Exercises

1. Consider $q \in \mathbb{G}(1,3)$. Show that

$$
\{p \in \mathbb{G}(1,3) \mid p \cap q \neq \emptyset\}=\mathbb{G}(1,3) \cap V\left(p_{01} q_{23}-p_{02} q_{13}+p_{03} q_{12}+p_{12} q_{03}-p_{13} q_{02}+p_{23} q_{01}\right)
$$

Here, the $p_{i j}, q_{i j}$ are Plücker coordinates. Hint: consider the matrix

$$
\left(\begin{array}{llll}
x_{00} & x_{01} & x_{02} & x_{03} \\
x_{10} & x_{11} & x_{12} & x_{13} \\
y_{00} & y_{01} & y_{02} & y_{03} \\
y_{10} & y_{11} & y_{12} & y_{13}
\end{array}\right)
$$

with p, q the rowspans of the first two and last two rows.
2. Use the previous problem to determine equations for $\mathbb{G}(1,3)$ in its Plücker embedding.
3. For generic lines $L_{1}, L_{2}, L_{3}, L_{4}$ in \mathbb{P}^{3}, how many lines L are there such that $L_{i} \cap L \neq \emptyset$ for all i ? Hint: use the first exercise to describe this set as a subvariety of $\mathbb{G}(1,3)$. Reinterpret this answer in the degenerate situation when L_{1}, L_{2} and L_{3}, L_{4} are coplanar.
4. Describe $\mathbf{F}_{1}(X)$ for $X=V\left(x y-z^{2}\right) \subset \mathbb{P}^{3}$.
5. Let $X=V\left(x_{0}^{4}+x_{1}^{4}+\ldots+x_{4}^{4}\right)$. What is the expected dimension of $\mathbf{F}_{1}(X)$? Describe $\mathbf{F}_{1}(X)$.
6. Let X be a smooth quadric threefold in \mathbb{P}^{4}. What is the expected dimension of $\mathbf{F}_{2}(X)$? Show that $\mathbf{F}_{2}(X)$ is empty.
7. Let \mathcal{A} be a finite subset of \mathbb{Z}^{n}. Show that the ideal of $X_{\mathcal{A}}$ is generated by

$$
\left\{\prod_{u \in \mathcal{A}} x_{u}^{a_{u}}-\prod_{u \in \mathcal{A}} x_{u}^{b_{u}} \mid \sum a_{u}=\sum b_{u} \text { and } \sum a_{u} \cdot u=\sum b_{u} \cdot u\right\}
$$

8. Let X be a cubic surface in \mathbb{P}^{3} with ideal $I=\langle f\rangle$. Consider a line $L \subset X$ such that for every $x \in L$, X is smooth at x. Show that

$$
\operatorname{Hom}_{S}\left(I_{L}, S / I_{L}\right)_{0}=0
$$

where $I_{L} \subset S=\mathbb{K}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] / I$ is the homogeneous ideal of L in X. Hint: after coordinate transformation, you can assume that $I_{L}=\left\langle x_{0}, x_{1}\right\rangle$.
9. How many lines does a smooth intersection of two quadrics in \mathbb{P}^{4} contain? Prove your answer. Hint: consider a (singular) toric intersection of two quadrics.

