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Sobolev spaces in domains Ω(⊂ Rn)

Date: January 17, 2023

1.1 Recap of Sobolev spaces in Rn

For any s ∈ R, ∥u∥W s,p = ∥⟨D⟩su∥Lp . The general form of Sobolev embeddings what we
ask for is

W k,p ⊂ W j,τ , k > j, q ≥ p,

which is equivalent to

W k−j,p ⊂ Lq.

Morally speaking, you trade derivatives for integrability. Obviously, we need some restriction
relation between exponents as follows.

For p ≤ q ≤ p∗k, we have W k,p ⊂ Lq, where p∗k is given by a scaling law x 7→ λx which is
asked by the Gagliardo-Norenberg-Sobolev inequality

∥uλ∥Lq ≲ ∥uλ∥Ẇk,p .

Explicitly, n
p
− k = n

q
with q = p∗k, where the left hand side is the scaling index.

If n
p
− k < 0, then for s > 0 satisfying n

p
− k = n

∞ − s, we have the Morrey’s inequality

W k,p ⊂ Cs,

where s is a non-integer and Cs is the Holder space. If s is an integer, then W k,p ⊂ Cs−1,γ

for any γ ∈ [0, 1). For Holder spaces, C1 ⊂ Lip ⊂ Cγ for γ ∈ (0, 1).

1.2 Sobolev spaces in domains Ω

Before, we only discuss Sobolev spaces in Rn and we now extend it to domains in Rn. For
any open set Ω ⊂ Rn, ∂Ω is the boundary of Ω.

The simplest case is that Ω is half space, a more complicated one is fractal boundaries.
The most common set-up is that the boundary is locally a graph.

Definition 1.1. We say ∂Ω is Ck for k ≥ 1 if ∂Ω is a finite union of Ck graphs.

Definition 1.2. We define W k,p(Ω) as a space of functions satisfying u ∈ Lp(Ω) and ∂αu ∈
Lp for all |α| ≤ k.

Note that a priori, u ∈ D(Ω) implies ∂αu ∈ D(Ω).
Another natural definition for Sobolev spaces in Ω is

Definition 1.3. We say u ∈ W k,p(Ω) if there exists ū ∈ W k,p(Rn) such that u = ū in Ω.

It turns out that these two definitions are equivalent. Suppose ū ∈ W k,p(Rn), then it is
obvious that ∥∂αū∥Lp(Ω) ≤ ∥∂αu∥Lp(Rn) and hence the second definition implies the first one.
For the other implication, it is equivalent to the following question “Given u ∈ W k,p(Ω), can
we find an extension ū ∈ W k,p(Rn)?”
First, we consider the simplest case when Ω is the half space H.
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1.2.1 How to extend Ck(H) functions to Ck(Rn) - motivation of trace inequality

For u ∈ Lp(H), we make a trivial reflection to extend it to Rn by defining

ū(x) =

{
u(x), x ∈ H,

u(x∗), x /∈ H.

If u ∈ C0(H̄), then this extension gives a function ū ∈ C0(Rn). However, this extension
does not map C1(H̄) to C1(Rn). The strategy to invent a nice extension is that we can do
a unbalanced reflection

x = (x′, xn) 7→ (x′,−kxn) = x∗.

Moreover, an affine combination for different k’s would not affect the mapping property
C0(H̄) → C0(Rn). We define

ū(x) =

{
u(x), xn > 0

c1u(x
′,−xn) + c2u(x

′,−2xn), xn < 0.

In order to match u and ∂nu at xn = 0, we need c1 + c2 = 1 and −c1 − 2c2 = 1, respectively.
More generally, we can find an extension ū ∈ Ck(Rn) by extending Ck(H̄) with an affine
combination of k coefficients, which is solvable since the coefficients is corresponded to a
Vandermonde matrix  1 1 · · · 1

...
...

...
...

(−1)k (−2)k · · · (−k)k

 .

In order to make an extension of W k,p functions, we need to match at least the first k− 1
derivatives so that they do not have any jumps at the boundary in the sense that when we
differentiate any derivative of order ≤ k − 1, it does not produce delta functions or other
exotic distributions so that its derivative no longer belongs to Lp. For now, this idea is just
heuristic, but we will see this is rigorous if we can make sense of the trace operator.

1.2.2 Trace inequality will suffice to show the equivalence of definitions of

W k,p(Ω)

We want to know whether the trace of W k,p functions (restriction on the boundary) is
well-defined. For any u ∈ W k,p(Rn), we find a Cauchy sequence un ∈ W k,p ∩ D. We can
define u|∂H = limun|∂H in Lp if we can prove the following trace inequality

∥u∥Lp(∂H) ≤ ∥u∥Wk,p(H).

If this trace inequality holds, then we make a claim that if u ∈ W k,p(H), v ∈ W k,p(Rn \H)

and Tu = Tv, where T is the trace operator, then the function wk :=

{
u(x), x ∈ H,

v(x), x /∈ H
is

combined to be a function in W k,p(Rn). The reason why this is true is that we can prove
that the divergence theorem holds for functions in u ∈ W 1,p(H) and ϕ ∈ C∞

c (Ω) since we
can prove this by approximating u by smooth functions. Then we can justify w ∈ W k,p(Rn)
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by showing that wl :=

{
∂lu(x), x ∈ H,

∂lv(x), x /∈ H
is the weak derivative (by pairing with D(Rn))

of w by using divergence theorem in H and Rn \H for u, v, respectively.
Therefore, to prove the equivalence of the two definitions of W k,p(Ω) for Sobolev spaces

in domains Ω in Rn, it suffices to show the trace inequality holds.

1.3 Trace inequality

1.3.1 A revisit of a simple L2 case of trace inequality

We start with a revisit of a homework problem from last semester’s course. For an hyper-
plane V ⊂ Rn, we proved

∥u∥2L2(V ) ≲ ∥u∥L2(Rn)∥∂u∥L2(Rn),

for all u ∈ D. This holds for all u ∈ H1(Rn) after noticing that we can use this inequality
to extend the definition for trace from D to H1. This problem is quite simple since it is just
a one dimensional problem. Note that ∂xu

2 = 2uux, where x is the normal direction of the
hyperplane V . This implies

u2(0) = 2

∫
x<0

uux ≤ 2∥u∥L2(Rn)∥∂u∥L2(Rn),

which completes the proof. This problem is just an introduction to the trace inequality we
would like to prove for now.

1.3.2 Nonsharp Lp case by introducing a cutoff (breaking the scaling)

The simplest trace inequality we want to prove is

∥u∥Lp(∂H) ≤ ∥u∥W 1,p(H).

The same strategy

u(x′, 0) =

∫ 0

−∞
∂nu(x

′, xn) dxn

does not work anymore since the integrand is not integrable unless p = 1. A trick is to
replace ∂nu by ∂n(χu) with χ = χ(xn) ∈ C∞

c such that χ ≡ 1 near xn = 0.
We compute

u(x′, 0) = χ(0)u(x′, 0) =

∫ 0

−∞
χ′u(x′, xn) dxn +

∫ 0

−∞
χ∂nu(x

′, xn) dxn.

By triangle inequality in Lp and Minkowski inequality,

∥Tu∥Lp(∂H) ≤
∫ 0

−∞
|χ′(xn)|∥u(·, xn)∥Lp(H) dxn +

∫ 0

−∞
|χ| · ∥∂nu(·, xn)∥Lp dxn

≤∥χ′∥Lp′∥u∥Lp
xnL

p

x′
+ ∥χ∥Lp′∥∂nu∥Lp

xnL
p

x′
,

where we use the support property and Holder’s inequality in the last step. Therefore,

∥Tu∥Lp(∂H) ≤ c1∥u∥Lp(H) + c2∥∂u∥Lp(H).
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This inequality is obviously weaker than the one we obtain compared to the one in our
homework. The reason is that we introduce an artificial scaling by introducing the fixed χ.

1.3.3 A better way to use the cutoff - introducing parameters to be optimized
at the end

To make c1, c2 two moving targets, we replace χ by χ(λxn) with a scaling parameter λ.
Then

c2 =

(∫
χp′(λxn) dxn

)1/p′

= cλ−1/p′ , c1 = λcλ−1/p′ = cλ1/p.

By minimizing the right hand side, we get

∥Tu∥Lp ≲ ∥∂u∥1/pLp ∥u∥1/p
′

Lp .

Recall that for p = 1, we do not need to introduce χ to make the integrand integrable.
Hence, we can derive ∥Tu∥L1 ≤ ∥∂u∥L1 , which is the sharp case in the scaling sense.
Note that ∥u∥L∞(∂H) ≤ ∥u∥L∞(H) fails but it holds for continuous functions

∥u∥C(∂H) ≤ ∥u∥C(H).

1.3.4 Lp results optimal in the sense of scaling

It is easy to observe that
T : W 1,p → Lp

is not optimal unless p = 1 in the sense of scaling. From a scaling perspective, the optimal
s for

T : W s,p(Rn) → Lp(∂H)

would be s = 1/p since ∂H = Rn−1, and n
p
− s = n−1

p
gives s = 1/p. However, it does not

hold for s = 1/p but fortunately, it almost holds and the correct statements are

T : W 1/p+s,p → W s,p, ∀s > 0.
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Additional topics of Sobolev spaces

Date: January 19, 2023

2.1 A universal way to do extension

Last time, we noticed that the trace operator doe not work for Lp functions, but we proved
that

T : W k,p(H) → W k−1,p(∂H).

In the proof, we need to match the first k derivatives on the boundary. As a result, it is
enough to take a simple symmetry

ū(x) =

{
u(x), xn > 0

u(x′,−xn), xn < 0

to extend W 1,p functions. On the other hand, to extend W k,p, we take

ū(x) =

{
u(x), xn > 0∑L

j=1 cju(x
′,−jxn), xn < 0.

for L ≥ k. In order to get a systematic/uniform ū, we change it to

ū(x) =

{
u(x), xn > 0∑L

j=1 cju(x
′,−αjxn), xn < 0.

with αj ∈ (1, 2) and by taking the limit and viewing it as sort of the Riemann sum, we define

ū(x) =

{
u(x), xn > 0∫
c(α)u(x′,−αxn) dα, xn < 0,

where c(α) satisfies ∫
c(α) dα = 1,

∫
c(α)αj dα = 0,∀j.

If c ∈ D, then ĉ is analytic at 0 and the relation tells us ĉ(0) = 1, ∂kĉ(0) = ik, which
implies the convergence of ĉ but it might not be Schwartz. However, we only require c has
sufficient decay at infinity so that we can interchange the differentiation and the integral.
And this would not be a problem since we can simply choose ĉ as a function which satisfies
the required properties at 0 and compactly supported.

2.2 Extension operator if the boundary is not flat

In the setting of Ω = {xn > f(x′)}, we make a simple argument to flatten the boundary
by considering

(x′, xn) 7→ (x′, z), z = xn − f(x′),

which maps Ω to H. With a slight abuse of notation, we use x for x′, y for xn. In order to
compute

∂αu(x, z) = ∂α (u(x, y − f(x))) ,
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we need to require f ∈ Ck (i.e. ∂Ω ∈ Ck) to make the extension for W k,p. However, we do
not need all this boundary regularity.

Theorem 2.1 (Stein’s extension theorem). Suppose ∂Ω is Lipschitz. Then there exists a
universal extension operator, that is, for any k ∈ Z, 1 ≤ p < ∞, there exists a bounded
extension operator E : W k,p(Ω) → W k,p(Rn). If Ω is bounded, then Eu has compact support.

We only sketch the proof for Stein’s extension theorem. Our starting point is also

ū(x, y) =

{
u(x, y), y > f(x),∫
c(α)u(x, y + Cα(f(x)− y)) dα.

However, we run into the same problem by differentiating using the chain rule. The idea is
to change f(x)− y into d((x, y), ∂Ω) and regularize it in a little ball around (x, y).

2.3 W k,p
0 (Ω) - Approximation by D(Ω)

Recall that one can approximate any function in W k,p(Rn) by functions D(Rn) when
1 ≤ p < ∞. Now we care about whether this would be true for domains in Rn. Unfortunately,
the closure of D(Ω) in W k,p(Ω) is not W k,p(Ω) provided k ≥ 1. One way to see this is that
for u ∈ W k,p(Ω), we have T∂αu ∈ Lp, |α| ≤ k − 1. Suppose u = limun with un ∈ D(Ω).
Then we need to require ∂αu = 0 on ∂Ω for |α| ≤ k − 1 since un vanishes near ∂Ω.

Definition 2.2.
W k,p

0 := closure of D(Ω) in W k,p.

Proposition 2.3. When ∂Ω is Ck, u ∈ W k,p(Ω) is in W k,p
0 (Ω) if and only if ∂αu = 0 in ∂Ω

for |α| ≤ k − 1.

For the proposition above, we proved one direction and the proof of the converse direction
can be found on [7]. As a corollary of the proposition above, we have the following

Proposition 2.4. u ∈ W k,p
0 (Ω) if and only if its extension by 0 is in W k,p(Rn).

2.4 Homogeneous Sobolev spaces and Poincaré inequality

In order to have a better scaling property, we introduced

Ẇ k,p(Rn) = {u ∈ D′ : ∂αu ∈ Lp, |α| = k}
with ∥u∥Ẇk,p =

∑
|α|=k ∥∂αu∥Lp . Since ∥·∥Ẇk,p = 0 holds for any polynomial of order ≤ k−1,

we need to consider the quotient space Ẇ k,p/P≤k−1 with the same norm to make it a Banach
space.

To rectify this, we take the closure of D(Rn) in Ẇ k,p. Thanks to G-N-S inequality, we
have ∥u∥Lq ≤ ∥u∥Ẇk,p with n

q
= n

p
− k provided n

p
− k > 0.

Proposition 2.5. This closure is a Banach space provided n
p
− k > 0 ( p < n

k
).

When n
p
−k < 0, then this approximation strategy does not eliminate all polynomials, but

it reduces some. So we cannot use this strategy to define the homogeneous space. Instead,
we can take the quotient space as a definition. One can also use the completion of D as
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a definition, which benefits the computations for nice functions. However, when we define
it, we need to say if un → u in Hs, then u is not in S ′. Instead, u is defined module
polynomials. In other words, we artificially make these with the same idea.

For negative exponents, we expect D ⊂ Hs for s < 0. Thus,

Ḣs := {u ∈ S ′ : |ξ|sû(ξ) ∈ L2}, −d

2
< s < 0,

where the requirement s > −d
2
is to make D ⊂ Ḣs since |ξ|s ∈ L2

loc. Moreover, one should
note that this space is not a quotient space.

For any bounded domain Ω,

W 1,p(Ω) := {u ∈ Lp, ∂u ∈ Lp}, Ẇ 1,p(Ω) := {u ∈ D′ : ∂u ∈ Lp}
and hence Ẇ 1,p is a quotient space modulo constants. Since ∂u only determines u modulo
constants, ∥u∥Lp ≤ ∥∇u∥Lp is obviously false. How should we modify this to make it true?
One way to modify this is to subtract the average to eliminate the constants.

2.4.1 Proof by using an estimate obtained as a byproduct of Morrey’s inequality

Theorem 2.6 (Poincaré inequality). For u ∈ W 1,p,

∥u− -

∫
Ω

u(x) dx∥Lp ≤ ∥∇u∥Lp .

Proof. In the proof of Morrey’s inequality, we came up with an estimate

-

∫
Br(x)

|u(x)− u(y)| dy ≤
∫
Br(x)

|∇u(y)|
|x− y|n−1

dy

for any ball B centered at x. Recall that we also use this inequality to prove the endpoint
Sobolev embedding W 1,n ⊂ BMO.
First, we prove this for the case where Ω are balls. Set ūB := -

∫
B
u(y) dy. Then

|u(x)− ūBr(x)| ≲ -

∫
Br(x)

|u(x)− u(y)| dy ≤
∫
Br(x)

|∇u(y)|
|x− y|n−1

dy.

Note that we can also prove this inequality for any z ∈ Br(x) instead of only the center of
Br(x), namely x. We connect z with each point on ∂B and consider each layer S(t) = t∂B
if we do a translation such that z = 0 when proving

-

∫
B

|u(x)− u(y)| dy ≲B

∫
B

|∇u(y)|
|x− y|n−1

dy,

where the constant depends on diamB. Note that originally, the layers S(t) is just concentric
balls with different radius, this time it becomes eclipse when t ̸= 1. However, we can still
estimate |u(y) − u(0)| by integrating over the line we draw for y ∈ S(r) = rS(1). (Note
that the distance from z to each point on the boundary is not the same now, but we still
can estimate the distance by diamB, so the same idea of proof still applies.) Therefore, by
taking the Lp norm on both sides of

|u(z)− ūB| ≲
∫
B

|∇u(y)|
|z − y|n−1

dy, ∀z ∈ B,
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the result follows from the Young’s convolution inequality.
Note that the same strategy can be applied to any convex domain with smooth boundary.

□

2.4.2 Proof by contradiction and size of the constant

One can refer to [7] for another proof by contradiction. This contradiction method can be
applied to many estimates of this kind. Note that this requires the use of Rellich-Kondrachov
compactness theorem, which we will discuss next lecture.

However, our preceding proof directly shows that the constant is of size diamΩ. For the
sake of determining the size of the constant directly from the inequality itself, we still need
the scaling argument. Since we have

∥uλ(x)− (uλ)Ω∥Lp(Ω) ≤ C(Ω)∥∇uλ∥Lp(Ω), ∥u(x)− ūΩ∥Lp(λΩ) ≤ C(λΩ)∥∇u∥Lp(λΩ)

for uλ = u(λx), one can expand the first one to see that λC(Ω) = C(λΩ), which means that
the constant is of size diamΩ.

2.4.3 Other Poincaré-type inequalities

Other ways to fix our constants are as follows. We may ask “Is ∥u∥Lp(Ω) ≤ ∥∇u∥Lp(Ω) if
u(x0) = 0?” By Morrey’s inequality, W 1,p ⊂ C0 provided p > n, so our question will be
meaningful and the answer is yes provided p > n. For simplicity, we assume x ∈ Ω can
connect with x0 using a simple line x = x0 + tw with w ∈ Sn−1. Take w = (0, xn/|xn|) as an
example. We write by Cauchy-Schwarz inequality that

|u(x)|p ≤
(∫ y1

y0

|∂xnu(x
′, xn)| dxn

)p

≲
∫ y1

y0

|∂xnu(x
′, xn)|p dxn

and then integration both sides along x′-direction, which implies ∥u∥Lp(R) ≲Ω ∥Du∥Lp(R),
where R ⊂ Ω is a rectangle containing x0 with sides parallel to axes. We can alter w to get
infinitely many Rw, covering the support of u (if assuming u ∈ D), then by choosing a finite
sub-covering, we complete the proof. This is roughly the main idea of the proof.

Moreover, for Ω bounded, ∥u∥Lp(Ω) ≤ ∥∇u∥Lp(Ω) also holds for u ∈ W 1,p
0 (Ω), ∀1 ≤ p ≤ ∞.

The proof can be found at [7, Chapter 5.6.1], which is basically an easy application of G-N-S
inequality, extension theorem and the fact that Lr(Ω) ⊂ Ls(Ω) if r > s.
One can also expect a Poincaré-type lemma for higher derivatives.

2.5 Compact Sobolev embeddings

Definition 2.7. Given two Banach spaces X, Y such that X ⊂ Y , that is, for any u ∈ X,
∥u∥Y ≤ ∥u∥X . The embedding X ⊂ Y is compact (X ⊂⊂ Y ) if any bounded sequence in X
has a compact subsequence in Y .

Note that X ⊂⊂ X if and only if X is finite dimensional.
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2.5.1 Nonexistence of compact Sobolev embeddings in Rn - translations

We would like to know when the Sobolev embeddings W k,p ⊂ Lq is compact. Unfortu-
nately, there are no compact Sobolev embeddings for Sobolev spaces in Rn. Our first enemy
is the translations. Set un(x) := u(x + n) for some u ∈ D ⊂ W k,p(Rn). Since un → 0 in
D′, if un converges to some v in Lq, then v = 0. Also, ∥v∥Lq = lim ∥un∥Lq = ∥u∥Lq , which
implies that such a compact Sobolev embedding does not exist.
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Compact Sobolev embeddings (Continued)

Date: January 24, 2023

For homogeneous spaces, the embeddings Ẇ k,p ⊂ Lq only works for n
p
− k = n

q
, q = p∗k ,

where p∗k is called the sharp exponent. For inhomogeneous spaces, the embeddings W k,p ⊂
Lq works for all p ≤ q ≤ p∗k since we naturally have W k,p ⊂ Lp.
We would like to know when the embedding W k,p ⊂ Lq is compact and look for enemies

to compactness, coming from symmetries.

3.1 Non-examples of compact embeddings

3.1.1 Nonexistence of compact Sobolev embeddings in Rn - scalings

Last time we discussed the first kind of enemies - translations and reached the conclusion
that no compact Sobolev embedding exists in Rn. Now we discuss the second type of enemies
- scalings. We start with the homogeneous case. For u ∈ Ẇ k,p, we define uλ(x) = λσu(λx)
and we would like to find σ such that ∥uλ∥Ẇk,p = ∥u∥Ẇk,p . It turns out that σ = n

p
−k. Note

that σ is positive so if we let λn → 0, then the graph of un := uλn squashes. Note that

∥un∥Ẇk,p = ∥u∥Ẇk,p , ∥un∥Lq = ∥u∥Lq

On the other hand, un → 0 uniformly if we choose u ∈ D, so no compact Sobolev embedding
exists if we can spread the graph out. In other words, we again show that no compact
Sobolev embedding exists in Rn.

3.1.2 Sharp Sobolev embeddings not compact - scalings as well

Another attempt is to let λ → ∞ and then the graph squeezes. It is easy to see un → 0
uniformly everywhere away from 0. Suppose un → ũ in Lq, we also know un → ũ in D′.
On the other hand, the uniformly convergence of un tells us suppũ ⊂ {0} provided u ∈ D.
However, ũ ∈ Lq, then we know ũ = 0, which implies ∥un∥Lq → 0, which is a contradiction.
To draw the conclusion here, the sharp homogeneous Sobolev embeddings are not compact

even in bounded domains.
Now we consider the sharp inhomogeneous case. Instead of considering the Ẇ k,p norm,

we also consider the Lp norm. It turns out that

∥uλn∥Lp = λ−k
n ∥u∥Lp → 0

as λn → ∞. However, ∥uλn∥Lq = ∥u∥Lq still holds, which is a contradiction. So the sharp
(in)homogeneous Sobolev embeddings are not compact even in bounded domains. This
strategy can also help us to show that the sharp Morrey’s embeddings are not compact.

3.2 Rellich-Kondrachov compactness theorem

Theorem 3.1 (Rellich - Kondrachov). Inhomogeneous non-sharp Sobolev embeddings in a
bounded domain are compact.

Proof. We only prove for the G-N-S case and one can find references for Morrey’s case.
Step 1: Suppose un ∈ W k,p, ∥un∥Wk,p ≤ 1. We want a convergent subsequence in Lq

for p ≤ q < p∗k . We know {un} is bounded in Lp∗k . To find a subsequence, we try to use
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the Arzela-Ascoli, which says that if {un} is equi-bounded and equi-continuous, then there
exists a uniform convergent subsequence.

Step 2: Extension to Rn

First, we replace un by extensions, still denoted by un, such that ∥un∥Wk,p is still bounded
and suppun ∈ B for a fixed large ball B. This saves us from worrying about the boundaries.

Step 3: un
ε → vε in L∞ by passing to a subsequence (Arzela-Ascoli)

Second, to apply Arzela-Ascoli, we need to regularize the functions un. For φ ∈ D,∫
φ = 1, we denote φε = ε−nφ(x/ε). Set un

ε := un ∗ φε.
Then we compute

∥un
ε∥L∞ ≤ ∥un∥Lp∥φε∥Lp′ ≲ εd/p

′−d∥un∥Lp ,

which is uniformly bounded in n. Similarly,

∥∂un
ε∥L∞ ≤ ∥un∥Lp∥∂φε∥Lp′ ≲ εd/p

′−d−1∥un∥Lp ,

which implies {un
ε}∞n=1 is equi-continuous. Therefore, by Arzela-Ascoli theorem, there exists

a uniformly convergent subsequence of {un
ε}∞n=1 such that un

ε → vε in L∞ or more specifically,
C0. In particular, it converges in Lq since the domain is bounded.

Step 4: un
ε → un in Lq (uniformly in n) by interpolation

For the convergence un
ε → un, we have nonuniform convergence in W k,p. To look for

uniform convergence, we need to look at Lq. For p ≤ q < p∗k , since

∥un
ε − un∥Lq ≤ ∥un

ε − un∥hL1∥un
ε − un∥1−h

Lp∗k ,

it is enough to show that un
ε − un → 0 in L1 uniformly in n since ∥un

ε − un∥Lp∗k is uniformly
bounded. (This is where we use the fact that q ̸= p∗k.) We compute

un
ε (x)− un(x) =

∫
(un(y)− un(x))φε(x− y) dy =

∫
(un(x+ εz)− un(x))φ(z) dz

=

∫
B

∫ 1

0

∂un(x+ hεz) · εz dhφ(z) dz,

where suppφ ⊂ B. Then

∥un
ε − un∥L1 ≤ ε

∫ ∫
B

∫ 1

0

|∂un(x+ hεz)||z| dhφ(z) dz dx ≲ ε∥∂un∥L1 ≤ ε∥∂un∥Lp → 0

uniformly. Therefore, ∥un
ε − un∥Lq = O(ε) uniformly in n.

Step 5: A diagonal argument to extract a subsequence for un to converge in Lq

For any δ > 0, we choose ε small enough such that ∥un
ε − un∥Lq ≤ δ for all n thanks to

Step 4. Then it suffices to show that for this fixed ε, we can extract a subsequence unk
ε such

that it converges in Lq.
This is already done in Step 3. That means, there exists N such that ∀j, k > N , ∥unj

ε −
unk
ε ∥Lq ≤ δ we have

∥unj − unk∥Lq ≤ ∥unj
ε − unk

ε ∥Lq + ∥unj
ε − unj∥Lq + ∥unk − unk

ε ∥Lq ≤ 2δ + ∥unj
ε − unk

ε ∥Lq ≤ 3δ.

Moreover, one should notice that the subsequence now depends on the ε we choose. So
we need to employ a diagonal argument to conclude. To be precise, for ε = 2−k, we need to
ensure that the subsequence for ε = 2−k is a subsequence of the one we chose for ε = 2−(k−1).
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Then we just need to extract the things in the diagonal (corresponding to ε and n) and this
completes the proof. □

Remark 3.2. In particular, W 1,p(Ω) ⊂⊂ Lp(Ω) for all 1 < p < ∞ thanks to the theorem
above.
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Elliptic Equations

Date: January 26, 2023

For a differential operator P (D) =
∑

cαD
α with constant coefficients, Dj = 1

i
∂j, its

symbol is given by P (ξ) =
∑

cαξ
α and we have P (ξ)û = f̂ .

4.1 Ellipticity of a differential operator P

A naive definition of ellipticity is that P (ξ) has no real zeros.
If we consider the Fourier transform û(ξ), then those ξ’s in a bounded set correspond

to the smooth component of our functions because the inverse Fourier transform of an L1

function with compact support is analytic thanks to the Paley-Wiener theorem. On the
other hand, the behavior of ξ → ∞ tells us the singularities of u. So one should give priority
to the singularities of the symbol u to make it have better behavior.

This motivates a better definition for ellipticity : We say P is elliptic if P (ξ) does not
have real zeroes for large ξ.
Furthermore, when ξ is large, the highest order terms dominate in P (ξ), so we define the

principal symbol as follows :

Definition 4.1. For a symbol of order m, P (ξ) =
∑

|α|≤m cαξ
α, its principal symbol is

defined as
Pm(ξ) :=

∑
|α|=m

cαξ
α,

where the subscript m is just for principal symbol not denoting the order.

A even better definition for ellipticity is as follows and this would be our primary notion
of ellipticity.

Definition 4.2. We say P is elliptic if Pm(ξ) ̸= 0 for ξ ̸= 0. Equivalently,

|Pm(ξ)| ≥ c|ξ|m (4.1)

for some constant c.

Remark 4.3. The criterion (4.1) also works for variable coefficients Pm(x, ξ) =
∑

cm(x)ξ
α.

When the order m = 1, you will notice that there is no choice for a real symbol to be
elliptic unless in 1 dimension. If we focus on 2 dimensions, the operator

∂̄ = ∂1 + i∂2

with complex principal symbol takes a fundamental role in complex analysis. The idea to
consider in 2 dimensions is that the real part and imaginary part of the operator vanish on a
codimension 1 set, respectively, so the operator vanishes on a codimension 2 set. We require
this codimension 2 set to be the origin, so we consider 2 dimensional case.

If m = 2, we are allowed to have real-valued polynomials in higher dimensions which do
not vanish anywhere except the origin. Our main object is

−∆ =
∑
j

D2
j .



14 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

Solving ∂̄u = f is equivalent to solve the Laplace equation ∆u = (∂1 − i∂2)f . To study
holomorphic functions (∂̄u = 0), it suffices to study harmonic functions (real part/ imaginary
part of holomorphic functions).

This observation also helps us to know a bunch of harmonic polynomials by considering
Rezk for any k.

There are also elliptic operators of second order with complex symbols, which is not of so
much interest since some theories for real symbols may not apply to complex ones.

For m = 3, the polynomial is odd and if you look for real symbols, then you end up
with some restrictions on dimension. When dimension d ≥ 3, one need to consider complex
symbols again.

For m = 4, an important real operator is the bilaplacian ∆2, which comes from the plate
equation.

Henceforth, we consider second order elliptic equations with real principal symbols. One
example is the Laplacian equation P = −∆ and the variable coefficient analogue is

P = −
n∑

i,j=1

aij(x)∂i∂j.

If aij is constant, we can assume (aij) is symmetric and hence it can be diagonalized, so it
suffices to consider −∆ for all constant coefficients operator. However, when aij(x) are not
constants, we can only diagonalize it at one point, so the second case is of great interest.
Moreover, we can put lower order terms without affecting the principal symbol,

P = aij∂i∂j + bj∂j + c.

For nonlinear elliptic equations, we may consider semilinear equations

−∆u = f(u), −∆u = f(u,∇u),

and quasilinear equations
−aij(u)∂i∂ju = f(u,∇u)

and fully nonlinear equations
F (u,Du,D2u) = 0.

4.2 L2 theory of the Laplace equation

We start from the inhomogeneous Laplace equation

−∆u = f

to study the existence and uniqueness and continuous dependence in the nonlinear term.

4.2.1 Revisit of fundamental solutions of Laplacian equation

Let us recall what we know for a Laplace equation from last semester. The fundamental
solution in dimension 2 is K(x) = 1

2π
ln |x| and K(x) = cn|x|2−d in dimension d ≥ 3. Suppose

−∆u = f

in Rn, then u = K ∗f is a solution. If suppf is compact, then u makes sense as a distribution
even if f is merely a distribution in E ′ since K ∈ L1

loc ⊂ D′ for d ≥ 3. Obviously, this is
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not the unique solution in distributions. Suppose −∆ũ = f , then ξ2 ̂(u− ũ) = 0. Hence,
̂(u− ũ) =

∑
cαδ

(α) with a finite sum. Therefore, u − ũ is a polynomial. In other words,
the solution is unique modulo polynomials. More precisely, it is unique up to harmonic
polynomials.

Now let’s start with the L2 theory for the Laplace equations.

4.2.2 Existence of u ∈ Ḣ2 such that −∆u = f ∈ L2 for dimension d > 4

For f ∈ L2, we study −∆u = f . By taking the Fourier transform, we get

|ξ|2û = f̂ .

If d > 4, then 1
|ξ|2 ∈ L2

loc and hence

û =
1

|ξ|2
f̂

is well-defined and therefore u is in Ḣ2. An intuition for the reason why we get the dimension
restriction is that for 0 ≤ s < d

2
, Ḣs consists of functions instead of pure distributions. This

can be seen from the fact that F(1/|ξ|s) = c/|x|d−s ∈ L1 + L2 when s ∈ [0, d/2).

4.2.3 Cutting off low frequencies to discuss lower dimensions

Now we discuss lower dimensions.

û =
1

|ξ|2
f̂

also works if f̂ vanishes near 0. For arbitrary f , we cut off the low frequencies by

f̂ε(ξ) := f̂ · χ|ξ|≥ε.

Then we can solve −∆uε = fε and find a solution uε ∈ Ḣ2(Rn) by defining ûε :=
1

|ξ|2 f̂ε. In

fact, uε ∈ H2(Rn) since ∥(1 + |ξ|2)ûε(ξ)∥L2 ≤ (1 + ε−2)∥f∥L2 , so we can apply the Poincaré
inequality in the following discussion.

4.2.4 Arguments for dimension d = 4 in detail

Let us keep things simple first and we discuss in dimension 4. We want to look for a
compact subsequence. Since Ḣ1 ⊂ L4, we have Ḣ2 ⊂ Ẇ 1,4 ⊂ BMO. This already tells
us that when we look at the sequence uε, we would like to define a convergence modulo
constants. In general, it does not have convergent subsequence even if uε = u0 + cε for some
fixed u0 with a blow-up constant cε. Therefore, to define a convergence, we should take away
this constant first.

We want to choose cε such that uε− cε converges. Set cε := ūε|B. By Poincaré’s inequality
with p = 4, we get

∥uε − ūε,B∥L4(B) ≤ ∥uε∥Ẇ 1,4 ≤ ∥uε∥Ḣ2 = ∥fε∥L2 ≤ ∥f∥L2 .

and hence in particular, uε − ūε,B is uniformly bounded in L2(B). Moreover, uε − ūε,B is
uniformly bounded in H2(B). Therefore, by the compactness theorem, there exists some
u ∈ L2 such that {uε − ūε,B} → u in L2(B) by passing to a subsequence. (Now we consider
this for BR of any radius R.) Furthermore, the convergence also holds in D′ since D is dense
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in L2. Moreover, since {uε − ūε,BR
} is uniformly bounded in H2(BR), it implies a weak-∗

convergence to u in H2(BR) by the Banach-Alaoglu theorem. (This is a problem in last
semester’s HW.) Therefore, we know u ∈ H2(BR). So as we can see, we reached a stronger
conclusion than we expected.

4.2.5 Sketch for dimension d = 2 or 3

In dimension 3, we have Ḣ1 ⊂ L6 and Ḣ2 ⊂ Ẇ 1,6, which still allows us to apply Poincaré’s
inequality and use the same argument to conclude.

However, when we come to 2 dimensions, Ḣ1 ⊂ BMO, which do not allow us to have
Poincaré’s inequality anymore. We should modify the normalization uε − ūε,BR

so that we
also eliminate the contribution of first order polynomials since we lose control of first order
derivatives as well.

Another generalization is that for f ∈ Ḣ−1, we can reach the conclusion that u ∈ Ḣ1.



17

Local properties of solutions to Laplace equation

Date: January 31, 2023

Last time, we studied −∆u = f ∈ L2 and proved f ∈ Ḣs would imply u ∈ Ḣs+2 for s < n
2

(This requirement make sure that 1
|ξ|2 f̂(ξ) defines a tempered distribution.)

5.1 A continuation from last time - Lp theory of Laplace equation

Theorem 5.1. If −∆u = f ∈ Lp for some u ∈ S ′, then u ∈ Ẇ 2,p for 1 < p < ∞.

Proof. Though there is no Plancherel theorem for p ̸= 2, but we still can use Fourier transform

to proceed. Since −∆̂u = |ξ|2û = f̂ and −∂̂i∂ju = ξiξjû, it suffices to show the symbol

m(ξ) = F−1
(

ξiξj
|ξ|2

)
maps Lp to Lp. Obviously, m(ξ) ∈ L∞, so m(ξ) : L2 → L2. To prove it

Lp → Lp, we examine the Hormander-Mikhlin condition

|∂α
ξ m(ξ)| ≤ Cα|ξ|−|α|,

which is a sufficient condition for m : Lp → Lp, 1 < p < ∞. Note that m(ξ) = ξi
|ξ|

ξj
|ξ| , where

each factor is called the Riesz transform Rj :=
Dj

|D| . □

Remark 5.2. Remember that p = 1,∞ are disallowed, −∆u = f ∈ L∞ does not imply
u ∈ C1,1. The idea from Daniel is that this can be seen from the fundamental solutions and
you need to choose some nice f such that K ∗ f is an integration with some cancellation
when varying between positive part and negative part. You only need to do the estimate
instead of computing the integral explicitly.

Note that u(x, y) = (x2 − y2) ln(x2 + y2) in R2 satisfies ∆u = 8x2−y2

x2+y2
∈ L∞ while

∂2
xu = 2 ln(x2 + y2) + 2

3x4 + 6x2y2 − y4

(x2 + y2)2

is unbounded. So it means that u /∈ Ẇ 2,∞ with ∆u ∈ L∞. From a discussion with Ryan, the
idea behind is as follows. We would like to find in R2 to construct a counterexample. And
ln |x| ∈ BMO but not bounded, so if we want ∂x∂yu = ln

√
x2 + y2, then by integrating in

polar coordinates, we get u = 1
2
(x2 + y2) ln(x2 + y2), which is still bad. However, everything

works well if we change the plus sign to a minus sign.
In [8, Section 2.2], the authors introduce u(x, y) = (x2 − y2) ln | ln(x2 + y2)| as an example

such that ∆u is continuous but u /∈ C1,1. Moreover, u(x, y) = ln ln 1
x2+y2

is given as an

example for ∆u ∈ L1
loc with ∂2

xu /∈ L1
loc.

5.2 Local properties - Elliptic regularity

We talk about elliptic regularity first. If a solution is given, we ask how regular it is.

5.2.1 Starting with u ∈ L2
loc( or Hs

loc, s < 0 ) and f ∈ L2
loc gives u ∈ H2

loc

Suppose

−∆u = f, f ∈ L2
loc, u ∈ L2

loc.
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Replace u ∈ L2
loc by v = χu, χ ∈ D such that χ ≡ 1 near x0. Of course, v ∈ L2. An

application of Lebniz rule gives

−∆v = −∆(χu) = −χ∆u− u∆χ− 2∇u∇χ = χf − u∆χ− 2∇χ∇u,

where the first two terms are in L2 and the last term is in H−1. Hence, −∆v = g ∈ H−1.
Moreover, v −∆v = g1 ∈ H−1. By doing a Fourier transform, we get

v̂ = ĝ1 ·
1

1 + |ξ|2
.

Hence, v ∈ H1. In other words, u ∈ H1
loc and we get an increase by one for the order of

legitimate derivatives.
If we do the argument again, then we will end up with g ∈ L2, g1 ∈ L2 and v ∈ H2. This

proves the following theorem.

Theorem 5.3 (Elliptic regularity). For −∆u = f , u ∈ L2
loc, f ∈ L2

loc, then u ∈ H2
loc.

Corollary 5.4. The theorem also works if we start with u ∈ Hs
loc and f ∈ L2

loc with s < 0.

Proof. We just iterate the same proof and note that u ∈ Hs
loc implies g ∈ Hs−1 and then

v ∈ Hs+1 as long as s < 2. By performing an iteration, we can also conclude the same result
as above. □

5.2.2 Starting with u ∈ D′ and f ∈ Hs
loc (resp. C∞) gives u ∈ Hs+2

loc (resp. C∞)

Now we try to make another extension. First, we consider the following problem. Suppose
u ∈ D′, can we conclude that u ∈ Hs0

loc for some s0? This is a subtle question. The answer
is no since

δ0 + δ′1 + δ′′2 + · · ·+ δ(n)n + · · ·
will be an enemy. However, χu ∈ Hs0 for some s0 since for any distribution u ∈ D′, we can
write χu ∈ E ′ in the form of

χu =
∑
|α|≤k

∂αg

for some g ∈ C0 and an integer k which depends on χu. This is the so-called structure
theorem for compactly supported distributions, which can be found in [10, Corollary 5.4.1].
So, χu ∈ Hs0 for some s0 since g ∈ L2

loc but keep in mind that we cannot conclude that
u ∈ Hs0 . The reason why u /∈ Hs0

loc is that for different cut-off functions χ, we will get
a different exponent s0. This can be easily read from the counterexample above. (This
argument above has nothing to do with the Laplacian so far.)

Finally, the discussion above tells us we can extend the elliptic regularity theorem to :

Theorem 5.5. Suppose u ∈ D′ and f ∈ Hs
loc with −∆u = f , then u ∈ Hs+2

loc .

Proof. For any χ ∈ D, we consider χu ∈ Hs0 and do the argument as in the proof of the
basic version of elliptic regularity. This leads us to χu ∈ Hs+2. By choosing different χ, we
finally conclude u ∈ Hs+2

loc . □

Corollary 5.6. Suppose −∆u = f with f ∈ C∞, then we have u ∈ C∞.
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Proof. This follows from the Sobolev embedding theorem and the generalized elliptic regu-
larity theorem above. □

In particular, for any harmonic function u in D, we know u ∈ E(D). Here the notation
v ∈ E(D) means that v ∈ C∞(D) and v can have any kind of growth near the boundary ∂D.

5.2.3 Harmonic functions are analytic

Theorem 5.7. If u is harmonic, then u is analytic.

Proof. We use the fundamental solutions to prove that u is analytic in B provided that u is
harmonic in 2B.

Step 1 : Localiztion
Choose χ ∈ D such that χ ≡ 1 in B and χ ≡ 0 in (2B)c. Set v = χu. For −∆v = f :=

−u∆χ−2∇u ·∇χ, we have suppf ∈ (2B)\B. From the preceding corollary, we know v ∈ D.
Step 2 : Show v = K ∗ f (Nontrivial!)
The second step is to show that we can solve this using the fundamental solution. We

claim v = K ∗ f . Note that the solution is not unique, so this claim is not trivial. Since
f ∈ D and K ∈ L1

loc except for dimension 2, so K ∗ f ∈ E . (For dimension 2, one can use
complex analysis to prove the theorem directly. So we can assume without loss of generality
that n ≥ 3.)

Moreover, the criterion for a smooth functions to be a tempered distribution is that the
function has at most polynomial growth near infinity. (This is trivial to check by definition.)
For |x| sufficiently large and for y ∈ suppf , |x− y| is away from 0 so everything is nice and
it follows directly that∣∣∣∣∫ 1

|x− y|n−2
f(y) dy

∣∣∣∣ ≤ 1/|x|, d(x, suppf) ≫ 1

thanks to the fact that f is compactly supported.
Hence, v = K ∗ f on grounds the uniqueness of smooth solutions with decay at ∞. This

uniqueness is easy to see since K ∗ f ∈ S ′, v ∈ D, then −∆(K ∗ f − v) = 0 implies K ∗ f − v
are polynomials. Moreover, since (K ∗ f − v)(x) → 0 as x → ∞, we know v = K ∗ f .
Step 3 : Prove analyticity by noting that K is analytic away from 0
Since for x ∈ B, when |x − y| > 0, K is analytic, so v(x) =

∫
2B\B f(y)K(x − y) dy is an

integral of a family of functions which is analytic in x and hence the integral is analytic. □

Remark 5.8. We compare P0 = −∆, P+ = 1−∆ and P− = −1−∆ to see the effect of lower
order terms.

• Global solvability :
– P0 : use homogeneous Sobolev spaces;
– P+ : use inhomegeneous Sobolev spaces;
– P− : no more naive solvability, but it can be studied using more advanced theory
called Sommerfeld radiation condition.

• Elliptic regularity : Nothing changes.
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5.3 Local properties - Weak maximum principle for −∆u ≤ 0 (subharmonic)

Now we study the solution to the Laplacian equation to see how big it is pointwisely.
Suppose Ω ⊂ Rn and −∆u = 0 in Ω. It follows from the discussion above that u ∈ C∞(Ω).
We need to make a stronger assumption to initiate the discussion.

Suppose u ∈ C(Ω), we look at the maximum points for u. Set x0 to be a local maximum
for u. Then ∇u(x0) = 0. Since u(x) = u(x0) + ∇u(x0)(x − x0) +

1
2
∇2u(x0)(x − x0) · (x −

x0) + o(|x− x0|3), we know ∇2u(x0) ≤ 0. Thus ∆u(x0) = tr∇2u(x0) ≤ 0.
Now if we change the hypothesis to −∆u < 0, then we know that there is no maximum

points inside and maxΩ u = max∂Ω u. However, we can prove the same result by only
assuming −∆u ≤ 0.

Theorem 5.9 (Weak Maximum Principle). Suppose u ∈ C(Ω) and −∆u ≤ 0 in a compact
domain Ω, then maxΩ u = max∂Ω u.

Proof. Set uε := u+ ε|x|2, and then −∆uε < 0. Since |x|2 is bounded in a compact domain,
uε → u uniformly in Ω. By passing to the limit in uε, we know maxΩ u = max∂Ω u. More
precisely, we consider

max
Ω

u ≤ max
Ω

uε = max
∂Ω

uε ≤ max
∂Ω

u+ εmax
∂Ω

|x|2

and let ε → 0. □
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Strong maximum principle, mean value property

Date: February 2, 2023

We say u ∈ C(Ω) such that −∆u ≤ 0 is a subharmonic functions. By replacing u by
−u, an easy corollary for superharmonic functions (−∆u ≥ 0), we have minΩ u = min∂Ω u.
Later, we discuss why we need Ω to be bounded.

6.1 Weak maximum principle for general second order elliptic operator

6.1.1 Variable coefficients with c = 0

The same proof of the maximum principle applied for variable coefficient problems

−aij(x)∂i∂ju+ bi∂iu ≤ 0,

where the real matrix (aij(x)) is symmetric and positive definite. At a maximum point,
Hess(u)(x0) = ∇2u(x0) ≤ 0, which implies aij(x0)∂i∂ju(x0) ≤ 0, since it is the trace of the
product of a positive definite matrix (aij) and a semi-negative definite matrix ∇2u, which is
semi-negative definite. One can see this from diagonalizing (aij) using an orthogonal matrix
and hence we know the sum is non-positive.

6.1.2 Only non-negative maximum taken into account when c ≥ 0

If one want to apply the same method for

−aij∂i∂ju+ bi∂iu+ cu ≤ 0,

where we need extra conditions that c ≥ 0 and we only consider positive maximum so that
the last term is positive at our maximum.

6.2 Mean value property for −∆ implies strong maximum principle in any com-
pact domain

Now we discuss the strong maximum principle. Given a connected compact domain Ω.
Suppose −∆u ≤ 0 and maxΩ u = max∂Ω u, the maximum can be achieved inside if and only
if it is constant.

The proof needs the mean value property.

6.2.1 Mean value property for harmonic or subharmonic functions

Suppose −∆u = 0, then

u(x0) = -

∫
B(x0,r)

u dx, u(x0) = -

∫
∂B(x0,r)

u dx.

For subharmonic functions, we have

u(x0) ≤ -

∫
B(x0,r)

u dx, u(x0) ≤ -

∫
∂B(x0,r)

u dx.
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We prove the case for subharmonic functions by applying Green’s theorem. Set Ω =
B(0, r) = B. The Green’s theorem gives∫

B

−∆u · v dx =

∫
B

u · (−∆v) dx+

∫
∂B

∂u

∂ν
v − u

∂v

∂ν
dσ.

To prove the mean value property, we need a good choice for v. So we need

• −∆v = δ0,
• v ≥ 0 in B,
• v|∂B = 0, we don’t want the appearance of ∂u

∂ν
v in the boundary terms.

Set

v(x) = K(|x|)−K(r), K(x) = cn|x|2−n

and then ∂
∂ν
K(|x|) = c(n, r). We write

u(0) =

∫
B

−∆u · v + c

∫
∂B

u dσ.

By setting u ≡ 1, we know c = |∂B| and hence

u(0) ≤ -

∫
∂B

u dσ.

By a linear change of coordinates, you can prove the mean value property for aij∂i∂j in some
eclipse since the linear change of a ball is a eclipse.

6.2.2 Strong maximum principle for −∆ in compact domains Ω

Now we prove the strong maximum principle. Set M = maxΩ u = max∂Ω u. Suppose
u(x0) = maxu. We choose r such that B(x0, r) ⊂ Ω. By applying mean value property,

M = u(x0) ≤ -

∫
B

u dx ≤ M.

This implies that u ≡ M in B(x0, r). Then

D = {x ∈ Ω : u(x) = M}
is open and closed. By connectedness, D = Ω, that is, u ≡ M in Ω.

6.3 Harmonic functions in unbounded domains : Liouville’s theorem, general
type maximum principle

6.3.1 Two different proofs for Liouville’s theorem

For harmonic functions, ∆u = 0 implies ∆∂ju = 0. Hence, we can also apply the mean
value property to derivatives as

∂ju(x0) = -

∫
B(x0,r)

∂ju dx =
1

|B|

∫
∂B(x0,r)

νju dx.

We use this fact to prove the Liouville’s theorem.

Theorem 6.1. Any bounded harmonic function in Rn is constant.
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Proof. Suppose |u| ≤ M and we write

|∂u(x0)| ≤ M
1

|B|
· |∂B| = Mn

r
→ 0

as r → ∞.
Alternative proof : Alternative proof is to use the distribution theory that we discussed

before. Since bounded functions are tempered distributions, we can apply Fourier transform
and conclude that u is a polynomial. Then it is constant. □

6.3.2 A brief discussion on maximum principles in unbounded domains

What happens to the maximum principle if the domain is not compact. We consider a
simplest unbounded domain - half space first. Fix H = {xn ≥ 0}. Then u(x) = xn does not
satisfy

max
H

u ≤ max
∂H

u.

At least you need to impose some decay condition. One can refer to [3, Theorem 2.7, Theorem
2.9] for a different kind of maximum principle involving unbounded domains.

A second example is an angle and you can change it by using z = zα. For the stripe
in two dimensions, we refer to the Phragmén–Lindelöf theorem in complex analysis for the
condition such that the maximum principle holds in a strip.

6.4 Comparison principle

One can view the maximum principle as a comparison of (super, sub) solutions with
constant functions. Note that the reason why we care about the constant functions is that
they are solutions.

Corollary 6.2 (Comparison principle). Suppose −∆u ≤ 0 and −∆v ≥ 0. If u ≤ v on ∂Ω,
then u ≤ v in Ω.

Proof. Note that −∆(u− v) ≤ 0, we know

max
Ω

(u− v) ≤ max
∂Ω

(u− v) ≤ 0.

□

In fact, the comparison principle also holds for

−aij∂i∂j + bj∂j + c,

where c ≥ 0. We just need to modify the proof with the weak maximum principle for this
general second order elliptic operator today. Note that this is in line with the different
behavior of operators P = −∆+ 1 and P = −∆− 1 we discussed in last lecture.
Such comparison principle can be also extended to lots of other equations.
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Elliptic boundary value problem 1 - Adjoint method, Lax-Milgram

Date: February 7, 2023

Let Ω ⊂ Rn, we discuss −∆u = f in Ω. The Dirichlet boundary condition is u = 0 on
boundary and the Neumann boundary condition is ∂u

∂ν
= 0, which means that you cut off all

the heat transmissions through the boundary.

7.1 Dirichlet boundary condition - uniqueness theory

If instead we look at {
−∆u = f in Ω,

u = g on ∂Ω.
(7.1)

If one can extend g to the interior of the region to obtain a v in Ω such that v|∂Ω = g. Then,
by letting u = v + w, we get {

−∆w = f +∆v in Ω,

w = 0 on ∂Ω.

A good topic to discuss is the existence and uniqueness. There are two ways to develop the
uniqueness theory. The first one is based on L2 estimates. The other one is based on the
maximum principle.

7.1.1 Uniqueness for −∆ - Performing an estimate by the source term

Suppose u solves (7.1) with f = g = 0, then we compute

0 =

∫
Ω

(−∆u)u dx =

∫
Ω

|∇u|2 dx−
∫
∂Ω

u · ∂u
∂ν

dx =

∫
Ω

|∇u|2 dx,

which implies ∇u = 0. Since u|∂Ω = 0, we know u ≡ 0. Note that this argument works for
Neumann boundary condition as well.

To make this computation rigorous, one needs ∇u ∈ L2. Since u|∂Ω = 0, we require
u ∈ H1

0 (Ω). Then one could regularize u by uε ∈ D(Ω), which satisfies uε → u in H1
0 . If we

redo the computation, we end up with∫
Ω

|∇uε|2 dx =

∫
Ω

fεuε dx,

which implies
∥∇uε∥2L2 ≤ ∥fε∥L2∥uε∥L2 .

The it follows from Poincaré’s inequality that

∥∇uε∥L2 ≤ ∥fε∥L2 .

However, we can achieve a better result than this one. In the Cauchy Schwartz above, instead
of using L2 for both, we do

∥∇uε∥2L2 ≤ ∥fε∥H−1∥uε∥H1
0
,

which implies
∥∇uε∥L2 ≤ ∥fε∥H−1 . (7.2)
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Thus we end up with a smaller norm on the right hand side. Note that −∆ : H1
0 → H−1, so

here we get the right space.
Since uε → u in H1

0 , we know fε → f in H−1 and hence we can pass to the limit in (7.2),
which proves the uniqueness. When we become familiar with these, one usually omits the
justification by smooth functions. We summarize as the following proposition.

Proposition 7.1. If u ∈ H1
0 (Ω), −∆u = f ∈ H−1(Ω), then

∥u∥H1
0 (Ω) ≤ ∥f∥H−1(Ω).

In particular, the estimates of the solution by the source term implies uniqueness.

7.1.2 Uniqueness for −∆ - Applying maximum principle

Another way to prove uniqueness is to use maximum principle. Suppose u satisfies (7.1)
with f = g = 0. By maximum principle, maxΩ u = max∂Ω u = 0. If we consider −u instead
of u, by minimum principle, we get minΩ u = 0. Hence, u = 0. This argument works if
u ∈ C(Ω).

If u satisfies (7.1) with g = 0. Suppose f ∈ L∞ with |f | ≤ M . We penalize u by
v := u+M

2n
|x−x0|2, then −∆v ≤ 0, that is, v is sub-harmonic. Since v ≤ max∂Ω v ≤ MR2/2n

provided Ω ⊂ B(x0, R). Then we get

max
Ω

u ≤ ∥f∥L∞R2.

Compared to the L2-based estimates we obtained above, this is imperfect in the following
sense : if one takes u ∈ L∞ and then takes two derivatives, then it will not end up being
in L∞, which means that the spaces for both sides of the inequality do not perfectly match
with each other. A more subtle observation is that the term R2 on the right hand side match
with the two derivatives we need to take, so it is in some sense scaling invariant.

7.1.3 Uniqueness for variable coefficient operators in divergence form - Energy
estimates

Before we go further, we replace −∆ by a variable coefficient operator{
−∂ia

ij(x)∂ju = f in Ω,

u = 0 on ∂Ω.

Since aij(x)∂j is a vector field, we call −∂ia
ij(x)∂j a divergence form of operators. Our con-

vention of the order of computations for −∂ia
ij(x)∂j is −∂i (a

ij(x)∂j). If we try to reproduce
the arguments above, then we note that the only requirements for aij are aij ∈ L∞ and (aij)
is uniformly elliptic ( strictly positive definite ). Note that we do not need further regularity
on aij since the first thing we do in L2-based estimates is to integration by parts.

Remark 7.2. However, note that one cannot put first order terms into the equation if we
want to use this method to perform L2-based estimates.
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7.1.4 Uniqueness for variable coefficient operators in non-divergence form -
Maximum principle

Since the weak maximum principle also applies to operators of the form{
−aij∂i∂ju+ bi∂iu+ cu = f,

u = 0 on ∂Ω.

Note that −aij∂i∂j is in non-divergence form. The requirements for the maximum principle
to hold is to require a ∈ C, b ∈ C, c ∈ C with c ≥ 0. So, we don’t need a ∈ C1 compared to
the divergence form above.

Remark 7.3. In Nash-Moser theory, you still can treat in two different ways by using diver-
gence form and L2-based estimates or non-divergence form and maximum principles.

7.2 Existence of solutions - L2 theory, duality argument

One kind of arguments, which manifests the idea in numerics, is to consider the difference

quotients ∆hu := u(x+h)−u(x)
h

to produce an approximate solution. By refining your grid, one
may get an exact solution. The arguments in [7] is largely based on this notion.

We introduce a duality argument, which can be adapted to many other problems. By
replacing −∆ by P , ∫

−∆u · v dx =

∫
u · (−∆v) dx

is written as ∫
Ω

Pu · v dx =

∫
Ω

u · P ∗v dx.

For P = aij∂i∂j, we have P ∗ = −∂i∂ja
ij and P = −∂ia

ij∂j, we have P ∗ = −∂ia
ij∂j. If

P = P ∗, we say P is self-adjoint (as a bounded operator H1
0 → H−1).

The adjoint equation becomes {
P ∗v = g,

v|∂Ω = 0

while the original equation is {
Pu = f,

u|∂Ω = 0.

The duality relation can be written as∫
u · g =

∫
v · f.

Note that the energy estimates for the adjoint equation ∥v∥H1
0
≤ ∥g∥H−1 implies∣∣∣∣∫ ug

∣∣∣∣ ≤ ∥v∥H1
0
∥f∥H−1 ≤ ∥g∥H−1∥f∥H−1 .
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If we know the quantity
∫
u · g for all g ∈ H−1, then this uniquely determines u ∈ H1

0 . For
now, g ∈ Ran(−∆), a subspace of H−1. Moreover, we have

u : Ran(−∆) → R, g 7→
∫

ug

and thus we are allowed to use Hahn-Banach theorem to extend it to u : H−1 → R. How-
ever, keep in mind that Hahn-Banach theorem does not give uniqueness. We only obtain
uniqueness if Ran(−∆) is dense in H−1.
The discussion above can be summarized into the following diagram.

Energy estimates for P ∗ implies the existence for P and the energy estimates for P also
implies the existence for P ∗. Also, we have the other way around.

To prove the non-existence of a solution to P , one can prove by claiming that there are
no nice energy estimates for P ∗. This is the idea of [25] in showing that not all differential
operators are locally solvable.

7.3 Lax-Milgram theorem

If you have a Riemannian manifold, there is a corresponding operator called the Laplace-
Beltrami operator. It is self-adjoint with respect to the Riemannian metric. In other words,
whether the operator is self-adjoint with respect to a weight function, if we write everything
in local coordinates. Now the question is whether we can prove estimates even if our operator
is not self-adjoint.

For an operator in divergence form, a formal computation leads to∫
Pu · u dx =

∫
(−∂ia

ij∂j + bj∂j + c)u · u dx =

∫
aij∂ju∂iu+ bju∂ju+ cu2 dx,

which result in a corresponding quadratic form B : H1
0 ×H1

0 → R given by

B(u, v) :=

∫
aij∂ju∂iv + bjv∂ju+ cuv dx.

The important property is whether we have

B(u, u) ≥ c∥u∥2H1
0
,

which is called the coercivity property. A good feature is that the coercivity property would
be more robust when we try to introduce some nice weights. However, an operator is self-
adjoint or not usually depends on specific choice of weights.

The key ingredients of Lax-Milgram theorem are the coercivity assumption plus a duality
argument, where the duality stuff is hidden in the proof of Lax-Milgram thoerem. Though
[7] does not call the argument before as a duality argument, the idea is essentially the same.

By combining these ingredients, one can prove solvability by Lax-Milgram theorem.
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Remark 7.4. An advantage of Lax-Milgram theorem is that it can handle second order elliptic
PDEs with first order and zeroth order terms.

For the sake of completeness, we record the results in [7, Chapter 6.2] here.

Theorem 7.5 (Lax-Milgram Theorem). Assume that B : H×H → R is a bilinear mapping,
for which there exist constants α, β > 0 such that

|B(u, v)| ≤ α∥u∥∥v∥, |B(u, u)| ≥ β∥u∥2.
Finally, let f : H → R be a bounded linear functional on H. Then there exists a unique
element u ∈ H such that B(u, v) = f(v) for all v ∈ H.

Proof. The proof is sketched as follows.

Step 1 : Application of Riesz representation theorem to obtain a unique element w ∈ H for each
u such that B(u, v) = ⟨w, v⟩ and denote w = Au.

Step 2 : A is linear and bounded : a direct estimate by definition.
Step 3 : A is one-to-one and R(A) is closed : it suffices to prove β∥u∥2 ≤ B(u, u) ≤ ⟨Au, u⟩ ≤

∥Au∥∥u∥.
Step 4 : R(A) = H : proof by contradiction.
Step 5 : Riesz representation theorem applied again to obtain w ∈ H such that ⟨w, v⟩ = f(v)

for all v and hence by Step 4, Au = w for some u.
Step 6 : Uniqueness of u.

□

Remark 7.6. If B is symmetric, then one can show B(·, ·) is an inner product on H. With
symmetry of B, one can apply Riesz representation theorem to prove this directly. So the
importance of Lax-Milgram theorem is that it can apply to PDEs with first order terms as
we can see in a second.

We discuss the specific B : H1
0 (Ω)×H1

0 (Ω) → R, where

B(u, v) =

∫
Ω

aij∂iu∂ju+ bi∂iuv + cuv dx.

Then one can check the following energy estimates :

|B(u, v)| ≤ α∥u∥H1
0
∥v∥H1

0
, β∥u∥H1

0
≤ γ∥u∥2L2 + |B(u, u)|

for some α, β > 0, γ ≥ 0. One can note from the computation that if bi = 0, then one can
take γ = 0. In general, we obtain a unique weak solution u ∈ H1

0 (Ω) for the boundary value
problem {

Lu+ µu = f in Ω,

u = 0 on ∂Ω

for any f ∈ L2.
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Elliptic boundary value problem 2 - Maximum principle approach,
Variational method

Date: February 9, 2023

Last time, we set P = −∂ia
ij∂j + bi∂i + c with a corresponding bilinear form

B(u, v) =

∫
Ω

Pu · v =

∫
u · P ∗v =

∫
aij∂iv∂ju+ bi∂iuv + cuv.

If it satisfies the coercivity condition B(u, u) ≥ C∥u∥2
H1

0
, then we have the L2 solvability.

An important case is when P is self-adjoint. Technically, one can add a weight ω(x) > 0 to
make an operator P self-adjoint. In other words, we change the measure from dx to ω(x) dx.

8.1 Maximum principle approach to prove existence - Perron’s method

For maximum principle, one can think of it as a L∞ theory if one wants to compare
it with the L2 theory. The setting is to write the operator in the non-divergence form :
P = −aij∂i∂j + bj∂j + c. We assume that maximum principle holds for P . (Assume aij
symmetric, positive definite and c ≥ 0.) In the following, we would like to find solutions to{

Pu = f

u = 0
.

We can find a sub-solution u− and a super-solution u+. A priori, a sub-solution (in the
setting of a boundary value problem) means that Pu− ≤ f and u−|∂Ω ≤ 0. Similarly, a
super-solution means that Pu+ ≥ f and u+|∂Ω ≥ 0.

As shown in the graph (for a one-dimensional case), if we make the function convex
enough, then by the positivity of (aij), the Hessian will dominate the negativeness and we
get Pu− ≤ f . Then it follows from the maximum principle that if a solution u exists,
then it is in between any sub-solution and any super-solution. Moreover, it is unique by
the maximum principle provided the existence. Therefore, it would be both the largest
sub-solution and the smallest super-solution.

Suppose u1
−, u

2
− are two sub-solutions, then we claim that max{u1

−, u
2
−} is still a sub-

solution. We provide a heuristic argument. If we consider the one-dimensional case, then
the only place we need to take care of is the intersection point x0 of the two sub-solutions.
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At x0 where where u1
−, u

2
− meet with each other, since the coefficients of ∂i∂j is negative,

we know that (P max{u1
−, u

2
−})(x0) = ...+cδx0 with c < 0. Therefore, heuristically speaking,

(P max{u1
−, u

2
−}) can be sufficiently negative at x0. By this philosophy, the max of all sub-

solutions should be still a sub-solution. We also want to show it is a super-solution. The
idea here is to increase a sub-solution a little bit would still be a sub-solution.

By implementing this, one actually needs the solution to be at least C2. To get rid of the
regularity issue, we reinvent the notion of sub-solutions and super-solutions in a way that
resembles the proof of the maximum principle.

Definition 8.1. We say u− (resp. u+) ∈ C(Ω) is a viscosity sub-solution (resp. super-
solution) to Pu = f ∈ C(Ω) if the following property holds : if for any x0 ∈ Ω and any
function φ ∈ C2(Ω) such that u− −φ (resp. u+ −φ) has a local max (resp. min) at x0, then

Pφ(x0) ≤ f(x0) (resp. Pφ(x0) ≥ f(x0)).

If u is a viscosity sub-solution and a viscosity super-solution at the same time, then we
say u is a viscosity solution.

Remark 8.2. One can also add boundary condition to it as what we did in the baby version of
the definition of sub-solutions and super-solutions to take the boundary value into account.

Motivation of the definition : Suppose u− ∈ C2(Ω) is a sub-solution and φ touches
u− from above at a single point x0, then in the smooth setting,

u−(x0) = φ(x0), Du−(x0) = Dφ(x0), D2u−(x0) ≤ D2φ(x0),

which implies Pu−(x0) ≥ Pφ(x0). Therefore, if we adopt the baby version of the definition for
sub-solutions, then one needs Pu−(x0) ≤ f . Therefore, it is natural to ask that Pφ(x0) ≤ f
for all φ ∈ C2 satisfying some “touching” property from above. Note that touching from
above at a single point implies that u−−φ has a local maximum at this point, which coincides
our definition. This definition does not rely on higher regularity.

Sketch of the proof for the existence : Now in this sense, it follows directly from
the definition that the maximum of two sub-solutions is also a sub-solution. The next part
is to show that the largest sub-solution is also a super-solution. We prove by contradiction.
Suppose not, then there exists a φ ∈ C2 touching from below at x0, which satisfies Pφ(x0) <
f(x0). By continuity, we know Pφ(x) < f(x) in |x − x0| < η for some small η > 0. Then
by lifting φ by a sufficiently small distance ε > 0, we note that the yellow line is a sub-
solution since it is the maximum of two sub-solutions, which leads to a contradiction with
the assumption that umax

− is the largest sub-solution.
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However, this argument may not be as rigorous as we want since lifting by a small number
still can ruin the property that φ+ ε and umax

− only intersect near x (i.e. |x− x0| < η). To
compensate this, we need to bend φ+ε down away from x0 to make sure the contact point is
always localized. To be specific, we use φ+ ε− δ(x−x0)

2 instead. This further modification
helps us to eliminate the counterexamples as shown in the following picture.

Remark 8.3. There are some downsides of this argument. In the proof, we need to take the
maximum of a bunch of functions. However, even if we suppose φn ∈ C∞, φ(x) := supn φn(x)
is still probably not continuous. A counterexample is that one can approximate the Heaviside
function by smooth functions.

On the other hand, notice that in the proof, we only use the continuity implies that we can
obtain a maximum in a compact set for sub-solutions, so it is natural to work with upper-
semi-continuous functions for sub-solutions (resp. lower-semi-continuous functions for super-
solutions). However, if we adopt this definition, then a viscosity solution is continuous again
since it is not only a sub-solution but also a super-solution. We need a further modification.

For a locally bounded function, we define u∗ = lim supy→x u(y), which change an L∞

function to an upper-semi-continuous function. Similarly, u∗(x) = lim infy→x u(y) can change
an L∞ function to a lower-semi-continuous function. This implies the following modification
of our definition.

Definition 8.4. We say u is a sub-solution if u∗ is a sub-solution in the previous sense.

Then we work through the previous argument with the new definition for sub-solutions
(super-solutions), which would still work well and gives a solution in viscosity sense. This
completes the sketch of the proof.

Remark 8.5. Note that if u is the viscosity solution, this means that the upper-semi-continuous
function u∗ is a sub-solution and the lower-semi-continuous function u∗ is a super-solution.
However, sub-solution is below super-solution, which implies u∗ ≤ u∗ at each point, and
therefore u is continuous.
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Remark 8.6. Note that ∆u = 0 in the viscosity sense. does not imply ∆u = 0 in D′ for free.
We need some regularity theory. So the construction of a solution using maximum principle
is not the easiest way we can do.

The reason why we care about this approach is that this also works for nonlinear equations
with maximum principles, such as the fully nonlinear equation

det(D2u) = f.

See [11] for further discussions.

All the discussions here for viscosity solutions can be found in [6].

8.2 Variational methods

Suppose we are in the self-adjoint case :

P = −∂ia
ij∂j + c

with a corresponding bilinear form B.
The idea behind the variational methods is to look for the solution u as a minimum point

for some functional. However, in order to ensure the uniqueness of the solution, we may want
a stronger assumption that our functional only has a unique minimum. A simple observation
is that a strictly convex function has a unique minimum.

In calculus, in order to solve Ax = b with A > 0 via numerical methods, we consider

min
x

1

2
Ax · x− b · x := φ(x),

where a critical point x0 satisfies

Dφ(x) = Ax− b.

So by trying to minimize the functional, you find a way to invert this matrix, which is faster
than computing the inverse of a matrix in numerical methods.

By replacing A with P , we define

φ(u) =

∫
1

2
Pu · u− f · u dx =

∫
1

2
b(u, u)− f · u dx,

where b(u, u) is the integrand in B(u, u). From the previous discussion, it is natural to claim
that if P is coercive, then the solution u is the unique minimum point for φ. To make this
precise, we bring in the Sobolev spaces. In view of the appearance of ∇u in b(u, u), we set
X = H1

0 . Then φ : X → R is strictly convex, that is,

φ(
u+ v

2
) <

φ(u) + φ(v)

2
, (8.1)

which follows from completing the squares

φ(u) + φ(v)

2
− φ(

u+ v

2
) =

1

4
B(u− v, u− v) ≥ 0.

The equality holds if and only if u = v. The strict convexity guarantees the uniqueness of
minimum.
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Moreover, we show that φ coercive away from 0 since

lim
∥u∥X→∞

φ(u) = ∞.

In fact, one can prove by Poincare inequality that

|φ(u)| ≥ α∥Du∥2L2 − β (8.2)

for some α, β > 0, which is sufficient for the existence of minimizers.
In Rn, one can prove that convex functions are continuous in Rn so we have a minimum.

However, in the Hilbert space, we don’t know whether we have a minimum.
Luckily, we also have a notion of weak convergence in Hilbert space, that is, un ⇀ u in

X is equivalent to say un · v → u · v for all v ∈ H. But convex functions are in general
not weakly continuous. We work on weakly semi-continuous functions to ensure that there
exists a minimum as in the modification in Perron’s method.

We claim that φ is weakly lower semi-continuous in the sense that un ⇀ u implies
lim inf φ(un) ≥ φ(u).
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Elliptic boundary value problem 3 - Variational method, Higher regularity

Date: February 14, 2023

9.1 Variational methods (continued)

For the boundary value problem{
−∂ia

ij∂ju = f in Ω, f ∈ H−1(Ω),

u = 0 in ∂Ω
,

we have the Lagrangian L(u) =
∫
Ω

1
2
aij∂iu∂ju− fu dx. We look for minu∈H1

0 (Ω) L(u).

Theorem 9.1. The Lagrangian L has a unique minimum u, which satisfies the boundary
value problem.

Proof. We start with a minimizing sequence un ∈ H1
0 such that

lim
n→∞

L(un) = inf
u∈H1

0

L(u).

Step 1 : Extracting a weak convergent subsequence thanks to coercivity
Then by coercivity (8.2), we know that un is bounded in H1

0 . Now we can find a weakly
convergent subsequence un ⇀ u in H1

0 , which by definition implies un · v → u · v for all
v ∈ H1

0 . One can also interpret this as a convergence in D′. By compactness, un → u in L2

as well.
Step 2 : Convexity of L in p implies lower semi-continuity and hence existence

and uniqueness of the minimizer
We claim that L is convex implies L(u) ≤ lim inf L(un). In fact, we only need the convexity

of L, where L(Du, u, x) = 1
2
aij∂iu∂ju − f(x)u. We also write L(p, z, x) = 1

2
aijpipj − f(x)z

and L(u) =
∫
L(Du, u, x) dx.

Since L is convex in p ((8.1)),

L(hp1 + (1− h)p2, z, x) ≤ hL(p1, z, x) + (1− h)L(p2, z, x), h ∈ [0, 1],

where we omit z, x in the following computation for simplicity. Then we have

(1− h) (L(hp1 + (1− h)p2)− L(p2)) ≤ h (L(p1)− L(hp1 + (1− h)p2))

and hence
L(hp1 + (1− h)p2)− L(p2)

h
≤ L(p1)− L(hp1 + (1− h)p2)

1− h
.

Let h → 0, we get

DpL(p2, z, x) · (p1 − p2) ≤ L(p1, z, x)− L(p2, z, x).

In other words, this says that the tangent line L(p2, z, x) + DpL(p2, z, x) · (p1 − p2) is be-
low L(p1, z, x). This can be also viewed as a definition of convexity provided that L is
differentiable.

Now we replace p2 by Du, p1 by Dun, z by un then

L(Du, un, x) +DpL(Du, un, x) · (Du−Dun) ≤ L(Dun, un, x).
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By weak convergence, DpL(Du, u, x) · (Du−Dun) → 0 thanks to the uniform boundedness
of ∥u− un∥H1 and dominated convergence theorem. Moreover, a direct computation shows

|(DpL(Du, un, x)−DpL(Du, u, x)) · (Du−Dun)| ≤ |f(x)||un − u||Dun −Du|,
which seems harder to estimate. Then we need to apply Egorov theorem to extract a uniform
convergent subsequence un on Gε for any ε such that m(Ω \Gε) < ε. (Note that un → u in
L2 implies un → u almost everywhere by passing to a subsequence.) Therefore,

L(un) =

∫
Ω

L(Dun, un, x) ≥
∫
Ω

L(Du, un, x) +DpL(Du, u, x) · (Du−Dun) dx

+

∫
Gε

(DpL(Du, un, x)−DpL(Du, u, x)) · (Du−Dun) dx.

Set n → 0,

lim
n

L(un) ≥ L(u).

(In full generality version, one then needs to let ε → 0.) Therefore, there exists a unique
minimizer of L, where the uniqueness follows from the proof last time by strict convexity.
Step 3 : The unique minimizer u solves the equation indeed
Now we show that the minimizer solves the equation. Since L(u + hv) ≥ L(u) for all

v ∈ D(Ω),

0 =
d

dh
L(u+ hv)|h=0 =

∫
Ω

aij∂iu∂jv − f · v dx =

∫
Ω

(−∂ia
ij∂ju− f)v dx,

where in the last line,∫
Ω

(−∂ia
ij∂ju− f)v dx = ⟨−∂ia

ij∂ju, v⟩H−1,H1
0
− ⟨f, v⟩

if we want to write in a rigorous way. This implies that

−∂ia
ij∂ju = f

in D′. □

Remark 9.2. • The method applies to nonlinear problems.
• Convexity can be weakened : there exists a Palais-Smale condition for a minimizing
sequence to be compact.

• If L is not differentiable, we can introduce the subdifferential ∂L(u), which is all the slope
for which a line is under the graph : we say p ∈ ∂L(v) if for all u, L(u) ≥ L(v)+p·(u−v).
This is also connected to Legendre transform.

• When we discuss the zero Dirichlet boundary condition, it is inherited in the function
space H1

0 . If we assume that there exists a minimizer in H1, then what is the equation
solved by the minimizer?

For v ∈ D(Ω), same computation applies −∂ia
ij∂ju = f . Now boundary condition

asks us to use v ∈ C∞(Ω),

0 =

∫
Ω

aij∂iu∂jv− f · v dx =

∫
Ω

(−∂ia
ij∂ju− f)v dx+

∫
∂Ω

νja
ij∂iu · v dσ =

∫
∂Ω

νja
ij∂iu · v dσ,
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which implies that
νia

ij∂ju = 0

on ∂Ω, which is a conormal derivative. If (aij) = I then it is just a normal derivative.
This gives a solution to our Neumann boundary condition problem.

• For the Neumann condition, {
−∂ia

ij∂ju = f,

νja
ij∂iu = 0.

Solution is not unique since we can add any constant to a solution. For existence, we
compute ∫

f dx =

∫
−∂ia

ij∂ju dx = 0,

and hence solution does not exist unless
∫
f = 0. Later, we will make this sufficient

and necessary. (We do not specify any regularity and only keep the argument above in
a heuristic level at this time.)

Note that for Neumann boundary condition, we cannot say u ∈ H1
0 . Instead, the only

regularity we have is u ∈ H1. However, the dual space of H1 is not a good space and it
is just denoted by (H1)′. Since the trace operator T : H1(Ω) → H

1
2 (Γ), we know that

for φ ∈ (H
1
2 (Γ))∗ = H− 1

2 (Γ),

φ ◦ T : H1(Ω) → H
1
2 (Γ) → R

is a bounded linear functional and hence φ◦T ∈ (H1(Ω))′. Therefore, one can view this
as the inclusion

H− 1
2 (Γ) ⊂ (H1(Ω))′.

The regularity here is subtle.

9.2 Elliptic regularity

From different kinds of methods, we reach the conclusion u ∈ H1
0 when f ∈ H−1.

Theorem 9.3. Given a compact domain Ω. Suppose f ∈ Hk(Ω) and aij ∈ Ck, then u ∈
Hk+2(Ω) for k ≥ 0.

Remark 9.4. For k sufficiently large, f is smooth enough, then we at least need some reg-
ularity for aij for the equation to hold in classical sense even if u is smooth. Keep in mind
that this has nothing to do with solvability. In other words, one can put lower order terms
into it and invoke the argument that we are about to discuss as long as you know that there
exists a solution.

Proof. As an example, we only prove a simple case : f ∈ L2 implies u ∈ H2 ∩H1
0 . It suffices

to prove
∥u∥H2 ≤ ∥u∥H1 + ∥f∥L2 . (9.1)

Step 1 : Localization will suffice
First note that it suffices to prove in sufficiently small region around each point. Since Ω

is compact, we can find a finite covering to reduce the proof. Then we only need to consider
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two cases - a ball inside the interior or a region near the boundary. We provide an argument
to precisely verify this localization argument.

Choose a cut-off function to V , a neighbourhood of x0. Then v = χu is well-defined and
we compute

Pv = P (χu) = χPu+ C(∇χ∇u+∇2χ · u+∇χ · u).
Then we know

∥Pv∥L2 ≲ ∥Pu∥L2 + ∥u∥H1 .

Moreover, we know ∥v∥H1 ≤ ∥u∥H1 . So it suffices to prove the inequality for v instead of u.
Indeed, since the region is compact and hence there exists {χk}Kk=1 whose supports cover the
region, then

∥u∥H2(Ω) ≲
K∑
k=1

∥vk∥H2(Ω) ≲
K∑
k=1

∥vk∥H1 + ∥Pvk∥L2 . ≲ ∥u∥H1 + (∥Pu∥L2 + ∥u∥H1),

which completes the proof.
Therefore, we just need to do localization and prove the localized inequality, that is,

proving (9.1) with u localized.
Step 2 : Proof of the localized version in the interior
For x0 ∈ Ω, we select a ball BR(x0) ⊂ Ω with R to be determined. By a linear transfor-

mation, we can assume without loss of generality that A(x0) = I. With a slight abuse of
notation, we denote A = (aij) and A = −∂ia

ij∂j. Then

∥∇2u∥L2 ≤ ∥∆u∥L2 ≤ ∥Au∥L2 + ∥(A−∆)u∥L2 ≤ ∥Au∥L2 + c(R)∥∇2u∥L2 ,

where c(R) → 0 as R → 0. So we can select R small enough to absorb the last term to the
left hand side and get the desired bound

∥u∥Ḣ2(BR(x0))
= ∥∇2u∥L2(BR(x0)) ≲ ∥Au∥L2(BR(x0)) = ∥f∥L2(BR(x0)).

It suffices to show the case when x0 ∈ ∂Ω. By introducing a cut-off function near x0, we
replace u by χu. Note that this does not kill the boundary condition.

Then we consider the boundary case.
Step 3 : Flatten the boundary (requiring some regularity assumptions of the

boundary)
We find a change of coordinates to the half ball case. Obviously, the coefficients of the

operator would change. When making the change of coordinates, we only ensure (aij)(x0) =
I.

Remark 9.5. Can we flatten A at the same time? If d = 1, then we can flatten the real line
with metric ds2 = a(x) dx2 by choosing the arc length parametrization. If d = 2, then it is
overdetermined and we cannot flatten it. However, we can make it conformally to identity,

A(x) 7→ c(x)I,

then this is relevant to complex analysis (∂̄). If d ≥ 3, the answer is no.

Step 4 : Proof of the localized estimate near the boundary when A = −∆
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We first prove for the Laplacian case as an instructive model case for the problem. The
main idea is to distinguish the tangential derivatives and normal derivatives. With this idea
in mind, one can recover the rigorous proof.

We only consider the half ball region in the following arguments without writing out
explicitly. We have ∆u ∈ L2, we want ∂2u ∈ L2. For tangential derivative j ≤ n − 1 and
any k, we compute ∫

∆u∂2
ju dx =

∑
k

∫
(∂k∂ju)

2 dx,

where the boundary condition is zero since at least one derivative is tangential. By denoting
∂′ for any tangential derivative and ∂ for any derivative, we know from this integration by
parts that

∥∂′∂u∥2L2 ≤ ∥∆u∥L2∥∂′∂′u∥L2 .

Therefore,
∥∂′∂u∥L2 ≤ ∥∆u∥L2 .

Then it follows from the original equation that the second order non-tangential (normal)
derivative

∥∂2
nu∥2L2 ≤ ∥∆u∥L2 + ∥∂′∂′u∥L2 ,

which implies
∥∂2u∥L2 ≤ ∥∆u∥L2 .

Step 5 : The general case near the boundary in which (aij)(x0) = I
We write

−∆v = −∂ia
ij(x0)∂jv = f − ∂i(a

ij(x)− aij(x0))∂jv − bj∂jv − cv,

then by denoting the first and zeroth order remainder by Rv, we can apply the bound for ∆
in the previous step,

∥v∥Ḣ2 ≤ ∥f∥L2 + ∥(aij(x)− aij(x0))∂i∂jv∥L2 + ∥Rv∥L2 ,

where Rv
Note that

∥(aij(x)− aij(x0))∂i∂jv∥L2 ≤ ∥(aij(x)− aij(x0))∥L∞∥v∥H2 ≤ δ∥v∥H2 ,

for sufficiently small δ, where we can make x− x0 small enough in our first step. For lower
order terms,

∥Rv∥L2 = ∥(∂iaij)∂jv + bj∂jv + cv∥L2 ≤ ∥v∥H1 .

Hence,
∥v∥H2 ≤ ∥v∥H1 + ∥f∥L2 ,

which completes the proof.

Remark 9.6. In fact, we can always obtain a stronger estimate like what we have in Step 4 for
−∆. The tool is the following generalized Poincaré-type inequality for v ∈ H2(Ω), v|∂Ω = 0
in a domain of size 1,

∥v∥L2 + ∥∇v∥L2 ≤ ∥∂2v∥L2 .

Note that v ∈ H2(Ω), v|∂Ω = 0 is equivalent to v ∈ H1
0 ∩ H2. The proof follows from a

simple contradiction as the usual Poincaré inequality. The only difference is that we would
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obtain ∂2v = 0 and v|∂Ω = 0. This leads to a contradiction since ∂kv = Ck and hence
v(x) =

∑
Ckxk +D, which is a hyperplane of which ∂Ω cannot be a subset.

Then By resizing it to a domain of radius r, we know

r−2∥v∥L2 + r−1∥∇v∥L2 ≤ ∥∂2v∥L2 ,

where we gain smallness if r is small. The smallness helps us to absorb H1 norms to the Ḣ2

norm. But this means that we have a stronger estimate when r is sufficiently small :

∥v∥Ḣ2 ≲ ∥f∥L2 .

□

9.3 More general boundary conditions

What is a good boundary condition? We discussed Dirichlet and Neumann condition just
now. We also have Robin condition ∂u

∂ν
= λu, which has different traces. The leading order

of Robin boundary condition is Neumann.
Now, we discuss another type of boundary condition ∂nu =

∑
j≤n−1 aj∂ju in the half plane

case.
On the boundary condition for half plane, ∆u = f can be written as

(∂2
n + (∂′)2)u = f.

If we only take the Fourier transform in the tangential direction and still use ξ to denote the
(n− 1)-vector, then we get a second order ordinary differential equation

(∂2
n − ξ2)û = f̂ , (9.2)

with two fundamental solutions exn|ξ|, e−xn|ξ| to the homogeneous equation. One grows ex-
ponentially as we move inside while the other decays exponentially. Set

û1 = (∂n − |ξ|)û, û2 = (∂n + |ξ|)û, (9.3)

then
(∂n + |ξ|)û1 = f̂ , (∂n − |ξ|)û2 = f̂ .

For u1, by starting from a vanishing condition at infinity and solving it towards the boundary,
we obtain u1|∂Ω. For u2, you want to solve from near the boundary towards the interior. To
solve this, we want to use the boundary condition to give u2|∂Ω from u1|∂Ω.

For the zero Dirichlet boundary condition, we have u1 = u2 on boundary thanks to (9.3).
For the zero Neumann boundary condition implies u1 = −u2 on the boundary thanks to
(9.3). For ∂nu =

∑
aj∂ju,

∂nu =
∑

aj∂ju (∂n − iajξj)û = 0,

and we know û1 = (∂n − |ξ|)û. Subtracting gives (−iajξj + |ξ|)û = û1. If the symbol does
not vanish, then this gives û|∂Ω . The boundary condition in this example is called the
Lopatinsky boundary condition.

On the other hand, the way of doing Fourier transform in (9.2) can give the Poisson
formula on the half space. See [17, Chapter 8.3].
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Elliptic boundary value problem 4 - Fredholm theory

Date: February 16, 2023

Recall the following motivating example from last time. For P = −∂ia
ij∂j is in divergence

form, we consider the Neumann boundary value problem{
Pu = f in Ω

νja
ij∂iu = 0 on ∂Ω

.

Heuristically speaking, the obstruction of its solvability is a one-dimensional condition on f ,
which is

∫
f = 0. On the other hand, the obstruction of its uniqueness is also one-dimensional

since it would be unique up to a constant.
The summary we are going to make today is : Obstructions to solvability of the bounded

linear operator P : H1
0 (Ω) → H−1(Ω) are only finite dimensional. In this context, we also

want to study the adjoint operator P ∗ : H1
0 (Ω) → H−1(Ω). A more precise version is stated

as Theorem 10.12. This brings us back to functional analysis.

10.1 Recap of functional analysis

10.1.1 Basics

Suppose X, Y are two Banach spaces with T : X → Y bounded and linear. Then for dual
spaces X ′, Y ′, T ∗ : Y ′ → X ′ is also bounded and linear.
If

kerT := {x ∈ X : Tx = 0}
is not empty, then the solution to Tx = y will only be determined modulo elements in kerT .
The range of T is R(T ) = TX ⊂ Y while the range of T ∗ is R(T ∗) = T ∗Y ′ ⊂ X ′. For

⟨Tx, y′⟩ = ⟨x, T ∗y′⟩,

if y′ ∈ kerT ∗, then y′ ⊥ Tx and hence R(T ) ⊂ ker(T ∗)⊥. Similarly, R(T ∗) ⊂ ker(T )⊥. In
general, one can prove that

R(T ) = ker(T ∗)⊥, R(T ∗) = ker(T )⊥. (10.1)

The closed range theorem in functional analysis asserts that the following conditions are
equivalent for any closed operator T :

• R(T ) closed;
• R(T ∗) closed;
• R(T ) = ker(T ∗)⊥;
• R(T ∗) = ker(T )⊥.

Going forward, we also use N(T ) to denote kerT . Suppose R(T ) is closed, then

T : X/ kerT → R(T ) ⊂ Y

is bounded, injective and surjective. On the other hand, the open mapping theorem tells us
if T is surjective, then it is an open mapping, that is, the image of an open set under T is an
open set. An easy corollary is that T : X/ kerT → R(T ) is invertible with a bounded inverse.
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(Thanks to the open mapping theorem, the inverse is continuous and hence bounded.) Hence,
T−1 : N(T ∗)⊥ → X/ kerT , which is related to our solvability.

10.1.2 Fredholm operator

Definition 10.1. We say T is a Fredholm operator if

• N(T ), N(T ∗) are finite dimensional;
• R(T ), R(T ∗) are closed.

Remark 10.2. In fact, the second line in the definition of Fredholm operator is redundant in
view of the following fact that dimY/R(T ) = dimN(T ∗) is finite and hence closed. See [1,
Section 4.4].

Moreover, since R(T ) is closed, we know R(T ) = N(T ∗)⊥ and Y/R(T ) is well-defined. In
general, for any closed subspace K ⊂ H, H/K is isometrically isomorphism K⊥ since

H/K → K⊥, h+K 7→ h2 with h = h1 + h2 ∈ K +K⊥

Therefore,

dimN(T ∗) = dimY/R(T ).

The dimensions dimN(T ), dimN(T ∗) tell us how many obstructions we have. The first
one characterizes the obstructions for uniqueness while the second one characterizes the
obstructions for existence.

The outcome of today’s class is the main theorem - Theorem 10.12. Let us finish the
introduction of tools in functional analysis before proving this theorem. One of the reasons
why the Fredholm operators are introduced is that they are stable in the following sense. In
particular, for second order elliptic operator, it is stable under first order perturbation.

Theorem 10.3. Suppose T is Fredholm, then T + S is also Fredholm if

• S is small (∥S∥ is small compared to ∥T∥);
• or S is compact.

Proof. See [1, Corollary 4.47, Theorem 4.48]. □

Remark 10.4. Note that the Fredholm theory in [7, Appendix D] is incomplete in the sense
that they only consider the case T = I. However, in view of Atkinson’s theorem, [1, Theorem
4.46], we can find an almost inverse, so they are equivalent.

Remark 10.5. One can think of a compact perturbation as follows. A compact perturbation
might be large in at most finite dimensions. Note that even if S is small, it may change the
dimension of kerT and kerT ∗. However, as long as S compact/small, the index of T does
not change, which is defined as follows.

10.1.3 Index of an operator and invariance for Fredholm operators

Definition 10.6. The index of T is given by

ind(T ) := dimN(T )− dimN(T ∗).
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For second order elliptic equations, lower order terms are compact. Suppose P = −∂ia
ij∂j+

bi∂i + c, Note that bi∂i + c : H1
0 → L2, and the inclusion L2 ⊂ H−1 is compact thanks to the

compactness inclusion of its dual H1
0 ⊂ L2 by Rellich-Kondrachov. (The dual operator of a

compact operator is compact.)
Moreover, note that P depends on x, if we choose another operator with the principal

part −∂ia
ij∂j, then a linear transformation

Pt = tI + (1− t)A

can help us to turn −∂ia
ij∂j into −∆, which is uniquely solvable in H1

0 for f ∈ H−1 and
hence ind(−∆) = 0. So the dimension of kernel and cokernel are the same. Note that
ind(Pt) will keep the same because it is continuous with respect to t due to the fact that
small perturbations will not change an Fredholm operator out of the Fredholm class and
ind(Pt) ∈ Z. Note that we cannot connect any two operators together. Let’s say ∆ and
some arbitrary B, then (t + ε)∆ + (1 − (t + ε))B − (t∆+ (1− t)B) = ε(∆ − B), which
requires at least ∆ − B to be bounded. However, this is natural for any two second order
elliptic operators.

Remark 10.7. The index of −∆ is zero follows from the flatness of Rn. However, this does
not hold for general manifolds, vector bundles. The index of elliptic operators is a topological
invariant.

Example 10.8. For a matrix A : Rn → Rm, indA = n−m.

Example 10.9. We take ℓ2(N), the following operator T : ℓ2 → ℓ2 given by

T (x1, · · · , xn, · · · ) = (0, x1, x2, · · · ).

We have N(T ) = {0} and N(T ∗) = span{(1, 0, 0, · · · )}. Therefore, ind(T ) = −1.

Proposition 10.10. For two Fredholm operators, ind(T ◦ S) = ind(T ) + ind(S).

Proof. See [1, Theorem 4.43]. □

Proposition 10.11. When X = Y , I is a Fredholm operator and hence by perturbing by a
compact operator K, we know I +K is Fredholm of index 0.

Proof. See [7, Appendix D Theorem 5], [1, Lemma 4.45]. □

10.2 Application of Fredholm theory - Solvability of second order elliptic oper-
ators

Theorem 10.12. Suppose P is a second order elliptic operators in divergence form, then
P, P ∗ : H1

0 → H−1 are Fredholm. In particular, N(P ∗) = span{v1, · · · , vk}, N(P ) =
span{u1, · · · , ul} for some finite integer l, k and the solutions exists if f ⊥ {v1, · · · vk}
(f ∈ R(P ) = N(P ∗)⊥), while the solutions are unique modulo u1, · · · , ul.

Proof. We start with our operator P : H1
0 → H−1. For the bilinear form

B(u, u) =

∫
aij∂iu∂ju+ bi∂iu+ cu2 dx,
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we want a coercive property B(u, u) ≥ C∥u∥2
H1

0
. To ensure that it holds, we choose λ ≫ 1

and change P to P + λ, then

Bλ(u, u) ≥ c∥∇u∥2L2 + λ∥u∥2L2 − C
(
∥u∥L2∥∂u∥L2 + ∥u∥2L2

)
.

If λ ≫ 1, then B(u, u) ≥ ∥u∥2
H1

0
. Hence, P + λ is invertible thanks to the Lax-Milgram

theorem, that is, the solution exists and is unique.
Moreover, u → λu,H1

0 7→ H−1 is a compact perturbation, so P is a Fredholm operator. □

10.3 Application of Fredholm theory - Eigenvalues and eigenfunctions

We say λ is an eigenvalue if ker(P − λ) ̸= {0}, that is, Pu = λu has nontrivial solutions.
Fredholm theory tells us any λ ∈ C has finite multiplicity. And λ is an eigenvalue for

P implies λ̄ is an eigenvalue for P ∗ since 0 = ind(P ) = ind(P − λ) = dimN(P − λ) −
dimN(P ∗ − λ̄).
Where are these eigenvalues? Note that we can change P to P + µ to examine the

eigenvalues, so that we can take µ sufficiently large so we have solvability. For Pu = λu,
we have u = λP−1u. By Rellich-Kondrachov, P−1 = K : L2 → L2 is compact since both
H1

0 ⊂ L2 and L2 → H−1 are compact. Then Ku = λ−1u implies λ−1 is an eigenvalue of a
compact operator.

A compact operator has finitely many eigenvalues or countably many with an accumulating
point at 0.

Theorem 10.13. P has countably many eigenvalues λn and limn→∞ |λn| = ∞.

For P = −∂ia
ij∂j + c, we know P is self-adjoint and hence eigenvalues are real with

orthogonal eigenfunctions corresponding to different eigenvalues. By normalizing it, it gives
an orthonormal basis.

For the coercive case,

λ∥u∥2L2 = ⟨Pu, u⟩ = B(u, u) ≥ C∥u∥2H1
0

So the eigenvalues can only go to the right. Even if our P is not coercive, we can still shift
by µ to make it coercive, so that the eigenvalues are also accumulating at +∞.
The picture in the non-symmetric case, there is still a barrier for eigenvalues on the left,

but the eigenvalues can be complex numbers. However, the first eigenvalue is still real, which
defines the barrier. We will study this in detail next time.

Example 10.14. In the case of Rn, one can also apply Fredholm theory. For −∆ + V ,
suppose V has sufficient decay at infinity, i.e. |V | ≲ R−α. Due to the decay property of
V , V : H1 → L2 is a compact operator even if we don’t have compactness theorems in the
setting of Rn. Indeed, this follows from the computation

∥V un − V um∥L2 ≲ ∥χ(un − um)∥L2(B2R) +R−αM,

where ∥un∥H1 ≤ M and χ is a bump function with χ ≡ 1 in BR such that χ(un − um) ∈
H1

0 (B2R). Therefore, for R sufficiently large, the second term is less than ε, the first term
tends to zero as n,m → ∞ thanks to the Rellich-Kondrachov theorem in the bounded
domain B2R. On the other hand, −∆ − λ is invertible when λ < 0 by applying Fourier
transform. Thus, −∆− λ+ V is a Fredholm operator.
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Eigenvalues and eigenfunctions (continued)

Date: February 21, 2023

For {
Pu = f, P = −∂ia

ij∂j + bj∂j + c,

u = 0 on ∂Ω

we study Pu = λu. By Fredholm theory, we find

(λk, uk)

with limk→∞ |λk| = ∞. For λk complex, we also have uk complex, then we can also change
bj, c to be complex but still need to keep the principal part real.

Proposition 11.1. If coefficients are smooth, then eigenfunctions are also smooth.

Proof. For uk ∈ L2 solves Puk = λkuk ∈ L2, by elliptic regularity (Theorem 9.3), we know
uk ∈ H2. By induction, uk ∈ H2l for any l. □

11.1 Visualization of eigenvalues in the self-adjoint and non-self-adjoint case

If P is self-adjoint, then the eigenvalues are real. We consider P = −∂ia
ij∂j + c if all

coefficients are real. If we consider the complex setting, a natural assumption is

P = −∂B
j a

jk∂B
k + c, ∂B

j = ∂j + iBj,

with Bj and c real. Then ∂B
j is skew-adjoint and hence P is still self-adjoint. An example

of ∂B
j is the electromagnetic potential. Going forward, we use the complex inner product∫

Ω

Pu · v̄ =

∫
Ω

u · Pv.

If P self-adjoint, then Pu = λu implies∫
Pu · ū =

∫
λu · ū = λ∥u∥2L2 ,

where the left hand side is equal to its adjoint, so its real, which implies the realness of λ.
When P is not self-adjoint, we can write

P = Pself + Pskew,

where Pself = P+P ∗

2
is a second-order elliptic operator while Pskew = P−P ∗

2
is a first order

operator. For any eigenfunction u with eigenvalue λ, we compute

Pu · ū = Pselfu · ū+ Pskewu · ū = Reλ∥u∥2L2 + iImλ∥u∥2L2 ,

where Reλ ≃ Pselfu · ū ≲ ∥u∥2H1 and

Imλ ≃ Pskewu · ū ≤ ∥u∥2L2 + ∥u∥L2∥∇u∥L2 ≤ ∥u∥H1∥u∥L2 .

Moreover, if Pself is coercive, then Reλ ≃ Pselfu · ū ≃ ∥u∥2H1 and this can be achieved by
changing the operator P to P + µ for some sufficiently large µ as what we did in the proof
of Theorem 10.12. By normalizing ∥u∥L2 = 1, we get

Reλ ≃ ∥u∥2H1 |Imλ| ≤ ∥u∥H1 .
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Therefore, |Imλ| ≤
√
Reλ+ µ for some sufficiently large µ which makes the approximation

Pselfu · ū ≃ ∥u∥2H1 work. So the spectrum picture in the non-self-adjoint case can be sketched
as follows.

11.2 Variational characterization of eigenvalues and eigenfunctions

11.2.1 Orthonormal eigenfunctions of a symmetric second order elliptic opera-
tor form an orthonormal basis

Proposition 11.2. Suppose P is symmetric, then the L2 normalized eigenfunctions form
an orthonormal basis for L2.

Proof. For P : H1
0 → H−1, we assume it is coercive (if not, we consider P + µ). Then this

implies the existence of P−1 : H−1 → H1
0 , which follows from the Lax-Milgram theorem.

Furthermore, we consider L2 eigenfunctions (This is natural thanks to Proposition 11.1) and
this restricts the consideration to the compact operator K := P−1 : L2 → L2.
Suppose {λj} → 0, uj are eigenvalues and orthonormal eigenfunctions for K. Set V :=

spanL2{uj}.
Since K is symmetric and compact, it follows from the spectrum theorem for compact

operators ([23, Theorem 5.6]) that {uj} form an orthonormal basis if R(K) is dense. Then it

suffices to show N(K) = N(K∗) = R(K)
⊥
is empty. This is trivial since K is invertible. □

11.2.2 Variational characterization of the principle value

Now we still stick to the symmetric case with real coefficients so that the preceding propo-
sition can be applied to obtain an orthonormal basis {uj} for L2 which consists of eigenfunc-
tions. For u ∈ L2, u =

∑
cjuj, then ∥u∥2L2 =

∑
c2j , where cj = u · uj. Then

Pu · u =
∑

cjuj ·
∑

λjcjuj =
∑

λjc
2
j

and ∥u∥2H1 ≃
∑

(λj + µ)c2j and ∥u∥2H2 ≃
∑

(λj + µ)2c2j and so on.

Proposition 11.3. For P symmetric with real coefficients, the first eigenvalue satisfies

λ0 = inf
u∈H1

0

B(u, u)

∥u∥2L2

= inf
u∈H1

0 ,∥u∥L2=1
B(u, u),

which is called the variational interpretation.
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Proof. We keep using the notations above and suppose P is coercive by adding a µ if needed.
Note that

B(u, u) = Pu · u =
∑

λjc
2
j ≥ λ0

∑
c2j = λ0∥u∥2L2

with equality if and only if Pu = λ0u.
Now it suffices to show that if u ∈ H1

0 with ∥u∥L2 = 1, then B(u, u) = λ0 implies
Pu = λ0u. (It is actually an equivalence relation but the other implication is trivial.) Recall
that u =

∑
cjuj with cj = u · uj. Since ∥u∥L2 = 1, we know

∑
j c

2
j = 1. Hence,∑

j

c2jλ0 = λ0 = B(u, u) =
∑
j

c2j⟨Puj, uj⟩ =
∑
j

c2jλj.

Therefore, cj = 0 if λj > λ0. Since λ0 has finite multiplicity, u =
∑

j cjuj is a finite sum and
it satisfies Pu = λ0u, which completes the proof. □

Remark 11.4. Moreover, if c0 = 0, then we can find λ1 by using

λ1 = inf
u∈H1

0 ,u⊥u0

B(u, u)

∥u∥2L2

.

This is kind of related to Lagrange multiplier.

By a side product of homework, ∂j|u| = sgn(u)∂ju almost everywhere for u ∈ H1. There-
fore, B(|u|, |u|) = B(u, u). If u is an eigenfunction, then |u| is an eigenfunction and hence
there exists a non-negative eigenfunction.

If there is another eigenfunction corresponding to λ0, one can make a linear combination
to let it have a zero, but this is impossible.

Proposition 11.5. With the same assumption as in the preceding proposition, λ0 is a simple
eigenvalue and u0 > 0.

Proof. We have already derived that u0 is non-negative. Thanks to the Harnack’s principle
which will be introduced in the remaining lectures, we know u0 is strictly positive unless u0 ≡
0. (One needs to use the full generality of Harnack’s principle when the operator has zeroth
order term. See [11, Chapter 8].) If there exists another eigenfunction ũ0 corresponding with
λ0 and linearly independent with u0, then we can arrange that |ũ0 − cu0| is not smooth for
some c. However, notice that ũ0−cu0 is still in H1

0 and an eigenfunction corresponding to λ0.
This contradicts with the fact that eigenfunctions are smooth thanks to Proposition 11.1. □

Remark 11.6. Note that all the preceding propositions in this subsection combines to form
an alternative proof of [7, Section 6.5.1, Theorem 2].

Theorem 11.7. If P is not formally self-adjoint, then there exists a first eigenvalue λ0 ∈ R
and simple with u0 > 0 and for any other λj, we have Reλj > λ0.

One can find a proof in [7, Section 6.5.2], which shows the variational principle in this
setting by using maximum principle. The idea is similar to the one presented above.
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Examples of eigenvalue problem

Date: February 23, 2023

Today we do a wrap-up for the eigenvalue problems by providing some examples.

12.1 Basic examples with Dirichlet or periodic boundary condition

Example 12.1. In 1 dimension, we consider P = −∂2
x in [0, L] with Dirichlet boundary

condition. The eigenfunctions and eigenvalues are

uk = sin

(
πk

L
x

)
, λk =

(
πk

L

)2

for k ≥ 1. If we choose Neumann boundary condition instead, then

uk = cos

(
πk

L
x

)
, λk =

(
πk

L

)2

for k ≥ 0. This means that we have an obstruction to solve the Neumann problems, which
are the constant functions, that is, we can only solve uniquely up to constants for Neumann
problems. Moreover, to ensure the existence of solutions, the source terms also need to be
orthogonal to constant functions thanks to Fredholm theory (Theorem 10.12).n

Example 12.2. If we choose a periodic boundary condition u(0) = u(L), ∂xu(0) = ∂xu(L),
then u0 = 1, λ0 = 0 is the first eigenvalue. One can view [0, 1] as S1 when the boundary
condition is periodic. We have

u±
k = e±i 2πk

L
x, λk =

(
2πk

L

)2

for k ≥ 1. Note that in this example, from the second eigenvalue, we start to have multi-
plicity.

Example 12.3. For the operator P = −∂xa∂x + c in I, with Dirichlet boundary condition,
it has a sequence of simple eigenvalues λ0 < λ1 < · · · < λk < · · · , which is studied by using
the Sturm-Liouville theory. We omit the proof though it is not hard. It tells us uk can only
change signs exactly k times, which is called Sturm oscillation theory.

Example 12.4. For P = −∆ with Dirichlet boundary condition in [0, π]× [0, π], we have

un,m = sinnx sinmy, n,m ≥ 1, λn,m = n2 +m2.

Note that we only need to consider the eigenfunctions in the form of separation of variables
since the operator −∆ can be written into the sum of two operators commuting with each
other, i.e. [∂2

x, ∂
2
y ] = 0. This implies that they share common basis with −∆ at least in a

heuristic level. (See [24, Problem 4.5] for a general statement of this fact.)

Example 12.5. For P = −∆ in [0, 2π] × [0, 2π] with periodic boundary condition in x, y,
then we have

un,m = einxeimy, n,m ∈ Z, λn,m = n2 +m2,

which is a problem on torus.
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12.2 Laplacian on n-sphere

12.2.1 Laplacian with boundary conditions, Bessel functions

Example 12.6. For D = {|x| ≤ 1} ⊂ R2, we consider P = −∆ with Dirichlet boundary
condition. By writing it in (r, θ), we have P = −∂2

r − 1
r
∂r − 1

r2
∂2
θ , where ∂2

θ is the Laplacian
on the circle. Note that [−∆,−∆θ] = 0, which implies they share common basis in view of
linear algebra of matrices. So it’s natural to consider eigenfunctions in the form of separation
of variables. Since ∂r, ∂θ commute, we know the eigenfunctions are a product of functions in
θ and functions in r, namely u(r, θ) = v(r)w(θ). From before, wk = eikθ. By plugging this
back into the equation, we know(

−∂2
r −

1

r
∂r +

k2

r2

)
v = λv,

which has variable coefficients and we need to solve it for each k. Unfortunately, there are
no elementary solutions to this so that we need to introduce some special functions to solve
this and what we obtain are called Bessel functions. Though it is impossible to write down
the exact formula, we can obtain its asymptotic behavior. Moreover, by scaling, we can solve
the equation for all λ given solutions when λ = 1, where λ is called the scaling parameter.
Suppose we fix k and find a solution for λ = 1, which behaves like the following graph.

By noticing that the Dirichlet boundary condition for the eigenvalue problem requires v(1) =
0, so the choice of λk = jk are the specific scaling parameter such that the scaling moves the
k-th zero to 1.

In the same spirit, we can solve the Neumann problem by looking for the specific scaling
parameter such that the scaling makes v′(1) = 0.

Example 12.7. For D = {|x| ≤ 1} ⊂ Rn, we consider

P = −∆ = −∂2
r −

n− 1

r
∂r −

1

r2
∆Sn−1

with Dirichlet boundary condition, where the ∆Sn−1 is the Laplace-Beltrami operator on Sn−1

as a Riemannian manifold. In the previous example, we knew the spectrum of the Laplacian
on the circle so that this reduction helps us to find the spectrum of −∆. However, we do
not know the eigenvalues of ∆Sn−1 yet. If we do a separation of variables u(r, ω) = v(r)w(ω)
with r ∈ [0, 1], ω ∈ Sn−1, then we have

−∆Sn−1w = µw,

(
−∂2

r −
n− 1

r
∂r +

µ

r2

)
v = λv.

We still get some Bessel functions if we knew w is an eigenfunction of −∆Sn−1 corresponding
to µ. Though we do not even write out the exact formula for −∆Sn−1 , we can obtain the
spectrum by a trick introduced in the following example.
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12.2.2 Spectrum of Laplacian on the sphere

Example 12.8. For the Laplacian P = −∆Sn−1 on Sn−1, if w is an eigenfunction, that is,
−∆w = µw, with w a function living on the sphere. The idea is to extend w to Rn by
homogeneity. For x = rω ∈ Rn, we can extend w to Rn by setting

u(x) = rσw(ω).

We want to choose σ so that u is harmonic. We compute

∆u = σ(σ − 1)rσ−2w(ω) + (n− 1)σrσ−2w(ω) + (−µ)rσ−2w(ω),

which conveniently tells us σ should satisfy µ = σ(σ+ n− 2), which is a quadratic equation
for σ. Since the growth of u at infinity is at most as a polynomial and is smooth away from
0, we know u ∈ S ′. Or to be more precise, one can apply [13, Theorem 7.1.18] directly
to know u ∈ S ′. By applying Fourier transform to −∆u = 0, we know u can only be a
harmonic polynomial, which implies that σ is a natural number. (We can also argue by the
fact that harmonic functions are smooth.)

This in turn gives the eigenvalues of the spherical Laplacian. Given a harmonic polynomial
u of degree σ ∈ N, u|Sn−1 is an eigenfunction of −∆Sn−1 corresponding to µ = σ(σ + n− 2).
Therefore, we proved Theorem 12.9.

Theorem 12.9. The spectrum of −∆Sn−1 is given by

σ(−∆Sn−1) = {σ(σ + n− 2) : σ ∈ N}.

Remark 12.10. Though the spectrum is characterized by only one parameter for any dimen-
sion, it has very high multiplicities, which corresponds to how many independent harmonic
polynomials you can find of degree σ and is roughly like O(σn−1).

Remark 12.11. See [12] for details of spherical harmonics and a decomposition of L2(Sn−1). In
specific, see [12, Definition, Page 67] for the reason why we can extend this by homogeneity.

Remark 12.12. Note that the discreteness of the spectrum follows from the compactness of
the sphere. We can prove Rellich-Kondrachov compactness theorem for the sphere, which
is identical to the one on a connected and bounded domain. This can be applied to derive
the compactness of inverse operators like what we did in the proof of Proposition 11.2 and
hence implies the discreteness of the spectrum.

12.2.3 Examples with non-compact domains

Now we consider an example with non-compact domains.

Example 12.13. If −∆u = λu in Rn, then by Fourier transform, (ξ2 − λ)û = 0. Thus,

suppû ⊂ {|ξ| =
√
λ},

which implies u cannot be in L2 since the sphere is of measure zero. Therefore, −∆ only
admits generalized eigenvalues λξ = ξ2 with generalized eigenfunctions uξ = eixξ.

Remark 12.14. Suppose

u = F−1 (g(θ)δS1) .
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For instance, in 2 dimensions, we write

u(x) =

∫
ω∈S1

g(ω)eix·ω =

∫
g(cos θ, sin θ)ei(x1 cos θ+x2 sin θ) dθ,

where ω = (cos θ, sin θ), which can be analyzed by the idea of stationary phase method by

viewing λ ∼ |x| and hence has
1√
|x|

decay. (In fact, due to the rotational symmetry, one

can assume x1 = |x| and x2 = 0.) Then it is natural to think of stationary phase.
In general dimensions, one can show that u is smooth with |x|−(n−1)/2 decay by using

a general stationary phase method. Recall that when we implement the stationary phase
method, we need to consider the number of nonzero eigenvalues of the Hessian, which cor-
responds to the non-vanishing curvature of the sphere. (If one represent the ball locally as
a graph of a function F , then the the number of nonzero eigenvalues of the Hessian, which
corresponds to the non-vanishing curvature of the sphere.) For Sn−1, we know it has exactly
n− 1 non-vanishing curvature, which gives |x|−(n−1)/2 decay. The point is, these generalized
eigenfunctions are almost L2 with a lack of 1/2 decay.
The conclusion for this example is σ(−∆) = R+, which is a continuous spectrum.

Remark 12.15. For some−∆+V with V periodic, you may see band structure in its spectrum,
that is, combination of continuous and discrete spectrum.

12.3 Hermite operator (Harmonic Oscillator)

For −∆ on Rn, the reason why we do not have compact theorems is due to the translations.
To kill the possibility of translation, we add a potential to it.

In Rn, we consider the Hermite operator −∆+ |x|2 := H, which corresponds to

B(u, u) =

∫
Pu · u =

∫
|∇u|2 + |xu|2 dx := ∥u∥2H1

H
.

12.3.1 Compactness embedding H1
H ⊂⊂ L2

Heuristically, given a function u ∈ H1
H , if we consider the enemy for Rellich-Kondrachov

produced by translation as in Section 2.5, then we would notice that when the transla-
tional parameter n is large enough, the x in the term |xu|2 kicks in, which makes the norm
sufficiently large. Therefore, we would expect that we have compact embeddings.

In fact, the same kind of proof by contradiction for Poincaré’s inequality in [7] applies.

Proposition 12.16. We have the compact embedding H1
H ⊂ L2.

Proof. Step 1 : H1
H continuously embeds into L2

First, we show H1
H ⊂ L2 is a continuous embedding. It suffices to show

∥u∥L2 ≤ C∥u∥H1
H
.

Suppose not by contradiction, then there exists {un} such that

∥un∥L2 ≥ n∥un∥H1
H
.

Without loss of generality, we assume ∥un∥L2 = 1. Since ∥∇un∥L2 ≤ 1/n, we know ∥un∥H1 ≤
2. Therefore, thanks to the Rellich-Kondrachov compactness theorem, un → u in L2(BR) by
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passing to a subsequence. Moreover, since R∥un∥L2(Bc
R) ≤ ∥x ·un∥L2 ≤ 1/n, we know un → 0

in L2(Bc
R). Here we abuse notation a little bit to denote u for the limit of un in L2(Rn).

Then we know that suppu ⊂ {0} since we can freely choose R > 0.
However, since ∥∇un∥L2 ≤ 1/n → 0, ∇un → 0 in L2 and hence in D′, which implies u = 0,

which contradicts the fact that ∥un∥L2 = 1 and un → u in L2. Thus, we complete the proof
of continuous embedding.

Step 2 : H1
H continuously embeds into H1

Furthermore, since the estimate ∥∇u∥L2 ≤ ∥u∥H1
H
is trivial, we know that H1

H ⊂ H1.

Step 3 : H1
H compactly embeds into L2

We just need to modify the proof of Rellich-Kondrachov theorem a little bit. Suppose
∥un∥H1

H
≤ C holds uniformly. In the proof of Theorem 3.1, we examine the last step. For

each δ > 0, we can choose R sufficiently large such that ∥un∥L2(Bc
R) ≤ δ which can be achieved

since

R∥un∥L2(Bc
R) ≤ ∥x · un∥L2(Bc

R) ≤ C.

Then we apply the arguments exactly like what we did in BR to obtain a ε such that
∥uε

n−un∥L2(BR) ≤ δ for all n. Moreover, we can select a subsequence {nj} and N sufficiently
large such that for j, k > N , ∥uε

nj
− uε

nk
∥L2(BR) ≤ δ. Therefore, for j, k > N ,

∥unj
− unk

∥L2(Rn) ≤ ∥unj
− unk

∥L2(BR) + ∥unj
− unk

∥L2(Bc
R)

≤∥uε
nj

− uε
nk
∥L2(BR) + ∥uε

nj
− unj

∥L2(BR) + ∥uε
nk

− unk
∥L2(BR) + ∥unj

∥L2(Bc
R) + ∥unk

∥L2(Bc
R) ≤ 5δ,

which completes the proof by a following diagonal argument on choosing subsequences. □

Remark 12.17. From the preceding proposition, H1
H is obviously a Hilbert space. Suppose

un is Cauchy in H1
H , then un → u in H1 by the continuous embedding. Moreover, xun is

Cauchy in L2 so it converges to some v ∈ L2. However, un → u in D′ and hence xun → xu
in D′, so v = xu ∈ L2, which completes the proof.

12.3.2 Spectrum of the operator H = −∆+ |x|2

Now we can apply the Lax-Milgram theorem or Riesz representation theorem to B(u, v)
to obtain the following result : for any f ∈ L2 = (L2)∗ ⊂ (H1

H)
∗, one can find a weak

solution u ∈ H1
H in the sense of B(u, u) = ⟨f, u⟩ and hence ∥u∥H1

H
≤ ∥f∥L2 , which gives the

boundedness of the inverse L2 → H1
H . Moreover, by the coercivity, there are no negative

eigenvalues for P .
On the other hand, the preceding proposition has an easy corollary that the spectrum of

H is discrete thanks to the compactness of the inverse

L2 → H1
H ⊂ L2.

Now we compute the spectrum of this operator. Since we have the decomposition

P = −∂2
1 + x2

1 − ∂2
2 + x2

2 − · · · ,

it suffices to consider this in 1 dimension for

P = −∂2
x + x2 = −(∂x − x)(∂x + x) + 1.
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We write P−1 = −(∂x−x)(∂x+x). If (∂x+x)u = 0, then we can explicitly solve u0 = e−x2/2,
since it is positive, we know this corresponds to the first eigenvalue. (See [7, Section 6.5.2]
for a similar result. Though we do not have Dirichlet boundary value, the x · u ∈ L2 still
gives some decay at infinity.) (Though we are not in the Dirichlet boundary condition, we
also require some decay at infinity.) We write

(∂x + x)P = P (∂x + x) + 2(∂x + x),

which means that (∂x + x)u corresponds to (λ− 2) and (∂x − x)u corresponds to (λ+ 2) if
u is an eigenfunction corresponding to λ. Therefore, eigenvalues are 1 + 2N∗ corresponding
to u0 = e−x2/2 and

uk = (∂x − x)ke−x2/2 = pk(x)e
−x2/2,

where pk’s are called the Hermite polynomials.

Remark 12.18. In general, suppose an operator P is of the form P = −∆+V (x). The discrete
spectrum depends on all the properties of V while the essential spectrum or continuous
spectrum, only depends on properties of V at infinity.
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Green functions and an intro to unique continuation

Date: February 28, 2023

13.1 Green functions : an analogue of fundamental solutions

We consider {
−∆u = f, in Ω,

u = 0 on ∂Ω.

Note that u(x) =
∫
K(x − y)f(y) dy, where K only depends on x − y thanks to the

translation invariance in Rn. However, when the setting is a bounded domain, we would only
expect to have a solution to f = δy for any fixed y ∈ Ω of the form K = Ky(x) = G(x, y). If
we had something like this, then we can find

u(x) =

∫
G(x, y)f(y) dy.

Our first guess would be G0(x, y) = K(x− y), then ∆G0 = δx. However, G0|∂Ω ̸= 0, so we
need to introduce an error

G(x, y) = G0(x, y) +R(x, y)

to force it to satisfy the boundary condition. For y fixed,{
−∆xR(x, y) = 0,

R(x, y) = −G0(x, y), x ∈ ∂Ω.

Solving this, we know that R(·, y) is harmonic and hence smooth as a function of x, which
implies G0(·, y) is smooth at the boundary thanks to the boundary condition R(x, y) =
−G0(x, y). Therefore, the G given here allows us to solve the boundary value problem in a
bounded domain.

Definition 13.1. We say G is the Green function for our boundary value problem.

Proposition 13.2. The Green function satisfies the symmetric condition G(x, y) = G(y, x).

Remark 13.3. This symmetry holds for all the self-adjoint operators with Dirichlet boundary
condition.

Proof. We denote −∆D to emphasize the boundary condition is Dirichlet. Thanks to the
Dirichlet boundary condition, we compute∫

Ω

−∆Du · v =

∫
Ω

u · (−∆Dv)

if we set

u(x) = G(x, y1), v(x) = G(x, y2), y1, y2 ∈ Ω.

Note that this implies δy1(v) = δy2(u), which completes the proof. □
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The symmetry property implies

G(x, y) = K(x− y) +R(x, y),

where R is harmonic both in x and y and also symmetric. There is one subtlety, as y ∈ Ω
approaches the boundary, the smoothness is not uniform because the boundary condition
becomes more and more singular as one pushes y to the boundary. It is useful to work out
some simple examples.

Example 13.4. Set Ω = H to be the half plane. Then G(x, y) = K(x − y) − R(x, y). To
find R(x, y), we reflect y to y∗ about ∂H. By noticing |x − y∗| = |x − y|, we can choose
R(x, y) = K(x− y∗), which is smooth in H since the singularity is out of our domain.

Example 13.5. Set Ω = B to be the unit ball. Now we look for conformal symmetries, by
which we mean −∆ 7→ −f(x) ·∆, which works well on harmonic functions. For conformal
symmetries, distances are multiplied by f(x) but it is angle preserving. A good conformal
symmetry for the ball is the inversion, that is, |y∗| · |y| = 1.
We compare |x− y| with |x− y∗| for x ∈ ∂B by writing

|x− y∗|2 =
∣∣∣∣x− y

|y|2

∣∣∣∣2 = 1 +
1

|y|2
− 2

x · y
|y|2

=
1

|y|2
|x− y|2.

Therefore,

G(x, y) =

{
K(x− y)− |y|−(n−2)K(x− y∗), n ≥ 3,

K(x− y)−K(x− y∗) + ln |y|, n = 2
= K(x− y)−K(|y|(x− y∗)).

If the boundary condition is nonzero, say{
−∆u = 0, in Ω,

u = g on ∂Ω.

We extend u by 0 outside Ω and denote it by ū. For ū, when you differentiate once,
you see the jump at the boundary and hence get a dirac mass at the boundary. When you
differentiate the second time, you also see the jump of normal derivative, and therefore you
get

−∆ū = u|∂Ω · δ′∂Ω +
∂u

∂ν
|∂Ω · δ∂Ω,

where one can realizing this heuristic idea by acting on ϕ ∈ D :

⟨∆(ū · 1Ω), ϕ⟩ =
∫
Ω

u∆ϕ dx.

13.2 Introduction to potential theory

If we knew both u and ∂u
∂ν

on ∂Ω, then

ū(x) =

∫
∂Ω

u(y)
∂

∂νy
K(x, y) dy −

∫
∂Ω

∂u

∂νy
K(x, y) dy.
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To justify this, we just need to integrate by parts to compute∫
−∆u(y) ·K(x− y) dy.

Unfortunately, given Dirichlet boundary condition or Neumann boundary condition, we can-
not know u and ∂u

∂ν
on ∂Ω at the same time. If we try to compute the contribution

u0(x) = −
∫
∂Ω

g(y) · ∂

∂ν
K(x, y) dy,

then one would notice that we cannot determine the boundary value. Instead, we can know
the jump of u0 at the boundary is [u0]|∂Ω = g provided g ∈ C(∂Ω). One can find this result
stated as a corollary of [9, Theorem 3.22], which says that

lim
x→∂Ω,x∈Ω

∫
∂Ω

g(y) · ∂

∂ν
K(x, y) dy =

1

2
g(x0) + u0(x0),

lim
x→∂Ω,x∈Ωc

∫
∂Ω

g(y) · ∂

∂ν
K(x, y) dy = −1

2
g(x0) + u0(x0).

The operator − ∂
∂ν
K : g 7→ u0 is called the double layer potential with moment g. The

phenomenon that approaching from inside of Ω and outside of Ω have different limits is in
the same spirit of homogeneous distributions of −1, 1

x+i0
and 1

x−i0
, which we introduced last

semester using approximation from upper and lower half plane.
Also, one can look at

h 7→
∫

h(y)K(x, y) dy,

which is called the single layer potential with moment h.
Since dim ∂Ω = n− 1, K(x, y) = |x− y|2−n, we know ∂

∂ν
K(x, y) is an operator of order 0

and K(x, y) is an operator of order −1.
Single and double layer potentials, which are good Fredholm operators and leads to the

solvability results of the boundary value problems. These operators can be studied by the
Calderon-Zygmund operator theory.

13.3 Introduction to unique continuation, Cauchy-Kowalevski theorem

A question is :
Can the solution to −∆u = 0 vanish in an open set ?

The answer is no because u is analytic. This is a simple example of unique continuation.
In fact, the proof only requires that u and all its derivatives vanish at a single point. The
property is worth having a name.

Definition 13.6. If the solution u satisfies the following property :
If u vanishes of infinite order at x0, then u ≡ 0.

then we say it satisfies the strong unique continuation.

Example 13.7. Given Γ ⊂ ∂Ω, we consider{
−∆u = 0 in Ω,

u = 0 in Γ ⊊ ∂Ω,
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with boundary value prescribed only on Γ, the solution is not unique since we can extend
the boundary condition to the whole boundary in various ways and solve them to obtain
different solutions by existence.

Example 13.8. If we put an additional condition,{
−∆u = 0 in Ω,

u = 0 in Γ ⊂ ∂Ω, ∂u
∂ν

= 0 in Γ ⊂ ∂Ω,

where Γ ⊂ ∂Ω is open. By making an extension by 0 to ū, we have −∆ū = 0 around Γ
thanks to the following observation. By flattening the boundary, we notice

u = 0, (∂′)αu = 0, ∂nu = 0.

Then thanks to the equation, we know all the derivatives at the boundary are zero, which
means that ū vanishes on Γ of infinite order. One can view this as another unique continu-
ation property.

This example motivates the study of the strategy to find analytic solutions :
−∆u = 0,

u = f on Γ,
∂u
∂ν

= g on Γ,

where Γ = ∂Ω is smooth.
Suppose f, g are analytic, we can solve the problem by computing all derivatives of u on Γ

using the same idea as in the preceding example, which is the Cauchy–Kowalevski theorem.
The same computation applies for the full Taylor series. If the Taylor series is convergent,
then it is a local solution.

We try to solve

P (x,D) =
∑
|α|≤K

cα(x)D
α,

what we care about Γ is the normal direction with normal vector N . We look at the principal
symbol

P0(x, ξ) =
∑
|α|=K

cα(x)ξ
α.

Definition 13.9. The boundary Γ is non-characteristic for P if P0(x,N) ̸= 0, that is, the
principal symbol does not vanish along the normal direction.

This non-characteristic property will take place of the condition “we can compute the
full Taylor series” in the previous baby version of Cauchy–Kowalevski theorem. This helps
to determine some derivatives by using the equation itself as what we did in the preceding
example.

Theorem 13.10 (Cauchy–Kowalevski). If ∂Ω = Γ is non-characteristic for P , then we have
local solvability.

Next time, we want to move away from the analytic class.
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Unique continuation property and Carleman estimates

Date: March 2, 2023

14.1 Unique continuation without analyticity condition, Carleman estimates

We state our main theorem today in a general manner, but we only prove for −∆.

Theorem 14.1. Let P = −∂ia
ij∂j + bj∂j + c, where aij is Lipschitz and bj, c ∈ L∞. If

Pu = 0, and u = 0 in an open set, then u ≡ 0.

As a remark, note that the regularity assumed here is stronger than the one in the existence
theorem.

For simplicity, we only prove this when aij = I to present the main idea. Without loss
of generality, we assume u = 0 in B(0, 1). By making an inversion x 7→ x∗ = x

|x|2 , we know

that P has a similar form in the sense that

−∆ 7→ −c(x)∆,

where the constant can be divided from both sides. Then what we need to do is to push the
boundary of the unit ball inward.

We consider a small ball centered at a boundary point x0 with a cutoff χ selecting this
ball. Then

−∆v = −∆(χu) = χf + 2∇χ · ∇u+∆χ · u,
where we just think of the equation as a perturbative way with f = bj∂ju+ cu . Therefore,

∥v∥H2 = ∥χu∥H2 ≲ ∥χf + 2∇χ · ∇u+∆χ · u∥L2 ≲ ∥χf∥L2 + ∥u∥H1(supp∇χ)

thanks to the elliptic regularity. Since f = bj∂ju+cu, we can absorb ∥χf∥L2 to the left hand
side by selecting the ball sufficiently small.

However, the last term is not small and difficult to manage. The very nice idea addresses
this problem is that we do not weight thing properly in the preceding estimate. We want to
add some weights which is large where we want to show u is zero (near x0) but is small in
supp∇χ. The idea is to add a weight which is large near x0 and small in the shadow region.

To realize this, we need to choose one parameter family of weights. The idea is due to
Carleman in 1930s, then Aronszajn generalized to higher dimensions in 1950s. See [15] for
a brief history of the results on Carleman estimates. We choose an exponential weight eτϕ,
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where τ is a large parameter. Moreover, we need the constant uniform in τ . First, we show
Carleman estimates and then use this to prove unique continuation.

Theorem 14.2 (Carleman estimates). Suppose −∆v = f and

τ
3
2∥eτϕv∥L2 + τ

1
2∥eτϕ∇v∥L2 ≤ C∥eτϕf∥L2 ,

where the constant C is uniform in τ .

Remark 14.3. If you put H2 on the left hand side, then the constant will blow up as τ → ∞.
Heuristically, one would expect τ−

1
2 as the coefficients for ∥eτϕ∇2v∥L2 .

Proof of unique continuation property assuming Carleman estimates. Assuming this first, we
show how to invoke Carleman estimates to prove unique continuation. For v = χu, we write

−∆u = B∇u+ cu, −∆v = B∇v + cv + 2∇u · ∇χ+ u∆χ−B(∇χ)u,

where the last three terms are supported in the shadow region. By applying Carleman
estimates with v = χu, we obtain

τ
3
2∥eτϕv∥L2 + τ

1
2∥eτϕ∇v∥L2 ≲ ∥eτϕ∇v∥L2 + ∥eτϕv∥L2 + ∥eτϕu∥H1(supp∇χ),

where we use B, c ∈ L∞. Moreover, we use the fact ϕ ≤ 0 in supp∇χ to see

τ
3
2∥eτϕv∥L2 + τ

1
2∥eτϕ∇v∥L2 ≲ ∥u∥H1(supp∇χ) ≤ C∥u∥H1 .

Now, let τ → ∞, we know v = 0,∇v = 0 in {ϕ > 0}. Otherwise, the left hand side
would tend to infinity, which violates the boundedness from above by C∥u∥H1 . Therefore,
by repeating this near each point on the boundary, we shrink the ball a little bit, which
proves Theorem 14.1. □

14.2 Proof of Carleman estimate (Theorem 14.2)

Now we want to prove Carleman estimates, which is sort of one level up from elliptic
regularity. We want to choose good weights ϕ to realize the picture above and obtain the
estimates in Theorem 14.2. Note that not all weights would make the Carleman estimates to
be true after putting it into the inequality. We need to determine what functions ϕ are good
weights in Carleman estimates. Note that we want the estimates to be uniform with respect
to the exponential weight, so when we prove the estimate, we want to take the weight out
of the picture. Hence, we do a substitution w = eτϕv. If −∆v = f , then we start to derive
the equation for w by writing

−eτϕ∆v = eτϕf.

We compute

eτϕ∂jv = ∂j
(
eτϕv

)
− τ∂jϕ(e

τϕv) = (∂j − τϕj)(e
τϕv)

and

−
∑
j

(∂j − τϕj)
2w = eτϕf := g.

For this, we need to prove the estimate

τ
3
2∥w∥L2 + τ

1
2∥∇w∥L2 ≲ ∥g∥L2 .
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Heuristically, if ϕj ∼ 1, then we want to think of τ having the same strength as a derivative
when we consider the symbol, that is, ξ is comparable to τ in the following. The reason why
we want this is the constant in the Carleman estimates should be independent of τ . Then
the estimate we want above looks like an elliptic estimate. Naturally, we want to determine
whether the operator

Pτ := −
∑
j

(∂j − τϕj)
2

is elliptic. The symbol is given by

Pτ (x, ξ) = −
∑
j

(iξj − τϕj)
2 = |ξ|2 − τ 2|∇ϕ|2 + 2iτϕjξj,

where the last term is imaginary. If Pτ (x, ξ) = 0, then ξ ⊥ ∇ϕ and |ξ|2 = τ 2|∇ϕ|2. The first
condition means ξ lives on a plane which is perpendicular to ∇ϕ and the second condition
means that ξ lives on a sphere. However, the intersection of a sphere with a plane passing
the origin is nontrivial. Thus, Pτ is not elliptic.
The second nice property to examine is the symmetry of the operator. Unfortunately, Pτ

is not symmetric since the symbol is not real. We split the operator into two parts,

Pτ = P s
τ + P a

τ ,

where one is the symmetric part P s
τ = −∆ − τ 2|∇ϕ|2, the other is the anti-symmetric part

P a
τ = τ(∂jϕj + ϕj∂j). By quadratic formula and the symmetry , we compute

∥g∥2L2 = ∥P s
τw+P a

τ w∥2L2 = ∥P s
τw∥2L2+∥P a

τ w∥2L2+2Re⟨P a
τ w,P

s
τw⟩ = ∥P s

τw∥2L2+∥P a
τ w∥2L2+Re⟨[P s

τ , P
a
τ ]w,w⟩

Note that [P s
τ , P

a
τ ] is second order, so we examine whether this is elliptic or not by computing

[−∆− τ 2|∇ϕ|2, τ(∂jϕj + ϕj∂j)]. We write

[∆, ∂jϕj+ϕj∂j]u = ∂2
k(∂j(ϕju))−∂j(ϕj∂

2
ku)+∂2

k(ϕj∂ju)−ϕj∂j∂
2
ku = 4ϕjk∂k∂ju+6ϕjjk∂ku+ϕjjkku

and hence

[−∆−τ 2|∇ϕ|2, τ(∂jϕj+ϕj∂j)] = −τ [∆+τ 2|∇ϕ|2, (∂jϕj+ϕj∂j)] = τ
(
−4∂kϕjk∂j + 4τ 2ϕjϕkjϕk

)
+l.o.t.

Therefore, the principal symbol is

4τϕjkξkξj + 4τ 3ϕjϕjkϕk,

which is elliptic if ϕ is strictly convex (D2ϕ > 0) with τ , ξ viewed as the same strength
keeping in mind. Therefore, we need to flip the concavity to convexity for the curve of level
set as shown in the picture below.
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Therefore, the commutator C satisfies

⟨Cw,w⟩ ≃ τ∥∇w∥2L2 + τ 3∥w∥2L2 .

Definition 14.4. We say ϕ is strong pseudo-convex with respect to P if

[P s
τ , P

a
τ ] > 0

on Pτ = 0 (RePτ (x, ξ) = ImPτ (x, ξ) = 0).

Remark 14.5. It seems like this definition still needs to be checked by computing the commu-
tator. However, from the perspective of microlocal analysis, one can also paraphrase the con-
dition [P s

τ , P
a
τ ] > 0 by doing an algebraic computation of the Poisson bracket {P s

τ (x, ξ), P
a
τ (x, ξ)}.

See the unfinished book [22] for a full account of unique continuation.
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Strong unique continuation principle

Date: March 7, 2023

We study −∆u = V u with V ∈ L∞.

Theorem 15.1 (Strong unique continuation property). If u vanishes at x0 of infinite order,
then u ≡ 0.

Note that we only have the regularity V ∈ L∞ here, so we need to make sense of “vanishing
of infinite order” first. If u is analytic and vanishes of infinite order, then ∥u∥L2(B(x0,r)) ≤
CNr

N for any N as r → 0. This motivates the following definition.

Definition 15.2. We say u vanishes of infinite order at x0 if for any N ,

∥u∥L2(B(x0,r)) ≤ CNr
N

as r → 0.

Our objective is to find a good Carleman estimate for ∆. By translation, we assume
without loss of generality that u(0) = 0. Then we need to push the zero set at 0 outward. If
we try to write down a Carleman estimate of the form :

∥eτϕu∥ ≤ ∥eτϕ∆u∥,

then we need to choose ϕ to blow up at 0 and decrease as it moves out. So this looks like
the picture last time.

We also know that we need convexity of ϕ.

The idea is to choose ϕ = − ln r = − ln |x|. However, thanks to scaling property, we put
|x|−τ−2 in front of u as the weight instead of |x|−τ .

Proposition 15.3 (Carleman estimates). Suppose u satisfies −∆u = V u with V ∈ L∞ and
u vanishes of infinite order at 0, the following Carleman estimate

∥|x|−τ−2u∥ ≤ ∥|x|−τ∆u∥L2

holds uniformly for τ away from half integers and integers.

Remark 15.4. One can also add a gradient term to the left hand side as the Carleman
estimates discussed last time.
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Remark 15.5. We can see why we need the condition that u vanishes of infinite order at 0 for
Proposition 15.3 to hold from the example of harmonic functions. If we choose a harmonic
function which is 1 at 0 and cut it off away from some large ball, then the left hand side
would be small enough with the left hand side blows up for τ big enough.

15.1 Carleman estimates implies strong unique continuation property

Write v = χu with χ = 1 in B(0, R) and χ = 0 outside B(0, 2R). For v,

−∆v = V v + f,

where f is the truncation error, which lives in the transition region. Then we compute

∥|x|−τ−2v∥L2 ≲ ∥|x|−τ∆v∥L2 ≲ ∥|x|−τV v∥L2 + ∥|x|−τf∥L2 ,

where the first term on the right can be absorbed into the left when R small since V ∈ L∞

implies |V | ≪ |x|−2 near 0, i.e. |V | ≤ δ|x|−2 for δ small enough. In fact, if we weaken the
condition on V so that we only have |V | ≤ C|x|−2 for some large constant C, then we cannot
derive the same conclusion. This phenomenon here is also related to spherical harmonics
and Laplacian on the circle. Moreover, ∥|x|−τf∥L2 ≲ R−τ by the support property.

Therefore,

∥|x|−τ−2u∥L2(BR) ≤ ∥|x|−τ−2v∥L2 ≲ R−τ ,

which implies ∥∥|x|−2(R/|x|)τu
∥∥
L2(BR)

≲ 1.

When |x| < R and τ → ∞, the left hand side blows up unless u ≡ 0 in |x| ≤ R, which
completes the proof.

In fact, the proof above is not rigorous and we do not take advantage of the vanishing of
infinite order. When absorbing the term ∥|x|−τV v∥L2 to the left hand side, we need to make
sure that it is indeed finite, which requires the property of vanishing to infinite order. We
prove that ∥|x|−τu∥L2(BR) < ∞. We use dyadic decomposition and consider

∥|x|−τu∥L2(2j−1<|x|<2j) ≤ ∥u∥L2(2j−1<|x|<2j)2
−jτ ≤ CN2

j(N−τ).

By choosing N > τ + 1, we know

∥|x|−τu∥L2(|x|<2J ) ≤
J∑

j=−∞

CN2
j(N−τ) ≲ 2J(N−τ),

which is finite.

15.2 Proof of the Carleman estimate (Proposition 15.3)

We write P = −∆, Pτ = −eτϕPe−τϕ and Pτ = P s
τ + P a

τ . What we want is [P s
τ , P

a
τ ] > 0.

If we choose ϕ = − ln |x| and mimic the computations last time, we would see [P s
τ , P

a
τ ] = 0,

which means that the weight |x|−τ is degenerate pseudo-convex.
This time, we set Pτ = |x|−τ∆|x|τ+2 with w = |x|−τ−2u, then we prove

∥w∥L2 ≤ ∥Pτw∥L2 .
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By switching to the polar coordinates x = rΘ, we just discard the Jacobian since they are
the same at both sides, we have

∥w∥L2(R+×Sn−1) ≤ ∥Pτw∥L2(R+×Sn−1).

Recall ∆ = ∂2
r +

n−1
r
∂r +

1
r2
∆S, so

Pτ =r−τ

(
∂2
r +

n− 1

r
∂r +

1

r2
∆S

)
rτ+2 = r−τ

(
∂2
rr

2 +
n− 1

r
∂rr

2 +∆S

)
rτ

=r−τ (r∂r · r∂r + 3r∂r + 2 + (n− 1)r∂r + 2(n− 1) + ∆S) r
τ .

To make ∂s = r∂r, we need to have dr = esds, that is, setting r = es. Note that the
substitution r = es will turn the scaling invariance to a translation invariance and hence the
operator would be turned into a constant coefficients operator. In fact, we can predict from
this invariance heuristic before we did the computation. Then we have

Pτ = e−τs(∂2
s + (n+ 2)∂s + 2n+∆S)e

τs.

Since e−τs∂se
τs = ∂s + τ , we have

Pτ = (∂s + τ)2 + (n+ 2)(∂s + τ) + 2n+∆S.

To prove ∥w∥L2 ≤ ∥Pτw∥L2 , we have Pτ (ξ, µ) = −ξ2+τ 2+(n+2)τ+2n−µ+i(2τ+n+2)ξ,
where ξ corresponds to s and µ is the eigenvalue of ∆S. We want

|Pτ (ξ, µ)| ≥ C

uniformly in ξ, µ. Suppose by contradiction that Pτ (ξ, τ) = 0, then

(2τ + n+ 2)ξ = 0 and − ξ2 + τ 2 + (n+ 2)τ + 2n− µ.

If τ cannot be half integers or integers, then τ ̸= −n+2
2

and hence ξ = 0. Furthermore,
τ 2 + (n+2)τ +2n−µ = 0. From the previous lecture, we know µ = σ(σ+ n− 2) for σ ∈ Z,
then

τ 2 + (n+ 2)τ + 2n = σ(σ + n− 2),

which implies τ = σ−2. Therefore, if τ cannot be half integers or integers, then |Pτ (ξ, µ)| > 0.
The final step is to show that when

|τ − σ′| ≥ C, ∀σ′ ∈ Z and τ ̸= −n+ 2

2
,

we know

|Pτ (ξ, µ)| ≥ C̃

thanks to the coercivity at infinity in τ .

Remark 15.6. In the sketch of proof above, we only consider the change of operator itself.
If we also take the change of Jacobian into account, then one would notice that the only
difference is that we may end up with another term ecs for some constant c in the estimates.
However, this would not affect the conclusion.
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Before we end the lecture, we make a comment on why we need to avoid τ half-integers.
We consider homogeneous harmonic polynomials u = pk(x) of order k as our starting point
to construct counterexamples. Since pk is not of compact support, we take uε,R = χε,Rpk(x),
where χε,R = χ1

ε(x) · χ2
R(x) and

χ1
ε(x) = χ1(x/ε), χ2

R(x) = χ2(x/R), χ1(y) = 1− χ2(y)

and χ2 ∈ D is 1 near 0 and 0 outside a large region, which is between 0 and 1 in the transition
region.

If u is a homogeneous harmonic polynomial, the left hand side is approximately∫
||x|−τ−2uε,R|2 dx ≃

∫ R

ε

r−2(τ+2) · r2krn−1 dr

while the right hand side is∫
||x|−τ∆uε,R|2 dx ≃

∫ 2ε

ε

r−2τ · (r2(k−1)|(χ1
ε)

′|2 + r2k|(χ1
ε)

′′|2)rn−1 dr

+

∫ 2R

R

r−2τ · (r2(k−1)|(χ2
R)

′|2 + r2k|(χ2
R)

′′|2)rn−1 dr

≃
∫ 2ε

ε

r−2τ · r2(k−2)rn−1 dr +

∫ 2R

R

r−2τ · r2(k−2)rn−1 dr,

where the LHS and RHS have the same power of r in the integrand. Therefore, if −2(τ +
2)+2k+(n− 1) = −1, which is τ = −2+ k+ n

2
, then the left hand side is like log(R/ε) and

the right hand side only has contribution from the intermediate region, which is bounded
(by C ln 2), which violates the Carleman estimates in Proposition 15.3. Note that for any
other τ except τ = −2+ k+ n

2
, this is not a counterexample anymore and this is an explicit

example which tells us why we need to avoid half integers.

In fact, we do not need τ to be positive in the computation above. If we choose τ → −∞
away from half integers and integers, then the weight blows up at infinity instead of at 0,
which leads us to the unique continuation from infinity.

Theorem 15.7 (Unique continuation from ∞). Suppose −∆u = V u with |V | ≪ |x|−2 near
∞. If u vanishes of infinite order at ∞, then u ≡ 0.

Since an inversion can turn the Laplacian to a multiple of Laplacian, this can be proved
by making an inversion and turn the case at infinity to the case at zero.



65

Hopf’s lemma, Harnack principle and regularity for Perron’s method

Date: March 9, 2023

Note that the solutions provided by Perron’s method are just bounded, but one can require
their regularity. The method applies to both linear and nonlinear elliptic equations.

16.1 Hopf’s lemma for −∆u = 0

First, recall the maximum principle we introduced before for certain class of second order
elliptic operators.

Theorem 16.1 (Weak maximum principle). Suppose Pu ≤ 0, then maxΩ u = max∂Ω u.

Theorem 16.2 (Strong maximum principle). Suppose the maximum of u to Pu = 0 is
attained inside, then u ≡ C.

We consider −∆u = 0 in Ω. Suppose x0 ∈ ∂Ω is a maximum point of u and that u does
not vanish in the whole region Ω. Since x0 is a maximum point, then T · ∇u(x0) = 0 for
T tangent to ∂Ω at x0. (This requires ∂Ω ∈ C1.) For N outer normal, N · ∇u(x0) ≥ 0.
By Hopf’s lemma, ∂u

∂ν
(x0) > 0, that is, the inequality is strict. (To apply this, a sufficient

condition is C2. Instead, we only need one sided C2, which is the so-called ball condition,
which is depicted below.)

Proposition 16.3 (Hopf’s lemma). Suppose u solves −∆u = 0, then there is some x0 ∈ ∂Ω
such that u(x0) = M = maxu and u(x) < M in Ω. Suppose B(x1, r) ⊂ Ω is a ball centered
at x1 tangent with ∂Ω at x0. Then

∂u
∂ν
(x0) > 0.

Proof. Since B(x1, r/2) ⊂ B(x1, r) ⊂ Ω, u(x) ≤ M − δ for some δ > 0 for all x ∈ B(x1, r/2).
In the annulus, −∆u = 0. We lift u inside the annulus

ũ = u+ ε(K(x− x1)−K(r)),

where K is the fundamental solution. Note that ũ is still harmonic. On the outer boundary
∂B(x1, r), ũ = u ≤ M . On the inner boundary ∂B(x1, r/2), ũ ≤ M−δ+ε(K(r/2)−K(r)) ≤
M for ε small enough. Now we apply the maximum principle in the region B(x1, r) \
B(x1, r/2) := A, then we know maxA ũ ≤ max∂A ũ = M . Therefore,

∂ũ

∂ν
(x0) ≥ 0

and hence
∂u

∂ν
(x0) ≥ −ε

∂K

∂ν
(x0) > 0.

□

Remark 16.4. For general second elliptic operator P with c ≡ 0, one can also prove Hopf’s
lemma. Moreover, Hopf’s lemma leads to strong maximum principle. See [7, Section 6.4.2].
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16.2 Harnack’s inequality

Harnack’s inequality is a type of estimates similar to the maximum principle. Given
P = −aij∂i∂j + bi∂i + c with aij ∈ L∞, bounded and uniform elliptic. Suppose Pu = 0 in Ω,
then the maximum principle holds. In addition, we assume u > 0 in Ω and u ∈ C2(Ω). (u
may blow up near the boundary.) Suppose K ⊂ Ω, then Harnack’s inequality allows us to
compare the minimum and maximum of u in K :

min
K

u ≤ max
K

u ≤ Cmin
K

u.

where C only depends on K,Ω, P .

Theorem 16.5 (Harnack’s inequality). Assume aij ∈ L∞ uniformly elliptic, bj ∈ L∞, then
there exists C = C(K,Ω, a, b) such that maxK u ≤ CminK u for all u ≥ 0 in Ω.

Remark 16.6. Note that if u vanishes at one point, then u vanish in Ω in this case. It looks
like the strong unique continuation, but in this case, we require u ≥ 0.

Remark 16.7. If aij, bj, c are bounded measurable, see [11, Chapter 8] for a detailed proof.
If aij is barely C2 and bj, c ≡ 0, see [7, Section 6.4] for a proof. We only give a proof for
P = −∆ using Green’s functions.

Proof. Recall that the Green’s function G(x, y) in Ω which satisfies PG(x, y) = δy, G(x, y) =
0 if y ∈ ∂Ω, helps us to solve Pu = f, u|∂Ω = 0 by u(x) =

∫
G(x, y)f(y) dy. By Green’s

theorem, ∫
Ω

Pu · v =

∫
Ω

u · Pv −
∫
∂Ω

u
∂v

∂ν
− v

∂u

∂ν
dσ.

Choosing v = G(x, y), then u(y) =
∫
G(y, x)f(x) dx −

∫
∂Ω

u(y) ∂G
∂νy

(x, y) dσ. Therefore, this

tells us the Green’s function can also give a representation of the solution when f = 0, g
nontrivial {

Pu = 0 in Ω,

u = g on ∂Ω,

by u(x) = −
∫
∂Ω

g(y) ∂G
∂νy

(x, y) dσ(y).

For x ∈ Ω fixed, G(x, y) (solves −∆yG(x, y) = δx(y)) satisfies −∆yG(x, y) = 0 when
y ∈ ∂Ω. Thanks to the maximum principle, ∂G

∂νy
(x, y) ≤ 0 for y ∈ ∂Ω and by Hopf’s lemma,

we know ∂G
∂νy

(x, y0) < 0 for some y0 ∈ ∂Ω. Therefore, u(x) > 0 if g is positive on the

boundary. Note that the inequality ∂G
∂νy

(x, y) < 0 is only uniform (in x) when x is away from

the boundary. (This is why we want to consider in a compact set K.)
SinceK is compact, then it suffices to prove the Harnack’s inequality for a ball. For x ∈ B,

apply Green’s formula in 2B, then

u(x) =

∫
∂(2B)

g(y) ·
(
− ∂

∂ν
G(x, y)

)
dσ.

As long as x ∈ B, − ∂
∂ν
G(x, y) is strictly positive by Hopf’s lemma and hence

C1 ≤ − ∂

∂ν
G(x, y) ≤ C2
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uniformly for all x ∈ B. Therefore,

C1

∫
∂(2B)

g(y) dσ ≤ u(x) ≤ C2

∫
∂(2B)

g(y) dσ.

In particular,

max
B

u ≤ C2

C1

min
B

u.

□

Remark 16.8. What matters here is the size of the Green’s function. But one would not see
this phenomenon if one reads the proof in [7].

Remark 16.9. Note that the constant C dependes on the scale diamΩ. One can use a scaling
argument to see how the constant changes and it is better in small scales.

16.3 Application of Harnack’s inequality - Improving regularity from L∞ to Cε

The important case for Harnack’s inequality is the case when the coefficients are bounded
and measurable. This is the key ingredient for upgrading the regularity from continuous
solutions to the ones with higher regularity to nonlinear elliptic equations.

The hardest step is the first step to improve u ∈ L∞ to u ∈ Cε. Then the steps are
improving to u ∈ Lip1 and then u ∈ C1,ε. Note that we cannot obtain u ∈ C2 in general.
The Harnack’s inequality can help us to acheive the first step.

Proposition 16.10. Suppose Harnack’s inequality holds for P , then u ∈ L∞ implies u ∈ Cε

for some small ε.

Remark 16.11. We do not require u to be positive in the assumptions.

Proof. We want to show

|u(x)− u(y)| ≤ Crε, |x− y| ≤ r.

Since u ∈ L∞, this holds for r = 1 with some C. We argue by induction on r. Set

A(R) := sup
|x−y|≤R

|u(x)− u(y)|.

Step 1 : Proving A(R) ≤ LA(2R) with a universal constant L < 1 will suffice
Indeed, this implies

A(1/2n) ≤ LnA(1) = (
1

2n
)εA(1),

which completes the proof for r = 1
2n

for any n and is enough.
Step 2 : Induction on r
For Br ⊂ B2r, we know u varies by at most A(2r) with M ≤ u ≤ M + A(2r) in B(2r).

By applying Harnack’s inequality to v = u−M ≥ 0 on Ω = B(2r) with K = B(r), we get

max
Br

v ≤ C(r)min
Br

v.

Moreover, 0 ≤ minBr v ≤ maxBr v ≤ A(2r). Note that we can choose C(r) independent of r
for all |r| ≤ 1 since

min
Br

v ≥ min
B1

v ≥ C(1)max
B1

v ≥ C(1)max
Br

v.
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We denote C = C(1). Then there are two cases to consider :

(1) maxBr v ≤ 1
2
A(2r) : Then it is obvious that

max
Br

v −min
Br

v ≤ 1

2
A(2r),

which implies A(r) ≤ 1
2
A(2r).

(2) maxBr v ≥ 1
2
A(2r) : Then minBr v ≥ 1

2C
A(2r) and hence

max
Br

v −min
Br

v ≤ A(2r)− 1

2C
A(2r) = (1− 1

2C
)A(2r).

Then we just choose L = max{1
2
, 1− 1

2C
}. □

Remark 16.12. In the proof of Proposition 11.5, we also mentioned that we can use Har-
nack’s principle to derive the strict positivity of the eigenfunction corresponding to the first
eigenvalue.
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Nonlinear elliptic PDEs

Date: March 14, 2023

We begin by a simple classification of elliptic PDEs :

(1) Linear equations : −∆u = f , −∂ia
ij∂ju = f .

(2) Semilinear equations : −∆u = f(u) + g.
(3) Quasilinear equations : −∂ia

ij(u)∂ju = f .
(4) Fully nonlinear equations : F (D2u) = 0.

A typical class of semilinear equations is of the form

−∆u± u|u|p−1 = f.

We would focus on this equation in a moment.

17.1 Fully nonlinear equations

We say F (D2u) = 0 is elliptic if F (Y ) ≥ F (X) for all X, Y symmetric and Y ≥ X. To
compare with the definition in the linear case, we record the definition of uniform ellipticity
in [5].

Definition 17.1. F is uniformly elliptic if there are two positive constants λ ≤ Λ such that
for any symmetric matrix M and x ∈ Ω,

λ∥N∥ ≤ F (M +N, x)− F (M,x) ≤ Λ∥N∥, ∀N ≥ 0,

where ∥N∥ denotes the L2−L2 norm of N , which is the largest eigenvalue whenever N ≥ 0.

A classical example is the Monge-Ampere equation. Set F (X) = detX, then F is elliptic
when we restrict to all symmetric nonnegative matrices. Equivalently,

detD2u = f(x)

is only elliptic for functions u that are strictly convex in Ω. Therefore, for such a solution u
to exist, we must have f positive.

17.2 Semilinear equations with the favorable sign

For the favorable semilinear equation

−∆u+ u|u|p−1 = f,

we can think of this variationally by viewing

L(u) =
∫

1

2
|∇u|2 + 1

p+ 1
|u|p+1 − fu dx.

For a convex variational problem

L : Ḣ1(Rn) → R or L : H1
0 (Ω) → R,

in order to look for a minimizer of L : Ḣ1 → R, we first notice that L is smooth if∫
|u|p+1 dx < ∞. In Rn, the inequality

∥u∥Lp+1 ≤ ∥∇u∥L2
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only holds for p = pc = 1 + 4
n−2

. On the other hand, we need p ≤ pc in Ω.
If boundedness does not hold but L is still convex, then we can consider

L : D(L) → R
restricted on the domain of L ⊂ H1 to prove the existence of a minimizer in the domain.

For this favorable sign, we have maximum principle for positive solutions, which can be
proved as usual. Then one can adapt Perron’s method to this equation.

17.3 Semilinear equations with the unfavorable sign

For the unfavorable sign, we have

L(u) =
∫

1

2
|∇u|2 − 1

p+ 1
|u|p+1 − fu dx.

This is not convex and not coercive. Indeed, for ϕ ∈ D,

L(λϕ) → −∞, as λ → ∞
provided p+ 1 > 2, then it cannot satisfy

lim
∥u∥→∞

L(u) = ∞.

The idea to solve this is to apply the perturbative methods. Obviously, for f = 0, u = 0 is
a solution. Then we want to find a small solution u provided f small. To make it simpler,
we consider the critical exponent p = pc case with the domain Ḣ1(Rn). For

−∆u = u|u|pc−1 + f,

with f ∈ Ḣ−1 small, we phrase the problem as a fixed point problem, that is,

u = (−∆)−1
(
u|u|pc−1 + f

)
and denote the right hand side by N(u) + uf , where uf = (−∆)−1f ∈ Ḣ1. Since u ∈ Ḣ1 ⊂
L2∗ ,

u · |u|pc−1 ∈ L
2∗
pc ⊂ Ḣ−1, (17.1)

where the last inclusion follows from

2∗

pc
=

2n/(n− 2)

(n+ 2)/(n− 2)
=

2n

n+ 2
= (2∗)′.

From this, one can see the importance of the choice of p = pc. Therefore, N(u) ∈ Ḣ1 and

Ñ : Ḣ1 → Ḣ1, u 7→ N(u) + uf , (17.2)

which is a fixed point problem.

Remark 17.2. For p ̸= pc, we need to replace Ḣ1 by other homogeneous Ḣs, where s can be
determined by the scaling property so that an analogous inclusion (17.1) holds.

Remark 17.3. We need to work in the dimensions where the homogeneous Sobolev spaces
are not a quotient space so that we have the Sobolev embeddings as desired.

In functional analysis, we have Banach contraction principle.
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Definition 17.4. Given a complete metric space X and a map N : X → X, we say N is a
contraction if d(N(x), N(y)) ≤ Ld(x, y) with L < 1.

Theorem 17.5 (Banach contraction principle). If N : X → X is a contraction, then it has
a unique fixed point.

Proof. First, we prove uniqueness by contradiction. Suppose u = N(u), v = N(v), then

d(u, v) = d(N(u), N(v)) ≤ Ld(u, v),

which implies d(u, v) = 0.
Then we start from u0 and define a sequence un+1 = N(un) to show that un converges.

We compute
d(un+1, un) = d(N(un), N(un−1)) ≤ Ld(un, un−1),

and by iterating, the distance between consecutive elements would goes to 0 exponentially
as d(un+1, un) ≤ Lnd(u0, u1), which implies {uk} is Cauchy. By completeness, un → u and
we can pass the limit. □

Note that N(u) is superlinear, so it cannot be Lipschitz if we consider H1. Instead, we
choose X = BH1(0, R), we need to choose R carefully. If R is too big, then we lose Lipschitz
condition, while if R is too small, then the map (17.2) cannot take the ball X to itself.
Since

∥N(u)∥Ḣ1 ≤ ∥u|u|p−1∥Ḣ−1 ≤ C∥u∥p
Ḣ1 ,

∥N(u) + uf∥Ḣ1 ≤ CRp + ∥f∥Ḣ−1 (17.3)

provided that ∥u∥Ḣ1 ≤ R. Therefore, if ∥f∥Ḣ−1 ≪ 1, then we can choose R = C̃∥f∥Ḣ−1 so

that Ñ : X → X.
Furthermore, in order to prove the Lipschitz property, we expect |N(u)−N(v)| is bounded

from above by the product of |u−v| and a function of homogeneity p−1. Indeed, by making
an algebraic substitution w = u/v, one can show∣∣u|u|p−1 − v|v|p−1

∣∣ ≤ C|u− v| ·
(
|u|p−1 + |v|p−1

)
.

Moreover, this implies

∥N(u)−N(v)∥q
Ḣ1 ≤∥u|u|p−1 − v|v|p−1∥q

Ḣ−1 ≲
∥∥|u− v| ·

(
|u|p−1 + |v|p−1

)∥∥q

Lq

≲∥u− v∥L2∗
(
∥u∥p−1

L2∗ + ∥v∥p−1

L2∗

)
≲ ∥u− v∥Ḣ1

(
∥u∥p−1

Ḣ1 + ∥v∥p−1

Ḣ1

)
,

where q = 2∗/p is the one in (17.1). This implies that Ñ is a contraction if and only if
L = CRp−1 < 1.

Theorem 17.6. If ∥f∥Ḣ−1 ≪ 1, then there exists a unique solution u ∈ Ḣ1 such that

∥u∥Ḣ1 ≪ 1, where the uniqueness only holds in a small ball in Ḣ1.

To construct a solution numerically, we start with a guess u0 = 0 and define un+1 =
N(un) + uf , which implies a convergence un → u in Ḣ1, which makes it possible to run
iteration. In fact, if we choose u0, u1 in the initial step such that u1 > u0 pointwisely, then
we write

un+1 − un = N(un − un−1) = (−∆)−1(un|un|p−1 − un−1|un−1|p−1),
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which implies un+1−un ≥ 0 pointwisely if un−un−1 ≥ 0 pointwisely thanks to the maximum
principle for the Laplacian operator −∆.

Remark 17.7. This method also works for the favorable sign case.

Remark 17.8. The iteration scheme even works for quasilinear problem. Instead, we cannot
think of this as a contraction. The idea is to use a two layer scheme by considering in two
different Sobolev spaces where we prove boundedness in the top Sobolev space and we have
convergence in a weaker Sobolev space. We will see the same idea in proving local existence
of hyperbolic systems.

17.4 Mountain pass theorem

Another useful tool to study the unfavorable sign case variationally is the mountain pass
theorem. We briefly introduce the idea and refer to [7, Chapter 8.5] for details. Recall the
setting

L(u) =
∫

1

2
|∇u|2 − 1

p+ 1
|u|p+1 dx, f = 0

with p > 1. We look for critical points of L. Note that L is not convex and not coercive.
A simple observation is that u = 0 is a local minimum which follows from the fact that the
first term beats the second one for small u ∈ H1

0 (Ω) thanks to p + 1 > 2. This implies a
convex behavior near 0. However, we have u0 such that L(u0) ≤ 0. Heuristically, it would
pass a saddle point before L becomes negative so that we would expect there exists a critical
point. The mountain pass theorem basically proves the following heuristic fact : if we choose
the trajectory from 0 to u0 minimizing the maximum height, then it corresponds to a saddle
point.

Theorem 17.9 (Mountain pass theorem). Suppose L ∈ C1(H;R) and L′ : H → H is
Lipschitz on bounded sets of H, which satisfies the Palais-Smale condition. Suppose also

• L(0) = 0,
• there exists r, a > 0 such that L(u) ≥ a if ∥u∥ = r,
• there exists an element u0 ∈ H with ∥u0∥ > r and L(u0) ≤ 0.

Define all the trajectories connecting 0 to u0 by

Γ := {g ∈ C([0, 1];H) : g(0) = 0, g(1) = u0}.
Then

c = inf
g∈Γ

max
0≤t≤1

L(g(t))

is a critical value of L, that is, Kc = {v ∈ H : L(v) = c,L′(v) = 0} ≠ ∅.

Remark 17.10. In an infinite dimensional H, |∇u|2 wins most of the time (up to finite
dimensional directions). On the other hand, |u|p+1 only beats |∇u|2 in very few directions.

We demonstrate the idea by drawing a level set of some functional L.
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Second order parabolic equations - Introduction and L2 theory

Date: March 16, 2023

Recall the model problem for heat equation{
(∂t −∆)u = f in R+ × Rn,

u(0) = u0.

is a special case for the following general problem{
(∂t − P )u = f,

u(0) = u0.

In this general case, we focus on two different domains. If we consider R+ × Rn, this is
similar to the heat equation model problem. If we consider in a bounded domain R+ × Ω
with Ω ⊂ Rn, we need to add some boundary condition to the equation.

18.1 Recap of the properties of heat equation

Last semester, we discuss the heat propagation and a probabilistic interpretation of the
heat equation. The key properties of the model problem are as follows :

(1) (forward) fundamental solutions : K(t, x) = 1
(4πt)d/2

e−
|x|2
4t 1t≥0.

(2) solutions given by convolution :

u(t) = K(t) ∗x u0 +K ∗t,x f.
(3) regularizing effect : If f = 0, u0 ∈ S ′, then

u ∈ C∞((0,∞)× Rn).

This can be proved as follows. First, we write û(t, ξ) = e−t|ξ|2û0(ξ) and hence

u(t, x) = ⟨û0(ξ), e
−t|ξ|2eix·ξ⟩S ′

ξ ,Sξ
,

where the smoothness follows from the fact that

∇t,x

(
e−t|ξ|2eix·ξ

)
∈ Sξ.

(4) infinite speed of propagation : Since suppK(t) = Rd, we know that suppu = Rd even if
u0 is compactly supported.

(5) forward evolution : The heat equation is ill-posed as a backward evolution since we only
have one fundamental solution and it is supported in {t ≥ 0}. This is due to the fact

1
iτ+|ξ|2 ∈ L1

loc.

(6) energy dissipation : Heuristically, by a direct computation,

d

dt
∥u(t)∥2L2 = 2

∫
u · ut dx = 2

∫
u ·∆u dx = −2

∫
|∇u|2 dx, (18.1)

which implies ∫ ∞

0

∫
|∇u|2 dx dt < ∞
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since ∥u(t)∥2L2 is decreasing while it is always non-negative. The phenomenon that
∥u(t)∥2L2 is non-increasing is called the dissipation of energy. In particular, u becomes
L2H1. The computation above can be made rigorous after we showed the existence
theorem, Theorem 18.2, by applying an approximation argument to

∥u(t)∥2L2 = ∥u(0)∥2L2 − 2

∫ ∞

0

∫
|∇u|2 dx dt.

To make this argument rigorous, we need to assume u has the regularity proved in the
existence theory so that we can make approximation argument. This is just the energy
estimate we are going to prove in the following.

In fact, we can show a stronger result that u becomes H1 immediately after initial
time. Moreover, we compute

d

dt

(
t∥∇u∥2L2

)
= ∥∇u∥2L2 + 2t

∫
∇u · ∇ut dx = ∥∇u∥2L2 − 2t

∫
|∆u|2 dx ≤ ∥∇u∥2L2 ,

then this implies

t∥∇u∥2L2 ≲
∫ t

0

∥∇u∥2L2(s) ds ≲ ∥u0∥2L2 ,

where the last inequality follows from (18.1). Note that the choice of t in the first
quantity comes from the parabolic scaling.

We also make a remark that, for u0 /∈ Ḣ1, we need to be careful if we want to use
“t · ∥∇u(0)∥2L2 = 0” at t = 0. To justify this, one needs to first compute for u0 ∈ D and
then do an approximation in the final estimate we get. See Remark 18.6 at the end of
this section for a detailed proof.

Another approach to justify this is to do for each Littlewood-Paley piece since for
each dyadic frequency region, it is finite. This is simple due to the fact that if (u, u0) is
a solution, then (Pju, Pju0) is also a solution. We just need to compute

t∥∇u(t)∥2L2 = t
∑
j

∥∇Pju(t)∥2L2 ≲
∑
j

∫
∥∇Pju(s)∥2L2 ds =

∫
∥∇u(s)∥2L2 .

Daniel Tataru mentioned that this fact also holds in the variable coefficient case. If we
still want to apply Littlewood-Paley theory, then we can only expect a weaker estimate
like ∥Pju∥L2 ≤ CN(1+ t22j)−N instead of the strongest ones ∥Pju∥L2 ≤ Ce−Ct22j due to
the difference in the heat kernel. Also, we need a bootstrap argument to conclude the
argument.

(7) parabolic scaling : If u(x, t) solves the homogeneous heat equation (∂t −∆)u = 0, then
u(λx, λ2t) also solves the equation. Due to the scaling, we focus on parabolic cylinders,
[t, t+R2]×B(x0, R) instead of balls.

18.2 L2 theory for parabolic equations - energy estimates

We consider 
(∂t + P )u = f in Ω× [0, T ],

u(t = 0) = u0 in Ω,

u(t, x) = 0 in ∂Ω× [0, T ],
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where P = −∂ia
ij∂j + bj∂j + c with aij, bj, c ∈ L∞ and (aij) elliptic and symmetric.

As we discussed for the elliptic equations, we start by showing an energy estimate so that
it gives a uniqueness theorem at least. Furthermore, by a duality argument, we can show
existence. We would expect the same idea applies to parabolic equations.

Suppose u0 ∈ L2 and we would like to track the L2 size of the function, which is exactly
as the previous computation. We compute

d

dt
∥u(t)∥2L2 = 2

∫
u · ∂tu dx = −2

∫
u · (Pu− f) dx = −2B(u, u) +

∫
u · f dx.

As before,

B(u, u) =

∫
Ω

aij∂iu∂ju+ bi∂iu · u+ cu2 dx,

where the first term is called the principal part and the last two are the lower order terms.
The principal part is comparable to ∥∇u∥2L2 , while we may not expect a sign in the lower
order terms. Thus,

B(u, u) ≥ C1∥∇u∥2L2 − C2∥u∥2L2 .

Suppose f = 0, then

d

dt
∥u(t)∥2L2 ≤ −C1∥∇u∥2L2 + C2∥u∥2L2 (18.2)

and hence
d

dt
e−C2t∥u(t)∥2L2 ≤ −C1e

−C2t∥∇u∥2L2 ,

which implies

∥u(t)∥2L2 ≤ eC2t∥u(0)∥2L2 − C1e
C2t

∫ t

0

e−C2s∥∇u(s)∥2L2 ds.

Since we focus on a compact t region, then we obtain our uniform energy bound

∥u∥2L∞
t L2

x
+ ∥∇u∥2L2

tL
2
x
≲ ∥u0∥2L2 . (18.3)

The first term on the left hand side means that if you start from u0 ∈ L2, then the solu-
tion keeps in the same function space. On the other hand, the second term measures the
dissipation. In fact, (18.3) can be obtained by integrating (18.2) on both sides.

From (18.3), we expect the existence theory ensures u ∈ Ct(L
2
x(Ω)) ∩ L2

tH
1
0 (Ω). Now we

consider nontrivial f and we need to be able to estimate

I =

∫ T

0

∫
Ω

u · f dx.
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If we use the uniform bound for u, then

|I| ≤
∫ T

0

∥u(t)∥L2∥f(t)∥L2 dt ≤ ∥u∥L∞
t L2

x
∥f∥L1

tL
2
x
.

On the other hand, if we use the second component of the bound for u, we derive

|I| ≤
∫ T

0

∥u(t)∥H1
0
∥f(t)∥H−1 dt ≤ ∥u∥L2

tH
1
0
∥f∥L2

tH
−1 .

Therefore, to combine these two estimates, we introduce L1
tL

2
x + L2

tH
−1
x , where in general

the space X + Y is defined as follows :

X + Y = {z = x+ y : x ∈ X, y ∈ Y }, ∥z∥X+Y = inf
z=x+y

(∥x∥X + ∥y∥Y ).

Note that this definition does not for arbitrary Banach space X, Y since we require some
compatibility conditions at least to make sure we can define addition for this. In practice,
X, Y ⊂ D′ ensures the compatibility.

To achieve this, we write f = f1 + f2 and hence

|I| ≤ ∥u∥L∞
t L2

x
∥f1∥L1

tL
2
x
+ ∥u∥L2

tH
1
0
∥f2∥L2

tH
−1 ≤ ∥u∥L∞

t L2
x∩L2

tH
1
0

(
∥f1∥L1

tL
2
x
+ ∥f2∥L2

tH
−1

)
.

Then taking the infimum over all possibility of writing f into f = f1 + f2, we obtain

∥u∥2L∞
t L2

x∩L2
tH

1
0
≲ ∥u0∥2L2 + ∥u∥2L∞

t L2
x∩L2

tH
1
0
∥f∥L1

tL
2
x+L2

tH
−1
x
.

By applying Cauchy-Schwarz inequality on the last term, we would get

∥u∥2L∞L2
x
+ ∥u∥2L2

tH
1
0
≲ ∥u0∥2L2 + ∥f∥2

L1
tL

2
x+L2

tH
−1
x
. (18.4)

Remark 18.1. Finally, we make a comment that the full statement of our energy estimate
(18.4) is as follows. Suppose u0 ∈ L2, f ∈ L1

tL
2
x+L2

tH
−1 and u ∈ L∞L2

x∩L2
tH

1
0 is a solution,

then it satisfies the energy estimate. These assumptions are just what we are going to prove
in the existence theory. With these assumptions, we can make the computation rigorous by
approximation. See Remark 18.4 and Remark 18.5 for details.

18.3 L2 theory for parabolic equations - existence

From the energy estimate (18.4), we expect the following existence theorem to be true.

Theorem 18.2. For each u0 ∈ L2, f ∈ L1L2 + L2H−1, there exists a unique solution

u ∈ L∞L2 ∩ L2H1
0 .

The energy estimate above gives the uniqueness part of this theorem. To prove the exis-
tence part, we set up a duality argument.

First, we need to identify the adjoint problem. For (∂t + P )u = f , by testing with v, we
write∫ T

0

∫
Ω

v · f dx dt =

∫ T

0

∫
Ω

(∂t + P )u · v dx dt

=

∫ T

0

∫
Ω

u · (−∂tv) dx dt+

∫
Ω

u · v dx
∣∣∣T
0
+

∫ T

0

∫
Ω

u · P ∗v dx dt+

∫ T

0

∫
Ω

(
u · ∂v

∂ν
− v · ∂u

∂ν

)
dσ.
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From the computation, we require v|∂Ω = 0 so that∫ T

0

∫
Ω

v · f dx dt =

∫ T

0

∫
Ω

u · (−∂t + P ∗)v dx dt+

∫
Ω

u · v dx
∣∣∣T
0
,

where in the last term, u(0) is known, so we view t = T as the initial time for v and prescribe
an initial data. Thus, the adjoint problem would be

(−∂t + P ∗)v = g,

v(T ) = vT ,

v = 0 in ∂Ω.

Note that this is a heat equation coming back in time so it is also natural to require an initial
condition for v(T ). We compute∫ T

0

∫
Ω

f · v dx dt+
∫
Ω

u(0)v(0) dt =

∫ T

0

∫
Ω

g · u dx dt+
∫
Ω

u(T )v(T ) dx.

By duality, u solves the equation if the relation above holds for all v ∈ C∞ satisfies the dual
problem. For v given, the left hand side is known and we want to think of the right hand side
as a linear functional on (v(T ), g) ∈ L2 × (L1L2 + L2H−1). Note that the linear functional
is only defined on a subspace only (if we do not know the existence). The map

T (v(T ), g) =

∫ T

0

∫
Ω

f · v dx dt+
∫
Ω

u(0)v(0) dt

is defined on T : X ⊂ L1L2 + L2H−1 × L2 → R. Under the assumptions for u, f in
Theorem 18.2, we compute

T (v(T ), g) ≤ ∥f∥L1L2+L2H−1 · ∥v∥L∞L2∩L2H1 +∥u(0)∥L2∥v(0)∥L2 ≲ ∥v(T )∥L2 +∥g∥L1L2+L2H−1 ,

where the last step follows from the energy estimate (18.4) for the adjoint problem with
(v, g), which implies the map T is bounded. By Hahn-Banach theorem, we can extend T so
that there exists u ∈ (L1L2 + L2H−1)∗ = L∞L2 ∩ L2H1

0 such that

T (v(T ), g) =

∫ T

0

∫
Ω

g · u dx+

∫
Ω

v(T )u(T ) dx,

which completes the proof. This is the general duality argument for evolution equations.

Remark 18.3. When the duality method applies to linear wave equation, after showing exis-
tence of u, one also needs to argue a bit more on regularity of u. See [20, Theorem I.3.2].

Remark 18.4. Given the existence theorem, Theorem 18.2, one can make the proof of the
energy estimate (18.4) rigorous in the case R1+d by introducing the following approximation
: We choose φ ∈ D(R1+d) such that

∫
φ = 1 and suppφ ∈ (−1, 1) × B(0, 1), φε(t, x) =

ε−2−dφ(ε−2t, ε−1x). (To make the following convergence in ε easier to prove, one may also
assume φ(t, x) = φ1(t)φ2(x) with desired support property.) Another sequence of cutoff
χ(εx) is given by χ ∈ D(Rd) which is 1 near 0 and 0 away from a large region. On the subset
[ε2, T − ε2]× Rd, we define

uε := (φε ∗t,x (χε(x)u(t, x)))|[ε2,T−ε2]×Rd .
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In this approximation, we first do a cut-off so that we can restrict in a compact subset and
then convolve with a mollifier to make it smooth. Instead, we can also change the brutal
cut-off near the boundary of the time interval to a furthermore smooth cut-off χ̃(t) such
that χ̃ ≡ 1 in the interval and χ̃ = 0 at the boundary point 0, T , which make the boundary
term of time interval vanish. However, for instance,

∫ ε

0
χ̃′(t)

∫
|u|2 dx dt can be viewed as

an average and converges to
∫
|u(0)|2 dx, which make the boundary term appear again after

taking the limit.
Since uε ∈ C∞([ε2, T − ε2] × Rd), we can justify the interchangability between ∂t and

integration. Moreover, due to the compact support property, we can justify the integration
by parts in the proof of the energy estimates for (∂t−∆)uε = f ε. Moreover, for any compact
interval J ⊂ (0, T ), we have

uε → u in Ct(J ;L
2(Rd)); ∇uε → ∇u in L2(J × Rd);

uε(ε2) → u0 in L2(Rd); ∂tu
ε −∆uε → f in L1(J ;L2(Rd)).

Therefore, the energy estimates follows in the general case.

Remark 18.5. Unfortunately, the approximation sequence selected above needs some modi-
fication in the bounded region case.

We choose χε ∈ D(Ω) to be χε ≡ 1 in Ω2ε and suppχε ⊂ Ωε. On the subset [ε2, T−ε2]×Ωε,
we define

uε := (φε ∗t,x (χε(x)u(t, x)))|[ε2,T−ε2]×Ωε
,

where Ωε := {x ∈ Ω : dist(x,Ω) ≥ ε}. Then when computing ∆uε, a term like

∇χε(x) · ∇u(x)

will appear and finally converges to δ∂Ω(∇u), which corresponds to a Neumann boundary
term. However, we do not know any property about this term. Therefore, for the term
∂tu

ε −∆uε, we need to consider its convergence in L2H−1 instead of L1L2. Due to the fact
that uε → u in L2H1

0 , we know that ∆uε → ∆ in L2H−1(Ω) and hence the result follows.
This is kind of similar to the elliptic case.

We can also choose the cut-off only in the tangential direction χε(x
′) so that it does not

produce the normal derivative at the boundary to avoid the appearance of the Neumann
boundary term.

Remark 18.6. To provide the rigorous argument for

t∥∇u∥2L2 ≲ ∥u0∥2L2 ,

we still do the approximation uε above. First of all, the estimate above is true for u0 ∈ D.
Then one would notice that the initial data of uε−uδ is compactly supported and convergent
to 0 in L2 so that we know

∇uε −∇uδ → 0 in Ct(J ×K).

On the other hand, ∇uε → ∇u in L2(J × K) by the property of mollifiers. Therefore, we
know the limit coincides, that is,

∇uε → ∇u in Ct(J ×K)

and hence the desired estimate follows for any t > 0 by approximation.
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Second order parabolic equations - L2 regularity

Date: March 21, 2023

Compared to the existence theorem that we introduced last time, one can upgrade the
regularity. Before we state the theorem, we give the following definition of functional spaces.

Definition 19.1. We say u ∈ H1L2 if u ∈ L2L2 and ∂tu ∈ L2L2.

Remark 19.2. This definition is not related to the differentiablity of ∥u(t)∥L2
x
.

19.1 Higher regularity - energy estimates and existence

Theorem 19.3. Suppose u0 ∈ H1
0 , f ∈ L1H1

0+L2L2, then the solution u ∈ C(H1)∩L2(H2∩
H1

0 ) ∩H1L2.

Remark 19.4. Note that we have the Dirichlet boundary condition so we use H1
0 instead

of H1 at all the places where H1 appears in the theorem above. A new idea here is the
compatibility condition for the data : connecting initial data with boundary data.

This sounds trivial but if we want to consider solutions with more regularity ∂tu = 0
on ∂Ω, then we need more compatibility Pu0 − f(0) = 0 on ∂Ω, which is a second order
condition.

Remark 19.5. Later, we would simply denote the mixed norm space L2
tL

2
x by L2.

Instead of giving a proof directly, we try to provide some ideas.
Via energy estimates - Naive try : We try to develop an energy estimate as before.

Suppose f = 0, we compute

d

dt

∫
Ω

|∇u|2 dx = 2

∫
Ω

∇u · ∇ut dx = 2

∫
Ω

∂mu∂m∂ja
jk∂ku+ l.o.t.

= −2

∫
Ω

∂j∂mu · ∂majk∂ku+ l.o.t. = −2

∫
Ω

∂j∂mu · ajk∂m∂ku+ l.o.t.

≤ −C∥∂j∂mu∥2L2 + C∥u∥H2∥u∥H1 ,

where the last step follows from the uniform positive definiteness of ajk. Finally, we get

d

dt
∥u∥2H1 ≤ −c∥u∥2H2 + C∥u∥2H1

and hence

∥u∥2CH1 + ∥u∥2L2H2 ≲ ∥u0∥2H1 .

Via energy estimates - adapted energy : However, we need to fix the problem that we
implicitly use the vanishing of boundary terms produced from integration by parts though we
actually cannot ensure the boundary term vanishes since it contains first order derivatives.
To fix the boundary issue, we use the adapted energy∫

Ω

alm∂lu∂mu dx
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instead. If we do the computation

d

dt

∫
Ω

alm∂lu∂mu = 2

∫
Ω

alm∂lu · ∂m(∂jajk∂ku) dx+

∫
Ω

(∂ta
lm)∂lu∂mu dx

=− 2

∫
Ω

|Pu|2 + 2

∫
∂Ω

νma
lm∂lu · ∂jajk∂ku dσ +

∫
Ω

(∂ta
lm)∂lu∂mu dx,

then it turns out that we still have the boundary terms. Instead of trying to integrate by
parts, we multiply the equation by Pu, which gives∫

∂tu · Pu dx+

∫
|Pu|2 dx =

∫
Pu · f dx,

where the right hand side can be bounded by ∥f∥L2∥Pu∥L2 or ∥f∥H1
0
∥u∥H1 and the first term

can be written as ∫
∂tu · Pu dx =

1

2
∂t

∫
B(u, u) dx−

∫
(∂ta

jk)∂ju∂ku dx,

where the integration by parts∫
B(u, u) dx =

∫
ajk∂ju∂ku = −

∫
u∂ka

jk∂ju

can be justified since we know u|∂Ω = 0.

Remark 19.6. Compared this with the preceding computations, we notice that there is merely
zeroth order term u involved in the boundary terms so that it vanishes and this is the
advantage of our method here. However, u does not appear in the boundary terms for the
previous two computations.

Upgrading regularity : The second issue is that the computation requires knowing that
we have solutions in H2. For duality, we have to do energy estimates at the level of H−1,
which is hard to manage. An alternative method of proving this is just to upgrade the L2

solution we already obtained to H1
0 . We can replace derivatives ∂j by Dh

j , which is given by

Dh
j u =

u(x+ hej)− u(x)

h

and then conclude by passing to the limit h → 0. This allows us to prove the existence of
higher regularity solutions. See [7], [4, Chapter 9.6] for details.

Viewing it as a system : In Rn, there is another idea. The reason why this only works
for Rn since we do not need to worry about the boundary condition. We write equations for
∂ju := uj and try to think of this as a new function :

∂tuj + Puj = ∂jf + [P, ∂j]u.

The operator [P, ∂j] is second order but we can think of it as ∂∇u to make it to be a first
order term when we are seeking for a solution to the following system{

∂tuj + Puj = ∂jf + ∂∇u+ u,

∂tu+ Pu = f,
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where the reason why we need to put the original equation in is that [P, ∂j]u might have
zeroth order terms. For this n+ 1 order system, we can apply L2-solvability for this system
in (∇u, u).

Now the only thing we need to prove that the solutions satisfy the constraints uj = ∂ju.
We know that the constraints hold at the initial time and want to propagate it in time. We
write vj = uj − ∂ju and write down the equation for vj, which is a parabolic equation

∂tvj − Pvj = 0, vj(0) = 0

for the same parabolic operator P . Then one would like to conclude that vj = 0 by energy
estimates and therefore, this proves Theorem 19.3.

Remark 19.7. Note that, since we only know vj = uj − ∂ju ∈ L2L2 ∩ L∞H−1, we need to
prove a lower regularity energy estimate to conclude vj = 0 in the last step. This is easy to
prove in the Rd case while P = −∆ since one can apply Fourier transform to show

∥v∥2L∞H−1 + ∥v∥2L2L2 ≲ ∥u0∥2H−1 + ∥f∥2L2H−1 .

In the variable coefficient case, we need to prove a commutator estimate for [|D|−1, aij(x)],
which expoits the positive definiteness of aij(x), then the L2 result implies the H−1 result
as what it is like how we upgrade from L2 to H1. Also, if we already know result for H1,
then by duality, the energy estimates can be obtained from results in H−1.

Remark 19.8. For the last method, when you are in a bounded domain, your vector fields
need to be tangential to the boundary of the domain to preserve the boundary condition.
So we can only do this for tangential derivatives when we are in a bounded domain, which
does not help a lot.

Remark 19.9. When the setting is for bounded domains, an alternative way is to work with
(u, ∂tu). Since the initial data of ∂tu is just H−1, we would only expect ∂tu ∈ CtH

−1

and therefore by the elliptic theory for Pu + f = ∂tu ∈ CtH
−1, we know u ∈ CtH

1,
which is the desired result. First we prove for the case f nice so that the initial data
(∂tu)(0) = ∆u0+f(0, ·) is well-defined and then use an approximation argument to conclude.

Remark 19.10. Another method is to use Galerkin approximation. Compared to the approx-
imation before, this is to use a finite dimensional approximation while ours are an application
of compactness.

We record the higher regularity theorems without giving a proof.

Theorem 19.11. Given m ∈ N, ∂Ω ∈ Cm and aij, b, c ∈ Cm. Suppose u0 ∈ Hm, f ∈
L1Hm+L2Hm−1 and f satisfies all the compatibility conditions. Then u ∈ CHm ∩L2Hm+1.

19.2 Parabolic regularity

In this subsection, we introduce the parabolic regularity theorem, which is an analogy of
Theorem 5.3.

Theorem 19.12 (Parabolic regularity). Suppose u solves locally ∂tu + Pu = f . If u ∈
(L2H1

0 )loc and f ∈ L2
loc, then u ∈ (L2H2)loc ∩ (H1L2)loc.
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Remark 19.13. Note that the localized region can be at the boundary of Ω. However, if the
region has intersection with t = 0, then we need information for initial data, otherwise it
would be false.

For simplicity, we only consider the interior regularity. Without loss of generality, we
assume (t0, x0) lies on the top of the cylinder and choose a cutoff function as below.

By truncating u to a neighborhood of x0 : v = χu, where

χ =

{
1 near x0,

0 away from x0,

we write an equation for v :

∂tv + Pv = χf + (∂tχ)u+∇2χu+∇χ · ∇u,

where the right hand side is in L2. Moreover, the initial data for v is zero since we can start
from where χ = 0.
By the higher regularity theorem for v, we know that v ∈ C(H1)∩L2H2∩H1L2. Moreover,

we conclude that
f ∈ L2Hm

loc ⇒ u ∈ L2Hm+2
loc ∩H1Hm

loc.

Finally, we remark that second parabolic equations share the same kind of properties as
second order elliptic equations including this higher regularity even though one of them is
evolutionary while the other is stationary. However, for wave type equations, we do not have
such local regularity statements because things would propagate. If one tries to mimic this
proof, then one would find we end up with no improvements on regularity.
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Date: March 23, 2023

We discuss the maximum principle for parabolic equations

Lu = ∂tu− aij∂i∂ju+ bi∂iu+ cu = 0

in a cylinder C = Ω × [0, T ]. We define the subsolution (resp. supersolution) to be those
u’s such that Lu ≤ 0(resp. Lu ≥ 0). In addition, we require c ≥ 0. Heuristically, this
assumption can be viewed as to be a decay assumption since c ≥ 0 makes ∂tu + cu = 0 to
decay at infinity.

The maximum principle relates what happens inside the domain with the behavior at the
boundary. Note that the boundary of the cylinder C = Ω× [0, T ] has 3 pieces :

• bottom (initial data) ;
• lateral boundary (Dirichlet boundary condition) ;
• top (final data).

Heuristically, the final data will depend on the Dirichlet data and the initial data, so it is a
derived quantity. Because of this, we introduce the parabolic boundary of the cylinder C to
be

∂C = ({0} × Ω) ∪ ([0, T ]× ∂Ω).

20.1 Weak maximum principle (in parabolic cylinders) for subsolutions, com-
parison principle

20.1.1 The case when c ≥ 0

Theorem 20.1. Assume c = 0, aij is positive definite (aij does not need to be strictly positive
definite) and a, b ∈ C, u ∈ C2(C) ∩ C(C) is a subsolution. Then maxC̄ u = max∂C u.

Remark 20.2. We do not impose any boundary condition in the assumption.

Proof. For strict subsolutions, suppose we have a maximum point

(t0, x0) ∈ C \ ∂C = (0, T ]× Ω.

Then
∂tu ≥ 0, ∇xu = 0, ∇2

xu ≤ 0,

which implies Lu(t0, x0) ≥ 0 and this contradicts to the assumption.
For subsolutions, we want to penalize u by setting

uε = u− εt

and Puε = Pu − ε < 0. Thus maxC uε = max∂C uε. Since we are in a compact region,
uε → u uniformly. Let ε → 0, this proves the theorem. □

Remark 20.3. The penalization for parabolic equations is much simpler than the elliptic case
since we can easily take advantage of the time dependence.

Example 20.4. The equation ∂tu−∆(up) = 0 is usually called the porous medium equation.
for 1 ≤ p < ∞. For positive solutions, we also have maximum principle, where the same
proof applies.
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When we discuss the maximum principle for elliptic equation, if c ≥ 0, then we need to
consider non-negative maximum, that is,

max
C

u ≤ max{0,max
∂C

u}.

Moreover, this also implies the comparison theorem when c ≥ 0. If u− is subsolution, u+ is
supersolution and u− ≤ u+ on ∂C, then u− ≤ u+ in C. In the parabolic setting, these two
results still hold.

20.1.2 The case when we do not assume c ≥ 0

Furthermore, we introduce another simple trick which works for the parabolic setting even
if we do not assume c ≥ 0. We replace u by v = e−αtu and we write the equation for v :

Pv = P (e−αtu) = e−αtPu− αe−αtu,

which is equivalent to

Pαv = e−αtPu, Pα = ∂t − aij∂i∂j + bi∂i + (c+ α).

Therefore, one observe that if u is a subsolution for P , then v is a subsolution for Pα.
Moreover, if c ∈ L∞, then we choose α such that c+ α ≥ 0 and thus

max
C

e−αtu ≤ max
∂C

e−αtu, if u ≥ 0,

which follows from the maximum principle in the case c + α > 0. The advantage of this
is that the comparison theorem remains true (independent of α) for u−, u+ subsolutions
and supersolutions since the comparison between two functions remain unchanged after
multiplying a positive function.

Corollary 20.5 (Uniqueness of solutions). The equation
Pu = f,

u = u0 at t = 0,

u = g on ∂Ω× [0, T ]

has a uniqueness solution in the class u ∈ C2(C) ∩ C(∂C).

Remark 20.6. One can also define viscosity sub/super-solutions for u USC/LSC. Moreover,
comparison property holds for sub/super-solutions, which is good for C0 coefficients and
nonlinear equations. Finally, one can prove existence using Perron’s method in this context.
The last step is easy to implement in this case while the hardest thing in the viscosity context
is to prove the comparison, especially in the nonlinear setting. Furthermore, one can also
prove higher regularity. From u ∈ C, one can prove u ∈ Cα and then u ∈ C1,α.

20.2 Strong maximum principle (in parabolic cylinders) and a mean value prop-
erty for heat equation

An obvious formulation is : if a solution u to Pu = 0 attains maximum inside at (t0, x0),
then u is constant. However, if we consider a mug with coffee, we can cool it off by adding
some boundary condition as time goes by. Therefore, u can be smaller after t0 without
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changing the maximum point (t0, x0). In other words, the solution cannot respond to the
changes in boundary until these changes happen.

Theorem 20.7 (Strong maximum principle). Assume c = 0. If (t0, x0) is a maximum point
in C \ ∂C, then u(t, x) is constant for all t ≤ t0.

The easiest proof is to use the mean value property when the coefficients are constant,
that is the heat equation ∂tu −∆u = 0, as we can write down the fundamental solution in
this case.

As the proof of the mean value property in the elliptic case, we write for φ ∈ D that∫
C

(∂t −∆)u · φdx dt =

∫
C

u · (−∂t −∆)φdx dt.

If we change C to other domains, then we need to consider boundary terms. If we want the
appearance of u(0, 0), the natural way is to expect (−∂t −∆)φ = δ0. Also, note that

K(x, t) = (4π|t|)−n/2ex
2/4t · 1t≤0

is the backward fundamental solution to heat equation, that is, the fundamental solution for
−∂t −∆.

Let us observe that in the mean value property for harmonic functions, the sphere is
actually the level set of the fundamental solution. This suggest us looking at the level sets

Er = {(t, x) : K(t, x) ≥ r−n},

where r > 0 is the spatial scale. We first roughly draw a picture for the region Er. Note that
Er ⊂ {t ≤ 0} and the equivalent condition for (t, x) ∈ Er is that ex

2/4t(−4πt)−n/2 ≥ r−n.
For fix x, r, the left hand side goes to 0 as t → 0−. On the other hand, if (t, x) ∈ Er, then

ex
2/4t ≤ 1 and hence −4πt ≤ r2. This tells us how deep Er is. Now we think of how wide

Er is. As x → ∞, ex
2/4t → 0, which violates the inequality. The best case scenario for t is

|t| ≃ r2 and therefore x2 ≃ r2 is the width we can expect. We sketch the picture below.

Though it looks like an ellipse, it is not. One can notice this from the fact that it is not
a quadratic touching at (0, 0) even if it looks like it does. By taking the natural log to

ex
2/4t(−4πt)−n/2 ≥ r−n, there is an extra logarithm term on t.

Theorem 20.8 (Mean value property for heat equation). For each r > 0,

u(0, 0) =

∫
Er

ωr(t, x)u(t, x) dx dt,

where the weight function satisfies ωr ≥ 0,

∫
Er

ωr dx dt = 1.
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Remark 20.9. The integral of ωr is equal to 1 comes for free since if this mean value property
works for all solutions, then in particular, it works for constant solutions u ≡ 1 and hence∫

Er

ωr dx dt = 1.

Proof. First, we force φ vanishes at the boundary ∂Er by selecting φ(t, x) = K(t, x)− r−n.
However, we need to change the normal derivative by adding another term

φ(t, x) = K(t, x)− r−n − c ln(K(t, x)rn),

which is still 0 on ∂Er but we furthermore require the property that ∇t,xφ · ν = 0 on ∂Er.
Note that the normal derivative of the level set ∂Er is given by

ν =
∇t,xK

|∇t,xK|
and hence we require

0 = ∂jφνj =
|∂jK(t, x)|2

|∇t,xK|

(
1− c

1

K(t, x)

)
, ∀(t, x) ∈ ∂Er, ∀j = 0, 1, 2, · · · , n,

where j = 0 corresponds to t. However, K(t, x) = r−n on ∂Er so that the constant c =
K(t, x) = r−n satisfies the requirement.

From the construction of K, we compute

(−∂t −∆)φ = δ0,0 − c(−∂t −∆) lnK = δ0,0 − c
|x|2

4t
.

Thus ωr(t, x) = c
|x|2

4t
= r−n |x|2

4t
, which completes the proof. □

Remark 20.10. From the computational result

ωr(t, x) = c
|x|2

4t
= r−n |x|2

4t
,

it is natural to view r as a scaling parameter.

From Theorem 20.8, we give a proof for the strong maximum principle, Theorem 20.7.
Proof of Theorem 20.7 : Recall in the assumption we assume u reaches the maximum M
at (x0, t0) ∈ C. For any (x1, t1) ∈ C ∩ {t ≤ t0}, we connect it with (x0, t0) ∈ C by a line
segment L. It is obvious that the set

S = {s ≥ t1 : u(x, t) = M for all points (x, t) ∈ L, s ≤ t ≤ t0}
is closed in L. On the other hand, for any (y, s) ∈ S, we can form a heat ball Er with (y, s)
as its top for some r sufficiently small so that Er ⊂ C. Then thanks to the mean value
property, we know S is open. Therefore, S = L and hence u ≡ M in C, which completes
the proof.
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Date: April 4, 2023

Last time, we proved the mean value property for the heat equation. The mean value
property also exists for variable coefficients. Specifically, we take ∂t−∂ia

ij∂j+bj∂j, where we
do not take the zeroth term since we want constant functions solve the equation. Therefore,
we can expect the weight function in the mean value property to have average 1. The proof
for the heat case applies to the variable coefficient case.

21.1 Harnack’s inequality - Statements

In the elliptic case, we proved that if

−∂ia
ij∂ju = 0,

u ≥ 0 in D, then for any K ⊂⊂ D,

max
K

u ≤ CD,K,a min
K

u.

In the parabolic case, we have to take into account the causality as what we did in the
mean value property. Given any parabolic cylinder C, for any parabolic cylinder K such
that K ⊂⊂ C and Ktop ⊂ Ctop. We consider

∂tu− Lu = 0, c = 0.

Then
max
K

u ≤ C̃min
Ktop

u

for u ≥ 0 in C, where the constant C̃ again depends on our configuration.
The essential idea of using the positivity of the Green’s function in C in the elliptic case also

works but we may need to compute the Green’s function carefully first. In [7, Chapter 7.1],
they use another way to prove the Harnack’s inequality. It illuminates a way of computations
for bounded measurable coefficients, in which case we cannot use the Green’s function.
Basically, by taking the natural logarithm, it suffices to prove this lnu(x1, t1) ≤ lnu(x2, t2)+γ
for all x1, x2 ∈ V , that is, we want to show the log of the function lives in the strip.
Moreover, Harnack’s inequality would give a simple alternative proof of strong maximum

principle. Also, one can upgrade the regularity of C0 solutions to Cσ for bounded measur-
able coefficients and Green’s parabolic coefficients as well, where the proof for the elliptic
counterpart can be found in [11].

21.2 Regularity of solutions for the heat equation

In the elliptic case, we proved that for any local solution u to −∆u = 0, u is smooth and
furthermore analytic. We consider{

(∂t −∆)u = 0 in R+ × Rn,

u(t = 0) = u0 ∈ E ′,

where it can be solved by u(t, x) = K(t, x) ∗x u0. Recall that the fundamental solution

K(t, x) = (4πt)−n/2e−|x|2/4t1t>0 is smooth for any t > 0 and hence u(t, x) ∈ C∞ in (0,∞)×Rn
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since the regularity of a convolution inherited from the best guy. Another observation is that
K(t, x) is analytic in both t and x in (0,∞)×Rn and is not analytic in t at t = 0 and uniformly
analytic in x as t → 0, by which we mean the coefficients in the series expansion are uniform
in x as t → 0. Therefore, u is analytic for all t > 0.

Indeed, to prove u is analytic, we use the Taylor’s inequality, that is, we need to show

sup|x|<R

∫
K(j)(x− y)f(y) dy

j!
|x|j → 0 (21.1)

as j → ∞. For f ∈ E ′, by the definition of distributions, we know that there exists some N
which depends on suppf such that for any |x| < R,∫

K(j)(x− y)f(y) dy ≲
∑
|α|≤N

sup
y∈suppf

|∂αK(j)(x− y)| ≲
∑
|α|≤N

sup
|x−y|∈B(0,R)+suppf

|∂αK(j)(x− y)|.

Then (21.1) holds as j → ∞.
However, the solution above is not a local solution. To consider a local solution in an

parabolic cylinder C. We define v = χu, where χ localized to C. Then

(∂t −∆)v = f := [(∂t −∆), χ]u,

where suppf is inside the transition region. The picture is like the one we have in Section 19.2.
This time, the inhomogeneous equation can be solved by v = K(t, x) ∗t,x f . For f ∈ E ′, we
only use K away from (0, 0) thanks to the support property of f , that is,

u(t, x) =

∫∫
f(s, y)K(t− s, x− y) ds dy.

Since K is analytic away from 0 for x, then u is analytic in x. However, u is not necessarily
analytic in t because each point in the transition region will have an impact for its future,
so it starts to affect u right away. One can think of this by adding sources away from the
cylinder region to change it. To make it work, we need to consider a boundary value problem
instead of a local solution.

There is no difference for the variable coefficient case as long as the coefficients are analytic.

Remark 21.1. It is inappropriate to apply the Cauchy-Kowalevski theorem here even if the
coefficients are all analytic since we need the assumption that the boundary condition is
non-characteristic and it is only suitable for initial value problem.

21.3 Behavior at infinity in space - Maximum principle in [0, T ] × Rn for the
heat equation

We discuss what happens as x → ∞. Note that the energy estimates require decay at ∞
and the maximum principle requires boundedness at ∞. However, we do not expect these
properties for u in general since if we consider the initial value problem, then

u(t, x) =

∫
u0(y)K(t, x− y) dy

is a global in time solution as long as u0 satisfies the property that for any ε > 0, there exists
Cε such that

|u0(y)| ≤ Cεe
ε|y|2 .
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For u0 such that

|u0(y)| ≲ eC|y|2 ,

one can solve up to t < 1
4C

. A trivial estimate for the fundamental solution of heat equation

shows it can be defined up to t < 1
16C

. More precisely, when 2|x| < |y|, so e−|x−y|2/4t ≤
e−|y|2/16t and hence

∫
K(x − y, t)u0(y) dy is well-defined up to t < 1

16C
. Given this, it is

natural to consider the following formulation for the maximum principle in the whole region:

Proposition 21.2. Suppose

(∂t −∆)u = 0 in [0, T )× Rn,

then

sup
[0,T ]×Rn

u = sup
x∈Rn

u(0, x),

provided |u| ≤ AeC|x|2.

Proof. We want to penalize u

uε = u− εv,

where the function v at least e2C|x|2 at infinity, which kills the growth of u at infinity and
allows us the apply the classical maximum principle in cylinders. We choose v by replacing
t 7→ t− T in the fundamental solutions, that is,

v = ε(4π(T − t))−n/2e|x|
2/4(T−t).

Thus, set

uε(x, t) := u− ε(4π(T − t))−n/2e|x|
2/4(T−t),

then we have

max
Cr

uε ≤ max
∂Cr

uε,

where Cr is the cylinder centered at x = 0 with radius r. Now we compute

max
∂Cr

uε(x, t) ≤ AeCr2 − ε(4πT )−n/2er
2/4T ≤ sup

Rn

u(0, x)

if C < 1/4T and r is sufficiently large. So sup[0,T1]×Rn u ≤ supx∈Rn u(0, x) when T1 < 1/4C.
One can do an induction on the time interval to view T1 as the initial time again to conclude
for general T < ∞. □

21.4 Unique continuation

Obviously, we have two aspects, time and space. In terms of time behavior, by solvability,
if the initial data is zero, then the solution is zero. Given a solution u in [0, T ], if we know
u(T ), can we find u(0), u[0, T ]? This goes by the name backward unique continuation.

Theorem 21.3. Suppose ut − ∆u + V u = 0 in Ω × [0, T ], u|∂Ω = 0, if u(T ) = 0, then
u([0, T ]) = 0.
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Proof. We still prove some type of Carleman estimate first. We claim

τ 1/2∥eτϕu∥L2 ≤ ∥eτϕ(∂t −∆)u∥L2 , (21.2)

where ϕ large on the top of the cylinder and ϕ small in the bottom. We try ϕ = ϕ(t) and
set v = eτϕu. Then it suffices to show ∥v∥L2 ≤ ∥Pτv∥L2 . We compute

Pτ = eτϕ(∂t −∆)e−τϕ = ∂t −∆− τϕ′(t),

where P a
τ = ∂t is anti-symmetric and P s

τ := −∆− τϕ′(t) is symmetric. We write

∥Pτv∥2L2 = ∥P s
τ v∥2L2 + ∥P a

τ v∥2L2 + 2 ⟨[P s
τ , P

a
τ ]v, v⟩L2

t,x
,

where [P s
τ , P

a
τ ] = τϕ′′. Thus we want ϕ increasing and convex. By choosing the simplest

function ϕ(t) = t2 −M for some constant M ,

⟨[P s
τ , P

a
τ ]v, v⟩L2

t,x
≥ τ∥v∥L2 .

which completes the proof of the Carleman estimate.
Now we turn to the proof of the unique continuation property. We select χ(t) compactly

supported in [0, T ] and χ ≡ 1 near T . Then we select an M properly such that ϕ(t) is
positive near T but negative in the transition region suppχ′ ×Ω. Let w = χu, then we have

∂tw −∆w + V w = −χ′(t)u,

which implies
τ 1/2∥eτϕw∥L2 ≲ ∥eτϕV v∥L2 + ∥eτϕχ′(t)u∥L2 .

By absorbing the first term on the right hand side to the left, we reach the estimate

τ 1/2∥eτϕw∥L2({ϕ>0}×Ω) ≲ ∥τ 1/2∥eτϕw∥L2 ≲ ∥eτϕχ′(t)u∥L2 ≲ ∥u∥L2(suppχ′(t)×Ω) ≲ 1.

However, let τ → ∞, then the left hand side blows up unless w ≡ 0 in {ϕ > 0} × Ω, which
proves the theorem. □

Remark 21.4. In this proof, we use −∆ symmetric, where we implicitly use the boundary
condition for u.

Theorem 21.5 (Strong unique continuation). Suppose u solves (∂t −∆)u − V u = 0 in Ω.
If u vanishes of infinite order at (t0, x0), then u vanishes at {t = t0}.

We cannot further apply the weak unique continuation to conclude anything backward in
time since we do not know boundary conditions. The Carleman estimate in this case is

∥t−τ−1e−|x|2/8tu∥L2 ≤ ∥t−τe−|x|2/8t(∂t −∆)u∥L2 ,

where τ is away from integers. The τ integers come from a change of variable t = es and
y = x/

√
t and the spectrum of the Hermite operator H = −∆y + |y|2.
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Hyperbolic equations

Date: April 6, 2023

First, we provide some examples of hyperbolic equations :

• The simplest case of hyperbolic equation is

∂tu = bj∂ju+ cu, u(0) = u0.

• Wave equation : {
□u = 0,

u(0) = u0, ∂tu(0) = u1,

where □ = −∂2
t +∆ is called the d’Alembertian. The variable coefficient case is given

by

gαβ∂α∂βu = f, (22.1)

where the Greek notation α, β means the summation over space and time (t, x) =
(x0, x1, · · · , xn).

• Hyperbolic systems : Suppose u : R × Rn → Rm, then ∂ju is a vector in Rm. Suppose
also Aj is an m×m matrix for any 1 ≤ j ≤ n. The equation

∂tu = Aj · ∂ju (22.2)

is called a hyperbolic system.

Remark 22.1. Note that not all equations of the forms (22.1) and (22.2) are wave equations
and hyperbolic systems, respectively. We need to impose some conditions on gαβ and Aj.

Remark 22.2. We care about hyperbolic systems since many physical problems are in a
system instead of a single equation.

(1) If we study a gas, we need to consider velocity and density together.
(2) In electromagnetics, we want to treat electric field and magnetic field at the same time.
(3) Imagine you have a solid that have elasticity, the motion of the solid’s oscillation has

three directions to move so we need to study three equations as a system.

Sometimes the system is first order while sometimes is second order.

22.1 Transport equation

The transport equation is a baby version of a hyperbolic system.
We consider

(∂t − bj∂j)u = c · u, (22.3)

where ∂t − bj∂j can be thought as a directional derivative along v = (1,−b1, · · · ,−bn) with
bj constants. Then the equation is equivalent to

∇x,tu · v = c · u.
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22.1.1 Constant coefficient case

For (0, x0) ∈ R1+n with x0 ∈ Rn, we consider

xt = x0 − tb.

If we are in the constant coefficient case, (22.3) becomes an ODE :

d

dt
u(t, xt) = c · u(t, xt),

which is able to write down the solution u(t, xt) = ectu(0, x0). By setting y = xt = x0 − tb,
we start from (t, y) and go backward to initial time, then we derive

u(t, y) = ectu0(y + bt).

22.1.2 Variable coefficient case

Now we consider the variable coefficient case. Suppose v = (1,−b(t, x)) depends on time,
then we need to work with curves instead of lines such that our vector field v tangent to the
curves. Then it is natural to introduce the notion of characteristics.

Definition 22.3. Characteristic curves are those curves that are tangent to v at every point.

For any t, xt is given by
d

dt
xt = −b(t, xt),

which is a system of ODEs.

We couple these with our equation, which gives an ODE in n+ 1 components{
d
dt
xt = −b(t, xt),

d
dt
u(t, xt) = cu(t, xt).

(22.4)

This system is actually decoupled since in principle, we can solve the first n nonlinear
equations first and then solve the last one. Later, when we discuss nonlinear hyperbolic
scalar equation such as the Burger’s equation, we still have a similar system. However, it is
not possible to decouple them in such a simple way.
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Remark 22.4. The uniqueness of solutions to ODEs ensures that the characteristics cannot
intersect or merge at some point.

22.2 Recap of the wave equation

22.2.1 Fundamental solutions

For □ = −∂2
t +∆x, the forward fundamental solution is given by

□K(t, x) = δ(0,0), suppK ⊂ {t ≥ 0}.
In fact,

suppK ⊂ {(t, x) : t2 ≥ x2, t > 0} := C

and this relates to the finite speed of propagation. Thanks to homogeneity, we know K
is homogeneous of 1 − n. (Note that the fundamental solution of Laplacian equation is
homogeneous of 2− n.)

In 1 dimension,

K(t, x) =

{
1
2
, {(t, x) : t2 ≥ x2, t > 0},

0, {(t, x) : t2 < x2, t > 0},
where □ = (∂t − ∂x)(∂t + ∂x) is a product of transport operators. In 2 dimensions,

K(t, x) =
1

2π

1√
t2 − x2

|C

and for higher dimensions, K cannot be viewed as a function. In 3 dimensions, we have

K(t, x) = c3δt=|x|,

where the support is on the cone. This is called the Huygens principle and this is a phenom-
enon only true for constant coefficient case. When n is even,

K(t, x) = cn · (t2 − x2)
1−n
2

+ .

When n is odd,

K(t, x) = cn · t
1−n
2 δ

(n−3
2

)

t=|x| .

22.2.2 Duhamel’s formula

For {
□u = f,

u(0) = u0, ∂tu(0) = u1,

we can solve by the fundamental solution for t ≥ 0 :

u = K ∗t,x f +K(t) ∗x u1 + ∂tK(t) ∗x u0.

Since K(t) ∈ E ′(Rn), so we can solve by this formula for any u0, u1 ∈ D′. Moreover, due
to the support property of K, if we choose f ∈ D′ with suppf ∈ {t > 0}, then K ∗t,x f is
also well-defined. One can also relate this property with the finite speed propagation. Due
to the finite speed propagation, we don’t need to care about what happens at x → ∞ at
initial time if we want to solve in a finite time, so we can choose D′ initial data.
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22.2.3 Symmetries of the wave equation

In the end, we recall the symmetries of the wave equation. First, the rigid spatial rotations
are symmetries for the wave equation. On the other hand, we can also mix space and time
together and consider the transform yα = Aα

βx
β. Those A’s such that □ is unchanged are

such that
AMAT = M,

where □ = mαβ∂α∂β. These A’s are called Lorentz group, whose generators are space
rotations and Lorentz boosts L = xj∂0 + t∂j. In 1 dimension, we consider

u =
1

2
(t− x), v =

1

2
(t+ x),

then
∂2
t − ∂2

x = ∂u · ∂v,
where u 7→ λu, v 7→ λ−1v leaves the □ unchanged. The level sets

u · v = t2 − x2 = const

are hyperbolas. Lorentz boosts leaves these unchanged.
Conserved energies : The energy is given by

E[u](t) =

∫
1

2
|∂tu|2 +

1

2
|∇xu|2 dx,

d

dt
E(u) = 0,

where the first one is the kinetic energy and the second one is the potential energy. The
momentum is given by

Pj(u) =

∫
∂tu · ∂ju dx,

d

dt
Pj(u) = 0.
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Conserved quantities for wave equations - 1

Date: April 11, 2023

In today’s lecture, we use the convention □ = ∂2
t −∆. We forget the fundamental solution

for a moment and want to use the energy estimates to study{
□u = f in R× Rn,

u(0) = u0, ∂tu(0) = u1.

We define

E[u] =
1

2

∫
|∂tu|2 + |∂xu|2 dx,

and last time we showed that ∂tE[u] = 0, which gives us a conservation law. But a con-
servation law only tells us that if an integral quantity is conserved, then the energy at each
time is the same. However, we don’t know how much energy goes there and how much goes
to the other place. To describe this, we want to study the density-flux relations

∂tρ = ∂jfj,

which describes how the density ρ of some gas is moving around. Here, F = (f1, · · · , fn) is a
vector field, representing the flux, which tells us how much gas is incoming/outgoing of the
domain we are interested in. Combined with the divergence theorem, this relation implies
that

d

dt

∫
ρ = 0.

23.1 Energy-momentum tensor

Given this philosophy, we want to see how the energy moves around. We define the energy
density of a function u as

e(u)(x) =
1

2

(
|∂tu(x, t)|2 + |∂xu(x, t)|2

)
and E is the integral of this quantity. We compute

∂te = ∂tu ·∂2
t u+∂t∂ju ·∂ju = ∂tu ·□u+∂tu∂j∂ju+∂t∂ju ·∂ju = ∂j(∂tu ·∂ju)+□u ·∂tu (23.1)

Inspired from the result produced by this computation, we also define the momentum density
by

pj(u) = ∂tu · ∂ju
and the momentum is given by

Pj(u) =

∫
∂tu · ∂ju dx.

The density flux relation for the momentum is analogous. Indeed,

∂t(∂ju · ∂tu) = ∂j∂tu · ∂tu+ ∂ju · ∂t∂tu = ∂ju ·□u+ ∂ju · ∂k∂ku+ ∂j∂tu · ∂tu

=∂ju ·□u+
1

2
∂j|∂tu|2 + ∂k(∂ju · ∂ku)− ∂j∂ku · ∂ku
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and hence

∂tpj(u) = ∂k(∂ju · ∂ku) +
1

2
∂j

(
|∂tu|2 − |∂xu|2

)
+ ∂ju ·□u. (23.2)

Recall that the Lagrangian interpretation for the Laplacian equation is to minimize
∫
|∇u|2.

The reason why we group |∂tu|2 − |∂xu|2 together is that this is just the Lagrangian for the
wave equation.

Now we introduce a matrix, which has some geometric flavor - energy momentum tensor
Tαβ. The reason why it is called a tensor is that it is invariant under a change of coordinates.
For now, we do not need to worry about this and can think of this as a matrix. We want to
use this to rewrite our n+ 1 conservation laws. We seek Tαβ such that

∂αT
αβ = □u · ∂βu,

where ∂βu = mαβ∂αu. We define

Tαβ =


e p1 p2 · · · pn

p1 |∂1u|2 + 1
2
(|∂tu|2 − |∂xu|2) ∂1u∂2u · · · ∂1u∂nu

· · · · · · · · · · · · · · ·
pn ∂nu∂1u ∂nu∂2u · · · |∂nu|2 + 1

2
(|∂tu|2 − |∂xu|2)

 ,

(23.3)
where the derivative of the first column can be written into a combination of the following
columns thanks to the computation we did in (23.1) and (23.2). This is not a good way
to represent the matrix and we want to write it in a more condensed way. Notice that for
α = β ̸= 0,

Tαβ = ∂αu∂βu+
1

2
(|∂tu|2 − |∂xu|2)

and the energy density e can be written into a similar form

e =
1

2
(|∂tu|2 + |∂xu|2) = |∂tu|2 −

1

2
(|∂tu|2 − |∂xu|2).

At the end of the day, we write the whole matrix in a geometric flavor way by

Tαβ = ∂αu∂βu− 1

2
mαβ∂γu∂γu. (23.4)

Last time, the d’Alembertian is □ = ∂2
t −∂2

x. However, going forward, we use □ = −∂2
t +∂2

x =
mαβ∂α∂β = ∂α∂α as the definition. We redo the computations by using this geometric
notation :

∂αT
αβ = ∂α∂

αu · ∂βu+ ∂αu · ∂α∂βu−mαβ∂α∂γu · ∂γu

= ∂α∂
αu · ∂βu+ ∂αu · ∂α∂βu− ∂β∂γu · ∂γu = □u · ∂βu.

(23.5)

Example 23.1 (Energy conservation). Suppose we have a strip S in the spacetime region
between t = T and t = 0.
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From ∂αT
αβ = 0, we know ∫

S

∂αT
αβ = 0.

This implies ∫
t=T

T 0β =

∫
t=0

T 0β.

If β = 0, then we get the conservation of energy and if α = 0, then we get the conservation
of momentum.

23.2 Finite speed of propagation

Now we want to use the energy momentum tensor to prove the finite speed of propagation,
that is, data in I determines solution in C.

Furthermore, this is equivalent to say if the initial data is zero in I, then u = 0 in C. We
consider the truncated cone C[0,T ] and compute∫

C[0,T ]

∂αT
α0 = 0,

which gives ∫
CT

Tα0Nα +

∫
∂C[0,T ]

Tα0Nα +

∫
C0

Tα0Nα = 0

and hence∫
C0

e dx =

∫
CT

e dx+

∫
∂C[0,T ]

(T 00, T 10, · · · , T n0) · 1√
2
(1, e⃗r) =

∫
CT

e dx+
1√
2

∫
∂C[0,T ]

(e+ e⃗r ·p).

By our assumption, the left hand side is zero and
∫
CT

e dx is positive, so it suffices to show
the positiveness of the last term. We compute

e+ e⃗r · p =
1

2
(|∂tu|2 + |∂xu|2)− er · ∇u · ∂tu ≥ 0

where the positiveness follows from the Cauchy-Schwartz inequality since er is a unit vector.
This completes the proof of finite speed of propagation. In fact, one can actually do some
algebra to show that

e+ e⃗r · p =
1

2
|∇Tu|2,

where ∇T is the tangential derivative. This is easy to prove since one can just assume
er = (0, 1, 0, · · · , 0) without loss of generality thanks to the rotational symmetry.
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Now we want to discuss a more general case where we change the cone to a region between
any two hypersurfaces Σ and {t = 0}. In fact, the previous computation is pretty robust
and we want to find the hypotheses we need to make the finite speed propagation work in
this region. It turns out that we need Σ to be spacelike.

We want to show that we can determine u|Σ from u|{t=0}. Thanks to the divergence theorem,
we obtain ∫

t=0

e dx =

∫
Σ

NαT
α0 dx.

As what we did in the previous computation, if

N2
0 ≥

∑
N2

j , (23.6)

that is, the size of the temporal part of the normal controls the size of the spatial part of
the normal, then we know that the right hand side is positive definite and thus implies the
finite speed of propagation. However, the relation (23.6) written in this way not elegant. In
fact, it is equivalent to

mαβNαNβ ≤ 0

and it motivates the following definition.

Definition 23.2. We say Σ is spacelike if |N |2 < 0 and time-like if |N |2 > 0. We say Σ is
null or characteristic if |N |2 = 0.

Remark 23.3. In fact, we need to distinguish N and X since in geometry, the normal N is a
co-vector and X is a vector. The vector perpendicular to the ∂C[0, T ] is actually inside this
surface since it is a null surface.

Moreover, the previous computation goes through by applying divergence theorem in the
Euclidean space. Instead, we can try to compute in a more geometric way. However, this
may involve a slight issue that we cannot induce a measure on the null surface uniquely since
the metric is degenerate when it is restricted to the null surface. However, the area form
nβ dS remains well-defined in the limit and one can refer to [21, Section 2.5].

In this setting, the constant t slices do not make so much sense. We can state a better
local well-posedness. We compute∫

Σ0

NαT
α0 dσ =

∫
Σ1

NαT
α0 dσ.

If Σ1,Σ0 are spacelike, then we have these two positive definite quantities. We will discuss in
detail next time. There is also no point of multiplying ∂tu, where ∂t is a pretty specific choice.
Instead, we can use Xu as a multiplier as long as the vector field X can be transformed to
be ∂t by a Lorentz transform, which means that X is time-like.

Definition 23.4. We say X is time-like if |X|2 < 0 where we have forward and backward.
X is null if |X|2 = 0 and X is spacelike if |X|2 > 0.
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Conserved quantities for wave equations - 2

Date: April 13, 2023

Last time, we discussed the energy-momentum tensor

Tαβ = ∂αu∂βu− 1

2
mαβ∂γu∂

γu, (24.1)

where ∂αT
αβ = □u · ∂βu, which is verified in (23.5). Here β = 0 corresponds to the energy

conservation while β ̸= 0 corresponds to momentum conservation.

24.1 Deformation tensor of the wave equation

24.1.1 Deformation tensors

Since ∂0 is not invariant under the Lorentz transformation, so we consider more general
vector field. Suppose X is a vector field X = Xα∂α, then we define a co-vector Xβ = mαβX

α.
Multiplying (24.1) by Xβ, we get

∂αT
αβ ·Xβ = □u ·Xβ∂

βu = □u ·Xβ∂βu, (24.2)

and we can see from the symmetry of Tαβ that

∂α(T
αβXβ) = □uXβ∂βu+ Tαβ∂αXβ = □uXβ∂βu+ Tαβ 1

2
(∂αXβ + ∂βXα),

where we symmetrize ∂αXβ in the last step and it has a geometric meaning.

Definition 24.1. The deformation tensor of X is given by

πX
αβ = ∂αXβ + ∂βXα.

In geometry, by the definition of Lie derivatives LX along X of the Minkowski metric g,
we have

LX(g(∂α, ∂β)) = (LXg)(∂α, ∂β) + g(LX∂α, ∂β) + g(∂α,LX∂β),

and thus

(LXg)αβ = ∂αX
µgµβ + ∂βX

µgµα = ∂αXβ + ∂βXα.

The geometry interpretation of the deformation tensor is as follows. We have a vector
field X, which determines a flow, like what we discussed for the transport equation. One
can look at the flow lines x(s) of the vector field X given by

ẋα = Xα(x)

and the deformation tensor measures to what extent the Minkowski space is left invariant
with respect to the flow of X. See the definition of Lie derivatives in [18, Chapter 1] . One
can view the flow as a mapping x → S(t)x from Rn → Rn, where we map g correspondingly.
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Given data on the initial surface Σ0 and suppose that we can solve up to Σ1. Then we
integrate both sides to obtain∫

Ω

∂α(T
αβXβ) dx =

∫
Ω

□uXβ∂βu+ πX
αβT

αβ dx, (24.3)

where the left hand side, by the divergence theorem, is∫
Σ1

nαT
αβXβ dσ −

∫
Σ0

nαT
αβXβdσ,

where we choose n as forward normal to the surface.
We can think of

∫
Σi
nαT

αβXβ dσ as the energy measured with respect to the vector field
X for i = 0, 1 since for X = ∂t, it just gives the energy while X = ∂j, it corresponds to the
momentum. We would like it to have it to be positive definite so that the size of the solution
can be controlled by this quantity. Though we want the energy to be conserved, but the
right hand side of (24.3) is probably not zero. It naturally reminds us two questions to ask :

(1) Is nαT
αβXβ positive definite?

(2) When does X give an exact conservation law?

From the previous discussion, X = ∂t gives the real energy, so it is positive definite.
However, for X = ∂j, it is the momentum and hence it is not positive definite. The first one
can be addressed by the following proposition.

Proposition 24.2. Assume X is forward time-like and Σ is spacelike, then

nαT
αβXβ

is positive definite, where n is a forward normal.

Proof. One can think of a geometric proof (using the Lorentz transform) or a purely algebraic
proof. We leave the proof of this as a HW problem. □

Remark 24.3. This proposition is not true for the corresponding energy-momentum tensor
for Schrodinger equation and many other equations. However, it is already general enough
since it also works for variable coefficients wave equations.

24.1.2 Killing vector fields in Minkowski space

For the second question, if the source term □u = 0 and πX = 0, then we know that the
energy is conserved thanks to (24.3). We want to find some flows such that the d’Alembertian
remains unchanged under such flows. Recall that πX

αβ = ∂αXβ+∂βXα. The simplest examples
are X = ∂t, ∂j, which correspond to a translation forward in time and a translation flows in
the j direction, respectively. For the rest of the examples, let’s think this backwards. We
start from our symmetries and then try to find what is the corresponding vector field. One
example of symmetry is the rigid rotation, where X = xi∂j − xj∂i corresponds the rotation
in the plane determined by i, j. Now recall that in the Lorentz group, besides rigid rotations,
we have the Lorentz boosts (Lorentz rotations), where the picture looks like squeezing in
one direction and expanding in the other, which are given by X = xj∂0 + x0∂j. Since all
these symmetries leave the metric −dt2 + dx2 the same, X are all Killing. However, for
the vector field S = t∂t + x∂x generated by the scaling symmetry, it is not Killing since
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the corresponding change on the metric −dt2 + dx2 is conformal. One can verify that S is
conformal Killing, that is, LSg = cg with some c.
Recall that πX = LXg for the Minkowski metric g, so πX = 0 implies that X is Killing.

24.2 Variable coefficient wave equations

If we proceed as the second order elliptic operators, then we write

P = −gαβ∂α∂β + bα∂α + c.

The first thing we need to impose conditions such that it is a wave equation. We say P
is a wave operator if gαβ has signature (n, 1). The principal symbol is p(x, ξ) = gαβξαξβ.
Moreover,

(gαβ)−1 = (gαβ),

where gαβ is the associated metric ds2 = gαβdx
αdxβ.

We define the energy-momentum tensor

Tαβ = ∂αu∂βu− 1

2
gαβ∂γu∂

γu.

Recall that in the constant coefficient case, the equation (24.2) we have is not true anymore.
Instead, in the variable coefficient case, we have extra terms like ∇g · (∇u)2. Moreover, if
we take a vector field X and contract Tαβ with X, we get

∂α(T
αβXβ) = ∂α∂αu ·Xu+

1

2
(∂αXβ + ∂βXα)T

αβ +∇g(∇u)2. (24.4)

As before, we consider exactly the same picture and integrate both sides over Ω to get∫
Σ1

nαT
αβXβ −

∫
Σ0

nαT
αβXβ =

∫
Ω

∂α∂αu ·Xu+
1

2
(∂αXβ + ∂βXα)T

αβ +∇g(∇u)2.

Now we need to focus on the same two questions again. Note that even though we are in the
variable coefficient case, nothing changes in Proposition 24.2 and it still holds since it is just
a point-wise property and does not involve how the metric changes. The proof is exactly the
same after we make a linear change of coordinates to change it back to Minkowski metric at
one single point you are interested in. We classify surfaces as follows :

(1) Σ is spacelike if gαβNαNβ < 0;
(2) Σ is null (characteristic) if gαβNαNβ = 0;
(3) Σ is time-like if gαβNαNβ > 0;

Remark 24.4. The reason why we call null also by characteristic is that somehow a plane is
characteristic means that the solution has a jump at this plane. For example, for N = ∇u,
Nαm

αβNβ = 0 is exactly the condition which leads to the nonexistence of δ′Σ when we try to
compute □u at the plane when u has a jump from the left to the right. Therefore, the case
when P is null is the only case that □u = 0 can have a solution with a plane P separating
the solution at which u has a jump.

Remember that even if we have an energy estimate, it is not good enough to derive a local
well-posedness theory. Suppose we have time-slices as foliations, which corresponds to the
t-slices in the Minkowski case, where Σt0 = {t = t0} are spacelike. We want to start with
spacelike surfaces and all the way through spacelike surfaces.
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At every point, we still have a propagation cone. To prove a good energy estimate, we require
our vector field X to be in this cone. The property Σt0 is spacelike requires the cones are
pointing up. We also need to choose X and this time ∂t may not be a good choice this time.

We just do a heuristic computation. Instead of integrating over space-time region, we
integrate both sides of (24.4) purely in x without integration in time involved so that we
obtain

∂t

∫
T 0βXβ dx =

∫
f ·Xudx+

∫
(∇g,∇X)(∇u)2 dx (24.5)

where we assume gαβ∂α∂βu = f for simplicity. Since
∫
T 0βXβ dx ≃

∫
|∇t,xu|2 is comparable

to E(u)(t) and hence

RHS ≤ ∥f∥L2∥∇u∥L2 + (∥∇g∥L∞ + ∥∇X∥L∞)∥∇u∥2L2 .

Finally, we write

d

dt
E(u) ≲ ∥f∥L2(E(u))1/2 + (∥∇g∥L∞ + ∥∇X∥L∞)E(u).

We assume furthermore g,X are Lipschitz. If f = 0, then we can apply Gronwall’s inequality
directly. If f ̸= 0, we compute

d

dt

√
E(u) ≤ ∥f∥L2 + C

√
E(u)

and hence

E(u)(t) ≤ E(u)(0)eCt + ∥f∥L1
tL

2
x
eCt.

Remark 24.5. Recall that the energy estimates for the elliptic case, we require the coefficients
to be bounded. Here, we need to have g ∈ Lip.

In the case for bounded region, we make a rigorous computation to present the preceding
idea. This is in fact a homework problem.

Proposition 24.6. Consider a wave equation

gαβ∂α∂βu = 0

with a Lipschitz metric in a cylinder Ω× [0, T ] , with initial data

u(t = 0) = u0, ∂tu(t = 0) = u1

and Dirichlet boundary condition

u(t, x) = 0 in [0, T ]× ∂Ω.
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Assume that the surfaces t = const are space-like, and that the lateral boundary [0, T ]× ∂Ω
is time-like. Then prove that energy estimates hold for this problem. [Hint: Think of what
vector field X you would use as a multiplier.]

Proof. First, we notice that all the computations work out as in (24.5). The only thing we
need to prove is to select some X bounded and Lipschitz such that∫

Ω

T 0βXβ dx ≃
∫
Ω

|∇t,xu|2 dx.

Note that if we want some Y such that ⟨Y, ∂j⟩ = 0 for j = 1, 2, 3 on the initial surface
Ω × {t = 0}, then Y is timelike since ∂1, ∂2, ∂3 are spacelike. This requires Y αgαj = 0. On
the other hand, Y δ = Y αgαβg

βδ = Y αgα0g
0δ = Y0g

0δ. So we know that Y = g0δ∂δ = ∂0

is timelike at Ω × {t = 0}. Then
∫
Ω
T 0βXβ dx =

∫
Ω
T (∂0, X) dx is positive definite and is

comparable to
∫
Ω
|∇t,xu|2 dx as long as we choose X to be forward timelike as well.

Since ∂α(T
αβXβ) = fXu+ (∇g,∇X)|∇u|2, we first naively want to choose X such that

• X forward timelike;
• T jβXβNj ≥ 0 with N the conormal in the Euclidean sense for the boundary ∂Ω× [0, T ].

Note that we have the Dirichlet boundary condition, so if we choose X tangent to the
boundary, then Xu = 0. Since ∂Ω × [0, T ] is timelike, so we can choose a forward timelike
vector field X near the parabolic boundary satisfying the requirements at least.

However, we do not want the Euclidean conormal. So we use the divergence theorem in
the Lorentz setting directly by∫

Ω

∂j(T
jβXβ) dx =

∫
Ω

div (
1√
|g|

T ·βXβ)
√

|g| dx =

∫
∂Ω

T jβXβNj
1√
|g|

dS

= −1

2

∫
∂Ω

⟨N,N⟩⟨X,N⟩∂γu∂γu
1√
|g|

dS,

where N is the Lorentz normal of Ω× {t}. So ⟨X,N⟩ = 0. □

Theorem 24.7. Assume g ∈ Lip with (n, 1)-signature and we have nice spacelike surface
foliations. Then the wave equation □gu = f ∈ L1

tL
2
x is uniquely solvable in u ∈ CtH

1 and
ut ∈ CtL

2. To avoid the cumbersome two step notations, we introduce the notation

u[t] = (u(t), ∂tu(t)),

and then we require u[·] ∈ C(H1 × L2).

We will discuss the proof of this in next class, which is a basic theorem about the local
well-posedness of second order hyperbolic variable coefficient equations.

One can also refer to [16].



104 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

Wrap-up for second order hyperbolic equation and set-up for hyperbolic
systems

Date: April 18, 2023

Last time, we introduced the notation □g = gαβ∂α∂β, where g has signature (n, 1), which
is a pseudo-Riemannian metric. Also, we assume g ∈ Lip and we consider □gu = f . The
basic setup is to assume the initial data is

u(t = 0) = u0, ∂tu(t = 0) = u1.

Furthermore, we make the simplifying assumption that the surface t = const are spacelike.

25.1 Local theory for second order variable coefficient hyperbolic equations

Theorem 25.1. Assume (u0, u1) ∈ H1 × L2 and f ∈ L1
tL

2
x, then there exists a unique local

solution u such that u ∈ CtH
1 and ∂tu ∈ CtL

2.

Remark 25.2. This is a local result and we do not need to worry about the behavior as
x → ∞ because of finite speed of propagation.

Moreover, we have the energy estimates

∥(u, ut)(t)∥Ḣ1×L2 ≲ ∥(u0, u1)∥H1×L2 + ∥f∥L1L2 .

Recall that in order to use the duality method to show the local existence, one needs to
prove an energy estimates in L2 ×H−1, which can be found in [20]. There are also ways to
go around this such as the one in [7] or one of the book in the series by Michael Taylor. We
would not prove it but we will discuss the proof of hyperbolic system later.

Here is also an extension of this result is the higher regularity :

Theorem 25.3. Assume g ∈ Ck, (u0, u1) ∈ Hk ×Hk−1, f ∈ L1
tH

k−1
x . Then u ∈ CHk, ∂tu ∈

CHk−1.

Proof. For the corresponding energy estimates, we differentiate the equation k−1 times and
apply the H1 × L2 estimates. □

For more about variable coefficient wave equation, one can also refer to [2].

25.2 Comments on boundary value problems

Next, we briefly talk about the boundary value problem. Suppose we have the space-time
cylinder C = Ω× [0, T ] and we focus on the wave equation. The bottom and top should be
spacelike and the lateral boundary should be a time-like surface, which is a requirement for
the causality.
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Imagine the wave emits from the bottom and when the wave hits the boundary, it reflects.
The boundary condition tells you how it reflects. The phase shift in the Dirichlet case is
different the one in the Neumann case.

There is another way to formulate an initial value problem which lets it look like a bound-
ary value problem. One can look it up on Wikipedia by searching “Goursat problem”.

25.3 Differential geometry setup

Now we briefly discuss how to set up a wave equation in differential geometry, which
also works for the Laplacian operator. Here, geometric means that it does not depend on
the coordinates. In the elliptic case, the operator is the Laplace-Beltrami operator ∆g =

1√
|g|
∂i
√

|g|gij∂j if g is Riemannian. While g is Lorentz, we say □g, which is defined in the

same way, is the covariant d’Alembertian.
One can compute

∇αT
αβ = □gu · ∂βu,

where the ∇α is the covariant derivative with respect to the Levi-Civita connection. This
means that there is no lower order terms if one phrase the problem in geometry. We compute
by using the properties listed in [21, Exercise 6.5] as follows :

∇αT
αβ = ∇α(∂

αu∂βu− 1

2
gαβ∂γu∂

γu) = □gu∂
βu+ ∂αu∇α∂

βu− 1

2
gαβ∇α∂γu∂

γu− 1

2
gαβ∇α∂

γu∂γu

= □gu∂
βu+∇αu∇α∇βu−∇β∇γu∇γu = □gu∂

βu,

where in the last step, we use the zero torsion property in [21, Exercise 6.5]. Here, □gu =
∇α∇αu instead.

Since the divergence ∇αX
α of any vector field X satisfies

∇αX
α = ∂αX

α

when
√
g = const. However, it does not work for 2-tensors ∇αT

αβ ̸= ∂αT
αβ. Instead, we

contract it with X first and consider

∇α(T
αβXβ).

25.4 Nonlinear wave equations

For □u = up, it is a semi-linear wave equation. For □g(u)u = · · · , it is a quasi-linear
equation. One can also prove local well-posedness for these equations.

As an example, we discuss the Einstein equation. The Einstein equation in general rela-
tivity is supposed to describe our spacetime. In other words, the unknown here is the metric
itself. To write the equation, we write an equation to each component. For each α, β, we
have the equation of the form

□gg
αβ = Γ(g) · (∇g)2.

The catch here is you need to first choose a coordinate and then formulate the equation.
This goes by the name gauge choice.



106 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

25.5 First order hyperbolic systems

Suppose u : R× Rn → Rm, we consider

∂tu = Aj∂ju+ f, (25.1)

where Aj is a m×m matrix for each j. The easiest case is the constant coefficient case, that
is, Aj’s are all constants. Moreover, if Aj = Aj(x, t), then it is the variable coefficient case
while Aj = Aj(x, t, u) corresponds to the quasi-linear case. Note that this is first order in
time, so we do not need the initial velocity to formulate an initial value problem.

25.5.1 Definition of hyperbolic systems

First, we need to determine when (25.1) is hyperbolic. To motivate, we look at the constant
coefficient ones with real coefficients so that we can apply the Fourier transform in x and
obtain an ODE system

∂tû(t, ξ) = iAjξjû(t, ξ).

Recall that in ODE theory, to solve this equation, we need to look at the eigenvalues of
Aj. For each ξ, ξjA

j has the same family of eigenvalues multiplied by Aj. For instance, if
λm, vm’s are eigenvalues and eigenvectors of Aj, then the solution is of the form

û(t, ξ) =
∑

cm(ξ)e
itλm(ξ)vm(ξ)

provided that Ajξj is diagonalizable. (Here, it is a sum over j.)
If Imλm < 0, then there are no solutions since it has an exponential growth in the exponent,

which is like to solve a heat equation backwards. However, if we change ξ → −ξ, λm will be
turned into −λm and therefore, the case Imλm > 0 is also a bad case scenario.

Definition 25.4. We say that the system is hyperbolic if the matrix Ajξj only have real
eigenvalues.

Unfortunately, this requirement cannot ensure the well-posedness of (25.1). Also, the
existence of Jordan blocks is also bad since we want it to be diagonalizable. One also should
pay attention to the phenomenon that polynomials have multiple roots and it corresponds
to the non-smoothness of eigenvalues and eigenfunctions of a matrix.

If the eigenvalues are different, then the speed of propagation are different, so their cones
are disjoint (the last picture). When the eigenvalues are multiple, they might intersect and
then it will be very hard to write out the fundamental solutions where we need to use the
stationary phase method.

A naive definition is that we can say that the system is strictly hyperbolic if the eigenvalues
Aj’s are real and distinct.
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Recall that a real symmetric matrix only has real eigenvalues, so it motivates the following
definition.

Definition 25.5. We say that the system is symmetric hyperbolic if all Aj’s are real sym-
metric.

Remark 25.6. The same definition works for higher order hyperbolic systems with Aj’s are
the coefficients of all the derivatives. To distinguish the wave equations and the hyperbolic
equations, we need to study and view the determinant |τI −Ajξj| as the principal symbol if
one want to view the system as an equation. If the symbol is like the wave symbol (signature
n, 1), then we say it is a wave equation. So hyperbolic systems may not be a wave equation
while wave equations are hyperbolic systems.

Remark 25.7. In the case of Maxwell equation, if we choose Coulomb gauge and put Ar = 0,
it even loses the finite speed of propagation since some ∂2

t terms are missing and some
equations are more like an elliptic equation.

25.5.2 Well-posedness of first order linear hyperbolic systems

Theorem 25.8. Suppose Aj = Aj(x) ∈ Lip and symmetric. Then the hyperbolic system
(25.1) is well-posed in L2 : for each u0 ∈ L2, f ∈ L1

tL
2
x, there exists a unique solution

u ∈ CtL
2
x.

Energy estimates : We prove the energy estimates first. Let

E[u] = ∥u∥2L2 =

∫
|u|2 dx

and we compute
d

dt
E[u] = 2

∫
u∂tu dx = 2

∫
u(Aj(x)∂ju+ f) dx.

Now we take advantage of the symmetric property of Aj, we have

2uAj(x)∂ju = ∂j(u · Aju)− u · (∂jAj)u.

By integrating both sides, we have

d

dt
E[u] = −

∫
uT (∂jA

j)u+ uf dx ≤ C

∫
|u|2 dx+ ∥u∥L2∥f∥L2 ,

where we use ∂jA
j ∈ L∞. Then we write the inequality with respect to d

dt

√
E(u), then by

Gronwall’s inequality,

sup
t∈[0,T ]

∥u(t)∥L2 ≲ ∥u0∥L2
x
+ ∥f∥L1

tL
2
x
.

From the energy estimates, the uniqueness follows immediately.
Duality method : Moreover, we can also replicate the proof of parabolic equation to

show existence. We denote P = ∂t − Aj∂j. Then we compute∫ T

0

∫
Rn

Pu · v dx dt =
∫

u · v dx|T0 +

∫ ∫
u(−∂t + ∂jA

j)v dx dt,
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where the adjoint operator P ∗ = −∂t+∂jA
j appears in the step above. For the term ∂j(A

jv)
in the adjoint problem, it is fine since ∂jA

j ∈ L∞. Another thing we need to be careful is
that one is forward-in-time and the other one is backward-in-time. However, this does not
affect anything since one only need to change the symmetric matrix A to another symmetric
matrix −A. The only difference between the proof for this and the proof for the parabolic
case is that one needs to change the space L1L2 + L2H−1 in the parabolic case to purely
L1L2. Then one can just mimic the proof to obtain existence in L∞L2. Moreover, ∂tu is
L∞L2, so u ∈ CtL

2
x. One can also see [19, Chapter 7].
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First order hyperbolic systems - Finite speed of propagation, Quasilinear
systems, Hadamard type well-posedness

Date: April 20, 2023

Last time we proved that a symmetric hyperbolic equation

∂tu = Aj∂ju, u(0) = u0,

is L2 well-posed by using energy estimates. The essence is to prove

d

dt
∥u∥2L2 ≤ ∥∂A∥L∞∥u∥2L2

and to use Gronwall’s inequality if Aj ∈ Lip.

26.1 Finite speed of propagation for symmetric hyperbolic systems

The following theorem indicates why we call this system hyperbolic.

Theorem 26.1. Finite speed of propagation holds for symmetric hyperbolic system.

Proof. In other words, we want to prove that if the data is known in a compact region in
{t = 0}, then the solution u is determined in D, where D is a region enclosed by {t = 0}
and Σ.

Step 1 : If Aj’s are all constant
First, we assume Aj’s are all constant functions. Then we can compute

0 = 2

∫
D

u(∂t − Aj∂j)u dx dt =

∫
D

∂t|u|2 − ∂j(A
ju · u) dx dt

We denote the normal to the surface Σ by N = (N0, N
′) to be chosen (Σ to be chosen).

Then it follows from divergence theorem that∫
t=0

|u|2 dx =

∫
Σ

N0|u|2 −Nj · (Aju · u) dx.

We want the property that u = 0 at t = 0 would imply u = 0 on Σ. This requires the right
hand side to be positive definite. We need (NjA

j)u · u < N0|u|2. We need λm ≤ N0, where
λm’s are eigenvalues of NjA

j. It is true if |Nj| ≪ N0, that is, by choosing the slope of Σ
small enough.

Step 2 : If Aj ∈ Lip Now we penalize u by e−ct with c > 0 to be chosen. Then we
compute

∂tv = e−ct∂tu− cv = Aj(x)∂jv − cv.

Since

2

∫
D

v(∂t − Aj(x)∂j)v dx dt = −2c

∫
D

v2 dx dt =

∫
D

∂t|v|2 − ∂j(A
jv · v) + ∂jA

jv · v,

it follows from the divergence theorem that∫
t=0

|u|2 dx =

∫
t=0

|v|2 dx =

∫
Σ

N0|v|2 − (NjA
j)v · v dx+

∫
D

(∂jA
j + c)v2 dx dt.
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Now we choose c > ∥∂jAj∥L∞ , then

0 =

∫
t=0

|u|2 dx ≥
∫
Σ

N0|v|2 − (NjA
j)v · v dx.

By the same argument as the case for Aj constants, we know that v ≡ 0 when we choose Σ
ideally. So u ≡ 0 in D. (We can also use Gronwall’s inequality to get around this instead of
a penalty like what we did for the wellposedness of first order hyperbolic system.) □

Remark 26.2. Suppose Σ is a plane, which moves in a direction ω with velocity v and we
write it into the form

vt = x · ω.
Then N = (v,−ω). This gives ωjA

j ≤ v · Im and v = v(ω) is the largest eigenvalue of ωjA
j.

26.2 Examples of quasilinear hyperbolic system

We consider {
∂tu = Aj(u) · ∂ju,
u(0) = u0.

(26.1)

We want to answer two questions.

Q1 Is this system well-posed for initial data u0 ∈ Hs(Rn)?
Q2 What is well-posedness?

We first examine some examples and address these questions in the next subsection.

Example 26.3. The first example is that ut = u · ux, which is the Burgers equation. The
way this solution behave is an important part of the behavior of more complicated systems.

Example 26.4. The compressible Euler equation : Suppose ρ denotes density and v denotes
velocity. Gas particles are moving with velocity v and then ρ · v is the flux, which further
implies the density flux relation ∂tρ+div (ρv) = 0. To compute the acceleration of a particle,
we write

vt + v · ∇v = (∂t + v · ∂x)v,
which is the directional derivative of v in the direction v. Therefore, by Newton’s law

ρ(vt + v · ∇v) +∇p = 0,

where p is the pressure and describes how the force pushes it from higher pressure to lower
pressure region. Naturally, we add an assumption that p = p(ρ) and p′ > 0, which is called
the constitutive law.

Therefore, we derived {
∂tρ+ div (ρv) = 0,

ρ(vt + v · ∇v) +∇p = 0,

where the first one is like a conservation law. For the second one, we can use the first one
to write into a similar form

∂t(ρv) +
1

2
∇(ρ · v ⊗ v) = ∇p̃,
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where p̃ is a new function depending on ρ. The last two terms are called the momentum
flux.

Example 26.5. Fluids tend to be incompressible than gas. The incompressible Euler equa-
tion can derived as follows. We assume ρ0 is the usual density of the water and we suppose
ρ ≃ ρ0 + o(ε) and p(ρ) = 1

ε
(ρ− ρ0).

The incompressibility condition ∇ · v = 0 can be obtained from the fact ρ is almost
constant and the first equation in the compressible case. Now we derive another equation
from the second one vt + (v · ∇)v + ∇p = 0 in the compressible case. Since the density is
fixed, this time the p is fixed. We need to apply divergence to this equation and use the
incompressiblity condition to get

∇ · ((v · ∇)v) + ∆p = 0,

where the first one is ∂k((vj∂j)vk) = ∂kvj · ∂jvk thanks to the incompressibility conditions.

The Burgers equation is obviously symmetric hyperbolic with u as coefficients. However,
the incompressible Euler equation is not symmetric hyperbolic. Since you want to solve a
Laplacian equation, even if v is localized, we still have p supported everywhere, which means
that we do not have finite speed propagation.

Note that the finite speed of propagation still holds for quasilinear hyperbolic system.

26.3 Hadamard type well-posedness

For a quasilinear system, we want to start with u ∈ Hs with a suitable choice of s. As
in the linear case, we still want (Aj(u))′ = (Aj)′(u)∂u ∈ L∞. Since ∂u ∈ Hs−1, if we
want ∂u ∈ L∞, then we would expect s = n

2
+ 1 + ε. (n

2
is the boundary case for Sobolev

embedding, so we need ε more regularity.)
We look for scaling symmetry. Due to the appearance of the term Aj(u), we need to

ensure the value of u does not change when we do the scaling. Otherwise, we cannot expect
the same property for different Aj’s. So if we take ũ(t, x) = u(λt, λx), then it is obvious
that u, ũ both satisfy (26.1). Obviously, ∥u∥L∞ is scale invariant. Moreover, in order to let
∥u∥Ḣs = ∥ũ∥Ḣs , we need to have s = n/2.

So in principle, we hope to prove a well-posedness theory with s = n
2
+ ε. However, this

cannot be achieved for any given quasilinear hyperbolic system. We will see that what we
can prove (Theorem 26.7) in general is for s = n

2
+ 1 + ε. And this result turns out to be

optimal for incompressible Euler equations.

Definition 26.6 (Hadamard type well-posedness). Given u0 ∈ Hs, there exists a time
T = T (∥u0∥Hs) and a solution u ∈ C(0, T ;Hs) which satisfies

• existence
• uniqueness
• continuous dependence on data : if uk

0 → u0 in Hs, then there exists T > 0 such that
uk exists in [0, T ] and uk → u uniformly in Hs.

Then we say this equation/system is well-posed in the sense of Hadamard.

Theorem 26.7. (26.1) is locally well-posed in Hs for s > n
2
+ 1.



112 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

The general approach is to prove energy estimates for solutions. On the other hand, there
is another building block of our approach, which is a construction of solutions. These two
steps are usually interlaced with each other.

Recall that we used the fixed point argument to construct solutions earlier in this course.
If we still want to apply the fixed point argument to the hyperbolic equations, we write
∂tu = Aj(0)∂ju+ (Aj(u)−Aj(0))∂ju. If we start with u ∈ Hs, the nonlinear term ( the last
term ) contains ∂ju, which means that we lose one derivative. This cannot be recovered.
Moreover, if we use the fixed-point method, then we get the Liptshitz dependence of initial
data, but we do not expect this. Therefore, we need to introduce an interation scheme to
tackle this problem. We will discuss this in the next lecture. We start with u(0)(t) = u0 and
write

uk+1(0) = u0, ∂tu
(k+1) = Aj(u(k))∂ju

(k+1).

We can prove a uniform bound for the energy.

Remark 26.8. For Navier-Stokes equations, we can use a fixed point method instead. The
heuristic reason is that Navier-Stokes equation is more like a heat equation and the operator
∆ does not cause any loss of derivatives due to the solvability of ∆.
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Hadamard type well-posedness for first order quasilinear hyperbolic systems

Date: April 25, 2023

Today, we focus on a symmetric quasilinear hyperbolic system{
∂tu = Aj(u)∂ju,

u(0) = u0 ∈ Hs,
(27.1)

where Aj’s are symmetric matrices and smooth.

Theorem 27.1. The problem (27.1) is locally well-posed in Hs for s > n
2
+ 1. In other

words, given u0 ∈ Hs, there exists T = T (∥u0∥Hs) such that (27.1) has a unique solution
u ∈ C([0, T ];Hs) and u depends continuously on the data, that is, the map u0 7→ u which
maps Hs → C([0, T ], Hs) is continuous.

Proof. We want to construct a sequence of iterations u(k) ∈ C([0, T ];Hs). The initial step
can be simply chosen to be u(0) = 0 and we would like to define u(k+1) recursively by{

∂tu
(k+1) = Aj(u(k))∂ju

(k+1),

u(k+1)(0) = u0,

which is a linear system and we want to show that this converges. To remedy for the

regularity, we can replace the initial data at each step u
(k+1)
0 ∈ D which satisfies u

(k+1)
0 → u0

in Hs and hence in each step, the solution we solved for is a smooth function.
Step 1 : We show that u(k) remains bounded in Hs

Suppose ∥u0∥Hs = M . We prove by induction that ∥u(k)∥L∞([0,T ],Hs) ≤ CM . We want to
use the energy estimates for the induction step. Here, we make a simplification assumption
that s is integer.

First, we apply the linear energy estimates in L2 we obtained in Theorem 25.8 :

d

dt
∥u(k+1)∥2L2 ≤ ∥∇A∥L∞∥u(k+1)∥2L2 ,

where ∇(A(u(k))) = DA(u(k))∇u(k). Since u(k) is bounded, DA(u(k)) is bounded by some
universal constant. Moreover, ∥∇u(k)∥L∞ ≤ ∥u(k)∥Hs ≤ CM , which implies

d

dt
∥u(k+1)∥2L2 ≤ CC̃M∥u(k+1)∥2L2

and thus we obtain by Gronwall’s inequality that

∥u(k+1)(t)∥2L2 ≤ eCC̃Mt∥u(k+1)(0)∥2L2 ≤ MeCC̃Mt.

We want eCC̃MT ≤ C, which is true if T ≪ M−1.
Next, we want to show the energy estimates in Hs, which is equivalent to an energy

estimate in L2 for ∂su(k). By using the chain rule, we obtain that

∂t(∂
su(k)) = Aj(u(k))∂j∂

su(k+1) + fs.

If we replicate what we did just now, we get

d

dt
∥∂su(k+1)∥2L2 ≤ CC2M∥∂su(k+1)∥2L2 + ∥fs∥L2∥u(k+1)∥L2
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and it suffices to show that ∥fs∥L2 ≲ ∥u(k+1)∥Hs . We compute

fs := ∂s(Aj(u(k))∂ju
(k+1))− Aj(u(k))∂j∂

su(k+1) =

|β|≤s−1∑
|α|+|β|=s

∂αAj(u(k))∂β∂ju
(k+1)

=
∑

|α1|+···+|αj |=|α|,|α|+|β|=s

D∗A(u(k))∂α1u(k) · · · ∂αju(k)∂β∂ju
(k+1),

where there is no need to write out the exact formula by generalizing the chain rule using
Faa di Bruno’s formula since we only focus on the terms itself. We estimate

∥∂α1u(k) · · · ∂αju(k)∂βu(k+1)∥L2 ≤ ∥∂α1u(k)∥Lp1 · · · ∥∂αju(k)∥Lpj ∥∂βu(k+1)∥Lq ,

where |α1|+ · · ·+ |αj|+ |β| = s+ 1 and 1
2
= 1

p1
+ · · ·+ 1

pj
+ 1

q
.

For the simplest case j = 1, |α1| = 1, |β| = s, we have

∥∂u(k)∥L∞ · ∥∂su(k+1)∥L2 ≲ ∥u(k)∥Hs∥u(k+1)∥Hs .

For the other cases, we just choose q = ∞ and p1, · · · , pj are like an arithmetic progression
such that 1

2
= 1

p1
+ · · ·+ 1

pj
. For ∥∂su∥L2 ≤ ∥u∥Hs , ∥∂u∥L∞ ≤ ∥u∥Hs when s > n

2
+1 and the

Gagliardo-Nirenberg interpolation ([19, Chapter 6]) tells us ∥∂αu∥Lpα ≤ ∥∂u∥θαL∞∥∂su∥1−θα
L2

for some θα ∈ (0, 1), which implies ∥∂αu∥Lpα ≤ ∥u∥Hs .
We remark that we can also use Moser estimates instead to prove this : if u ∈ Hs,

A(0) = 0, then A(u) ∈ Hs with some moderate assumption on A.
Step 2 : Convergence in a weaker topology (L2)
To show convergence, we want to write down the energy estimates for differences. First,

we notice that

∂t(u
(k+1) − u(k)) = A(u(k))∂u(k+1) − A(u(k−1))∂u(k)

= A(u(k))∂(u(k+1) − u(k)) + (A(u(k))− A(u(k−1)))∂u(k)

= A(u(k))∂(u(k+1) − u(k)) + (u(k) − u(k−1))B(u(k), u(k−1))∂u(k),

where B is some smooth functions with two variables. Then the energy estimate goes as
follows :

d

dt
∥u(k+1) − u(k)∥2L2 ≤ CC2M∥u(k+1) − u(k)∥2L2 + C3∥u(k+1) − u(k)∥L2∥u(k) − u(k−1)∥L2

and hence

d

dt
∥u(k+1) − u(k)∥L2 ≤ CC2M∥u(k+1) − u(k)∥L2 + C3∥u(k) − u(k−1)∥L2 , (27.2)

where C3 only depends on CM due to the smoothness of B and the Sobolev embedding.
This further implies

∥(u(k+1) − u(k))(t)∥L∞L2 ≤ eCC2MT
(
∥(u(k+1) − u(k))(0)∥L2 + ∥(u(k) − u(k−1))(t)∥L1L2

)
and the last term satisfies ∥(u(k)−u(k−1))(t)∥L1L2 ≤ T∥(u(k)−u(k−1))(t)∥L∞L2 . Since u(k) has
the same initial data for each k, we can conclude that

∥u(k+1) − u(k)∥L∞([0,T ],L2) ≤ eCTT∥u(k) − u(k−1)∥L∞([0,T ],L2),
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where we want eCTT ≤ L < 1. Therefore, u(k+1) = u(k+1) − u(k) + · · · + u(1) − u(0) is a
geometric series, and hence converges in L2.
Step 3 : Convergence in higher norms So we have u(k) bounded in L∞Hs and

u(k) → u in L∞L2, which implies u ∈ L∞Hs. Indeed, one can argue by interpolation that all
s′ < s, u(k) is Cauchy in Hs′ norms. Then by taking the limit s′ ↑ s, we can conclude that
u ∈ L∞Hs. See [19, Proposition 9.12].

Alternatively, u(k) → u in D′ and from a homework problem, we know that given a
bounded sequence in Hs, which convergences in D′, then the limit is in Hs as well.

Step 4 : Continuous dependence Moreover, one also need to show u ∈ C(Hs) and
this requires extra work. For the continuous dependence, we refer to [14] and the references
therein.

Step 5 : Uniqueness Suppose u, v are two solutions with u(0) = v(0). It suffices to
show u and v are equal in L2. We write

∂t(u− v) = A(u)∂(u− v) + (u− v)B(u, v)∂v

and mimic the computation for (27.2), we conclude that

∥u− v∥L∞L2 ≤ eCT∥(u− v)(0)∥L2 ,

which gives uniqueness. It also gives a bound of ∥u − v∥L∞L2 by the initial data, which is
called a weak Lipschitz dependence, that is, ∥u− v∥L∞L2 ≲ ∥u(0)− v(0)∥L2 . Here, weakness
means that it is not in Hs, the space in which the solution lives.
As a remark, for quasilinear hyperbolic systems, we can only achieve weak Lipschitz de-

pendence. However, in the semilinear model, we can expect strong Lipschitz dependence. □

And next time, we discuss the Burgers euqation ut = uux, which is well-posed in Hs for
s > 3/2 thanks to today’s theorem.
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Burgers equation

Date: April 27, 2023

We focus on the study of a scalar equation ut + uux = 0, which is called the Burgers
equation. The same kind of analysis also works in higher dimensions for ut+

∑
j aj(u)∂ju = 0.

28.1 Solving Burgers equation using characteristics method

This is a quasilinear transport equation. By thinking of it as a transport equation, one
needs to look at integral curves of this vector field v = (1, u). By denoting the integral curves
by (t, x(t)), we have

ẋ =
d

dt
x(t) = u(t, x(t)).

Then we compute

d

dt
u(t, x(t)) =

∂u

∂t
+

∂u

∂x

dx

dt
=

∂u

∂t
+ u

∂u

∂x
= 0.

So, to solve the equation, one needs to consider the characteristic system{
ẋ = u(t, x(t)),

u̇(t, x(t)) = 0
(28.1)

with x(0) = x0, u(0) = u0(x0). In order to use the system (28.1) to solve the original equation,
we can first solve (28.1) for each x0 to obtain x(t, x0) and u(t, x(t, x0)). But what we want is
u = u(t, x), so the remaining problem is whether we can invert the map (t, x0) 7→ (t, x(t, x0)).
The easy part is to invert it locally in time since we have the local inversion theorem :

if the map (t, x0) → (t, x(t, x0)) has a nonsingular Jacobian, then we can invert it locally.
Therefore, we compute

∂(t, x(t, x0))

∂(t, x0)
=

(
1 u
0 1

)
and hence if we are given x(0, x0) = x0 and we know (t, x), then we can determine (t, x0).
Then we can conclude the general strategy as follows :

(1) solve the characteristic equation;
(2) do the local inversion;
(3) u = u0(x0), x = x0 + tu0(x0)

For Burgers equation, we have

u(t, x0 + tu0(x0)) = u0(x0).

The map x0 7→ x0 + tu0(x0) is invertible as long as tu′
0 + 1 > 0, which is true for short time

if u0 ∈ C1.

Theorem 28.1. Suppose u0 is C1 (u′
0 is bounded), then Burgers equation has a unique C1

solution for a short time.
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28.2 Examples of intersecting characteristics, shocks, Rankine–Hugoniot con-
ditions

Now we want to know for how long we can solve the equation. Algebraically, we need
1 + tu′

0 > 0, if u′
0 ≥ 0, then we obtained a global solution and if u′ has some negative

values, then Tmax = 1
max(−u′

0)
. If u is not increasing, then there exists x1 < x2 such that

u0(x1) > u0(x2).

Characteristics can intersect. So at the intersection point, then values of u cannot be
defined since it is different from the view of different starting point. The conclusion then
goes as follows : If u0 is not increasing, then there is no global C1 solution.

Example 28.2. If u0(x) = −x, which means that Tmax = 1. The picture for the character-
istics will be as follows.

If one thinks of this for a moment, one will find that such bad examples can be cooked is due
to the unboundedness of the initial data. So at very far away region, one can have extremely
large speed.

Example 28.3. Now we give another example where u0 is bounded. We keep u0 to be 1
until −1 and go down to 0 along a straight line and then keep 0. This is shown in the
following picture.

In this example, there is a green region so that the solutions may have intersection within
that region. In practical terms, when two waves coming from two sides, they might collide
and there might be a balance between them. We expect a line, which characterize this
balance. The line shall separate the solutions into two regions, where in the left, u = 1 while
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u = 0 in the right. In other words, the line is the interface where the solution jump. We
shall call this line a shock.

Definition 28.4. If the solution has a jump discontinuity, then we say it is a shock.

Suppose we indeed find a solution which has a jump. Then at where it has a jump, it
is δ0. However, we do not know how to make sense of u · ux if we try to multiply δ0 by a
discontinuous function. So this is not well-defined. Now it seems like trying to understand
the equation as it wrote is hopeless. We need to first rewrite the equation as

∂tu+ ∂x

(
1

2
u2

)
= 0

before we start to study it. The strategy is that we need to ask for the equation to be
satisfied in the sense of distributions.

Suppose Γ = {x = σ(t)} is the shock curve.

For ϕ ∈ D, we compute

0 =

(
∂tu+

1

2
∂x(u

2)

)
(ϕ) = −u(∂tϕ)−

1

2
u2(∂xϕ).

We separate this integral into two parts and we have

0 =(

∫
L

+

∫
R

)(−u(∂tϕ)−
1

2
u2(∂xϕ))

=

∫
L

(∂tuL +
1

2
∂xu

2
L)ϕ+

∫
Γ

(−ntuLϕ− 1

2
nxu

2
Lϕ) +

∫
R

(∂tuR +
1

2
∂xu

2
R)ϕ+

∫
Γ

(ntuRϕ+
1

2
nxu

2
Rϕ)

=

∫
Γ

ϕ(nt(uR − uL) + nx(
1

2
u2
R − 1

2
u2
L) dσ

We denote [u] = uR − uL, then this implies

nt[u] + nx[
1

2
u2] = 0.

The tangent vector of Γ is T = (1, σ̇(t)) and then N = (σ̇(t),−1) is the normal. Therefore,
we derive the shock speed

σ̇ =
[1
2
u2]

[u]
,

which is called the Rankine–Hugoniot condition.
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For general equations written in the density-flux form (meaning that the equation is a
kind of conservation law) ∂tu + ∂xF (u) = 0, the Rankine–Hugoniot condition is also given
by

σ̇ =
[F (u)]

[u]
.

We just proved for Burgers equation as a special case simply by integration by parts. The
shock type solutions are a meaningful physical object for general conservation law equations
and is interesting to study.

Example 28.5. We revisit Example 28.3. In this example, the shock speed is σ̇ =
1
2

1
=

1
2
. Note that though we do not know the expression for the shock curve Γ, we have the

Rankine–Hugoniot condition which helps us to determine σ and hence we know σ will just
be a straight line with slope 1

2
.

28.3 Riemann-Hilbert problem

We still start with Example 28.3. Note the solution is well-defined up to time t = 1, it
motivates our study below. We view the data of u in this example at time t = 1 as the new
initial data, which is just 1 in the left, 0 in the right, then we would get a specific problem.

We say if u0 =

{
uL, x < 0

uR, x > 0
, then this is a Riemann-Hilbert problem.

We have two different cases, if uL > uR, then we are in the case that waves might collide.
On the other hand, if uL < uR, then there is an empty region in the middle. We have two
candidates. The first one is to compute the shock speed in the middle and have a shock line
contained while the second one is filled by a fan starting from the origin. The second one it
obtained by regularizing the initial data a little bit.
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The shock picture is nonphysical since one cannot expect something is produced from noth-
ing. There are waves emanating from the shock, and it’s more like producing something from
nothing, so from the physical view, the second one is more correct. We call this rarefaction
wave and the second solution is Liptshitz continuous. We have a name for this, which is the
entropy condition. See [7, Section 3.4] for the picture and further discussion.

A remark is that we cannot reverse these choices. Even though we start by motivating
from Example 28.3, the information of the little triangle in this example is already lost after
we view t = 1 as the new initial time. Moreover, if one tries to solve backward in time, it
may not be unique. So the choice of physical solution here does not violate our previous
discussion.

Theorem 28.6. Given “decent” data, there exists a unique Rankine–Hugoniot + entropy
solution.

This theorem is true for scalar equation in Rn and systems in R and two dimensional
systems in R2. The 1 + 1 dimension setting can be found in [7].
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