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A long strange trip

The Fundamental Lemma, first appearing
in lectures of 1979, “is a precise and purely
combinatorial statement that I thought
must therefore of necessity yield to a
straightforward analysis. This has turned
out differently than I foresaw.”

After decades of deep contributions by
many mathematicians, Ngô Bao Châu
completed a proof in 2008 which ranked
seventh on Time magazine’s Top 10
Scientific Discoveries of 2009 list.

Teleportation was eighth.
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A difficult task

To understand the Fundamental Lemma, we must study endoscopy.

To understand endoscopy, we must study Langlands functoriality.

To understand functoriality, we must study Langlands reciprocity...
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Linearization of subspaces

Let X be a measure space.

subspaces Y ⊂ X  integral distributions Y (ϕ) =
∫
Y ϕ

Now can add Y1 + Y2 and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G -orbits Y ⊂ X  G -invariant distributions Y (ϕ) =
∫
Y ϕ
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Linearization of conjugacy classes

Now consider group G with a conjugation invariant measure.

Importance of linearization of conjugacy classes:

characters of G -representations  G -invariant distributions

Given G -representation V , can form distributional character:

χV (ϕ) =

∫
G
ϕ(g) TrV (g)dg

(ignoring analytic technical difficulties).
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Example: Finite groups

Specialize to finite group G . Then

G -invariant distributions = class functions

Theorem
Characters χV of irreducible G-representations V form basis for
class functions. Rescaled characters χ̂V = χV / dim V idempotents
with respect to convolution χ̂V ∗ χ̂V = χ̂V .

Interpretation

Class functions = functions on space of irreducible representations.
Rescaled characters χ̂V are characteristic functions of points.
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Induced representations

It is difficult to construct representations.

We have trivial representation Tr and method of induction.

Given group G , and subgroup Γ ⊂ G , form “unitary induction”

IndG
Γ (Tr) = L2(G/Γ)

Output: character χG
Γ of induced representation IndG

Γ (Tr).
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Frobenius Character Formula

G finite group, Γ ⊂ G subgroup.

Ferdinand Georg Frobenius
1849–1917

Character of induced representation L2(G/Γ)

χG
Γ (ϕ) =

∑
γ∈Γ/Γ

aγOγ(ϕ)

Volumes of quotients of centralizers

aγ = |Γγ\Gγ |

Integrals over conjugacy classes

Oγ(ϕ) =

∫
[γ]
ϕ =

∑
x∈Gγ\G

ϕ(x−1γx)
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Poisson Summation Formula

R additive group, Z ⊂ R discrete subgroup.

Siméon Denis Poisson
1781–1840

Character of induced representation L2(R/Z)

χR
Z(ϕ) =

∑
n∈Z

ϕ(n)

(Fourier analysis provides isomorphism

L2(R/Z) ' ⊕̂λ∈ZC〈e2πiλ〉

Hence identification of characters∑
n∈Z

ϕ(n) =
∑
λ∈Z

ϕ̂(λ).)
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Arthur-Selberg Trace Formula

Atle Selberg
1917–2007

James Arthur
1944–

G reductive algebraic group over number field F .
Think G = GL(n) and F = Q.

AF adèles of F of all hypothetical
“Laurent series expansions” of elements in the

form of p-adic and real numbers.

Then G = G(AF ) is a locally compact group,
and Γ = G(F ) ⊂ G(AF ) is a discrete subgroup.

Character of induced representation L2(G/Γ)

χG
Γ (ϕ) =

∑
γ∈Γ/Γ

aγOγ(ϕ) + · · ·

Upshot: character involves integrals over
conjugacy classes in real and p-adic Lie groups.
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AF adèles of F of all hypothetical
“Laurent series expansions” of elements in the

form of p-adic and real numbers.

Then G = G(AF ) is a locally compact group,
and Γ = G(F ) ⊂ G(AF ) is a discrete subgroup.

Character of induced representation L2(G/Γ)

χG
Γ (ϕ) =

∑
γ∈Γ/Γ

aγOγ(ϕ) + · · ·

Upshot: character involves integrals over
conjugacy classes in real and p-adic Lie groups.



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Arthur-Selberg Trace Formula

Atle Selberg
1917–2007

James Arthur
1944–

G reductive algebraic group over number field F .
Think G = GL(n) and F = Q.
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Conjugacy classes

For simplicity, let’s consider the Lie algebra sl(2,R).

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

Three types of orbits under conjugation:

• hyperbolic: det < 0.

• nilpotent: det = 0.

• elliptic: det > 0.

We will focus on the two elliptic orbits
OA+ ,OA− ⊂ s(2,R) through the matrices

A+ =

[
0 1
−1 0

]
A− =

[
0 −1
1 0

]
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Stable conjugacy

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

Over the complex numbers C, the matrices

A+ =

[
0 1
−1 0

]
A− =

[
0 −1
1 0

]
are both conjugate to the matrix

A =

[
i 0
0 −i

]
∈ sl(2,C).

One says that A+ and A− are stably conjugate.
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Invariant polynomials

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

Said another way, the two elliptic orbits

OA+ ,OA− ⊂ s(2,R)

coalesce into a single conjugacy class

OA ⊂ s(2,C)

cut out by the invariant polynomial

det = 1

stable conjugacy classes ←→ invariant polynomials
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Linearization of adjoint orbits

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

Consider the distributions given by
integrating over the elliptic orbits

OA+(ϕ) =

∫
OA+

ϕ OA−(ϕ) =

∫
OA−

ϕ

with respect to an invariant measure.
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Alternative basis

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

The distributions OA+ ,OA− span a
two-dimensional complex vector space.

It admits the alternative basis

Ost = OA+ +OA−

Otw = OA+ −OA−

Here st stands for stable and
tw stands for twisted.
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Stable distributions

Stable distribution

Ost = OA+ +OA−

is integral over union of orbits

OA+ t OA− .

Algebraic variety defined by invariant polynomial

det = 1.

Stable distribution is object of

algebraic geometry (finite mathematics)

rather than harmonic analysis (continuous mathematics).
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Twisted distributions

What to do with twisted distribution

Otw = OA+ −OA−?

Distinguishes between

OA+ and OA−

though no invariant polynomial separates them.

Twisted distribution appears to be noncanonical: exchanging terms

OA+ ←→ OA−

induces sign change
Otw ←→ −Otw .
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Therein lies our salvation

Twisted distribution is integral over union of orbits

OA+ t OA−

against nontrivial character

κ(+) = 1 κ(−) = −1
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Interpretation via Fourier analysis

Orbits of SL(2,R) acting on
its Lie algebra sl(2,R) ' R3.

Alternative basis

Ost = OA+ +OA−

Otw = OA+ −OA−

results from Fourier analysis on set of orbits{
OA+ ,OA−

}
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What is the Fundamental Lemma all about?

Basic idea
Langlands’s theory of endoscopy, and the Fundamental Lemma at
its heart, confirms that one can systematically express

twisted distributions in terms of stable distributions

nonconstant Fourier modes in terms of constant Fourier modes
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Example continued

Endoscopy relates twisted distribution

Otw = OA+ −OA−

to stable distribution on Lie algebra so(2,R) ' R of subgroup

SO(2,R) ⊂ SL(2,R)

stabilizing matrices

A+ =

[
0 1
−1 0

]
A− =

[
0 −1
1 0

]
Outside of bookkeeping, this is empty of content since SO(2,R) is
abelian, and so its orbits in so(2,R) are single points.
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Why is the Fundamental Lemma difficult?

General theory of endoscopy is deep and elaborate.

Key challenge

Extraordinary difficulty of the Fundamental Lemma, and also its
mystical power, emanates from fact that sought-after stable
distributions live on so-called endoscopic groups H with little
apparent geometric relation to original group G .
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Endoscopic groups

To find relation between group G and endoscopic group H, one
must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H∨ is naturally subgroup of G∨.

Example

Consider the symplectic group G = Sp(2n).

The special orthogonal group H = SO(2n) is not a subgroup.

But H∨ = SO(2n) is a subgroup of G∨ = SO(2n + 1).

Endoscopy gives precise relationship

twisted distributions on Sp(2n) stable distributions on SO(2n)
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Low rank example

Foreground: roots of the group G = Sp(4) with roots of the
endoscopic group H = SO(4) highlighted.

Background: roots of the Langlands dual group G∨ = SO(5) with
roots of the subgroup H∨ = SO(4) highlighted.
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Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of
distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and
harmonic analysis: p-adic and real Lie groups (algebraic groups
over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic
conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and
Shelstad: “if it were not that [transfer factors] had been proved to
exist over the real field, it would have been difficult to maintain
confidence in the possibility of transfer or in the usefulness of
endoscopy.”
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From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

• Number field F

• Rational numbers Q
• p-adic field

• p-adic group

One-dimensional Geometry

• Smooth projective curve X

• Projective line P1

• Formal disk D

• Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in
the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

• Number field F

• Rational numbers Q
• p-adic field

• p-adic group

One-dimensional Geometry

• Smooth projective curve X

• Projective line P1

• Formal disk D

• Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in
the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

• Number field F

• Rational numbers Q
• p-adic field

• p-adic group

One-dimensional Geometry

• Smooth projective curve X

• Projective line P1

• Formal disk D

• Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in
the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

• Number field F

• Rational numbers Q
• p-adic field

• p-adic group

One-dimensional Geometry

• Smooth projective curve X

• Projective line P1

• Formal disk D

• Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in
the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are
equivalent to counting points in subvarieties of Grassmannians.

Definition
Let LG be loop group. Let L+G ⊂ LG be subgroup of arcs.
Loop Grassmannian GrG is homogenous space LG/L+G .

Why Grassmannian? ∞/2-dim subspaces of ∞-dim vector space.

Geometric analogue of affine building.
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Affine Springer fibers

Now the subvarieties...

Definition
Let ξ be element of Lie algebra of LG .
Affine Springer fiber Xξ ⊂ GrG is fixed-point locus of ξ.

Example for ξ diagonal with distinct eigenvalues.
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Basic structure of affine Springer fibers

• Xξ is finite-dimensional increasing union of projective varieties.

• Xξ/Λξ quotient by symmetry lattice is projective variety.
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From point counts to cohomology

Grothendieck
1928–

—

Lefschetz
1884–1972

Trace formula: count points in
algebraic variety by calculating

traces of Galois symmetries
acting on topological cohomology.

Now can stand on the shoulders of giants: Kazhdan-Lusztig,
Goresky-MacPherson, Beilinson-Bernstein-Deligne-Gabber,...

Challenge: cohomology of affine Springer fibers quantifiably too
complicated to calculate in any combinatorially explicit form.
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Springer theory

T.A. Springer
1926–

Problem: cohomology of fixed-points of vector fields on
flag varieties.

Trivial case: when vector field is generic, for example
sum of linearly independent commuting vector fields.

General solution: “analytically continue” solution from
generic locus to all vector fields.
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Compactified Jacobians

Laumon and Ngô

Beautiful insight

Affine Springer fibers modulo natural symmetries
parametrize generalized line bundles on curves.

Deformations to simpler curves provide
deformations to simpler affine Springer fibers.

Striking consequence

Fundamental Lemma for unitary groups!
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Hitchin fibers

Meanwhile in a galaxy far, far away...

Nigel Hitchin
1946–

Hitchin fibration
X smooth projective curve (Riemann surface).

Hitchin moduli MG (X ) parametrizes G-bundle
on X together with twisted endomorphism.

Base AG (X ) parametrizes possible eigenvalues of
twisted endomorphism (spectral curve).

Integrable system MG (X )→ AG (X ) assigns
characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers
into a proper finite-dimensional algebraic family.
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Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve X −→ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient G/G −→ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve X −→ {adjoint quotient g/G −→ possible eigenvalues t/W }

Global curve organizes local group theory!



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve X −→ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient G/G −→ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve X −→ {adjoint quotient g/G −→ possible eigenvalues t/W }

Global curve organizes local group theory!



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve X −→ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient G/G −→ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve X −→ {adjoint quotient g/G −→ possible eigenvalues t/W }

Global curve organizes local group theory!



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve X −→ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient G/G −→ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve X −→ {adjoint quotient g/G −→ possible eigenvalues t/W }

Global curve organizes local group theory!



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve X −→ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient G/G −→ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve X −→ {adjoint quotient g/G −→ possible eigenvalues t/W }

Global curve organizes local group theory!



Introduction Trace formula Endoscopy Springer fibers Hitchin fibration

Ngô’s Support Theorem

Main new technical input to proof of Fundamental Lemma. Precise
description of the cohomology of the fibers of an integrable system
in terms of its generic fibers.

Toy model: consider a family of irreducible curves

f : M → S , with M and S smooth.

Over a Zariski open locus S0 ⊂ S , the fibers

Ms = f −1(s), s ∈ S0

are topologically equivalent curves, hence their cohomologies
H∗(Ms) form a local system of vector spaces

H → S0

Exercise: the cohomology of any fiber can be recovered from H.
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Family of plane cubics

y 2 = x3 + ax + b
singular at (a, b) = (0, 0)
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Thank you for listening!
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