Using Geometry in Computational Algebra

Nathan IIten

Simon Fraser University
Symposium on Mathematics and Computation August 6th, 2015

Moral

Geometrical insight can often solve problems in computational algebra which are otherwise intractable.

Efficient Expression of the Determinant

$$
\operatorname{det}_{3}=\operatorname{det}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{22} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=x_{11} x_{22} x_{33}+\ldots-x_{31} x_{32} x_{33}-\ldots
$$

$\rightsquigarrow \boldsymbol{d e t}_{3}$ is a sum of $\mathbf{6}$ monomials in $\mathbb{C}\left[x_{11}, \ldots, x_{33}\right]$.

Efficient Expression of the Determinant

Can we write $\boldsymbol{d e t}_{3}$ as a sum of $\mathbf{5}$ products of linear forms? E.g. write

$$
\operatorname{det}_{3}=s_{11} s_{12} s_{13}+s_{21} s_{22} s_{23}+\ldots+s_{51} s_{52} s_{53}
$$

for $s_{i j} \in \mathbb{C}\left[x_{11}, \ldots, x_{33}\right]$ linear.

- Yes! (Derksen, 2013). Set

$$
\begin{array}{lll}
s_{11}=\frac{1}{2}\left(x_{13}+x_{12}\right) & s_{12}=\left(x_{21}-x_{22}\right) & s_{13}=\left(x_{31}+x_{32}\right) \\
s_{21}=\frac{1}{2}\left(x_{11}+x_{12}\right) & s_{22}=\left(x_{22}-x_{23}\right) & s_{23}=\left(x_{32}+x_{33}\right) \\
s_{31}=x_{12} & s_{32}=\left(x_{23}-x_{21}\right) & s_{33}=\left(x_{33}+x_{31}\right) \\
s_{41}=\frac{1}{2}\left(x_{13}-x_{12}\right) & s_{42}=\left(x_{22}+x_{21}\right) & s_{43}=\left(x_{32}-x_{31}\right) \\
s_{51}=\frac{1}{2}\left(x_{11}-x_{12}\right) & s_{52}=\left(x_{23}+x_{22}\right) & s_{53}=\left(x_{33}-x_{32}\right)
\end{array}
$$

- Can we do better?

Product Rank

Definition

The product rank of a homogeneous polynomial f of degree d is the smallest natural number r such that we can write

$$
f=\sum_{i=1}^{r} s_{i 1} s_{i 2} \cdots s_{i d}
$$

for some linear forms $s_{i j}, 1 \leq i \leq r, 1 \leq j \leq d$.
Example

- $x_{1} x_{2}-x_{3} x_{4}$ has product rank 2.
- det_{3} has product rank at most $\mathbf{5}$ by Derksen's expression.

Product rank related to lower bounds for $\Sigma \Pi \Sigma$ circuit size.

Main Theorem

Theorem (—,Teitler 2015)
The product rank of det_{3} is exactly 5 .

Naive Approach

Translate the claim product rank ≤ 4 into a system of polynomial equations:

- Set $s_{i j}=\sum_{k, l=1,2,3} a_{i j k l} x_{k l}$.
- Comparing coefficients of $\boldsymbol{d e t}_{3}$ and $\sum_{i=1}^{4} s_{i 1} s_{i 2} s_{i 3}$ leads to a system of $\mathbf{1 6 5}$ cubic equations in the $\mathbf{1 0 8}$ variables $a_{i j k l}$.

Example
Coefficient of $x_{11}^{3} \rightsquigarrow$
$a_{1111} a_{1211} a_{1311}+a_{2111} a_{2211} a_{2311}+a_{3111} a_{3211} a_{3311}+a_{4111} a_{4211} a_{4311}=0$

Hilbert's Nullstellensatz

Theorem (Hilbert 1893)
Consider a system of polynomial equations $f_{1}=f_{2}=\ldots=f_{m}=0$ in n variables. This system has no solution in $\mathbb{C}^{n} \Longleftrightarrow$ there exist polynomials g_{1}, \ldots, g_{m} such that

$$
1=\sum_{i=1}^{m} g_{i} f_{i} .
$$

- Effective method for testing non-existence of a solution: compute a Gröbner Basis of f_{1}, \ldots, f_{m} and check if it contains a constant polynomial.

A Geometric Approach

Definition
Consider $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The variety of f is the set

$$
V(f)=\left\{\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid f(\mathbf{p})=0\right\}
$$

Example
$V\left(x^{2}+y^{2}-z^{2}\right) \subset \mathbb{C}^{3}$

Relevant varieties:

- $X=V\left(\operatorname{det}_{3}\right) \subset \mathbb{C}^{9}$
- $Y=V\left(\sum_{i=1}^{4} y_{i 1} y_{i 2} y_{i 3}\right) \subset \mathbb{C}^{12}$

Rephrasing the Problem

$$
\begin{aligned}
& X=V\left(\operatorname{det}_{3}\right) \subset \mathbb{C}^{9} \\
& Y=V\left(\sum_{i=1}^{4} y_{i 1} y_{i 2} y_{i 3}\right) \subset \mathbb{C}^{12}
\end{aligned}
$$

Consider $s_{i j} \in \mathbb{C}\left[x_{11}, \ldots, x_{33}\right]$ for $i=1, \ldots, 4$ and $j=1,2,3$.

- Defines a linear map $\phi: \mathbb{C}^{9} \rightarrow \mathbb{C}^{12}$ via

$$
\mathbf{p}=\left(p_{11}, \ldots, p_{33}\right) \mapsto\left(s_{11}(\mathbf{p}), s_{12}(\mathbf{p}), \ldots, s_{43}(\mathbf{p})\right) .
$$

- Elementary arguments show that $\operatorname{det}_{3}=\sum_{i} s_{i 1} s_{i 2} s_{i 3}$ if and only if:

1. ϕ is injective;
2. $\phi(X)=\operatorname{Im}(\phi) \cap Y$.

- If above holds, $\operatorname{Im}(\phi)$ contained in coordinate hyperplane \Longrightarrow product rank of det_{3} is at most 3!

More Geometry

$$
\begin{aligned}
& X=V\left(\boldsymbol{\operatorname { d e t }}_{3}\right) \subset \mathbb{C}^{9} \\
& Y=V\left(\sum_{i=1}^{4} y_{i 1} y_{i 2} y_{i 3}\right) \subset \mathbb{C}^{12}
\end{aligned}
$$

- 6-dimensional linear subspaces of X form 2-dimensional families.
- The 6 -planes in each family span \mathbb{C}^{9}.
- Up to symmetry, Y contains exactly one family \mathcal{F} of 6 -planes not all contained in a coordinate hyperplane.

$$
\begin{aligned}
& X=V\left(\operatorname{det}_{3}\right) \subset \mathbb{C}^{9} \\
& Y=V\left(\sum_{i=1}^{4} y_{i 1} y_{i 2} y_{i 3}\right) \subset \mathbb{C}^{12} \\
& \text { Need } \phi(X)=\operatorname{Im}(\phi) \cap Y
\end{aligned}
$$

Lemma

If product rank of $\boldsymbol{d e t}_{3} \leq 4$, then product rank of $\boldsymbol{d e t}_{3} \leq 3$.

- $\phi(X)$ contains 2-dim family \mathcal{F}^{\prime} of 6-planes spanning $\operatorname{Im}(\phi)$.
- Planes of \mathcal{F}^{\prime} are contained in Y !
- \mathcal{F}^{\prime} not subfamily of $\mathcal{F} \Longrightarrow \operatorname{Im}(\phi)$ contained in coordinate hyperplane \Longrightarrow product rank ≤ 3.
- \mathcal{F} contains unique 2 -dim subfamily whose 6 -planes span a 9-dim space $L \rightsquigarrow \operatorname{Im}(\phi)=L$.
- On L, have

$$
\sum_{i=1}^{4} y_{i 1} y_{i 2} y_{i 3}=y_{11} y_{12} y_{13}+y_{21} y_{22} y_{23}
$$

The Story Thus Far

Using geometry, we have determined the product rank of det $_{3}$. An understanding of the linear subspaces contained in $V\left(\boldsymbol{d e t}_{3}\right)$ and other varieties was particularly useful!

Problem \#2: Determinantal Complexity

Definition

The determinantal complexity of a polynomial f is the smallest natural number m such that we can write $f=\operatorname{det} M$ for some $m \times m$ matrix M filled with affine linear functions.

Example

$$
x^{2}+y^{2}+z^{2}=\operatorname{det}\left(\begin{array}{cc}
x+i y & z \\
-z & x-i y
\end{array}\right)
$$

\rightsquigarrow determinantal complexity 2 .

The Permanent

$$
\operatorname{perm}_{n}=\sum_{\sigma \in S_{n}} x_{1 \sigma(1)} \cdots x_{n \sigma(n)}
$$

- What is the determinantal complexity of perm ${ }_{n}$?
- For $n=3,5 \leq \mathrm{dc} \leq 7$.

More Geometry

Theorem (Alper, Bogart, Velasco 2015)
Let f be a homogeneous polynomial of degree $d>2$. Then

$$
\operatorname{dc}(f) \geq \operatorname{codim}(\operatorname{Sing} V(f))+1
$$

as long as codim Sing $V(f)>4$.

- $\operatorname{codim}\left(\operatorname{Sing} V\left(\right.\right.$ perm $\left.\left._{3}\right)\right)=6 \rightsquigarrow$

Corollary (Alper, Bogart, Velasco 2015) $\mathrm{dc}\left(\right.$ perm $\left._{3}\right)=7$.

Thanks for listening!

