

How to Count Better Than a Three-Year-Old

Nathan Ilten

SFU

December 5th, 2015

A famous counting problem

"Count this, young man!"

 $1 + 2 + 3 + \ldots + 98 + 99 + 100 = ?$

Abstraction and solution

Abstraction and solution

 $2 \cdot (1 + 2 + 3 + \ldots + (n - 1) + n) = ?$

Abstraction and solution

 $2 \cdot (1 + 2 + 3 + \ldots + (n - 1) + n) = n(n + 1)$

Two principles

• Abstraction can lead to simpler solutions.

▶ It is easier to count things when cleverly grouped together.

A second counting problem

How many ways can we color the faces of a square block using the colors orange and blue?

# of blue faces	# of possibilities
0	?
1	?
2	?
3	?
4	?
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	?
2	?
3	?
4	?
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	?
3	?
4	?
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	?
4	?
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	?
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	2
5	?
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	2
5	1
6	?
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	2
5	1
6	1
Total:	?

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	2
5	1
6	1
Total:	10

Group according to number of blue faces!

# of blue faces	# of possibilities
0	1
1	1
2	2
3	2
4	2
5	1
6	1
Total:	10

What about using the colors red, blue, and orange?

Symmetry and group theory give us a better way!

Symmetries of the square

Symmetries of the square

Symmetries of the triangle

Composing symmetries

Carrying out a symmetry x followed by a symmetry y results in a third symmetry, z! We write

$$z = y * x$$
.

Example In *D*₄,

$$s_a * r_1 = ?$$

Composing symmetries

Carrying out a symmetry x followed by a symmetry y results in a third symmetry, z! We write

z = y * x.

Example In *D*₄,

 $s_a * r_1 = s_d$

Composing symmetries in D_3

Composing symmetries in D_3

	е	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
е	е	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$
σ_1	σ_1	σ_2	е	$ au_3$	$ au_1$	$ au_2$
σ_2	σ_2	е	σ_1	$ au_2$	$ au_3$	$ au_1$
τ_1	τ_1	$ au_2$	$ au_3$	е	σ_1	σ_2
$ au_2$	$ au_2$	$ au_3$	$ au_1$	σ_2	е	σ_1
$ au_3$	$ au_3$	$ au_1$	$ au_2$	σ_1	σ_2	е

Composing symmetries in D_3

	е	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$	
е	е	σ_1	σ_2	$ au_1$	$ au_2$	$ au_3$	
σ_1	σ_1	σ_2	е	$ au_3$	$ au_1$	$ au_2$	
σ_2	σ_2	е	σ_1	$ au_2$	$ au_3$	$ au_1$	
$ au_1$	τ_1	$ au_2$	$ au_3$	е	σ_1	σ_2	
$ au_2$	$ au_2$	$ au_3$	$ au_1$	σ_2	е	σ_1	
$ au_3$	$ au_3$	$ au_1$	$ au_2$	σ_1	σ_2	е	

- Neutral element: e * x = x * e = x.
- ▶ Inverse elements: $\forall x \exists y \text{ s.t. } x * y = y * x = e$.
- Associativity: x * (y * z) = (x * y) * z.

Definition of a group

A group is a set G together with a rule * for taking pairs of elements of G and producing a third element satisfying the following properties:

- Associativity;
- Existence of a neutral element e;
- Existence of inverses elements.

Definition of a group

A group is a set G together with a rule * for taking pairs of elements of G and producing a third element satisfying the following properties:

- Associativity;
- Existence of a neutral element e;
- Existence of inverses elements.

Example

- ► D₄, D₃
- The set of symmetries of any shape (e.g. the cube!!)
- The integers and addition
- Non-zero rational numbers and multiplication

Examples of non-groups

Discuss with your neighbor!

- Integers and multiplication
- Integers and subtraction
- All rational numbers and multiplication
- All integers larger than zero, and addition

Check: associativity, existence of neutral elements, and existence of inverses!

Groups often transform other objects!

Colorings of the square

Group actions

An *action* of a group G on a set X is a rule for taking a pair (g, x) for $g \in G$ and $x \in X$ and producing a new element $g \cdot x$ in X, satisfying the following:

•
$$e \cdot x = x$$

• $(g * h) \cdot x = g \cdot (h \cdot x)$

Group actions

An *action* of a group G on a set X is a rule for taking a pair (g, x) for $g \in G$ and $x \in X$ and producing a new element $g \cdot x$ in X, satisfying the following:

•
$$e \cdot x = x$$

• $(g * h) \cdot x = g \cdot (h \cdot x)$

Example

 D_4 acts on

- Vertices of the square
- Edges of the square
- Pairs of vertices of the square

▶

Colorings of the square revisited

Orbits

The *orbit* of x is the set

$$G \cdot x = \{g \cdot x \mid g \in G\}$$

Orbits: your turn

Let

$$X = \{(12), (13), \dots, (34)\}$$

be the set of pairs of vertices of the square. Describe the orbits for the action of D_4 on X!

- ► (12): ?
- ► (23): ?
- ► (34): ?
- ► (14): ?
- ► (13): ?
- ▶ (24): ?

- (12): e, s_a
 (23): ?
 (24): 2
- ► (34): ?
- ► (14): ?
- ► (13): ?
- ▶ (24): ?

- (12): e, s_a
 (23): e, s_c
 (34): ?
- ► (14): ?
- ► (13): ?
- ► (24): ?

Which elements of D_4 fix pairs of vertices?

▶ (24): ?

- (12): e, s_a
 (23): e, s_c
 (34): e, s_a
 (14): e, s_c
 (13): e, r₂, s_b, s_d
- ▶ (24): ?

- ► (12): *e*, *s*_a
- ▶ (23): *e*, *s*_c
- ► (34): *e*, *s*_a
- ▶ (14): *e*, *s*_c
- ▶ (13): *e*, *r*₂, *s*_b, *s*_d
- ▶ (24): *e*, *r*₂, *s*_b, *s*_d

Stabilizers

The *stabilizer* of x is the set

$$G_x = \{g \in G \mid g \cdot x = x\}.$$

- ► (12): *e*, *s*_a
- ► (23): *e*, *s*_c
- ► (34): *e*, *s*_a
- ► (14): *e*, *s*_c
- ▶ (13): *e*, *r*₂, *s*_b, *s*_d
- ▶ (24): *e*, *r*₂, *s*_b, *s*_d

The Orbit-Stabilizer Theorem

Theorem For any $x \in X$, $\#G = \#(G_x) \times \#(G \cdot x).$

Proof. Consider the map

. . .

$$G o G \cdot x$$

 $g \mapsto g \cdot x$

Fixed sets

For any $g \in G$, let

$$X^g = \{x \in X \mid g \cdot x = x\}.$$

This is the *fixed set* of *g*.

Example

If X is the set of colorings of the square with 2 colors, what is the fixed set of r_1 ? What about s_a ?

The Cauchy-Frobenius Fixed-Point Formula (aka Burnside's Lemma)

 $\#G\times \#\mathrm{Orbits} \text{ of } X=\sum \#X^g$ $g \in G$

$$\#G \times \#$$
Orbits of $X = \sum_{\text{Orbits } Z} \#G$

$$\#G \times \#\text{Orbits of } X = \sum_{\text{Orbits } Z} \#G$$
$$= \sum_{\text{Orbits } Z} \#G_Z \times \#Z$$

$$\#G \times \#\text{Orbits of } X = \sum_{\text{Orbits } Z} \#G$$
$$= \sum_{\text{Orbits } Z} \#G_Z \times \#Z$$
$$= \sum_{\text{Orbits } Z} \sum_{Z \in Z} \#G_Z$$

$$#G \times #Orbits \text{ of } X = \sum_{\text{Orbits } Z} #G$$
$$= \sum_{\text{Orbits } Z} #G_Z \times #Z$$
$$= \sum_{\text{Orbits } Z} \sum_{Z \in Z} #G_Z$$
$$= \sum_{x \in X} #G_x$$

$$#G \times #Orbits \text{ of } X = \sum_{\text{Orbits } Z} #G$$
$$= \sum_{\text{Orbits } Z} #G_z \times #Z$$
$$= \sum_{\text{Orbits } Z} \sum_{z \in Z} #G_z$$
$$= \sum_{x \in X} #G_x$$
$$= #\{(g, x) \mid x \in X, g \in G, g \cdot x = x\}$$

$$#G \times #Orbits \text{ of } X = \sum_{\text{Orbits } Z} #G$$
$$= \sum_{\text{Orbits } Z} #G_z \times #Z$$
$$= \sum_{\text{Orbits } Z} \sum_{z \in Z} #G_z$$
$$= \sum_{x \in X} #G_x$$
$$= #\{(g, x) \mid x \in X, g \in G, g \cdot x = x\}$$
$$= \sum_{g \in G} #X^g$$

The number of colorings of the cube with n colors is the number of *orbits* of the set of colorings of a fixed cube.

$$\#\text{Symmetries} \times \#\text{Colorings} = \sum_{g \in G} \#X^g$$

First step: determine the symmetries of the cube!

Symmetries of the cube

Type of symmetry	# of symmetries
$\pm90^\circ$ face rotation	6
180° face rotation	3
180° edge rotation	6
$\pm 120^\circ$ diagonal rotation	8
Do nothing	1

Type of symmetry# invariant colorings $\pm 90^{\circ}$ face rotation180° face rotation 180° edge rotation180° diagonal rotation $\pm 120^{\circ}$ diagonal rotationDo nothing

Type of symmetry# invariant colorings $\pm 90^{\circ}$ face rotation n^3 180° face rotation 180° edge rotation $\pm 120^{\circ}$ diagonal rotationLDo nothingL

Type of symmetry# invariant colorings $\pm 90^{\circ}$ face rotation n^3 180° face rotation n^4 180° edge rotation 180° diagonal rotation $\pm 120^{\circ}$ diagonal rotation 180° diagonal rotationDo nothing 180° diagonal rotation

Type of symmetry	# invariant colorings
$\pm90^\circ$ face rotation	n ³
180° face rotation	n^4
180° edge rotation	n ³
$\pm 120^\circ$ diagonal rotation	
Do nothing	

Type of symmetry	# invariant colorings
$\pm90^\circ$ face rotation	n ³
180° face rotation	n^4
180° edge rotation	n ³
$\pm 120^\circ$ diagonal rotation	n^2
Do nothing	

Type of symmetry	# invariant colorings
$\pm90^\circ$ face rotation	n ³
180° face rotation	n^4
180° edge rotation	n ³
$\pm 120^\circ$ diagonal rotation	n^2
Do nothing	n ⁶

The answer

Type of symmetry	# of symmetries	# invariant colorings
$\pm90^\circ$ face rotation	6	n ³
180° face rotation	3	n ⁴
180° edge rotation	6	n ³
$\pm 120^\circ$ diagonal rotation	8	n^2
Do nothing	1	n ⁶

 \implies # of colorings using at most *n* colors is

$$\frac{1}{24} \left(6n^3 + 3n^4 + 6n^3 + 8n^2 + n^6\right)$$

Results for small n

	n	Number of colorings
-	1	1
	2	10
	3	57
	4	240
	5	800
	6	2226
	97	34718692505

Thanks for your attention!