(x)r(x) dx =

∫ b

a

ua(y, λ)

λ− z
Uf(λ) dµ(λ), ∀f ∈ D(Lc)

in the sense of L2. Note that D(Lc) is dense in L2 and we use the definition of adjoint, the
fact G(·, y, z) ∈ L2(I; rdx) for all y ∈ I and the fact U−1 = U∗ to see

(UG(·, y, z))(λ) = ua(y, λ)

λ− z
.

By differentiating this formula,

U(∂yG(·, y, z))(λ) =
∂yua(y, λ)

λ− z
.

We multiply both sides by p(y) just for our convenience. □

By Plancherel’s formula,∫
|ua(y, λ)|2

|λ− z|2
dµ(λ) =

∫
|UG|2 dµ =

∫ b

a

|G(x, y, z)|2r(x) dx. (2.12)

On the other hand, we would expect the following result.

Lemma 2.43. For z ∈ ρ(L),

(Im z)

∫ b

a

|G(x, y, z)|2 rdx = ImG(y, y, z).

Remark 2.44. Before we give a rigorous proof, we see why this is true in a heuristic way.
Note that G(·, y, z) satisfies the boundary conditions at both a and b if there is any and

LG(·, y, z) =
δ0(x− y)

r(x)
at least formally, which is the unique one with such properties.
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Moreover, G(x, y, z̄) = G(x, y, z) and we denote G = G(x, y, z), Ḡ = G(x, y, z) for simplicity.
We write∫ b

a

G(x, y, z)G(x, y, z) rdx =
1

z̄ − z

∫ b

a

(z̄G(x, y, z̄)G(x, y, z)− zG(x, y, z̄)G(x, y, z)) rdx

=
1

z̄ − z

∫ b

a

((
LG(x, y, z̄)− δ0(x− y)

r(x)

)
G(x, y, z)−G(x, y, z̄)

(
LG(x, y, z)− δ0(x− y)

r(x)

))
rdx

=
1

z̄ − z

∫ b

a

(
LḠG− ḠLG− δ0(x− y)

r(x)
G+

δ0(x− y)

r(x)
Ḡ

)
rdx

=− 1

2i(Imz)
(−2iIm(G(y, y, z))) =

1

Imz
Im(G(y, y, z)),

where we use ∫ (
(LḠ)G− Ḡ(LG)

)
rdx = 0

in the third step, which follows from integration by parts and the fact that G, Ḡ both satisfy
boundary conditions.

Note that
Imz

|λ− z|2
is the Poisson kernel, or more specifically, for z = λ0+iε,

ε

(λ− λ0)2 + ε2

is an approximation of δ0(λ− λ0). Hence, with the help of Lemma 2.43, we would expect to
recover dµ from the equation (2.12).
Now we give a rigorous proof for Lemma 2.43.

Proof of Lemma 2.43. Recall that

G(x, y, z) =

{
ua(x, z)ub(y, z), y ≥ x,

ua(y, z)ub(x, z), y < x,

where we normalized ub such that W [ua, ub] = 1. We write∫ b

a

G(x, y, z)G(x, y, z) rdx =
1

z̄ − z

∫ b

a

(z̄G(x, y, z̄)G(x, y, z)− zG(x, y, z̄)G(x, y, z)) rdx.

Then we know

z̄G(x, y, z̄) =

{
Lua(x, z̄)ub(y, z̄), y > x,

ua(y, z̄)Lub(x, z̄), y < x,

and similar equation holds for zG(x, y, z). Hence,∫ b

a

|G(x, y, z)|2 rdx

=
1

z̄ − z

∫ y

a

(Lua(x, z̄)ub(y, z̄)ua(x, z)ub(y, z)− ua(x, z̄)ub(y, z̄)Lua(x, z)ub(y, z)) rdx+

1

z̄ − z

∫ b

y

(ua(y, z̄)Lub(x, z̄)ua(y, z)ub(x, z)− ua(y, z̄)ub(x, z̄)ua(y, z)Lub(x, z)) rdx.
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For the first integral, we compute by using Lagrange’s identity,

ub(y, z̄)ub(y, z)

∫ y

a

(Lua(x, z̄)ua(x, z)− ua(x, z̄)Lua(x, z)) rdx

=ub(y, z̄)ub(y, z) (−Wy [ua(x, z̄), ua(x, z)])

=ub(y, z̄)ub(y, z) (p(y)∂yua(y, z̄)ua(y, z)− ua(y, z̄)p(y)∂yua(y, z))

=ua(y, z)ub(y, z) (p(y)∂yua(y, z̄)ub(y, z̄))− ua(y, z̄)ub(y, z̄) (p(y)∂yua(y, z)ub(y, z))

where in the second step, the boundary term Wa [ua(x, z̄), ua(x, z)] = 0 since

Wa [ua(x, z̄), va(x)] = Wa [ua(x, z), va(x)] = 0

with the va in Theorem 2.32. Likewise, the second integral is given by

ua(y, z̄)ua(y, z)

∫ b

y

(Lub(x, z̄)ub(x, z)− ub(x, z̄)Lub(x, z)) rdx

=ua(y, z)ub(y, z) (p(y)ua(y, z̄)∂yub(y, z̄))− ua(y, z̄)ub(y, z̄) (p(y)ua(y, z)∂yub(y, z)) .

By combining these two and using W [ua, ub] = 1, we get∫ b

a

|G(x, y, z)|2 rdx =
1

z̄ − z
(−ua(y, z)ub(y, z) + ua(y, z̄)ub(y, z̄)) =

1

z̄ − z

(
G(y, y, z)−G(y, y, z)

)
,

which completes the proof. □

Using the same type of argument as in Lemma 2.43, we can show∫ b

a

|G(x, y, z)|2 rdx =
1

Im z
ImG(y, y, z),∫ b

a

Re(G(x, y, z)p(y)G(x, y, z)) rdx =
1

2

1

Im z
Im (p(x)∂xG(x, y, z) + p(y)∂yG(x, y, z)) |x=y,∫ b

a

|p(y)∂yG(x, y, z)|2 rdx =
1

Im z
Im (p(x)∂xp(y)∂yG(x, y, z)) .

In the second identity, though limx→y+ p(x)∂xG(x, y, z) ̸= limx→y− p(x)∂xG(x, y, z) (both
exists since ua, ub ∈ D(L) but are not equal to each other), the right hand side is well-
defined since the sum of these two discontinous function p(x)∂xG(x, y, z) + p(y)∂yG(x, y, z)
turns out to be continuous.

Now we can compute spectral measure when L is LC at a. We restate what we discussed
at the very beginning of this subsection to refresh our memory. We stick to the notation va
we used in Theorem 2.32 and we got ua(·, z) and ṽa(·, z) in D(L) satisfying the boundary
condition such that ṽa ∈ D(L), Lua = zua, Lṽa = zṽa with Wa [ua, va] = Wa [ṽa, va] = 0 and
Wa [ua, ṽa] = 1 for any z. Moreover, λ ∈ R, ua(x, λ) and ṽa(x, λ) will be real-valued. Fix
u = ua in

Uf(x) =

∫ b

a

u(x, λ)f(x)r(x) dx, U : L2(I, rdx) → L2(R, dµ),

then our spectral measure µ is fixed. Furthermore, ub(x, z) = ṽa(x, z) + mb(z)ua(x, z) for
z ∈ ρ(A).
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Since

G(y, y, z) = ua(y, z)ub(y, z) = ua(y, z)va(y, z) +mb(z)ua(y, z)
2, (2.13)

take z = t+ iε, then

lim
ε↘0

∫ t1+δ

t0

∫
ε

(λ− t)2 + ε2
ua(y, λ)

2 dµ(λ) dt = lim
ε↘0

∫ t1+δ

t0

ImG(y, y, t+ iε) dt

= lim
ε↘0

∫ t1+δ

t0

Im
(
ua(y, t+ iε)va(y, t+ iε) +mb(t+ iε)ua(y, t+ iε)2

)
dt

= lim
ε↘0

∫ t1+δ

t0

(Immb(t+ iε)) |ua(y, t)|2 dt.

On the other hand, by Fubini’s theorem,

lim
ε↘0

∫ t1+δ

t0

∫
ε

(λ− t)2 + ε2
|ua(y, λ)|2 dµ(λ) dt

= lim
ε↘0

∫
arctan

(
t1 + δ − λ

ε

)
− arctan

(
t0 − λ

ε

)
|ua(y, λ)|2 dµ(λ)

=
1

2π

∫ (
χ[t0,t1+δ](λ) + χ(t0,t1+δ)(λ)

)
|ua(y, λ)|2 dµ(λ)

and hence

1

2π

∫ (
χ[t0,t1+δ](λ) + χ(t0,t1+δ)(λ)

)
|ua(y, λ)|2 dµ(λ) = lim

ε↘0

∫ t1+δ

t0

(Immb(t+ iε)) |ua(y, t)|2 dt.

(2.14)
which will help us recover dµ(λ).

If L is regular at a, it is easy to recover µ as following. Then we can choose ua(a, λ)
normalized to be |ua(a, λ)| = 1 for all λ ∈ R provided ua(a, λ) ̸= 0. If ua(a, λ) = 0, then we
apply a similar argument to p(a)u′a(a, λ) = 0 by using the second identity in Lemma 2.42.
Moreover, by taking y = a in (2.13), we get limε→0 ImG(a, a, t + iε) = Immb(z) and hence
Immb(t+ iε) > 0 if ε > 0 thanks to Lemma 2.42.

Then (2.14) implies

µ(t0) =
1

π
lim
δ↘0

lim
ε↘0

∫ t0+δ

−∞
Immb(t+ iε) dt, (2.15)

which will be a right continuous monotone non-decreasing function and the Stieltjes measure
is given by the extension of µ((c, d]) = µ(d)− µ(c).

It is a bit tricky when L is LC at a. Let dνy(λ) = |ua(y, λ)|2 dµ(λ) be a new measure,
then νy ≪ µ. If we use the same type of argument to recover ν, we get

νy(t0) =
1

π
lim
δ↘0

lim
ε↘0

∫ t0+δ

−∞
Immb(t+ iε)|ua(y, t)|2 dt,
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which still depends on ua. In fact, we can recover dµ directly by combining the two identities
in Lemma 2.42 as follows. We compute

p(y)u′b(y, λ)(UG(·, y, z))(λ)− ub(y, λ)U(p(y)∂yG(·, y, z))(λ) =
Wy [ua, ub]

λ− z
.

Furthermore, since Wy [ua, ub] is continuous in y and in fact W [ua, ub] = 1, we can assign
y = a on both sides, which implies

(Uub(·, z))(λ) =
1

λ− z
.

Then (2.15) follows from exactly the same argument as in the case for regular points.

Example 2.45. Let L = − d2

dx2
with I = (0,+∞). L is LC at 0 and LP at ∞ since we can

find two linearly independent solutions both L2 near 0. Let va be the v in Definition 2.29,
va(0) = sinα, v′a(0) = cosα, which is well-defined since L is actually regular at 0. The
boundary condition Wa [u, va] = 0 for u turns out to become

BCa(u) = cosαu(0)− sinαu′(0) = 0,

which coincides with the case for regular Sturm-Liouville problems. Likewise, there is a
solution ṽa such that ṽa(0) = − cosα, p(a)ṽ′a(0) = sinα.

Now our goal is to find ua(·, z), ub(·, z) and m(z). Then for z ∈ H, fundamental solutions

are e
√
−zx and e−

√
−zx. Here, we choose the branch of

√
−z such that Re

√
−z > 0 for z ∈ H

in the upper half plane.
In order to make ub decay at ∞, we need to choose ub(x, z) to be

ub(x, z) = c exp(−
√
−zx). (2.16)

In order to find ua(x, z) = ce
√
−zx+ de−

√
−zx with boundary condition BCa(ua) = 0, we solve(

sinα
cosα

)
=

(
1 1

µ+ iν −µ− iν

)(
c
d

)
,

√
−z = µ+ iν

explicitly, we get (
c
d

)
=

1

−2u− 2iv

(
−µ− iν −1
−µ− iν 1

)(
sinα
cosα

)
ua(x, z) =

(
1

2
sinα +

1

2
√
−z

cosα

)
e
√
−zx +

(
1

2
sinα− 1

2
√
−z

cosα

)
e−

√
−zx.

Let λ > 0, then for z = λ,
√
−z =

√
−λ = −i

√
λ due to the branch we take. Hence,

ua(x, λ) = sinα cos
√
λx+

1√
λ
cosα sin

√
λx. (2.17)

Moreover, one can get ṽa by a similar computation, and in fact, we just need to replace sinα
by − cosα and cosα by sinα in (2.17), that is,

ṽa(x, λ) = − cosα cos
√
λx+

1√
λ
sinα sin

√
λx.
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Therefore, (
ua
ṽa

)
=

(
sinα cosα√

λ

− cosα sinα√
λ

)(
cos

√
λx

sin
√
λx

)
Hence,

ub(x, z) =
(
mb(z) 1

)(ua
ṽa

)
=
(
mb(z) 1

)( sinα cosα√
λ

− cosα sinα√
λ

)(
cos

√
λx

sin
√
λx

)
(2.18)

On the other hand, from (2.16), we know

ub(x, z) = c
(
1 i

)(cos√λx
sin

√
λx

)
. (2.19)

Equating (2.18) and (2.19) gives

mb(z) = − i
√
λ cosα + sinα

i
√
λ sinα− cosα

=
sinα−

√
−z cosα

cosα +
√
−z sinα

.

A simple calculation reveals

lim
ε↘0

Immb(t+ iε) = −Im
i
√
λ cosα + sinα

i
√
λ sinα− cosα

=

√
λ

cos2 α + λ sin2 α

It turns out that dµ does not have atomic part and

dµ(λ) =
1

π

√
λ

cos2 α + λ sin2 α
dλ.

The unitary map U constructed using the spectral measure is named as the distorted
Fourier transform, which is useful in recent research, like in [2], [6]. They use this machinery
to study of long time bahavior of the wave equation, and to construct blow-ups at finite
time.

2.5.3. Computing spectral measures in general case. We only give a brief introduction of the
idea and one can refer to [13, Section 9.6] for a discussion in detail. In general, our spectral
transformation map

U : L2(I, rdx) → L2(R, dµ1)⊕ L2(R, dµ2)

is given by

Uf =

∫ b

a

(
u1(x, λ)
u2(x, λ)

)
f(x)r(x) dx.

If L has simple spectrum, we just choose µ2 = 0. The procedure is as follows :

• For c0 ∈ I, we define c(x, z), s(x, z) to solve Lu = zu with s(c0, z) = 0, p(c0)s
′(c0, z) = 1

and c(c0, z) = 1, p(c0)c
′(c0, z) = 0.

• Note that uj, j = 1, 2 solve Lu = zu, then there exists C(λ) such that(
u1(x, λ)
u2(x, λ)

)
= C(λ)S⃗(x, λ),
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where S⃗(x, λ) =

(
c(x, λ)
s(x, λ)

)
.

• Set µ̃ = µ1+µ2, then µj ≪ µ̃, and hence dµ1 = r1dµ̃, dµ2 = r2dµ̃. If we express U
∗U = I

in terms of integral kernels thanks to Proposition 2.38, then we get

δ0(x− y) =

∫
u1(x, λ)u1(y, λ)r(y) dµ1(λ) +

∫
u2(x, λ)u2(y, λ)r(y) dµ2(λ)

=

∫ (
u1(x, λ) u2(x, λ)

)(r1 0
0 r2

)(
u1(y, λ)
u2(y, λ)

)
r(y)dµ̃(λ)

=

∫
(C(λ)S⃗(x, λ))∗

(
r1 0
0 r2

)
CS⃗(y, λ)r(y)dµ̃(λ) =

∫
S⃗(x, λ)∗R(λ)S⃗(y, λ)r(y)dµ̃(λ),

where R(λ) := C(λ)∗
(
r1 0
0 r2

)
C(λ). δ0 is the integral kernel of I

• Now we define Ũ : L2(I, rdx) → L2(R, R(λ) dµ̃) by

Ũf(λ) :=

∫
I

S(x, λ)f(x)r(x) dx,

where the inner product of L2(R, R(λ) dµ̃) is given by ⟨F⃗ , G⃗⟩ =
∫
R F⃗

∗RG⃗ dµ̃(λ). Note
that R is symmetric and positive definite. By renormalizing µ̃, we may assume trR = 1.

• Now we characterize Rdµ̃. Put G = G(·, y; z), p∂yG = p(y)∂yG(·, y; z). We will have
⟨G,G⟩ =

∫
1

|z−λ|2R11(λ)dµ̃(λ),

⟨G, p∂yG⟩ =
∫

1
|z−λ|2R12(λ)dµ̃(λ),

⟨p∂yG, p∂yG⟩ =
∫

1
|z−λ|2R22(λ)dµ̃(λ),

• If ma(z),mb(z) are defined so that z ∈ C \ R,
ua(z) = c(x, z)−ma(z)s(x, z), ub(z) = c(x, z) +mb(z)s(x, z),

then (
⟨G,G⟩ ⟨G, p∂yG⟩

⟨G, p∂yG⟩ ⟨p∂yG, p∂yG⟩

)
= ImM(z),

which M(z) is the Weyl-Titchmarsh M-matrix, given by

M(z) =
1

ma(z) +mb(z)

(
−1 ma(z)−mb(z)

2
ma(z)−mb(z)

2
ma(z)mb(z)

)
=

(
G(c0, c0, z)

p∂x+p∂y
2

G(c0, c0, z)
p∂x+p∂y

2
G(c0, c0, z) p∂xp∂yG(c0, c0, z)

)
.

• We can recover the measure using M(z) as what we did before.
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3. ODEs in complex domains and special functions

First, we do a quick review for ODEs in complex domains. Let

Lu =
d2

dz2
u+ P (z)

d2

dz2
u+Q(z)u = u′′ + P (z)u′ +Q(z)u = 0 (3.1)

with P,Q : U → C and U ⊂ C is simply connected.

Theorem 3.1 (Picard-Lindelof theorem). Suppose P and Q are analytic on U , then
u′′ + P (z)u′ +Q(z)u = 0,

u(z0) = u0,

u′(z0) = u1

has a unique solution u : U → C which is analytic on I.

Proof. We still use Picard iteration on curves from z0. Thanks to simply connectedness, we
can show that the value we choose is independent of the choice of paths. □

Remark 3.2. We can also prove analytic dependence on parameters. Suppose A is an open
subset of C and if P,Q : A × U → C are continuous. For a ∈ A, we write P = P (a, z),

Q = Q(a, z) and

(
u0
u1

)
=

(
u0(a)
u1(a)

)
. If P (a0, ·), P (·, z0), Q(a0, ·), Q(·, z0) are analytic for all

a0 ∈ A, z0 ∈ U , then the solution u = u(a, z) is analytic in A for all fixed z.

3.1. Classification of singularities.

Definition 3.3. We say z0 ∈ U is a regular point of L if P and Q are analytic at z0.
If not, z0 is a singular point of L. If z0 is the removable singular point of (z − z0)P (z)
and (z − z0)

2Q(z), then z0 is said to be a regular singularity. If not, z0 is an irregular
singularity.

Now we can find a local solution near a regular singular point by using the Frobenius
method. Without loss of generality, we assume z0 = 0 is a regular point and the correspond-
ing Laurent series converge for |z| < ρ. We do the expansion

P (z) =
P0

z
+ P1 + P2z + · · · , Q(z) =

Q0

z2
+
Q1

z
+Q2 + · · · .

Then we denote the highest order terms by

L0u = u′′ +
P0

z
u′ +

Q0

z2
u.

Any equation of the form

u′′ +
P0

z
u′ +

Q0

z2
u = 0

is called the Euler’s equation, where 0 is a regular point provided that P0, Q0 are holomorphic
near 0. In view of its homogeneity, we try the ansatzs u = zα and this motivates the following
indicial equation at 0,

α(α− 1) + P0α +Q0 = 0. (3.2)



50 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR SUNG-JIN OH

We denote solutions to this indicial equation by α1, α2 and suppose Reα1 ≥ Reα2. The
basic idea is to construct solutiosn of this kind

u = zα
∞∑
n=0

anz
n,

solving Lu = 0. To illustrate in details, here are three cases to consider.

(1) If α1 − α2 /∈ Z, then we can plug in the ansatzs

uj = zαj

∞∑
n=0

aj,nz
n

and equate the coefficients.
(2) If α1 = α2 = α, then we plug in

u1 = zα
∞∑
n=0

a1,nz
n.

In order to derive the form for u2, by plugging u2 = hu1 into Lu2 = 0, we get

0 = h′′u1 + 2h′u′1 + Ph′u1,

which is a first order ODE. By setting H = h′, we have

H ′ +

(
2
u′1
u1

+
P0

z
+ P1 + P2z + · · ·

)
H =H ′ + (2

α

z
+
P0

z
+ higher order terms)H

=H ′ +
1

z
(1 + higher order terms)H,

where in the last step, we use α = 1−P0

2
, thanks to our assumption. Solving the ap-

proximate equation H ′ = −1
z
H gives H = 1

z
and hence, h = log z. That is to say,

h(z) = log z+ regular terms. Thus,

u2 = zα
∞∑
n=0

a2,nz
n + u1 log z.

(3) If α1 − α2 ∈ Z>0, then

u1 = zα1

∞∑
n=0

a1,nz
n, u2 = zα2

∞∑
n=0

a2,nz
n + cu1 log z,

where c can also be determined via equating coefficients.

Theorem 3.4. These solutions u1, u2 constructed above converge within {|z| < ρ}, where
ρ is the radius of convergence for the Laurent series of P,Q.

Now we study the singularities at ∞. Let z̃ = 1
z
, then dz̃ = − 1

z2
dz and

∂z = − 1

z2
∂z̃ = −z̃2∂z̃, ∂2z = z̃4∂2z̃ + 2z̃3∂z̃,
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which transform the original equation to

ũ′′ +

(
2

z̃
− 1

z̃2
P (

1

z̃
)

)
ũ′ +

1

z̃4
Q(

1

z̃
)ũ = 0. (3.3)

Then it is natural to classify the singularities as follows.

Definition 3.5. We say ∞ is a regular point for L if 2z−z2P (z) and z4Q(z) are bounded
for |z| ≫ 1. Otherwise, we say ∞ is a singular point for L.
Moreover, if |z2P (z)| = O(|z|) and |z4Q(z)| = O(|z|2), then we say ∞ is a regular

singularity for L. Equivalently, ∞ is a regular singularity if and only if

|P (z)| ≲ 1

|z|
, |Q(z)| ≲ 1

|z|2

when P,Q are analytic.

Then for (3.1), if ∞ is a regular singularity, then we can write

P =
1

z

∑
n≥0

Pn
zn
, Q =

1

z2

∑
n≥0

Qn

zn
,

for |z| ≥ R0. Thanks to (3.3), the corresponding indicial equation is given by

α(α− 1) + (2− P0)α +Q0 = 0.

3.2. Hypergeometric equations.

3.2.1. Associated Legendre equations and Hypergeometric functions. As an motivating ex-
ample, we derive the Legendre and associated Legendre equations. Both equations are
originated from the spectral theory of S2. The laplacian operator in the spherical polar
coordinates gS2 = dθ2 + sin2 θdφ2 is given by

−∆S2 =− 1

det g

∂

∂i
(gij
√

det g
∂

∂j
) = − 1

| sin θ|

(
∂θ(| sin θ|∂θ) +

1

| sin θ|
∂2φ

)
=− ∂2θ −

cos θ

sin θ
∂θ −

1

sin2 θ
∂2φ.

Out starting point is the ansatz

u =
∑
m∈Z

um(θ)e
imφ.

We compute

−∆S2
(
um(θ)e

imφ
)
= eimφ

(
−∂2θ −

cos θ

sin θ
∂θ +

m2

sin2 θ

)
um

Then the eigenvalue problem (Lm − λ)um = 0 is equivalent to

−∂2θ −
cos θ

sin θ
∂θ +

m2

sin2 θ
− λ = 0.
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To study this, we transform it into an ODE via a change of variable. Let z = cos θ, and in the
following computation, we stick to z ∈ R for simplicity. Then ∂θ = − sin θ∂z = −

√
1− z2∂z

and ∂2θ = (1− z2)∂2z − z∂z. If we put this in, we get an ODE

−(1− z2)∂2zum + z∂zum + z∂zum +
m2

1− z2
um − λum = 0.

By replacing λ = l(l + 1), we get the associated Legendre equation

(1− z2)u′′ − 2zu′ +

(
l(l + 1)− m2

1− z2

)
u = 0. (3.4)

If m = 0, it is said to be the Legendre equation

(1− z2)u′′ − 2zu′ + l(l + 1)u = 0. (3.5)

Note that all the three singularities ±1 and ∞ are all regular singularities. It is important
to notice that three points uniquely determine a Mobius transformation in the complex plane.
With this vital property, one can reduce this to a canonical form to make the solutions look
nicer so that we can develop the connection form. This is why the hypergeometric functions
are of great importance.

Theorem 3.6. If (3.1) has at most three singularities in C∪{∞}, all of which are regular
singularities, then it can be transformed, via a change of variable and a conjugation, to
any other equation of the same form.

Let

F (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (3.6)

where (a)n = a(a+1) · · · (a+(n−1)) is the Pochhammer’s notation with the convention (a)0 =
1. Functions of the form (3.6) are called hypergeometric functions. Such hypergeometric
functions are supposed to be the Frobenius solution to a hypergeometric differential equation
at z = 0 with index α = 0. In view of this, we can give a derivation of the hypergeometric
equation.

To keep track of the construction of a desired series solution, we list the properties of a
series solution as follows.

z
d

dz

∞∑
n=0

anz
n =

∞∑
n=0

nanz
n, c

∞∑
n=0

anz
n =

∞∑
n=0

canz
n, z

∞∑
n=0

anz
n =

∞∑
n=1

an−1z
n.

A naive guess for the form of the hypergeometric equation will be

z
d

dz
u = zu,

whose power series solution near z = 0 is given by nan = an−1, that is, an = 1
n!
a0, which

corresponds to an exponential. To produce the Pochhammer’s notation in our coefficients,
we find

z
d

dz
(z
d

dz
+ c− 1)u = zu,
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shall imply n(n+ c− 1)an = an−1, which generates an = 1
(c)nn!

a0. Finally, in order to get the

terms in the numerator correctly, we notice that

z
d

dz
(z
d

dz
+ c− 1)u = z(z

d

dz
+ a)(z

d

dz
+ b)u, (3.7)

is equivalent to

n(n+ c− 1)an = (n+ a− 1)(n+ b− 1)an−1,

which corresponds to an =
(a)n(b)n
(c)nn!

a0.

Later, we will study the confluent hypergeometric function

M(a, c, z) =
∞∑
n=0

(a)n
(c)n

zn, (3.8)

which solves the confluent hypergeometric equation

z
d

dz

(
z
d

dz
+ c− 1

)
u = z

(
d

dz
+ a

)
u. (3.9)

It appears to be simpler than the hypergeometric equation at the first glance. However, its
singularities may not be regular.

By an explicity computation, one can check (3.7) is equivalent to the following differential
equation

z(1− z)u′′ + (c− (a+ b+ 1)z)u′ − abu = 0, (3.10)

which is called the hypergeometric equation. It has exactly three singularities 0, 1,∞ with
corresponding indices as shown in the table.

singularity 0 1 ∞
corresponding indices 0, 1− c 0, c− a− b a, b

Table 1. Correspondence between singularities and indices

The indicial equations at 0, 1,∞ are
α(α− 1) + cα = α(α− 1 + c) = 0,

−α(α− 1) + (c− a− b− 1)α = 0,

α(α− 1) + (a+ b+ 1)α + ab = (α + a)(α + b) = 0,

respectively. Though the indices found from the third equation for z = ∞ are −a,−b, we
need to take the positive sign due to the change of variable z 7→ 1

z
when we define the

singularities at ∞.
Now let’s see the proof of Theorem 3.6.

Proof of Theorem 3.6. We start from the study of an ODE with three regular singularities
z0, z1, z2 ∈ C. As a remark, if (3.1) has less than three singularities, we need to view some
arbitrary ordinary points as regular singularities with indices 0 and 1, that is, P0 = Q0 = 0
in (3.2).
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Henceforth, we use the Riemann notation ot describe the correspondence of the singular-
ities and their indices. z0 z1 z2

α1 β1 γ1 z
α2 β2 γ2


Let

P (z) =
P̃ (z)

(z − z0)(z − z1)(z − z2)
, Q(z) =

Q̃(z)

(z − z0)2(z − z1)2(z − z2)2

with P̃ , Q̃ holomorphic on C. Since (3.1) is an ordinary point at ∞,

|P − 2

z
| ≲ 1

|z|2
, |Q(z)| ≲ 1

|z|4

thanks to Definition 3.5. Then by Liouville theorem,

Q̃ = q0 + q1z + q2z
2, P̃ = p0 + p1z + p2z

2.

where p2 = 2. In view of this, there are only five numbers of possibilities, since they satisfy

some compatibility for the indices as follows. Suppose P (z) = p0+p1z+p2z2

(z−z0)(z−z1)(z−z2) , and we know

P (z) ∼ 2
z
as z → ∞. We write P (z) in terms of partial fractions, that is,

P (z) =
p0 + p1z + p2z

2

(z − z0)(z − z1)(z − z2)
=

A0

z − z0
+

A1

z − z1
+

A2

z − z2
,

which implies A0 + A1 + A2 = 2. The indicial equation at z0 is

ρ(ρ− 1) + (z − z0)P (z)|z=z0ρ+ · · · = 0,

which implies
α1 + α2 = (1− (z − z0)P (z)|z=z0) = 1− A0.

Similarly, we have

β1 + β2 = (1− (z − z1)P (z)|z=z1) = 1− A1, γ1 + γ2 = (1− (z − z2)P (z)|z=z2) = 1− A2,

and hence the sum of the indices is

α1 + α2 + β1 + β2 + γ1 + γ2 = 3− (A1 + A2 + A3) = 1.

We make a transformation
(z0, z1, z2) 7→ (0, 1,∞)

given by

z̃ =
z − z0
z − z2

· z1 − z2
z1 − z0

.

Let ũ = u(z(z̃)), then ũ′′ + P̃ (z̃)ũ′ + Q̃(z̃)ũ = 0 is a differential equation with exactly the
same indices as the original one.

Let v = z̃µ(z̃ − 1)ν ũ(z̃), then one can observe that this increases the indices at 0 by µ
and the indices at 1 by ν by keeping track of the change of the coefficient P (z̃), Q(z̃) due
to this subsequent change, (One can plug ũ = z̃−µ(z̃ − 1)−νv into the equation to see what
happens.) Hence, the indices are

αk + µ, βk + ν, γk − µ− ν
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at 0, 1,∞ respectively, k = 1, 2.
□

Now we study the hypergeometric function (3.6). For simplicity, we suppose c /∈ Z to
avoid the appearance of log in the solutions. First, we study linearly independent solutions
at 0. Let u = z1−cU(z), then U will satisfy an ODE with regular singularities and indices

U =

 0 1 ∞
c− 1 0 a+ 1− c z
0 c− a− b b+ 1− c


where we use the Riemann notation, which follows easily from the definition of u and Table 1.
Hence,

G(a, b, c, z) := z1−cF (a+ 1− c, b+ 1− c, 2− c, z)

is the other solution to (3.10) at z = 0 corresponding to the other exponent α = 1 − c. In
fact, one can check this explicitly by writing u =

∑
n anz

n+1−c and plugging it into (3.7) to
derive the recursive relation (n− c+ 1)nan = (n+ a− c)(n+ b− c)an−1.

Lemma 3.7. For c /∈ Z,
Wz[F,G] = (1− c)z−c(1− z)c−a−b−1.

Proof. Since

F ′′ = −c− (a+ b+ 1)z

z(1− z)
F ′ +

ab

z(1− z)
F, G′′ = −c− (a+ b+ 1)z

z(1− z)
G′ +

ab

z(1− z)
G

we compute

W ′
z[F,G] = −c− (a+ b+ 1)z

z(1− z)
Wz[F,G]

=−
(

c

z(1− z)
− a+ b+ 1

1− z

)
Wz[F,G] = −

(
c

z
+
c− a− b− 1

1− z

)
Wz[F,G].

Hence,
Wz[F,G] = Cz−c(1− z)c−a−b−1.

Evaluating F, F ′, G,G′ at z = 0 gives C = 1− c. □

Now we study the solution near 1. Take u = U(1− z), then

U =

 0 1 ∞
0 0 a

c− a− b 1− c b
, z

 .

So it follows from Table 1 that the Frobenius solution for indices 0 and c− a− b at 1 are

F (a, b, 1 + a+ b− c, 1− z), G(a, b, 1 + a+ b− c, 1− z),

respectively, provided that a+ b− c /∈ Z.
Finally, we study the linearly independent solutions at ∞. Let u = z−αU(1

z
) and suppose

b− a /∈ Z.

z−aF (a, 1 + a− c, 1 + a− b,
1

z
), z−bF (b, 1 + b− c, 1 + b− a,

1

z
)
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3.2.2. Connection formula with a review for Gamma functions. In order to derive the con-
nection formula, we recall some basic properties of Gamma functions. Let

Γ(z) =

∫ ∞

0

e−ttz
dt

t
, Re z > 0.

It follows from integration by parts that zΓ(z) = Γ(z + 1). Moreover, from this recursion
relation and Γ(1) =

∫∞
0
e−t dt = 1, we know Γ(n) = (n− 1)! and

(a)n =
Γ(a+ n)

Γ(a)
.

As it is written, Γ(z) is defined on {Re z > 0} and we can extend it to the whole complex
plane by analytic continuation except integers less than or equal to zero.

Theorem 3.8. Gamma functions can be expressed by an infinite product form

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
.

Proof. Since

e−t = lim
n→∞

(
1− t

n

)n
χ{0<t<n}(t),

where the limit is monotone with respect to n and hence

Γ(z) =

∫ ∞

0

e−ttz−1 dt = lim
n→∞

∫ n

0

(1− t

n
)ntz−1 dt

= lim
n→∞

1

z

∫ n

0

−∂t
(
1− t

n

)n
tz dt = lim

n→∞

n

nz

∫ n

0

(
1− t

n

)n−1

tz dt

= lim
n→∞

n(n− 1)

n2z(z + 1)

∫ n

0

(
1− t

n

)n−2

tz+1 dt = lim
n→∞

n!

nnz(z + 1) · · · (z + n− 1)

∫ n

0

tz+n−1 dt

= lim
n→∞

n!

nnz(z + 1) · · · (z + n− 1)(z + n)
nz+n,

where Re z > 0. □

Theorem 3.9. Gamma functions satisfy the reflection identity

Γ(z)Γ(1− z) =
π

sin(πz)

for z /∈ Z.
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Proof. Let us formally evaluate

1

Γ(z)Γ(1− z)
= lim

n→∞

z(z + 1) · · · (z + n)

n!nz
(1− z) · · · (n+ 1− z)

n!n1−z

= lim
n→∞

(
1 +

z

n

)(
1 +

z

n− 1

)
· · · (1 + z) z

(
1− z

n+ 1

)(
1− z

n

)
· · · (1− z)

n+ 1

n

= lim
n→∞

n+ 1

n
z

(
1− z

n+ 1

) n∏
j=1

(
1− z2

j2

)
.

Hence, it suffices to show

sin(πz)

πz
=

n∏
j=1

(
1− z2

j2

)
.

Since
sin(πz)

πz
is an entire function of order 1, we know

sin(πz)

πz
= ep(z)

∏
j

E1(
z

zj
) = eaz+b

∞∏
k=1

(
1− z2

k2

)
where p(z) = az + b is a polynomial of degree at most 1, zj = j for all j ∈ Z \ {0}, and

E1

(
z

j

)
=

(
1− z

j

)
ez/j

is the Weierstrass canonical factor (3.11). The last step follows from

E1

(z
k

)
E1

(
z

−k

)
= 1− z2

k2
.

Then evaluating at z = 0 gives b = 0. Moreover, thanks to the evenness, we know a = 0,
which completes the proof. □

We restate the Hadamard factorization theorem (see [11, Theorem 22]) as a reference.

Theorem 3.10. Let f be a nontrivial entire function of order ρ, that is,

ρ = inf{ρ′ : |f(z)| ≤ e|z|ρ
′
as |z| → ∞}.

Let k be the integer such that k ≤ ρ < k + 1. Then

f(z) = ep(z)zm
∏
n

Ek

(
z

zn

)
,

where p(z) is a polynomial of order at most k, m is the order of vanishing of f at the
origin, {zn} enumerates the non-zero zeros of f (by multiplicity) and Ek is the Weierstrass
canonical factor

Ek(z) = (1− z) exp

(
k∑
l=1

1

l
zl

)
. (3.11)



58 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR SUNG-JIN OH

Theorem 3.11. Gamma funtions satisfy the multiplication formula

Γ(p)Γ(q)

Γ(p+ q)
=

∫ 1

0

tp−1(1− t)q−1 dt = B(p, q),

which is the beta function.

Proof. We do a direct computation using Fubini’s theorem

Γ(p)Γ(q) =

∫ ∞

0

e−ttp−1 dt

∫ ∞

0

e−ssq−1 ds =

∫ ∞

0

∫ ∞

0

e−t−stp−1sq−1 dt ds.

Now we make a change of variable t = u+v
2
, s = u−v

2
and we get

Γ(p)Γ(q) =
1

2

∫ ∞

0

∫ u

−u
e−u

(
u+ v

2

)p−1(
u− v

2

)q−1

dv du

=

∫ ∞

0

e−uup−1+q

∫ u

−u

(
1 + v

u

2

)p−1(1− v
u

2

)q−1
dv

2u
du

=B(p, q)

∫ ∞

0

e−uup−1+q du = Γ(p+ q)B(p, q).

□

Using these properties, we write

F (a, b, c; z) =
Γ(c)

Γ(b)

∞∑
n=0

(a)nz
n

n!

Γ(b+ n)

Γ(c+ n)
=

Γ(c)

Γ(b)Γ(c− b)

∞∑
n=0

(a)nz
n

n!

∫ 1

0

tb+n−1(1− t)c−b−1 dt,

and then by using the binomial formula (1− z)−a =
∑ (a)nzn

n!
, we get

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb(1− t)c−b−1(1− zt)−a dt.

By symmetry of a, b, we can also swap a and b to get another formula

F (a, b, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta(1− t)c−a−1(1− zt)−b dt. (3.12)

Theorem 3.12. For c /∈ Z, Re(c− a− b) > 0, we have

lim
z→1−

F (a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− b)Γ(c− a)
.

Proof. We compute

lim
z→1−

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb(1− t)c−a−b−1 dt

=
Γ(c)

Γ(c− b)Γ(b)

Γ(b)Γ(c− a− b)

Γ(c− a)
=

Γ(c)Γ(c− a− b)

Γ(c− b)Γ(c− a)
.

□
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Now we derive the connection formula for the hypergeometric equation. We want to show
that we can express any one of F (a, b, c; z), G(a, b, c; z), F (a, b, 1 + a + b − c; 1 − z) and
G(a, b, 1 + a+ b− c; 1− z) by the other three.

Proposition 3.13. Suppose c, a+ b− c /∈ Z and Re(c− b− a) > 0,Reb > 0, we have

F (a, b, c; z) = AF (a, b, 1 + a+ b− c; 1− z) +BG(a, b, 1 + a+ b− c; 1− z), (3.13)

where

A =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, B = − π

sinπ(c− a− b)

Γ(c)Γ(c− a− b+ 1)

Γ(a)Γ(b)
.

Proof. The key step is to use Theorem 3.12, By the theory of second order ODE, we know
there exists some A,B such that (3.13) holds on z ∈ (0, 1). Take the limit z → 1−, then we
know

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
= A.

To compute B, we want to take z → 0+,

1 =A lim
z→1−

F (a, b, 1 + a+ b− c; z) +B lim
z→1−

G(a, b, 1 + a+ b− c; z)

=A
Γ(1 + a+ b− c)Γ(1− c)

Γ(1 + a− c)Γ(1 + b− c)
+B

Γ(c− a− b+ 1)Γ(1− c)

Γ(1− a)Γ(1− b)
.

□

3.3. Confluent hypergeometric functions. Our motivation is to study the eigenfunctions
of Laplacian on R2. We express −∆R2 for radial functions, which is

−∆R2u(r) = k2u ⇐⇒ −u′′ − 1

r
u′ − k2u = 0. (3.14)

The theory developed so far cannot be applied directly since this equation has an irregular
singularity at ∞.

We look for a generalized hypergeometric function which obeys an equation with irregular
singularities as (3.14). One can find by construction that

M(a, c; z) :=
∞∑
n=0

(a)n
(c)n

zn

n!
(3.15)

solves (3.9). Here, M(a, c; z) is called a Kummer’s function or a confluent hypergeometric
function with a regular singlarity at 0 and an irregular singularity at ∞. Formally, (3.15) is a
limit case of some hypergeometric functions sinceM(a, c; z) can be seen as limb→∞ F (a, b, c; z

b
)

by taking the limit of each term though it is not rigorous at all.

3.3.1. ODEs with irregular singularities. First, we study in full generality for u′′+Pu′+Qu =
0. We introduce v and write u = eλzv and compute

u′′ + Pu′ +Qu =λ2eλzv + 2λeλzv′ + eλzv′′ + Pλeλzv + Peλzv′ +Qeλzv

=(P − P0)λe
λzv + eλz(2λ+ P )v′ + eλzv′′ + (Q−Q0)e

λzv,

where we choose λ satisfying
λ2 + P0λ+Q0 = 0, (3.16)
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which is called the characteristic equation. Hence,

0 = v′′ + (2λ+ P )v′ + ((P − P0)λ+ (Q−Q0)) v.

If we formally drop the first term and try to balance the last two after making another
approximation

(2λ+ P0)v
′ +

(
P1

z
λ+

Q1

z

)
v = 0,

one will easy to see an ansatz v = zµ, which leads to

µ(2λ+ P0) + (P1λ+Q1) = 0. (3.17)

For λ, µ defined as in (3.16), (3.17), one can find a formal expansion

w ∼
∑ cn

zn

such that u = eλzzµw solves u′′ + Pu′ + Q = 0 by substituting this expression in, where cn
is given by the recurrence relation

(P0 + 2λ)ncn =(n− µ)(n− 1− µ)cn−1 + (λP2 +Q2 − (n− 1− µ)P1) cn−1

+ (λP3 +Q3 − (n− 2− µ)P2) cn−2 + . . .+ (λPn+1 +Qn+1 + µPn) c0.
(3.18)

Actually, we need to assume P 2
0 ̸= 4Q0 in order to guarantee that two formal expansions

are linearly independent due to the following reasons. Thanks to (3.16), P 2
0 = 4Q0 shall

imply 2λ+ P0 = 0, which means that we cannot get a unique µ from (3.17).

Remark 3.14. In general, for P 2
0 ̸= 4Q0,

eλzzµ
∑ cn

zn
(3.19)

will not be converegent. One will find that cn+1 = O(n)cn + · · · . The best thing one can
hope for is that (3.19) is an asymptotic expansion for an actual soltution.

Definition 3.15 (Asymptotic expansion). Let A be a range for arguments of complex
numbers. For a sector given by Γ = {arg z ∈ A, |z| > A} and a function u : Γ → C, we
say

u ∼
∞∑
n=0

an
zn

on Γ as z → ∞ if and only if for all N ≥ 0,∣∣∣∣∣zN+1

(
u−

N∑
n=0

an
zn

)∣∣∣∣∣ ≲N 1

on Γ.

Though the constants for different N may grow with N extremely fast, if we fix N and the
divergent series will provide a good approximation if z is large enough. For more details
about asymptotic expansions, see [8, Chapter 1.7].
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For P 2
0 = 4Q0, we need to use Fabry’s idea. To find a formal ansatz for the solutions,

we consider t with z = t2. Then dz = 2t dt and ∂z = 1
2t
∂t transform 0 = u′′ + Pu′ + Qu

equivalently to

∂2t u+

(
−1

t
+ 2P (t2)t

)
∂tu+ 4t2Q(t2)u = 0.

In this equation, the problematic terms are 2P0t and 4t2Q0. In order to eliminate the term
2P0t, we set u = e−

1
2
P0t2U(t). This is motivated as follows. Suppose

u = WU, u′ = WU ′+W ′U, u′′ = WU ′′+2W ′U ′+W ′′U, P̃ = −1

t
+2P (t2)t, Q̃ = 4t2Q(t2),

then we get

u′′ + P̃ u′ + Q̃u = W

(
U ′′ +

(
2
W ′

W
+ P̃

)
U ′ +

(
W ′′

W
+ P̃

W ′

W
+ Q̃

)
U

)
.

Hence, we choose W such that

W ′

W
= −1

2
2P0t ⇐⇒ (logW ) = −1

2
P0t

2,

which will make the leading order terms of both 2W
′

W
+ P̃ and W ′′

W
+ P̃ W ′

W
+ Q̃ vanish. Then

we can construct formal series solution for W as we did before.

Theorem 3.16. Let P (z), Q(z) are analytic functions of z having the convergent series
expansion P =

∑
n≥0

Pn

zn
and Q =

∑
n≥0

Qn

zn
for |z| > R0. Suppose P

2
0 ̸= 4Q0 and

λ1 µ1 c1,n
λ2 µ2 c2,n

are constructed using (3.16), (3.17) and (3.18) as we discussed before.
For any δ > 0, set

Γ1 :=

{
z ∈ R : arg((λ2 − λ1)z) <

3

2
π − δ, |z| > R0

}
,

Γ2 :=

{
z ∈ R : arg((λ1 − λ2)z) <

3

2
π − δ, |z| > R0

}
,

where R is the Riemann surface of log z, the helix shaped surface. Then there exists unique
holomorphic solutions uj (j = 1, 2) to

u′′ + P (z)u′ +Q(z)u = 0 (3.20)

with the constructed formal series being their asymptotic expansions on Γj, respectively.

Proof. Step 1: First, we focus on j = 1 and we just work on a closure of a branch cut-off
of the complex plane

Γ̃1 = {z : | arg((λ2 − λ1)z)| ≤ π, |z| ≥ R0}.
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Moreover, we drop all the subscripts j = 1 unless stated otherwise. By truncating the
asymptotic expansion of u, we construct an approximating solution

u≤N(z) = eλzzµ
N∑
n=0

cn
zn
.

Suppose u = u≤N + εN solves (3.20), then εN satisfies

ε′′N + P (z)ε′N +Q(z)εN = −RN , RN = u′′≤N + P (z)u′≤N +Q(z)u≤N ,

where RN is the error term. Since eλzzµ
∑∞

n=0
cn
zn

formally solves (3.20), we know that in the
resulting formal sequence of

RN = u′′≤N + P (z)u′≤N +Q(z)u≤N ,

all the coefficients of terms in the form of eλzzµ−n vanish for n = 0, 1, . . . , N . In fact, the
coefficients of eλzzµ−N−1 in the formal sequence of RN also vanishes. This is because one can
observe that the coefficient of eλzzµ−N−1 in the higher order summations eλzzµ

∑∞
n=N+1

cn
zn

can be computed explicitly as

λ2cN+1 + P0λcN+1 +Q0cN+1 = 0,

which vanishes thanks to (3.16). Hence,

RN = eλzzµO(
1

zN+2
). (3.21)

Heuristically speaking, though the remaining terms of u≤N is O( 1
zN+1 ) and the remaning

terms of RN seems to be O( 1
zN+3 ) by plugging it into a second order ODE, but by our

selection process of λ, µ, you only need to integrate once instead of twice, so we can obtain
O( 1

zN+1 ) from integrating O( 1
zN+2 ). This is like what we did for the Green’s functions - we

only integrate once to get a solution to the second order ODE.
Step 2: The equation used to solve εN is

ε′′N + P0ε
′
N +Q0εN = −RN − (P (z)− P0)ε

′
N − (Q(z)−Q0)εN , (3.22)

and we want to rewrite this by using Duhamel’s principle so that we can apply the method
of Picard iteration.

If εN has sufficient decay,

εN(z) =

∫ ∞eiω

z

G(z, z′) (RN(z
′) + (P (z′)− P0) ε

′
N + (Q(z′)−Q0)εN) dz

′, (3.23)

where G(z, z′) = eλ(z−z′)−eλ2(z−z′)

λ−λ2 is the Green’s function of the second order constant coeffi-

cients ODE derived by variation of parameters and ω satisfies arg((λ2 − λ1)e
iω) = 0.

The choice of ω is motivated as below. We write eλ1z = eλ2ze(λ1−λ2)z, then the decay rate
of e(λ1−λ2)z is fastest if arg((λ2 − λ1)z) = 0.

Moreover, we need to choose a specific path γ of integration for (3.23) as follows. We pick
the direction eiω as our x-axis. Then let γ = γ1 ∪ γ2 ∪ γ3, where{
γ1 := {z − itz : t ∈ [0, R]}, γ3 := {reiω : r > r(R), r ∈ R},
γ2 := an arc of a circle centered at the origin joining z − iRz and a point r(R)eiω with r(R) > 0,
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which is shown in the following figure.

On this path γ, Re((λ2 − λ1)z
′) is nondecreasing as shown in the figure and hence

|e(λ2−λ1)(z−z′)| = eRe((λ2−λ1)z)e−Re((λ2−λ1)z′)|z′=z = 1,

which implies

|G(z, z′)| ≤
|eλ1(z−z′)|

(
1− e(λ2−λ1)(z−z

′)
)

|λ1 − λ2|
≤ 2|eλ1(z−z′)|

|λ1 − λ2|
, |∂zG(z, z′)| ≤

|λ1|+ |λ2|
|λ1 − λ2|

|eλ1(z−z′)|.

Moreover,

|zµ| = eRe(µ log z) = eReµ log |z|+Imµ arg z ≤ C|z|m,

where m = Reµ.
From (3.21), we know

|RN(z
′)| ≤ CN |eλ1z

′ ||z′|m−N−2.

Step 3: Now we want to run Picard iteration. We define

Tε(z) =

∫
γ

G(z, z′) (RN(z
′) + (P (z′)− P0)ε

′(z′) + (Q(z′)−Q0)ε(z
′)) dz′.

First, we need to figure out what space we will work on. For ε(z′) ≡ 0, we know that T0(z)
is holomorphic in Γ̃1 and

|T0(z)| ≲N

∫
γ

2|eλ1(z−z′)|
|λ1 − λ2|

|eλ1z′ ||z′|m−N−2 dz′ ≲N |eλ1z|
∫
γ

|z′|m−N−2|dz′|

≲N,m |eλ1z| lim
R→∞

∫
γ1

|z′|m−N−2|dz′| ≲N,m |eλ1z||z|m−N−1

∫ ∞

0

|1− it|m−N−2 dt.

Similarly, by the estimates for ∂zG, we get

|(T0)′(z)| ≲N,m |eλ1z||z|m−N−1

∫ ∞

0

|1− it|m−N−2 dt.

This motivates us to define

BA = {u : u is holomorphic on Γ̃1, |u(z)| ≤ A|eλ1z||z|m−N−1, |u′(z)| ≤ A|eλ1z||z|m−N−1},
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which is ball in the naturally induced Banach space with weighted C0 topology. For any
ε1, ε2 ∈ BA, we estimate the difference by writing

|T (ε1 − ε2)(z)| ≤
∫
γ

|G(z, z′)| |(P (z′)− P0)(ε1 − ε2)
′(z′) + (Q(z′)−Q0)(ε1 − ε2)(z

′)| |dz′|

≤C|eλ1z|
∫
γ

1

|z′|
|∆ε||z′|m−N−1 |dz′| ≤ C|eλ1z||∆ε||z|m−N−1

∫ ∞

0

dt

|1− it|N+2−m ,

where C is independent of N , obtained from the estimate

|P (z′)− P0| ≤ C ′|z′|−1, |Q(z′)−Q0| ≤ C ′|z′|−1,

∆ε := sup
z∈Γ̃

{
|ε1 − ε2|(z)e−λ1z|z|−m+N+1 + |ε′1 − ε′2|(z)e−λ1z|z|−m+N+1

}
and in the last step, we estimate by letting R → ∞ and compute the integral along γ1. Since∫ ∞

0

dt

|1− it|N+2−m =

∫ ∞

0

(1 + t2)−
N+2−m

2 dt→ 0

as N → ∞, we know that for some sufficiently large N ,

sup
z∈Γ̃

|e−λ1z||z|−m+N+1|T (ε1 − ε2)(z)| ≤ δ|∆ε|,

for some δ ≪ 1.
Hence, by contraction mapping theorem, we know that there exists a unique εN ∈ BA

satisfying (3.23) and hence (3.22).
Step 4: We check that uN = u≤N + εN is independent of N . For the sake of distinction,

we stick to the notation with subscript and note that the preceding argument works for both
j = 1 and j = 2. From the discussion above, we know that there exist solutions to (3.20)
with the behavior

uj,N(z) = eλjzzµj

(
N∑
n=0

cj,n
zn

+O(
1

zN+1
)

)
in Γ̃j as z → ∞ thanks to the result in preceding step. For the sake of distinction, we
stick to the notation with subscript. Since (3.20) is of second order, we know u2,N is a
linear combination of u1,N and u1,N ′ provided that u1,N and u1,N ′ are linearly independent.
However, this is impossible by considering the asymptotics. Hence, u1,N = cu1,N ′ for some
constant c and for N,N ′ ≫ 1. Moreover, by letting z → eiω∞ along arg((λ2−λ1)z) = 0, we
know c = 1.

So we set uj := uj,N for N ≫ 1.

Step 5: Finally, we need to extend uj from Γ̃j to Γj. Let ũ1(z) = u1(ze
−2πi), which is

defined on the sector

Γ̃3 := {−π ≤ arg
(
(λ2 − λ1)ze

−2πi
)
≤ π} = {π ≤ arg ((λ2 − λ1)z) ≤ 3π}.

By considering the asymptotics along the ray arg((λ2 − λ1)z) = π, we know that {ũ1, u2} is
linearly independent and hence there exist constants A and B such that

u1(z) = Aũ1(z) +Bu2(z). (3.24)
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As we can see from the derivation in the picture, since u2 is comparably smaller than u1 and
ũ1 along arg((λ2 − λ1)z) = π, the asymptotics of u1 and ũ1 shall be the same, that is,

Aũ1 ∼ Aeλ1z(e−2πiz)µ1 . . . ,

which implies A = e2πµ1i. Note that ũ1 and u2 are both well-defined within the region π ≤
arg((λ2−λ1)z) < 2π, which allows us to extend the expansion of u1 to arg((λ2−λ1)z) ≤ 3

2
π−δ

in terms of (3.24) without affecting its asymptotic series since ũ1 still dominates within this
region compared to u2.
By extending in the same way to arg((λ2 − λ1)z) ≥ −3

2
π + δ, u1 can be continued to Γ1

and the proof is complete. □

3.3.2. Confluent hypergeometric equations. Recall that (3.15) solves the confluent hyperge-
ometric equation (3.9)

zu′′ + (c− z)u′ − au = 0,

which plays an important role in mathematical physics. In terms of transformations ( frac-
tional linear transformations for z, z = z̃α, or conjugation of u, i.e. u(z) = w(z)U(z) ),
confluent hypergeometric equations can be transformed into radial Laplacian (d ≥ 2) and
Airy’s equations.

By writing (3.9) in the form we discussed in the preceding subsubsection, we have

u′′ + (
c

z
− 1)u′ − a

z
u = 0. (3.25)

By changing the variables u(z) = z1−cU(z), a direct computation shows that

U ′′ + (−1 + (2− c)z−1)U ′ + (−(1 + a− c)z−1)U = 0,

which is a confluent hypergeometric equation with indices 1 + a− c, 2− c. Then

U(z) =M(1 + a− c, 2− c, z)

is a power series solution and we set

N(a, c, z) := z1−cM(1 + a− c, 2− c, z),

which is another solution to (3.25) corresponding to different indices at z = 0.
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Lemma 3.17. If c /∈ Z, then
Wz[M(a, c; z), N(a, c; z)] = (1− c)ezz−c.

In particular, M and N are linearly independent.

Proof. This can be proved by a similar argument as in Lemma 3.7. Since M,N both satisfy
(3.25), we get

W ′
z[M,N ] = −

( c
z
− 1
)
Wz[M,N ],

which impliesWz [M,N ] is a constant multiple of ezz−c. By examining the behavior at z = 0,
the constant is 1− c. □

Proposition 3.18. For c /∈ Z, Rea,Re(c− a) > 0, M(a, c, z) can be expressed by

M(a, c, z) =
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

ta−1(1− t)c−a−1etz dt.

Proof. We write

M(a, c, z) =
∞∑
n=0

(a)n
(c)n

zn

n!
=

Γ(c)

Γ(a)

∞∑
n=0

Γ(a+ n)

Γ(c+ n)

zn

n!

=
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

∞∑
n=0

(tz)n

n!
ta−1(1− t)c−a−1 dt

=
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

ta−1(1− t)c−a−1etz dt.

□

Remark 3.19. Formally,

F (a, b, c;
z

b
) →M(a, c, z), as b→ ∞

in the sense that each summand in the series converge, that is,

(a)n(b)n
(c)nn!

zn

bn
→ (a)n

(c)n

zn

n!
.

In fact, this formal limit allows us to derive Proposition 3.18 from (3.12) since

lim
b→∞

(
1− zt

b

)−b

= etz.

From the form (3.25) of the confluent hypergeometric equation, we know

P0 = −1, P1 = c, Q0 = 0, Q1 = −a
and all other terms are zero. Thanks to the recurrence relation (3.18), we know that for
λ1 = 0 and µ1 = −a,

−nc1,n = (a− c+ n)(a+ n− 1)c1,n−1 ⇒ c1,n =
(a− c+ 1)n(a)n

n!
(−1)nc1,0
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and for λ2 = 1 and µ2 = a− c,

nc2,n = (−a+ n)(−a+ c+ n− 1)c2,n−1 ⇒ c2,n =
(−a+ 1)n(−a+ c)n

n!
c2,0.

By Theorem 3.16, for all δ > 0, there exist solutions U and V such that

U(a, c, z) ∼z−a
∞∑
n=0

(−1)n
(a)n(a− c+ 1)n

n!

1

zn
as z → ∞ on Γ1,

V (a, c, z) ∼ezza−c
∞∑
n=0

(1− a)n(c− a)n
n!

1

zn
as z → ∞ on Γ2,

(3.26)

where

Γ1 := {| arg z| ≤ 3

2
π − δ, |z| > R0}, Γ2 := {| arg(−z)| ≤ 3

2
π − δ, |z| > R0}.

Here, U(a, c, z) is called the Tricomi function and it turns out that U has an integral repre-
sentation.

Proposition 3.20. For | arg z| < 1
2
π, Rea > 0,

U(a, c, z) =
1

Γ(a)

∫ ∞

0

ta−1(1 + t)c−a−1e−zt dt. (3.27)

Proof. First, we check that the right hand side of (3.27) is a solution to (3.25). We denote
the right hand side by u(z) and compute

u′(z) = −
∫ ∞

0

ta(1 + t)c−a−1e−zt dt, u′′(z) =

∫ ∞

0

ta+1(1 + t)c−a−1e−zt dt

and hence

zu′′ + cu′ =(a+ 1− c)

∫ ∞

0

ta(1 + t)c−a−1e−zt dt+ (c− a− 1)

∫ ∞

0

ta+1(1 + t)c−a−2e−zt dt

=− (c− a− 1)

∫ ∞

0

ta(1 + t)c−a−2e−zt dt = zu′ + au.

Moreover, one can check that it has the same asymptotic series by applying the Watson’s
lemma. Then we only need to compute the constant coefficients. □

Actually, what is more important than the proof itself is that this formula for U can be
guessed by taking the formal limit.

Now we present the connection formula.

Theorem 3.21. For c /∈ Z, we have

M(a, c, z) =
Γ(c)

Γ(c− a)
eaπiU(a, c, z) +

Γ(c)e(a−c)πi

Γ(a)
V (a, c, z),

N(a, c, z) = −Γ(2− c)e(a−c)πi

Γ(1− a)
U(a, c, z) +

Γ(2− c)e(a−c)πi

Γ(1 + a− c)
V (a, c, z),

where we use {−π < arg z ≤ π} for U and N while we use {−π ≤ arg(−z) < π} for V .



68 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR SUNG-JIN OH

Proof. We focus on the first formula and suppose

M(a, c, z) = AU(a, c, z) +BV (a, c, z).

By applying the ratio test to (3.15), we know M is an entire function. Then we would like
to derive A and B by using a similar argument as what we did in the last step of the proof
for Theorem 3.16. Since U dominates V along arg z = π, we let z tend to infinity along this
ray to compute A and let z tend to infinity along arg z = 0 to compute B.

Recall from Proposition 3.18 that

M(a, c, z) =
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

ta−1(1− t)c−a−1etz dt.

To compute B, let us understand the asymptotics of M as z → ∞ along arg z = 0 by the
so-called Laplace’s method. We write∫ 1

0

ta−1(1−t)c−a−1etz dt = ez
∫ 1

0

(1−(1−t))a−1(1−t)c−a−1e−(1−t)z dt = ez
∫ 1

0

(1−s)a−1sc−a−1e−sz dt.

Then by expanding

(1− s)a−1sc−a−1 = sc−a−1(1 + (a− 1)s+ . . .)

in terms of s, and noticing that∫ 1

0

sα−1e−sz ds = z−α
∫ z

0

τα−1e−τ dτ → z−αΓ(α) +O(e−(1−δ)z),

we get ∫ 1

0

ta−1(1− t)c−a−1etz dt =ez
(∫ 1

0

sc−a−1e−sz dt+O(|z|−(c−a+1))

)
=ez

(
z−(c−a)Γ(c− a) +O(|z|−(c−a+1))

)
as z → ∞ along arg z = 0. Hence, we know that M(a, c, z) ∼ Γ(c)

Γ(a)
ezz−(c−a) as z → ∞ along

arg z = 0.
On the other hand, thanks to (3.26), we know the asymptotics of V (a, c, z) along arg(−z) =

−π. By rewriting it to be the ray arg(z) = 0, we get

V (a, c, z) ∼ ez(|z|e−iπ)a−c = ezza−ce−i(a−c)π

as z → ∞ along arg(z) = 0. Then

Bezza−ce−i(a−c)π =
Γ(c)

Γ(a)
ezz−(c−a),

which implies B =
Γ(c)

Γ(a)
ei(a−c)π.
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To evaluate A, we need to consider along the ray arg z = π and we write

M(a, c, z) =
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

ta−1(1− t)c−a−1e−t(−z) dt

=
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

ta−1e−t(−z) dt+O(|z|−a−1) =
Γ(c)

Γ(c− a)
(−z)−a +O(|z|−a−1).

From (3.26), we can derive the asymptotic of U(a, c, z) along arg z = π as

U(a, c, z) ∼ (|z|eiπ)−a = (−z)−ae−aπi.
By equating

Γ(c)

Γ(c− a)
(−z)−a = A(−z)−ae−aπi,

we have A =
Γ(c)

Γ(c− a)
eaπi, which completes the proof. □
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4. Nonlinear problems

We would like to study nonlinear ODEs from a dynamical point of view. For an au-
tonomous system

y′ = F (y)

on Rn, it can also be viewed as the integral curves of the vector field F (y) on Rn.

4.1. Stability and instability of equilibria and the stable manifold theorem. Set
x⃗ = (x1, . . . , xn)T . Let

x⃗′ = f⃗(x⃗), (4.1)

where f⃗ : D → Rn is a vector filed on D ⊂ Rn and f⃗ is C1 on D. Then it follows from the
Picard-Lindelof theorem that the initial value problem (4.1) has local wellposedness.

Definition 4.1. We say x⃗0 is a critical point or equilibrium if f⃗(x⃗0) = 0. In other words,
x⃗(t) = x⃗0 is a constant solution to (4.1).

Definition 4.2. We denote x⃗(t, s; η⃗) is the unique (possibly local) solution to (4.1) satis-
fying x⃗(s, s; η⃗) = η⃗. Moreover, we write x⃗(t; η⃗) = x⃗(t, 0; η⃗).

To study the global-in-time behavior of x⃗(t), we use the equilibria of (4.1) as building
blocks, which have largest possibilities to be candidates of limt→∞ x⃗(t).

Without loss of generality, we assume that 0⃗ is a critical point. By linearization, let us
write

x⃗′ = Ax⃗+ g⃗(x⃗), A = Df⃗ (⃗0), (4.2)

where A is a constant real-valued n× n matrix and |⃗g(x⃗)| = o(|x⃗|) as x⃗→ 0.
For the linearized equation

y⃗′ = Ay⃗, (4.3)

the stability of (4.3) is determined by the spectrum of A. Suppose λ1, . . . , λk are distinct
eigenvalues of A with associated generalized eigenspace E1, . . . , Ek such that dimEj = nj,
where nj is the algebraic multiplicity of λj. Then Rn = E1 ⊕ · · · ⊕ Ek, and Ej is invariant
under A and exp(tA). Moreover,

exp(tA)|Ej
= etλjPj(A− λjI),

where Pj is a finite degree polynomial. Therefore, the stability of the linear flow exp(tA) on
each Ej is determined by |etλj | = etReλj , which motivates the following definition. See [10,
Section 2.5].

Definition 4.3. Set
EC
s = ⊕{Ej : Reλj < 0}

to be the complex stable linear subspace, which means that the solution to the linearized
system shall be stable forward in time. On the other hand, the complex unstable linear
subspace is given by

EC
u = ⊕{Ej : Reλj > 0}
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and the complex center linear subspace is given by

EC
c = ⊕{Ej : Reλj = 0}.

Definition 4.4. Note that Cn = EC
s ⊕ EC

u ⊕ EC
c naturally induce three linear projections

Ps, Pu and Pc.

One can check that Psx̄ = Psx and then set Es := PsRn.

Definition 4.5. Set

Es := PsRn, Eu := PuRn, Ec := PcRn

to be the stable linear subspace, unstable linear subspace and center linear subspace, respec-
tively.

Definition 4.6. We say A is hyperbolic at 0⃗ if Reλj ̸= 0 for all j.

From now on, we assume that 0⃗ is indeed hyperbolic, so

Rn = T0⃗R
n = Es ⊕ Eu.

For n = 2, the picture for the linearized system is roughly as follows.

By the stable manifold theorem, we can extend this picture for linearized case to the
nonlinear system. We need to introduce some notions at first.

Definition 4.7. The global stable manifold is given by

Σs(⃗0) :=
{
η⃗ ∈ D : x⃗(t; η⃗) exists for all time t ≥ 0, and lim

t→∞
x⃗(t, η⃗) = 0⃗

}
,

which is the domain of attraction for 0⃗.
Let U be a neighborhood of 0⃗, then a local stable manifold of 0⃗ relative to U is given by

ΣU
s (⃗0) :=

{
η⃗ ∈ Σs(⃗0) : x⃗(t; η⃗) ∈ U for all t ≥ 0

}
.

On the other hand, the global unstable manifold is given by

Σu(⃗0) :=

{
η⃗ ∈ D : x⃗(t; η⃗) exists for all time t ≤ 0, and lim

t→−∞
x⃗(t; η⃗) = 0⃗

}
and a local unstable manifold of 0⃗ relative to U is given by

ΣU
s (⃗0) :=

{
η⃗ ∈ Σu(⃗0) : x⃗(t; η⃗) ∈ U for all t ≤ 0

}
.

Then the picutre for the linearized system above serves as an example for Σs and Σu.
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Now we view (4.2) as a perturbative system of the linearized one (4.3) and we have the
following local stable manifold theorem.

Theorem 4.8 (Local Stable Manifold Theorem). For (4.2), we assume that f⃗ is C1, 0⃗

is a critical point and DF (⃗0) is hyperbolic. Then there exist λ > 0, r > 0, an open set

U ⊂ Es which contains 0⃗ and a C1 function γ : U → Eu with the following properties :

(1) γ(⃗0) = 0⃗ and Dγ(⃗0) = 0;
(2) set the graph of γ by

Γ = {η⃗ ∈ D : Psη⃗ ∈ U, Puη⃗ = γ(Psη⃗)}.
If η⃗ ∈ Γ, then x⃗(t, η⃗) is defined for all t ≥ 0 and

∥x⃗(t, η⃗)∥ ≤ C∥Psη⃗∥e−λt.
In particular, Γ is a local stable manifold of 0⃗ relative to Br (⃗0).

(3) The stable manifold is given by

Γs(⃗0) =
⋃
t≤0

x(t,Γ).

Remark 4.9. From the statement, it follows that Γ is a C1 submanifold tangent to Es at 0⃗.
Moreover, Γs(⃗0) is an immersed C1 manifold. See [10, Theorem 7.7].

Remark 4.10. By reversing time, one can also construct unstable manifold Σu by reversing
the time, which is also called the unstable manifold theorem.

We only sketch the proof for this theorem. See [10, Section 7.3] for a proof in detail. We
use Perron’s method (Lyapunov-Perron’s method), which requires using Duhamel’s principle
to derive the key integral formula.

We begin by writing

x⃗′ = Ax⃗+ g⃗(x⃗).
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For x⃗(t) = x⃗(t; η⃗), by Duhamel’s principle, we have

x⃗(t) = etAη⃗ +

∫ t

0

e(t−s)Ag⃗(x⃗(s)) ds.

A key observation is that if x⃗(t) stays bounded for all t ≥ 0, then

x⃗(t) = etAη⃗ +

∫ t

0

e(t−s)APsg⃗(x⃗(s)) ds−
∫ ∞

t

e(t−s)APug⃗(x⃗(s)) ds. (4.4)

The proof of (4.4) is as follows. We write etA = etAPs + etAPu, then

x⃗(t) = etAPsη⃗ +

∫ t

0

e(t−s)APsg⃗(x⃗(s)) ds+ etAPuη⃗ +

∫ t

0

e(t−s)APug⃗(x⃗(s)) ds

=etAPsη⃗ +

∫ t

0

e(t−s)APsg⃗(x⃗(s)) ds−
∫ ∞

t

e(t−s)APug⃗(x⃗(s)) ds+ etAPuη⃗ +

∫ ∞

0

e(t−s)APug⃗(x⃗(s)) ds,

where the first three terms are bounded if g⃗(x⃗(s)) is bounded. However, the last two terms

etAPuη⃗ +

∫ ∞

0

e(t−s)APug⃗(x⃗(s)) ds = etAPu

(
η⃗ +

∫ ∞

0

e−sAPug⃗(x⃗(s)) ds

)
would go to infinity as t → ∞ unless the terms in the parentheses cancel to be zero. Then
the idea is to start from (4.4) to show existence, uniqueness by Picard iteration.

4.2. Application of stable manifold theorem : shooting method. We will construct
a travelling wave solution to

∂tw − ∂2xw + f(w) = 0, (4.5)

which is a reaction-diffusion equation. Here, a travelling wave solution means that w(t, x) =
u(x + ct), that is, a wave travelling to the left with speed c. Set f(w) = w(w − a)(w − 1)
and 0 < a < 1

2
. If we plug w = u(x+ ct) into (4.5), we get

cu′ − u′′ + f(u) = 0, (4.6)

which is our new ODE, which can also be expressed in the first order formulation

d

dx

(
u
u̇

)
=

(
u̇

cu̇+ f(u)

)
. (4.7)

By Definition 4.1, the critical points of (4.7) are (0, 0), (a, 0) and (1, 0). The energy functional
given by

E(u, u̇) =
1

2
u̇2 + F (u), F ′(u) = −f(u)

satisfies
d

dx
E(u, u̇) = u̇ü+ (−f(u))u̇ = cu̇2 + u̇f(u)− f(u)u̇ = cu̇2. (4.8)

Hence, we require c ≥ 0, which makes E nondecreasing along trajectories of (4.7).
We are looking for a solution (u, u̇)(x) to (4.7) such that

lim
x→−∞

(
u
u̇

)
(x) and lim

x→+∞

(
u
u̇

)
(x)
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both converge to critical points. In particular, we want

lim
x→−∞

(u, u̇)(x) = (0, 0).

Observe that if we normalize E(0, 0) = 0, then

E(a, 0) = F (a) = −
∫ a

0

f(v) dv < 0

and

E(1, 0) = −
∫ 1

0

f(v) dv = −
∫ 1

0

v(v − a)(v − 1) dv > 0,

thanks to the assumption a < 1
2
. So limx→+∞(u, u̇)(x) cannot be (a, 0) by the energy identity

(4.8) and E(0, 0) = 0, E(1, 0) > 0. We look for

lim
x→+∞

(u, u̇)(x) = (1, 0).

Theorem 4.11. Given 0 < a < 1
2
, there exists c ∈ [0,∞) such that (4.7) admits a solution(

u
u̇

)
defined for all x ∈ (−∞,∞) and

lim
x→−∞

(
u
u̇

)
(x) =

(
0
0

)
, lim

x→+∞

(
u
u̇

)
(x) =

(
1
0

)
.

In the language of dynamical systems, it is equivalent to say that there exists a heteroclinic

orbit from

(
0
0

)
to

(
1
0

)
for some c.

Proof. Though the statment we need to prove is a global property, we start by computing
the linearization of (4.6) near each equilibrium:

F⃗ =

(
u̇

cu̇+ u(u− a)(u− 1)

)
, DF⃗ (0, 0) =

(
0 1
a c

)
.

It is easy to notice that (0, 0) is hyperbolic and it is a saddle point, where the eigenvalues

are λ1 =
c+

√
c2+4a
2

> 0 and λ2 =
c−

√
c2+4a
2

< 0. The corresponding eigenvectors are

v⃗1 =

(
1
λ1

)
, v⃗2 =

(
1
λ2

)
.

By the (un)stable manifold theorem and Remark 4.9 corresponded, there exists an unstable

manifold Σu(⃗0; c) tangent to v⃗1. Moreover, by the Picard iteration method used for the proof
of the unstable manifold theorem, we can prove that

• ∀c ≥ 0, there exists a unique

(
uc
u̇c

)
on Σu(⃗0; c) such that

lim
x→−∞

uc(x)

eλ1x
= 1,
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• c 7→ (uc, u̇c) is continuous in the following sense: If (uc, u̇c)(t) exists on (−∞, T ], then
for c′ close c, (uc′ , u̇c′)(t) exists on (−∞, T ] and

lim
c→c′

sup
(−∞,T ]

|(uc, u̇c)(x)− (uc′ , u̇c′)(x)| = 0.

We omit the proof for these two properties.

To prove the existence of c such that

(
uc
u̇c

)
→
(
1
0

)
as x → +∞, we perform a shooting

argument. Define two bad sets

A := {c > 0 : ∃x1, u̇c(x1) < 0, uc(x) < 1,∀x ∈ (−∞, x1)} ,
B := {c > 0 : ∃x1, uc(x1) > 1, u̇c(x) > 0,∀x ∈ (−∞, x1)} .

Our goal is to show that for A,B ⊂ (0,∞)

(1) A ∩B = ∅,
(2) A,B are open,
(3) A,B nonempty,

then by connectedness of (0,∞), we know (0,∞) \ (A ∪ B) ̸= ∅. Let c ∈ (0,∞) \ (A ∪ B),
then

uc(x) ≤ 1 and u̇c(x) ≥ 0 (4.9)

for all x’s. In particular, uc stay bounded and uc(∞) exists. Moreover, combining this
result with (4.8), we know uc and u̇c both stay bounded, which in turn shows that uc
exists for x ∈ (−∞,∞). On the other hand, from (4.8), E is monotonic. In particular,
limx→+∞E(uc, u̇c) exists, which implies the existence of u̇c(∞). Now, the existence of uc(∞)
and u̇c(∞) implies that the trajectory (uc, u̇c) has a limit as x → ∞, which must be the
critical point (1, 0). Otherwise, suppose it converges to (α0, β0). If β0 > 0, then for sufficiently
large x, u̇c(x) >

1
2
β0, which means that uc(x) cannot converge to a finite value α0 < 1. This

implies β0 = 0 and then we should require E(α0, 0) = F (α0) > 0. In particular, α0 > a and
hence f(α0) < 0 unless α0 = 1, which implies üc(x) < −1

2
f(α0) for sufficiently large x and

hence u̇c cannot have a finite limit α0. Therefore, α0 = 1. (Actually, this can be explained
in an easier and general way. For X ′ = F (X), if X(t) converges to X∞ as t→ ∞, then there
exists a sequence of tj such that X ′(tj) = 0, which implies F (X∞) = limt→∞ F (X(tj)) = 0,
that is, the limit point X∞ is a critical point.)
Now we prove the three properties for A and B. The first two are obvious from the

definition. Now we show the third one by proving the folowing claim :

• if 0 < c≪ 1 is small enough, then c ∈ A;
• if c≫ 1, then c ∈ B.

The proof is as follows.
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• If c = 0, then (u0, u̇0) stays on the closed curve E = 0, which is the yellow curve in the
picture. Note that all the points on {E = 0} are ordinary (not critical) except (0, 0).
So (u0, u̇0) is a homoclinic orbit associated with (0, 0) and there exists x1 such that
u̇0(x1) < 0 yet u0(x) < 1 for all x ∈ (−∞, x1), that is, 0 ∈ A. By continuity in c, c ∈ A
for 0 < c≪ 1.

• Now we want to show the second claim.
– Claim 1: any (uc, u̇c) must cross the line {u = a}. Since d

dx
E ≥ 0, (uc, u̇c) must stay

outside of {E = 0}. Thus, for any x0 such that the solution exists in (−∞, x0), if

uc(x) < a, for all x ∈ (−∞, x0), (4.10)

then u̇c(x) > 0 for all x ∈ (−∞, x0). Fix 0 < α < a, where (uc, u̇c) crosses {u = α}.
Let β > 0 be such that (α, β) ∈ {E = 0}. Now we claim that

if (4.10) holds and x0 <∞, then E(x0) := E(uc(x0), u̇c(x0)) <∞. (4.11)

This implies that (uc, u̇c) stay bounded in (−∞, x0). By monotonicity, (uc, u̇c) can
be extended to any finite interval. Furthermore, since uc(x) is increasing, if (4.10)
holds, then u̇c(x) ≥ β for all x such that uc(x) ≥ α, which implies uc(x) ≥ a for x
sufficiently large.

Hence, it suffices to prove the claim above. If E(x) < max0≤u≤a |F (u)| for all
x ∈ (−∞, x0), then we are done. Otherwise, there exists x < x0 such that E(x) =
max0≤u≤a |F (u)| and hence E(x′) ≥ max0≤u≤a |F (u)| for all x′ ∈ [x, x0). Therefore,

E(x′) ≥ 1

2
E(x′) +

1

2
E(x′) ≥ 1

4
u̇2c(x

′) +
1

2
F (u) +

1

2
max
0≤u≤a

|F (u)| ≥ 1

4
u̇2c(x

′) ≥ 1

4c

d

dx
E(x′)

for all x′ ∈ [x, x0). By Gronwall’s inequality, we get supx≤x′≤x0 E(x
′) < +∞. Since

1
2
u̇2c ≤ E + |F (uc)|, it follows that (uc, u̇c)(x) < +∞ for all x < x0, so the solution

exists for all x ∈ (−∞,∞) and by previous argument, we derived a contradiction.
Thus, given c, we set

xa := inf{x : uc(x) = a}, xa
2
:= sup{x : uc(x) =

a

2
},

which are well-defined.
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– Claim 2 : limc→∞ u̇c(xa) = ∞. Since

du̇c
duc

=
cu̇c + f(uc)

u̇c
≥ c

for x < xa, we have

u̇c(xa) = u̇c(xa
2
) +

∫ a

a/2

du̇c
duc

(u) du ≥ a

2
c→ ∞

as c→ ∞. If we arrange by taking c≫ 1 so that

E(uc, u̇c)(xa) > max
0≤u≤1

F (u) + 1,

then for all x ≥ xa,

1

2
u̇c(x)

2 + F (uc(x)) = E(uc, u̇c)(x) ≥ E(uc, u̇c)(xa) > max
0≤u≤1

F (u) + 1.

In particular, 1
2
u̇c(x)

2 > 1. By an argument similar to Claim 1, we know (uc, u̇c)
must cross {u = 1}, which implies c ∈ B. This completes the proof.

□

This example above is taken from [4, Chapter 2].

4.3. Hamiltonian mechanics and completely integrable systems.

4.3.1. Hamiltonian mechanics. We start from classical mechanics. The Newton’s equation
is given by

ẍ = F, x ∈ Rn, F ∈ Rn. (4.12)

We assume F is of the special form (conservative force), that is, F = −∇U(x) with the
potential energy U : Rn → R.

Definition 4.12. The total energy or the Hamiltonian of the system is defined to be

H(x, ẋ) =
1

2
|ẋ|2 + U(x).

It is easy to see that H is conserved along any trajectory of (4.12). For instance, multiply
(4.12) by ẋ and use the product rule. But one may ask whether there is a way to write (4.12)
so that the conservation of H is clear.

We write (
x
ξ

)′

= X(x, ξ),

where X : R2n → R2n is a vector field on R2n, ξ = x′. Indeed,

X =

(
ξ

−∇U(x)

)
, H(x, ξ) =

1

2
|ξ|2 + U(x).

ThenH is conserved if and only ifX is tangential to the level surface ofH, which is equivalent
to X · ∇H = 0.

Geometrically, if we have a Hamiltonian H and we can plot the level surface of H for
n = 1 case as follows.
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Indeed, ∇H =

(
∇U(x)
ξ

)
and X = J∇H, where J =

(
0 In×n

−In×n 0

)
. When n = 1, J is

the rotation matrix.
Even in the general case n ≥ 1, X ·∇H = J∇H ·∇H = 0 since J is anti-symmetric. This

suggests writing (4.12) as (
x
ξ

)′

= J∇H(x, ξ) (4.13)

on R2n, which is the Hamiltonian system associated with H. The advantage of this form is
that the ODE is directly related to the conservative quantity H.
Note that for any N ×N anti-symmetric matrix A,

z′ = A∇H(z), z ∈ RN (4.14)

would also conserve H. But then it turns out that if A is invertible, this system is equivalent
to the case A = J , which is stated in detail in the following proposition.

Proposition 4.13. Suppose A is an N ×N anti-symmetric, real-valued, invertible matrix,
then necessarily N = 2n and there exists a matrix P : R2n → R2n a linear invertible
transformation such that P−1AP = J .

Proof. We do Gram-Schmidt process for (Az) · w to prove. This is a simple linear algebra
exercise. □

This implies J , or equivalently the associated bilinear map

ωR2n(z, w) = (Jz) · w
is the canonical form for (2), where ωR2n is called the symplectic product on R2n. Write
z = (x, ξ), w = (y, η), then ωR2n(z, w) = ξ · y − x · η. The discussion above gives the
motivation of introducing such J and the symplectic product.

Though x, ξ here are tied with the physical meaning position and generalized momentum,
it turns out that what is important in the ODE (4.13) is the matrix J and the Hamiltonian
H. We can make use of this form to make a flexible change of variable as long as it preserves
the bilinear map associated with J . To facilitate the discussion of possibly nonlinear change
of coordinates and to allow for possible variation of ω at different points, we introduce
a differential geometric generalization of the above. This leads to the notion of symplectic
manifolds. From now on, setM to be an even dimensional differential manifold with dimM =
2n.

Definition 4.14. Let ωp be a bilinear form on TpM (covariant 2 tensor field) is a sym-
plectic form if

(1) ωp is anti-symmetric, ω(X, Y ) = −ω(Y,X) for all X, Y ∈ TpM ;
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(2) ωp is non-degenerate in the sense that if for all Y ∈ TpM , ω(X, Y ) = 0, then X = 0;
(3) dω = 0, that is, ω is closed.

Later we would see that the assumption that ω is a closed form is crucial for the conservative
property.

Example 4.15. The example we start with, M = Rn × Rn with the coordinate system
(x1, . . . , xn, ξ1, . . . , ξn) is a symplectic manifold with the 2-form ω can be written as the dif-
ferential form

ω =
n∑
j=1

dξj ∧ dxj.

If we identify z ∈ R2n with z1∂x1+ · · ·+zn∂xn+zn+1∂ξ1+ · · ·+z2n∂ξn, then ω can be identified
with the standard one ωR2n in the following sense

ωR2n(z, w) = ω(z1∂x1+· · ·+zn∂xn+zn+1∂ξ1+· · ·+z2n∂ξn , w1∂x1+· · ·+wn∂xn+wn+1∂ξ1+· · ·+w2n∂ξn).

Note that ω = dθ is exact, where θ =
∑n

j=1 ξjdxj, which is called the canonical 1-form.

Now we view this example from a geometric perspective.

Example 4.16. The previous example is geometrically, the cotangent bundle T ∗Rn,. Let
(x1, . . . , xn) be the rectangular coordinates on Rn. For all q ∈ Rn, dx1, . . . , dxn form a basis
for T ∗Rn and ∂x1 , . . . , ∂xn form a dual basis on TRn. Any η ∈ T ∗

qM can be written as

η = ξ1dx
1 + · · ·+ ξndx

n,

which is equivalent to ξj = η(∂xj). Due to this formula for ξj, we can easily check that
θ =

∑n
j=1 ξjdx

j is invariant under the change of variables of x. Hence, this is a well-defined
geometric object and the canonical form θ gives rise to the symplectic form ω = dθ on T ∗Rn.

Definition 4.17. For (M,ωM), (N,ωN), a symplectomorphism is defined as a diffeomor-
phism Φ : M → N such that Φ∗ωN = ωM . If such map exists, then M and N are said to
be isomorphic.

Suppose (Φt) is a 1-parameter family of symplectomorphism onM →M .

Definition 4.18. We define X to be the infinitesimal generator of each trajectory

d

dt
Φt = (Φt)∗X.

We say X is the symplectic vector field associated with (Φt).

Since for each t, (Φt)
∗ω = ω. By differentiating this, d

dt
(Φt)

∗ω = 0. Thanks to the definition
for the Lie derivative in [14],

d

dt
(Φt)

∗ω = 0 ⇐⇒ LXω = 0

since d
dt
(Φt)

∗ω = Φ∗
t (LXω). Moreover, by Cartan’s formula and the closedness of ω, we have

LXω = dιXω + ιXdω = d(ιXω),



80 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR SUNG-JIN OH

where ιX is the interior product. Hence, X is a symplectic vector field if and only if ιXω is
closed. So the invertibility of the relation

X 7→ ιXω = η

is equivalent to the non-degeneracy of ω as defined in Definition 4.14 (2).

Definition 4.19. Given a function F on M , the Hamiltonian vector field XF associated
with F is defined by ιXF

ω = −dF .

Lemma 4.20. XF is a symplectic vector field.

Proof. By the definition for XF , d(ιXF
ω) = 0. Moreover, thanks to Definition 4.14, ω is

closed, we know LXF
ω = 0 by Cartan’s formula. This implies XF is a symplectic vector field

by reversing the previous discussion above. □

Definition 4.21. Given two functions F,G on M , the Poisson bracket of F and G is
defined to be

{F,G} = ω(XF , XG).

Equivalently,
{F,G} = −ιXF

ιXG
ω = ιXF

dG = XF (G) = −XG(F ).

Example 4.22. On T ∗Rn with coordinates (x, ξ), we have

{F,G} =
n∑
j=1

∂ξjF∂xjG− ∂xjF∂ξjG.

Proposition 4.23. For all F,G,H ∈ C∞(M), the following properties hold:

(1) anti-symmetry: {F,G} = −{G,F};
(2) Jacobi identity: {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0.

In particular, {F, F} = 0.

Corollary 4.24. {·, ·} is conjugate to [·, ·] via F 7→ XF , that is, X{F,G} = [XF , XG].

Proof. It suffices to prove that for all H ∈ C∞(M), X{F,G}H = [XF , XG]H. By applying the
equivalent definition for Poisson bracket in Definition 4.21, one would find that it follows
from the Jacobi identity. □

Example 4.25. For M = R2n, XH = J∇H. So the Hamiltonian vector field is a geometric
generalization of what we discussed at the beginnning of this subsection.

4.3.2. Canonical coordinates and Darboux theorem.

Definition 4.26. A coordinate system (x1, · · · , xn, ξ1, · · · , ξn) on U ⊂M is called a canon-
ical coordinate system if

{xj, xk} = 0, {ξj, ξk} = 0, {ξj, xk} = δkj .

This is motivated by the properties of the coordinates (x, ξ) on R2n.
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Lemma 4.27. Alternatively, (x, ξ) is canonical if and only if in this coordinates, ω =∑n
j=1 dξj ∧ dxj.

Theorem 4.28. Suppose A,B ⊂ {1, · · · , n} are index sets. Given smooth functions qj, j ∈
A and pk, k ∈ B defined in a neighborhood U of z ∈M satisfying

• (dqj)j∈A ∪ {dpk}k∈B are linearly independent at z;

• {qj, qj′} = 0, {pk, pk′} = 0, {pk, qj} = δjk for j, j′ ∈ A and k, k′ ∈ B,

which is a partial canonical coordinate system near z. Then there exists a canonical coor-
dinate system (x, ξ) in a neighborhood of z such that xj = qj for all j ∈ A and ξk = pk for
all k ∈ B.

Proof. See [5, Theorem 21.1.6]. □

Corollary 4.29 (Darboux’s theorem). For any z ∈M , there exists a local canonical coordi-
nate system. Equivalently, for any z ∈M , there exists a neighborhood U which is isomorphic
to a neighborhood of (R2n, ω). The second version is a more geometric characterization in
the sense of Definition 4.17.

Proof. By choosing A = B = ∅, we complete the proof. □

Corollary 4.30. Given any H ∈ C∞(M), dH|z ̸= 0, there exists a local canonical coordinate
(x, ξ) near z such that H = ξ1

Proof. By choosing A = ∅, B = {1} and p1 = H, we complete the proof. □

4.3.3. Completely integrable Hamiltonian systems. By a Hamiltonian system, we mean an
ODE system associated with a Hamiltonian vector field.

Definition 4.31. Given H ∈ C∞(M). We say F ∈ C2(M) is an integral of H if {H,F} =
0 and dF ̸= 0.

Note that {H,F} = XH(F ) = 0 implies F is conserved under the flow of H. Having an
integral helps us to solve Hamiltonian systems.

Example 4.32. Let H = 1
2
ξ2 + U(x) in dimension 1. The Hamiltonian flow is given by{

ẋ = ∂
∂ξ
H = ξ,

ξ̇ = − ∂
∂x
H = −U ′(x)

can be solved by using the property of the conservation of H. If (x, ξ) solves the equation,
then H = 1

2
(ẋ)2 + U(x) is a constant, which means that we only need to solve

ẋ = ±
√

2(H − U(x))

by separation of variables.

Definition 4.33. We say H ∈ C∞(M) is completely integrable if there exists F1, · · · , Fn ∈
C2(M) integrals of H such that

(1) dF1, · · · , dFn are linearly independent everywhere;
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(2) {H,Fj} = 0;
(3) {Fj, Fk} = 0 for all j, k,

where the third relation is called Fj’s are in involution.
Note that the notion of complete integrability is global. Recall that for all H ∈ C∞(M),

z ∈M , there exists a local canonical coordinate system (x, ξ) near z such that ξ1 = H. But
{ξk, ξj} = 0, so all the three conditions are satisfied by Fj = ξj on U . So this is a trivial
notion locally, but it is useful globally.

Example 4.34 (A trivial example for complete integrability). Suppose H = H(ξ1, · · · , ξn)
only depends on the generalized momentum variables in the canonical coordinates in R2n.
Then Fj = ξj define n integrals of H.

Example 4.35 (Harmonic Oscillator - A physics related example). Suppose H(x, ξ) =
1
2

∑n
j=1

(
ξ2j + ω2

j (x
j)2
)
. By considering Fj(x, ξ) = 1

2
(ξj)

2 + 1
2
ω2
j (x

j)2, we know that H is
completely integrable in

M = {(x, ξ) ∈ R2n : F1, · · · , Fn ̸= 0},
where dFj’s are linearly independent.

Example 4.36 (Kepler’s problem). The general two-body problem can be reduced by consid-
ering the center of mass frame to the case H = 1

2
|ξ|2 + 1

|x| with x, ξ ∈ R3, which corresponds

to the model for a single particle associated to the potential 1/r.
This is a system with three degrees of freedom. One natural integral is H itself. Basically,

you need two more except for H, namely, |J |2 and J3, which comes from symmetries. Here, Jj
is the angular momentum with respect to xj-axis. Using these conserved quantities, Kepler’s
problem is explicitly solvable.

Theorem 4.37 (Existence of action-angle variable). Let H be completely integrals with
F1, . . . , Fn as in Definition 4.33. Assume also that the zero set

N = {z ∈M : F1(z) = · · · = Fn(z) = 0} = F−1(0)

is compact, where F (z) = (F1(z), . . . , Fn(z)). Then

• N is an embedded torus Tn;
• there exists an open neighborhood U(N) of N on which there exists a canonical coor-
dinate system (θ, I), where θ ∈ Tn, I = I(F ) and H = H(I).

Such a canonical coordinate system (θ, I) is called the action-angle variables.

Proof. See [7, Section 3.1]. □

Remark 4.38. One can show that İ = 0 and θ̇ = ∂
∂I
H(I) = ∂

∂I
H(I0) =: Ω(I0). Thus, I = I0

and θ = θ0 + Ω(I0)θ.

Unfortunately, an N -body system with N > 2 is not completely integrable. So it is not
explicitly solvable.

One direction to generalize this is to consider the perturbation

H = H0(I) + εH1(I, θ, ε).
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A really remarkable theorem shows that most invariant tori survive under small enough
perturbations, which is called the KAM theorem. Refer to [9] for a proof in detail.

Another direction to generalize this is the notion of Lagrange submanifolds. In fact, the
zero set N in the preceding theorem is a Lagrangian manifold. And actually the preceding
theorem can be generalized to the case for Lagrangian manifolds, which is called Weinstein
Lagrangian tabular neighborhood theorem. See [1] for more details.
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