THE QUADRATIC RECIPROCITY THEOREM

MARTIN OLSSON

Theorem 1. Let p and q be distinct odd primes. Then
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The following proof is due to Sey Yoon Kim (I learned this proof from John Tate).
Let
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Let

A={n|l <n<mand (n,pq) =1},
and

B ={n|1 <n <mand (n,p) = 1}.

Let a denote the product of the elements in a, and let b denote the product of the elements
in B. Note that ]
p —_—
B=AU{q,2q,...,(—)q}.

From this we get

(1.1) b=aq 2 ((~——)!.

On the other hand, we can also write
el oy, . =l g —1 .
5= (U vt e+ ) u (UE (D +0).
From this we get that

(1.2) b=((p— 1) (=57 (mod p).

Combining equations 1.1 and 1.2 we get that
p—1 p — 1

(-3 (D) = ag"? (B5)) (mod p).

Cancelling the ((p — 1)/2)! from both sides, applying Wilson’s theorem, and using that ¢
is congruent mod p to (1) we conclude that

()@=
()= v

By symmetry we also have
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This now reduces the quadratic reciprocity theorem to a congruence statement for a
(mod pq). In fact from this we get that the quadratic reciprocity theorem is equivalent
to the statement that for p and ¢ both congruent to 1 mod 4 we should have

a=+1 (mod pq),
and in all other cases we should have a not congruent to £1 (mod pgq).
To verify that this is indeed the case, note that there is an involution
c:A— A
sending n € A to the unique element n’ € A for which
nn' = +1  (mod pq).
From this we get that
a:HnEj: H nzj:Hn (mod pgq).
neA ne€A,o(n)=n n2=+1

The congruence n> =1 (mod pq) has four solutions +1, +u, with say 1,u € A. The congru-
ence

n?’=-1 (mod pq)
has no solutions unless p = ¢ = 1 (mod 4). In this case the solutions are +i and +iu, with
say i and eiu in A, where e is either 1 or —1 and 7 is a number with > = —1 (mod p). So if
p=qg=1 (mod 4) we get

a = tui(eiu) = +1  (mod pq),

and otherwise

a=4u (mod pq)
which is not 1 (mod pq). This therefore verifies the quadratic reciprocity theorem. U



