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Motivation

Enumerative geometry

In the late 1800’s, Hermann Schubert investigated problems in what is now called
enumerative geometry, or more specifically, Schubert calculus. As some examples,
where all projective spaces are assumed to be over the complex numbers:

1. How many lines in Pn pass through two given points?

Answer: One, as long as the points are distinct.

2. How many planes in P3 contain a given line l and a given point P?

Answer: One, as long as P 6∈ l.

3. How many lines in P3 intersect four given lines l1, l2, l3, l4?

Answer: Two, as long as the lines are in sufficiently “general” position.

4. How many (r−1)-dimensional subspaces of Pm−1 intersect each of r ·(m−r)
general subspaces of dimension m− r − 1 nontrivially?

Answer:
(r(m− r))! · (r − 1)! · (r − 2)! · · · · · 1!

(m− 1)! · (m− 2)! · · · · · 1!
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The first two questions are not hard, but how would we figure out the other
two? And what do we mean by “sufficiently general position”?

Schubert’s 19th century solution to problem 3 above would have invoked what
he called the “Principle of Conservation of Number,” as follows. Suppose the four
lines were arranged so that l1 and l2 intersect at a point P , l2 and l3 intersect at
Q, and none of the other pairs of lines intersect. Then the planes formed by each
pair of crossing lines intersect at another line α, which necessarily intersects all
four lines. The line β through P and Q also intersects all four lines, and it is not
hard to see that these are the only two in this case.

Schubert would have said that since there are two solutions in this configura-
tion and it is a finite number of solutions, it is true for every configuration of lines
for which the number is finite by continuity. Unfortunately, due to degenerate
cases involving counting with multiplicity, this led to many errors in computa-
tions in harder questions of enumerative geometry. Hilbert’s 15th problem asked
to put Schubert’s enumerative methods on a rigorous foundation. This led to the
modern-day theory known as Schubert calculus.

Describing moduli spaces

Schubert calculus can also be used to describe intersection properties in simpler
ways. As we will see, it will allow us to easily prove statements such as:

The variety of all lines in P4 that are both contained in a general 3-dimensional
hyperplane S and intersect a general line l nontrivially is isomorphic to the
variety of all lines in S passing through a specific point in that hyperplane.

(Here, the specific point in the hyperplane is the intersection of S and L.)

The Grassmannian

The first thing we need to do to simplify our life is to get out of projective space.
Recall that Pm can be defined as the collection of lines through the origin in Cm+1.
Furthermore, lines in Pm correspond to planes through the origin in Cm+1, and so
on.

In problem 3 in the introduction, we are trying to find lines in P3 with certain
intersection properties. This translates to a problem about planes through the
origin in C4, which we refer simply as 2-dimensional subspaces of C4. We wish to
know which 2-dimensional subspaces V intersect each of four given 2-dimensional
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subspaces W1,W2,W3,W4 in at least a line. Our strategy will be to consider the
algebraic varieties Zi, i = 1, . . . , 4, of all possible V intersecting Wi in at least
a line, and find the intersection Z1 ∩ Z2 ∩ Z3 ∩ Z4. Each Zi is an example of a
Schubert variety, a moduli space of subspaces of Cm with specified intersection
properties.

The simplest example of a Schubert variety, where we have no constraints on
the subspaces, is the Grassmannian Grn(Cm).

Definition 1. The Grassmannian Grn(Cm) is the collection of codimension-n
subspaces of Cm. In what follows we will set r = m−n, so that the codimension-n
subspaces have dimension r.

We will see later that the Grassmannian has the structure of an algebraic
variety, and has two natural topologies that come in handy. For this reason we
will call its elements the points of the Grn(Cm), even though they’re “actually”
subspaces of Cm of dimension r = m−n. It’s the same misfortune that causes us
to refer to a line through the origin as a “point in projective space.”

Now, every point of the Grassmannian is the span of r independent row vectors
of length m, which we can arrange in an r×m matrix. For instance, the following
represents a point in Gr3(C7). 0 −1 −3 −1 6 −4 5

0 1 3 2 −7 6 −5
0 0 0 2 −2 4 −2


Notice that we can perform elementary row operations on the matrix without
changing the point of the Grassmannian it represents. Therefore:

Fact 1. Each point of the Grassmannian corresponds to a unique full-rank matrix
in reduced row echelon form.

Let’s use the convention that the pivots will be in order from left to right and
bottom to top.

Example 1. In the matrix above we can switch the second and third rows, and
then add the third row to the first to get: 0 0 0 1 −1 −2 0

0 0 0 2 −2 4 −2
0 1 3 2 −7 6 −5


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Here, the bottom left 1 was used as the pivot to clear its column. We can now
use the 2 at the left of the middle row as our new pivot, by dividing that row by
2 first, and adding or subtracting from the two other rows: 0 0 0 0 0 0 1

0 0 0 1 −1 2 −1
0 1 3 0 −5 2 −3


Finally we can use the 1 in the upper right corner to clear its column: 0 0 0 0 0 0 1

0 0 0 1 −1 2 0
0 1 3 0 −5 2 0

 ,
and we are done.

In the preceding example, we were left with a reduced row echelon matrix in
the form  0 0 0 0 0 0 1

0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0

 ,
i.e. its leftmost 1’s are in columns 2, 4, and 7. The subset of the Grassmannian
whose points have this particular form constitutes a Schubert cell.

Schubert varieties and cell complex structure

To make the previous discussion rigorous, we assign to the matrices of the form 0 0 0 0 0 0 1
0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0


a partition - a nonincreasing sequence of nonnegative integers λ = (λ1, . . . , λr)
- as follows. Cut out the “upside-down staircase” from the left of the matrix,
and let λi be the distance from the end of the staircase to the 1 in each row. In
the matrix above, we get the partition λ = (4, 2, 1). Notice that we always have
λ1 ≥ λ2 ≥ · · · · · ·λr.

0
0
0

1
0
0

∗
0
0

0
1
0

∗
∗
0

∗
∗
0

0
0
1
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By identifying the partition with its Young diagram, we can alternatively define
λ as the complement in a r × n box (recall n = m− r) of the diagram µ defined
by the ∗’s, where we place the ∗’s in the lower right corner. For instance:

∗
∗

∗
∗

∗

Notice that every partition λ we obtain in this manner must fit in the r × n box.
For this reason, we will call it the Important Box. (Warning: this terminology
is not standard.)

Definition 2. The Schubert cell Ω◦λ ⊂ Grn(Cm) is the set of points whose row
echelon matrix has corresponding partition λ.

Notice that since each ∗ can be filled with any complex number, we have
Ω◦λ
∼= Cr·n−|λ|. Thus we can think of the Schubert cells as forming an open cover

of the Grassmannian by affine subsets.
More rigorously, the Grassmannian can be viewed as a projective variety by

embedding Grn(Cm) in P(m
r )−1 via the Plücker embedding. To do so, order the

r-element subsets S of {1, 2, . . . ,m} arbitrarily and use this ordering to label the

homogeneous coordinates xS of P(m
r )−1. Now, given a point in the Grassmannian

represented by a matrix M , let xS be the determinant of the r × r submatrix
determined by the columns in the subset S. This determines a point in projective
space since row operations can only change the coordinates up to a constant factor,
and the coordinates cannot all be zero since the matrix has rank r.

One can show that the image is an algebraic subvariety of P(m
r )−1, cut out by

homogeneous quadratic relations known as the Plücker relations. (See [4], chapter
14.) The Schubert cells form an open affine cover.

We are now in a position to define the Schubert varieties as closed subvarieties
of the Grassmannian.

Definition 3. The standard Schubert variety corresponding to a partition λ,
denoted Ωλ, is defined to be the closure Ωλ

◦ of the corresponding Schubert cell.
Explicitly,

Ωλ = {V ∈ Grn(Cm) | dimV ∩ 〈e1, . . . , en+i−λi〉 ≥ i.}
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In general, however, we can use a different basis than the standard basis
e1, · · · , em for Cm. Given a complete flag, i.e. a chain of subspaces

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = Cm

where each Fi has dimension i, we can define

Ωλ(F•) = {V ∈ Grn(Cm) | dimV ∩ Fn+i−λi ≥ i.}

Remark 1. The numbers n + i − λi are the positions of the 1’s in the matrix
starting from the right. Combinatorially, without drawing the matrix, these num-
bers can be obtained by adjoining an upright staircase to the end of the r × n
Important Box that λ is contained in, and computing the distances from the right
boundary of λ to the right boundary of the enlarged figure.

Example 2. The Schubert variety Ω�(F•) ⊂ Gr2(C4) is the collection of 2-
dimensional subspaces V ⊂ C4 for which dimV ∩F2 ≥ 1, i.e. V intersects another
2-dimensional subspace (namely F2)in at least a line.

By choosing four different flags F (1)
• , F (2)

• , F (3)
• , F (4)

• , problem 3 becomes equiv-
alent to finding the intersection of the Schubert varieties

Ω�(F (1)
• ) ∩ Ω�(F (2)

• ) ∩ Ω�(F (3)
• ) ∩ Ω�(F (4)

• ).

The CW complex structure

The Schubert varieties also give a CW complex structure on the Grassmannian
for each complete flag as follows. Given a fixed flag, define the 0-skeleton X0 to
be the 0-dimensional Schubert variety Ω(nr). Define X2 to be X0 along with the
2-cell (since we are working over C and not R) formed by removing a corner square
from the rectangular partition (nr), and the attaching map given by the closure
in the Zariski topology on Grn(Cm). Continue in this manner to define the entire
cell structure, X0 ⊂ X2 ⊂ · · · ⊂ X2nr.

Schubert classes and the cohomology ring of the

Grassmannian

Now that we have defined our Schubert varieties, we wish to compute their in-
tersection. The handy fact here is that their intersection corresponds to the cup
product of certain classes in the cohomology ring of the Grassmannian.
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We first take a look at the homology H∗(Grn(Cm)). Fix a flag and consider
the resulting CW complex structure as above. Since we are working over C, we
only have cellular chains in even degrees, and so the homology is equal to the
chain groups in even degrees and is 0 in odd degrees. In particular, the Schubert
varieties Ωλ determine a unique homology class [Ωλ], as they are elements of some
chain group in cellular homology.

Since GLn acts transitively on complete flags and sends Ωλ for one flag to Ωλ

for another, it is not hard to see that each Ωλ will determine the same homology
class independent of the flag.

Now, by Poincaré duality, the homology class [Ωλ] ∈ H2k(Grn(Cm)) corre-
sponds to a unique cohomology class in H2nr−2k(Grn(Cm)). This too is indepen-
dent of the choice of flag, so we simply write σλ = [Ωλ]. We call σλ a Schubert
class.

It is known [1] that in a CW complex structure in which X2k \ X2(k−1) is a
disjoint union of open cells, as it is in this case, the cohomology classes of the
closures of these open cells form a basis for the cohomology. Thus the σλ generate
H∗(Grn(Cm)).

Finally, in nice cases the cup product in cohomology corresponds to intersec-
tion of the closed subvarieties defining them. This is true of the Schubert varieties
for generic flags, i.e. for most choices of flags F• and E•,

σλ · σµ =
∑

[Yi]

where Yi are the irreducible components of Ωλ(E•) ∩ Ωλ(F•).

“It holds generically”

To make the notion of genericity more precise, we define the complete flag
variety Fl(Cm) to be the collection of all complete flags in Cm. We can view
its elements as m × m full-rank matrices by thinking of the first i vectors as
spanning the ith flag. Then using similar reasoning to the row equivalence in
the Grassmannian case, we find that the matrices defining a complete flag are
equivalent up to the action of B, the group of upper triangular matrices in GLn.

Therefore, Fl(Cm) ∼= GLn(C)/B, which naturally has the structure of an alge-
braic variety.

Finally, we say that a property holds for a “generic” collection of flags if it
holds for all tuples of flags in some (nonempty, dense) Zariski open subset of the
product variety

Fl(Cm)× Fl(Cm)× · · · × Fl(Cm).

7



The Littlewood-Richardson rule

Since the σλ’s generate H∗(Grn(Cm)), we can express the product of two Schu-
bert classes as a sum of Schubert classes. The LR rule gives a formula for their
coefficients.

We first introduce some notation and terminology. Given two partitions λ and
ν with the Young diagram of λ contained in that of ν, we define ν/λ to be the
skew shape formed by removing λ’s boxes from ν. A semistandard Young
tableau (SSYT) of shape ν/λ is a way of filling these boxes with positive integers
so that the numbers are weakly increasing across rows and strictly increasing down
columns. We say the SSYT has content µ if there are µi boxes labeled i in the
tableau for each i. The reading word of the tableau is the word formed by
reading the entries in each row from left to right, starting with the bottom row
and working towards the top. A word is lattice if every suffix has at least as
many i’s as i+ 1’s for all i.

The following example shows a semistandard Young tableau of shape ν/λ
where λ = (2, 2) and ν = (4, 3, 1). Its reading word is 1211, which is lattice. Its
content is µ = (3, 1).

1 1
2

1

Theorem 1. (Littlewood-Richardson rule.) For any two partitions λ and µ con-
tained in the Important Box,

σλ · σµ =
∑

cνλµσν ,

where the sum ranges over all ν in the Important Box, and cνλµ is the number of
semistandard Young tableaux of shape ν/λ having content µ and whose reading
word is lattice.

In [1], Fulton gives a full proof of this rule, by first proving the following special
case.

Theorem 2. (Pieri rule.) We have

σλ · σ(k) =
∑
ν

σν

where the sum ranges over all ν contained in the Important Box and such that
ν/λ is a horizontal strip.
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The Pieri rule is not hard to prove using some basic linear algebra (see [1],
section 9.4), but the Littlewood-Richardson rule is much harder. For this, we turn
to the hammer of symmetric function theory.

The combinatorics behind the rule: symmetric

function theory

The Littlewood-Richardson and Pieri rules come up in symmetric function theory
as well, and the combinatorics is much easier to deal with in this setting.

Definition 4. The ring of symmetric functions in infinitely many variables x1, x2, . . .
is the ring

Λ(x1, x2, . . .) = C[x1, x2, . . .]
S∞

of formal power series having bounded degree which are symmetric under the
action of the infinite symmetric group on the indices.

For instance, x21 +x22 +x33 + · · · is a symmetric function, because interchanging
any two of the indices does not change the series.

The most important symmetric functions in this context are the Schur func-
tions. They can be defined in many equivalent ways, from being characters of
irreducible representations of GLn to an expression as a ratio of determinants.
We use the combinatorial definition here, since it is most relevant to this context.

Definition 5. Let λ be a partition. Given a semistandard Young tableau T of
shape λ, define xT = xm1

1 xm2
2 · · · where mi is the number of i’s in the tableau T .

The Schur functions are the symmetric functions defined by

sλ =
∑
T

xT

where the sum ranges over all SSYT’s T of shape λ.

It is known that the Schur functions are symmetric, they form a basis of λC,
and they satisfy the Littlewood-Richardson rule: [1]

sλ · sµ =
∑
ν

cνλµsν

the only difference being that here, the sum is not restricted by any Important
Box. It follows that there is a surjective ring homomorphism

Λ(x1, x2, . . .) � H∗(Grn(Cm)))
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sending sλ 7→ σλ if λ fits inside the Important Box, and sλ 7→ 0 otherwise.
In particular, this means that any relation involving symmetric functions trans-

lates to a relation on H∗(Grn(Cm)). This connection makes the combinatorial
study of symmetric functions an essential tool in Schubert calculus.

Examples

Example 3. Let’s compute σ(1,1)·σ(2) inH∗(Gr2(C4)). The Littlewood-Richardson
rule tells us that the only possible ν must be the 2× 2 square (2, 2), but there is
no way to fill ν/λ with two 1’s in a semistandard way. Therefore,

σ(1,1) · σ(2) = 0.

Geometrically, this makes sense: Ω(1,1) is the Schubert variety consisting of
all 2-dimensional subspaces of C4 contained in a given 3-dimensional subspace.
Ω(2) is the Schubert variety of all 2-dimensional subspaces containing a given line
through 0. For a generic choice of the given 3-dimensional subspace and line
through the origin, there is plane satisfying both conditions.

Example 4. Let’s try the same calculation, σ(1,1) ·σ(2), in H∗(Gr3(C5)). Now the
Important Box is 2 × 3, and so the partition ν = (3, 1) is a possibility. Indeed,
the Littlewood-Richardson rule gives us one possible filling of ν/λ with two 1’s,
and so we have

σ(1,1) · σ(2) = σ(3,1).

Geometrically, this also makes sense: Ω(1,1) is the Schubert variety consisting
of all 2-dimensional subspaces of C5 contained in a given 4-dimensional subspace.
Ω(2) is the Schubert variety of all 2-dimensional subspaces intersecting a given
plane through 0 in at least a line. Ω(3,1), then, is the variety of all 2-dimensional
subspaces contained in a given 4-space and also containing a given line. Clearly
the first and second conditions together are equivalent to the third in C5.

Example 5. We can now check in the least elegant possible way that there exists
a unique line in projective space passing through two given points. In other words,
through two given lines through 0 in Gr2(C3), we wish to show there is exactly
one plane in the intersection of the varieties Ω(1) and Ω(1) (for two different flags).
Our Important Box is 2× 1, so we have

σ(1) · σ(1) = σ(1,1).

Indeed, Ω(1,1) consists of a single plane in C3.
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Example 6. We can now also solve problem 3. We wish to compute the product
σ4
(1) in H∗(Gr2(C4)). We have σ2

(1) = σ(1,1) + σ(2) by the Littlewood-Richardson
rule. Since σ(1,1) · σ(2) = 0 as in Example 3, we have

σ4
(1) = (σ(1,1) + σ(2))

2 = σ2
(1,1) + σ2

(2) = 2σ(2,2).

Thus there are exactly 2 lines intersecting four given lines in P3.

Example 7. Finally, let’s solve problem 4. The statement translates to proving
a relation of the form

σ
r(m−r)
(1) = c · σ(n,n,··· ,n)

where c is the desired number of r-planes and the Schubert class on the right hand
side refers to the class of the Important Box.

First note that some relation of this form must hold, since any partition ν on
the right hand side of the product must have size r(m−r) and fit in the Important
Box. The Box itself is the only such partition.

To compute c, we notice that it is the same as the coefficient of s(n,n,...,n) in
the product of Schur functions srn(1) in the ring Λ(x1, x2, . . .). We now introduce
some more well-known facts and definitions from symmetric function theory.

Define the monomial symmetric function mλ to be the sum of all mono-
mials in x1, x2, . . . having exponents λ1, . . . , λr. Then it is not hard to see, from
the combinatorial definition of Schur functions, that

sλ =
∑
µ

Kλµmµ

where Kλµ is the number of semistandard Young tableaux of shape λ and content
µ. The numbers Kλµ are called the Kostka numbers, and they can be thought
of as a change of basis matrix in the space of symmetric functions.

The homogeneous symmetric function hλ is defined to be hλ1 · · ·hλr where
hd is the sum of all monomials of degree d for any given d. The homogeneous
symmetric functions also form a C-basis for Λ(x1, x2, . . .), and one can then define
an inner product on Λ such that

〈hλ,mµ〉 = δλµ,

i.e. the h’s and m’s are orthonormal. Remarkably, the sλ’s are orthogonal with
respect to this inner product:

〈sλ, sµ〉 = δλµ,
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and so we have

〈hµ, sλ〉 = 〈hµ,
∑
ν

Kλνmν〉

=
∑
ν

Kλν〈hµ,mν〉

=
∑
ν

Kλνδµν

= Kλµ

Thus we have the dual formula

hµ =
∑
λ

Kλµsµ.

Returning to the problem, notice that s(1) = m(1) = h(1) = x1 + x2 + x3 + · · · .
Thus srn(1) = hrn1 = h(1,1,1,...,1) where the last vector has length rn. It follows
from the formula above that the coefficient of s(n,n,··· ,n) in h(1,1,1,...,1) is the number
of fillings of the Important Box with content (1, 1, 1, . . . , 1), i.e. the number of
Standard Young tableaux of Important Box shape.

There is a well-known and hard-to-prove theorem known as the hook length
formula which will finish the computation.

Definition 6. Define the hook length hook(s) of a square s in a Young diagram
to be the number of squares strictly to the right of it in its row plus the number
of squares strictly below in its column plus 1 for the square itself.

Theorem 3. (Hook length formula.) The number of standard Young tableaux of
shape λ is

|λ|!∏
s∈λ hook(s)

.

Applying the Hook length formula to the Important Box yields the total of

(r(m− r))! · (r − 1)! · (r − 2)! · · · · · 1!

(m− 1)! · (m− 2)! · · · · · 1!

standard fillings, as desired.
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