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A famous counting problem

“Count this, young man!”

1 + 2 + 3 + . . . + 98 + 99 + 100 = ?



Abstraction and solution



n

2 · (

1 + 2 + 3 + . . . + (n − 1) + n

)

= ?

n(n + 1)
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Two principles

I Abstraction can lead to simpler solutions.

I It is easier to count things when cleverly grouped together.



A second counting problem

Playing with blocks is the best!

How many ways can we color the faces of a square block using the
colors orange and blue?



An adequate solution

Group according to number of blue faces!

# of blue faces # of possibilities

0 ?
1 ?
2 ?
3 ?
4 ?
5 ?
6 ?

Total: ?

What about using the colors red, blue, and orange?
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An adequate solution

Group according to number of blue faces!

# of blue faces # of possibilities

0 1
1 1
2 2
3 2
4 2
5 1
6 1

Total: 10

What about using the colors red, blue, and orange?



An adequate solution

Group according to number of blue faces!

# of blue faces # of possibilities

0 1
1 1
2 2
3 2
4 2
5 1
6 1

Total: 10

What about using the colors red, blue, and orange?



Symmetry and group theory give us a better way!



Symmetries of the square

a
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Symmetries of the square
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Symmetries of the triangle

1

2 3



Composing symmetries

Carrying out a symmetry x followed by a symmetry y results in a
third symmetry, z! We write

z = y ∗ x .

Example

In D4,
sa ∗ r1 = ?



Composing symmetries

Carrying out a symmetry x followed by a symmetry y results in a
third symmetry, z! We write

z = y ∗ x .

Example

In D4,
sa ∗ r1 = sd



Composing symmetries in D3

e σ1 σ2 τ1 τ2 τ3

e
σ1

σ2

τ1

τ2

τ3

I Neutral element: e ∗ x = x ∗ e = x .

I Inverse elements: ∀x ∃y s.t. x ∗ y = y ∗ x = e.

I Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z .
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Definition of a group

A group is a set G together with a rule ∗ for taking pairs of
elements of G and producing a third element satisfying the
following properties:

I Associativity;

I Existence of a neutral element e;

I Existence of inverses elements.

Example

I D4, D3

I The set of symmetries of any shape (e.g. the cube!!)

I The integers and addition

I Non-zero rational numbers and multiplication
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Examples of non-groups

Discuss with your neighbor!

I Integers and multiplication

I Integers and subtraction

I All rational numbers and multiplication

I All integers larger than zero, and addition

Check: associativity, existence of neutral elements, and existence
of inverses!



Groups often transform other objects!



Colorings of the square



Group actions

An action of a group G on a set X is a rule for taking a pair (g , x)
for g ∈ G and x ∈ X and producing a new element g · x in X ,
satisfying the following:

I e · x = x

I (g ∗ h) · x = g · (h · x)

Example

D4 acts on

I Vertices of the square

I Edges of the square

I Pairs of vertices of the square

I . . .
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Colorings of the square revisited



Orbits

The orbit of x is the set

G · x = {g · x | g ∈ G}



Orbits: your turn

Let
X = {(12), (13), . . . , (34)}

be the set of pairs of vertices of the square. Describe the orbits for
the action of D4 on X !

12

3 4



Symmetries doing nothing

Which elements of D4 fix pairs of vertices?

I (12): ?

I (23): ?

I (34): ?

I (14): ?

I (13): ?

I (24): ? 12

3 4
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Symmetries doing nothing

Which elements of D4 fix pairs of vertices?

I (12): e, sa
I (23): e, sc
I (34): e, sa
I (14): e, sc
I (13): e, r2, sb, sd
I (24): e, r2, sb, sd 12

3 4

ab

d
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Stabilizers

The stabilizer of x is the set

Gx = {g ∈ G | g · x = x}.



Symmetries doing nothing

Which elements of D4 fix pairs of vertices?

I (12): e, sa
I (23): e, sc
I (34): e, sa
I (14): e, sc
I (13): e, r2, sb, sd
I (24): e, r2, sb, sd 12

3 4

ab

d

c



The Orbit-Stabilizer Theorem

Theorem
For any x ∈ X ,

#G = #(Gx)×#(G · x).

Proof.
Consider the map

G → G · x
g 7→ g · x

. . .



Fixed sets

For any g ∈ G , let

X g = {x ∈ X | g · x = x}.

This is the fixed set of g .

Example

If X is the set of colorings of the square with 2 colors, what is the
fixed set of r1? What about sa?



The Cauchy-Frobenius Fixed-Point Formula
(aka Burnside’s Lemma)

#G ×#Orbits of X =
∑
g∈G

#X g



Burnside’s Lemma: Proof

#G ×#Orbits of X =
∑

Orbits Z

#G
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Burnside’s Lemma: Proof

#G ×#Orbits of X =
∑

Orbits Z

#G

=
∑

Orbits Z

#Gz ×#Z

=
∑

Orbits Z

∑
z∈Z

#Gz

=
∑
x∈X

#Gx

= #{(g , x) | x ∈ X , g ∈ G , g · x = x}

=
∑
g∈G

#X g



Back to our original problem!

The number of colorings of the cube with n colors is the number of
orbits of the set of colorings of a fixed cube.

#Symmetries×#Colorings =
∑
g∈G

#X g



First step: determine the symmetries of the cube!



Symmetries of the cube

Type of symmetry # of symmetries

±90◦ face rotation 6

180◦ face rotation 3

180◦ edge rotation 6

±120◦ diagonal rotation 8

Do nothing 1



Invariant colorings

Second step: determine invariant colorings!

Type of symmetry # invariant colorings

±90◦ face rotation
180◦ face rotation
180◦ edge rotation
±120◦ diagonal rotation
Do nothing
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Invariant colorings

Second step: determine invariant colorings!

Type of symmetry # invariant colorings

±90◦ face rotation n3

180◦ face rotation n4

180◦ edge rotation n3

±120◦ diagonal rotation n2

Do nothing n6



The answer

Type of symmetry # of symmetries # invariant colorings

±90◦ face rotation 6 n3

180◦ face rotation 3 n4

180◦ edge rotation 6 n3

±120◦ diagonal rotation 8 n2

Do nothing 1 n6

=⇒ # of colorings using at most n colors is

1

24

(
6n3 + 3n4 + 6n3 + 8n2 + n6

)



Results for small n

n Number of colorings

1 1
2 10
3 57
4 240
5 800
6 2226

97 34718692505



Thanks for your attention!


