THE QUADRATIC RECIPROCITY THEOREM

MARTIN OLSSON

Theorem 1. Let p and q be distinct odd primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)} .
$$

The following proof is due to Sey Yoon Kim (I learned this proof from John Tate).
Let

$$
m=\frac{p q-1}{2}=\left(\frac{p-1}{2}\right) q+\frac{q-1}{2}=\left(\frac{q-1}{2}\right) p+\frac{p-1}{2} .
$$

Let

$$
A=\{n \mid 1 \leq n \leq m \text { and }(n, p q)=1\},
$$

and

$$
B=\{n \mid 1 \leq n \leq m \text { and }(n, p)=1\} .
$$

Let a denote the product of the elements in a, and let b denote the product of the elements in B. Note that

$$
B=A \cup\left\{q, 2 q, \ldots,\left(\frac{p-1}{2}\right) q\right\} .
$$

From this we get

$$
\begin{equation*}
b=a q^{\frac{p-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right) . \tag{1.1}
\end{equation*}
$$

On the other hand, we can also write

$$
B=\left(\cup_{j=0}^{\frac{q-1}{2}-1} \cup_{i=1}^{p-1}(j p+i)\right) \cup\left(\cup_{i=1}^{\frac{p-1}{2}}\left(\left(\frac{q-1}{2}\right) p+i\right)\right) .
$$

From this we get that

$$
\begin{equation*}
b \equiv((p-1)!)^{\frac{q-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right) \quad(\bmod p) . \tag{1.2}
\end{equation*}
$$

Combining equations 1.1 and 1.2 we get that

$$
((p-1)!)^{\frac{q-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right) \equiv a q^{\frac{p-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right) \quad(\bmod p) .
$$

Cancelling the $((p-1) / 2)$! from both sides, applying Wilson's theorem, and using that $q^{\frac{p-1}{2}}$ is congruent $\bmod p$ to $\left(\frac{q}{p}\right)$ we conclude that

$$
\left(\frac{-1}{q}\right)\left(\frac{q}{p}\right) \equiv a \quad(\bmod p) .
$$

By symmetry we also have

$$
\left(\frac{-1}{p}\right)\left(\frac{p}{q}\right) \equiv a \quad(\bmod q) .
$$

This now reduces the quadratic reciprocity theorem to a congruence statement for a $(\bmod p q)$. In fact from this we get that the quadratic reciprocity theorem is equivalent to the statement that for p and q both congruent to $1 \bmod 4$ we should have

$$
a \equiv \pm 1 \quad(\bmod p q)
$$

and in all other cases we should have a not congruent to $\pm 1(\bmod p q)$.
To verify that this is indeed the case, note that there is an involution

$$
\sigma: A \rightarrow A
$$

sending $n \in A$ to the unique element $n^{\prime} \in A$ for which

$$
n n^{\prime} \equiv \pm 1 \quad(\bmod p q)
$$

From this we get that

$$
a=\prod_{n \in A} n \equiv \pm \prod_{n \in A, \sigma(n)=n} n \equiv \pm \prod_{n^{2} \equiv \pm 1} n(\bmod p q) .
$$

The congruence $n^{2} \equiv 1(\bmod p q)$ has four solutions $\pm 1, \pm u$, with say $1, u \in A$. The congruence

$$
n^{2} \equiv-1 \quad(\bmod p q)
$$

has no solutions unless $p \equiv q \equiv 1(\bmod 4)$. In this case the solutions are $\pm i$ and $\pm i u$, with say i and eiu in A, where e is either 1 or -1 and i is a number with $i^{2} \equiv-1(\bmod p)$. So if $p \equiv q \equiv 1(\bmod 4)$ we get

$$
a \equiv \pm u i(e i u) \equiv \pm 1 \quad(\bmod p q)
$$

and otherwise

$$
a \equiv \pm u \quad(\bmod p q)
$$

which is not $\pm 1(\bmod p q)$. This therefore verifies the quadratic reciprocity theorem.

