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Moral

Geometrical insight can often solve problems in computational
algebra which are otherwise intractable.



Efficient Expression of the Determinant

det3 = det

 x11 x12 x13
x21 x22 x22
x31 x32 x33

 = x11x22x33 + . . .− x31x32x33 − . . .

 det3 is a sum of 6 monomials in C[x11, . . . , x33].



Efficient Expression of the Determinant

Can we write det3 as a sum of 5 products of linear forms? E.g.
write

det3 = s11s12s13 + s21s22s23 + . . .+ s51s52s53

for sij ∈ C[x11, . . . , x33] linear.

I Yes! (Derksen, 2013). Set

s11 = 1
2(x13 + x12) s12 = (x21 − x22) s13 = (x31 + x32)

s21 = 1
2(x11 + x12) s22 = (x22 − x23) s23 = (x32 + x33)

s31 = x12 s32 = (x23 − x21) s33 = (x33 + x31)
s41 = 1

2(x13 − x12) s42 = (x22 + x21) s43 = (x32 − x31)
s51 = 1

2(x11 − x12) s52 = (x23 + x22) s53 = (x33 − x32)

I Can we do better?



Product Rank

Definition
The product rank of a homogeneous polynomial f of degree d is
the smallest natural number r such that we can write

f =
r∑

i=1

si1si2 · · · sid

for some linear forms sij , 1 ≤ i ≤ r , 1 ≤ j ≤ d .

Example

I x1x2 − x3x4 has product rank 2.

I det3 has product rank at most 5 by Derksen’s expression.

Product rank related to lower bounds for ΣΠΣ circuit size.



Main Theorem

Theorem (—,Teitler 2015)

The product rank of det3 is exactly 5.



Naive Approach

Translate the claim product rank ≤ 4 into a system of polynomial
equations:

I Set sij =
∑

k,l=1,2,3 aijklxkl .

I Comparing coefficients of det3 and
∑4

i=1 si1si2si3 leads to a
system of 165 cubic equations in the 108 variables aijkl .

Example

Coefficient of x311  

a1111a1211a1311+a2111a2211a2311+a3111a3211a3311+a4111a4211a4311 = 0



Hilbert’s Nullstellensatz

Theorem (Hilbert 1893)

Consider a system of polynomial equations f1 = f2 = . . . = fm = 0
in n variables. This system has no solution in Cn ⇐⇒ there exist
polynomials g1, . . . , gm such that

1 =
m∑
i=1

gi fi .

I Effective method for testing non-existence of a solution:
compute a Gröbner Basis of f1, . . . , fm and check if it contains
a constant polynomial.



A Geometric Approach

Definition
Consider f ∈ C[x1, . . . , xn]. The variety of f is the set

V (f ) = {p = (p1, . . . , pn) ∈ Cn | f (p) = 0}

Example

V (x2 + y2 − z2) ⊂ C3

Relevant varieties:

I X = V (det3) ⊂ C9

I Y = V (
∑4

i=1 yi1yi2yi3) ⊂ C12



Rephrasing the Problem X = V (det3) ⊂ C9

Y = V (
∑4

i=1 yi1yi2yi3) ⊂ C12

Consider sij ∈ C[x11, . . . , x33] for i = 1, . . . , 4 and j = 1, 2, 3.

I Defines a linear map φ : C9 → C12 via

p = (p11, . . . , p33) 7→ (s11(p), s12(p), . . . , s43(p)).

I Elementary arguments show that det3 =
∑

i si1si2si3 if and
only if:

1. φ is injective;
2. φ(X ) = Im(φ) ∩ Y .

I If above holds, Im(φ) contained in coordinate hyperplane
=⇒ product rank of det3 is at most 3!



More Geometry

X = V (det3) ⊂ C9

Y = V (
∑4

i=1 yi1yi2yi3) ⊂ C12

I 6-dimensional linear subspaces of X form 2-dimensional
families.

I The 6-planes in each family span C9.

I Up to symmetry, Y contains exactly one family F of 6-planes
not all contained in a coordinate hyperplane.



The Argument X = V (det3) ⊂ C9

Y = V (
∑4

i=1 yi1yi2yi3) ⊂ C12

Need φ(X ) = Im(φ) ∩ Y

Lemma
If product rank of det3 ≤ 4, then product rank of det3 ≤ 3.

I φ(X ) contains 2-dim family F ′ of 6-planes spanning Im(φ).

I Planes of F ′ are contained in Y !

I F ′ not subfamily of F =⇒ Im(φ) contained in coordinate
hyperplane =⇒ product rank ≤ 3.

I F contains unique 2-dim subfamily whose 6-planes span a
9-dim space L  Im(φ) = L.

I On L, have

4∑
i=1

yi1yi2yi3 = y11y12y13 + y21y22y23.



The Story Thus Far

Using geometry, we have determined the product rank of det3. An
understanding of the linear subspaces contained in V (det3) and
other varieties was particularly useful!



Problem #2: Determinantal Complexity

Definition
The determinantal complexity of a polynomial f is the smallest
natural number m such that we can write f = detM for some
m ×m matrix M filled with affine linear functions.

Example

x2 + y2 + z2 = det

(
x + iy z
−z x − iy

)
 determinantal complexity 2.



The Permanent

permn =
∑
σ∈Sn

x1σ(1) · · · xnσ(n)

I What is the determinantal complexity of permn?

I For n = 3, 5 ≤ dc ≤ 7.



More Geometry

Theorem (Alper, Bogart, Velasco 2015)

Let f be a homogeneous polynomial of degree d > 2. Then

dc(f ) ≥ codim(SingV (f )) + 1

as long as codim SingV (f ) > 4.

I codim(SingV (perm3)) = 6  

Corollary (Alper, Bogart, Velasco 2015)

dc(perm3) = 7.



Thanks for listening!


