SELECTED SOLUTIONS FROM PROBLEM SET 8

MARTIN OLSSON

section 7.3, \# 6. Using the preceding exercise we can do this as follows. By definition of i, we have $k_{i} \leq \sqrt{p}$ and $k_{i+1}>\sqrt{p}$. Then by exercise 5 we have

$$
\left|h_{i} / k_{i}-u / p\right| \leq 1 / k_{i} k_{i+1}<1 / k_{i} \sqrt{p} .
$$

Multiplying both sides by $k_{i} p$ we get

$$
\left|h_{i} p-u k_{i}\right|<\sqrt{p} .
$$

Now if $x=k_{i}$ and $y=h_{i} p-u k_{i}$, then we get

$$
x^{2}+y^{2} \equiv k_{i}^{2}-u^{2} k_{i}^{2} \equiv 0 \quad(\bmod p),
$$

where we use the definition of u which gives $u^{2} \equiv-1(\bmod p)$. Therefore $p \mid x^{2}+y^{2}$. On the other hand, we have $\left|x^{2}\right| \leq p$ since $k_{i} \leq \sqrt{p}$ and we just showed that $|y|<\sqrt{p}$ so

$$
\left|x^{2}+y^{2}\right| \leq\left|x^{2}\right|+\left|y^{2}\right|<2 p
$$

Therefore $x^{2}+y^{2}$ is a number between 0 and $2 p$ which is divisible by p. We conclude that $p=x^{2}+y^{2}$.
Section 7.4, \# 4. Let θ denote the number $\left\langle b_{1}, b_{2}, \ldots\right\rangle$. Then by theorem 7.3 we have

$$
\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{1}, b_{2}, \ldots\right\rangle=\left\langle a_{0}, a_{1}, \ldots, a_{n}, \theta\right\rangle=\frac{\theta h_{n}+h_{n-1}}{\theta k_{n}+k_{n-1}} .
$$

Let r_{n} denote $\left\langle a_{0}, \ldots, a_{n}\right\rangle$ and recall (theorem 7.4) that $r_{n}=h_{n} / k_{n}$. then we have

$$
\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{1}, b_{2}, \ldots\right\rangle-r_{n}=\frac{\theta h_{n}+h_{n-1}}{\theta k_{n}+k_{n-1}}-\frac{h_{n}}{k_{n}}
$$

which upon finding a common denominator on the right side gives

$$
\begin{aligned}
&\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{1}, b_{2}, \ldots\right\rangle-r_{n}=\frac{\theta h_{n} k_{n}+h_{n-1} k_{n}-h_{n} \theta k_{n}-h_{n} k_{n-1}}{k_{n}\left(\theta k_{n}+k_{n-1}\right)} \\
&= \\
&=\frac{h_{n-1} k_{n}-h_{n} k_{n-1}}{k_{n}\left(\theta k_{n}+k_{n-1}\right)} \\
& k_{n}\left(\theta k_{n}+k_{n-1}\right)
\end{aligned}
$$

where the last equality is by theorem 7.5 . Since the k_{n} tend to infinity as n gets large this gives

$$
\lim _{n \rightarrow \infty}\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{1}, b_{2}, \ldots\right\rangle-r_{n}=0
$$

and therefore

$$
\lim _{n \rightarrow \infty}\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{1}, b_{2}, \ldots\right\rangle=\lim _{n \rightarrow \infty} r_{n}=\xi
$$

