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Abstract. We develop a non–abelian version of P–adic Hodge Theory for varieties (pos-
sible open with “nice compactification”) with good reduction. This theory yields in partic-
ular a comparison between smooth p–adic sheaves and F–isocrystals on the level of certain
Tannakian categories, p–adic Hodge theory for relative Malcev completions of fundamental
groups and their Lie algebras, and gives information about the action of Galois on funda-
mental groups.
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1. Introduction

1.1. The aim of this paper is to study p–adic Hodge theory for non–abelian invariants. Let
us begin, however, by reviewing some of the abelian theory.
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Let k be a perfect field of characteristic p > 0, V the ring of Witt vectors of k, K the field
of fractions of V , and K ↪→ K an algebraic closure of K. Write GK for the Galois group
Gal(K/K). Let X/V be a smooth proper scheme, and denote by XK the generic fiber of K.
Let D ⊂ X be a divisor with normal crossings relative to V , and set Xo := X −D. Denote
by H∗et(X

o
K

) the étale cohomology of Xo
K

with coefficients Qp and by H∗dR(Xo
K) the algebraic

de Rham cohomology of Xo
K . The vector space H∗et(X

o
K

) has a natural action ρXo
K

of GK , and
the space H∗dR(Xo

K) is a filtered F–isocrystal. That is, the space H∗dR(Xo
K) comes equipped

with a filtration Fil·Xo
K

and a semi–linear (with respect to the canonical lift of Frobenius to

V ) Frobenius automorphism ϕXo
K

: H∗dR(Xo
K) → H∗dR(Xo

K). The theory of p–adic Hodge
theory implies that the two collections of data (H∗et(X

o
K

), ρXo
K
) and (H∗dR(Xo

K),Fil·Xo
K
, ϕXo

K
)

determine each other [Fa1, Fa2, Fa3, Ts1].

1.2. More precisely, let Bcris(V ) denote the ring defined by Fontaine [Fo1, Fo2, Fo3], MFK
the category of K–vector spaces M with a separated and exhaustive filtration Fil· and a
semi–linear automorphism ϕM : M → M , and let Repcts

Qp
(GK) be the category of continuous

representations of GK on Qp–vector spaces. The ring Bcris(V ) comes equipped with an action
of GK , a semi–linear Frobenius automorphism, and a filtration. There is a functor

(1.2.1) D : Repcts
Qp

(GK) −→MFK

sending a representation L to (L ⊗Qp Bcris(V ))GK with the semi–linear automorphism and
filtration induced by that on Bcris(V ). For any L ∈ Rep(GK) there is a natural transformation

(1.2.2) αL : D(L)⊗K Bcris(V ) −→ L⊗Qp Bcris(V )

which by [Fo1, 5.1.2 (ii)] is always injective. The representation L is called crystalline if
the map αL is an isomorphism, in which case L and D(L) are said to be associated. The
precise statement of the comparison between between étale and de Rham cohomology in the
above situation is then that (H∗et(X

o
K

), ρXo
K
) and (H∗dR(Xo

K),Fil·Xo
K
, ϕXo

K
) are associated. In

particular there is a natural isomorphism

(1.2.3) H∗dR(Xo
K)⊗K Bcris(V ) ' H∗et(X

o
K

)⊗Qp Bcris(V )

compatible with the actions of GK , the filtrations, and the Frobenius automorphisms.

There is also a version of the comparison 1.2.3 with coefficients. In [Fa1, Chapter V
(f)] Faltings defines a notion of a crystalline sheaf on the scheme Xo

K , which is a smooth
Qp–sheaf L on Xo

K,et which is associated in a suitable sense to a filtered log F–isocrystal
(E,FilE, ϕE) on Xk/K (see 6.13 for a precise definition). For such a sheaf L, the étale
cohomology H∗(Xo

K,et
, LK) is a Galois representation (here LK denotes the restriction of L

to Xo
K,et

) and the log de Rham cohomology H∗dR(XK , E) is naturally viewed as an object of

MFK . In [Fa1, 5.6], Faltings shows that the representation H∗(Xo
K,et

, LK) is crystalline and

is associated to H∗dR(XK , E).

The main goal of this paper is to generalize to the level of certain homotopy types the
above comparisons between cohomology.

1.3. Before explaining the main results of the paper, let us discuss an example which provided
motivation for this work and hopefully helps put the more technical results below in context.
This example is not discussed in the body of the paper and the reader who so desires can skip
to 1.5. Let g ≥ 3 be an integer andMo

g the moduli space of smooth curves of genus g. If we fix
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a point p ∈Mo
g(C) corresponding to a curve C, the fundamental group π1(Mo

g(C), p) (where
Mo

g(C) is viewed as an orbifold) is naturally identified with the so–called mapping class group
Γg which has a long and rich history (see [Ha1, Ha3, H-L, Na] for further discussion). The
first homology of the universal curve overMo

g,C defines a local system onMo
g,C which by our

choice of base point defines a representation

(1.3.1) Γg −→ Aut(H1(C,Z)).

The kernel is the so–called Torelli group denoted Tg. Associated to the representation 1.3.1
is a pro–algebraic group G called the relative Malcev completion and a factorization

(1.3.2) Γg → G → Aut(H1(C,C)).

The kernel of G → Aut(H1(C,C)) is a pro–unipotent group which we denote by Ug. If Tg
denotes the Malcev completion of Tg, then there is a natural map Tg → Ug whose kernel is
isomorphic to Q [Ha3] (here the assumption g ≥ 3 is used). Let ug denote the Lie algebra of
Ug. The interest in the group ug derives from the fact that it carries a natural mixed Hodge
structure which Hain and others have used to obtain information about the group Tg.

The construction of the mixed Hodge structure on ug suggests that the Lie algebra ug should
in a suitable sense be a motive over Z. In particular, there should be an étale realization, de
Rham realization, and a p–adic Hodge theory relating the two similar to the cohomological
theory. A consequence of the work in this paper is that this is indeed the case.

To explain this, choose the curve C to be defined over Qp and assume C has good reduction.
Let π : Co → Mo

g,Qp
be the universal curve and let E = R1π∗(Ω

•
Co/Mo

g,Qp
) be the relative de

Rham cohomology of Co which is a module with connection onMo
g, and let L = R1πo∗Qp be the

relative p–adic étale cohomology. The module with connection E has a natural structure of a
filtered log F–isocrystal (E,FilE, ϕE) and is associated to the smooth Qp–sheaf L [Fa1, 6.3].

Let 〈̃E〉⊗ be the smallest Tannakian subcategory of the category of modules with connection

onMo
g,Qp

which is closed under extensions and contains E, and let 〈̃LQp
〉
⊗

denote the smallest

Tannakian subcategory of the category of smooth Qp–sheaves onMo
g,Qp

which is closed under

extensions and contains LQp
(the restriction of L toMo

g,Qp
). The point p ∈Mo

g,Qp
(Qp) defined

by C defines fiber functors for these Tannakian categories, and using Tannaka duality we

obtain pro–algebraic groups π1(〈̃E〉⊗) and π1(〈̃LQp
〉
⊗
) over Qp. The group π1(〈̃E〉⊗) comes

equipped with a Frobenius automorphism ϕ (really a semi–linear automorphism but we are

working over Qp) and the group π1(〈̃LQp
〉
⊗
) comes equipped with an action of the Galois

group Gal(Qp/Qp). Let udR
g (resp. uet

g ) denote the Lie algebra of the pro–unipotent radical

of π1(〈̃E〉⊗) (resp. π1(〈̃LQp
〉
⊗
)). The Frobenius automorphism ϕ induces an automorphism

ϕudR
g

of udR
g and the Galois action on π1(〈̃LQp

〉
⊗
) induces a Galois action ρuet

g
on uet

g . By [Ha2,

3.1] any embedding Qp ↪→ C induces a natural isomorphisms of Lie algebras ug ' udR
g ⊗Qp C

and ug ' uet
g ⊗Qp C. It is therefore natural to call udR

g (resp. uet
g ) the de Rham (resp. étale)

realization of ug. The p–adic Hodge theory studied in this paper (in particular 1.10 below)
now yields the following result:
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Theorem 1.4. The Gal(Qp/Qp)–representation uet
g is pro–crystalline, and there is a natural

isomorphism D(uet
g ) ' udR

g compatible with the Frobenius automorphisms.

Similar results also hold for the moduli spacesMo
g,n of n–pointed genus g curves. Note that

Mo
0,4 ' P1−{0, 1,∞} is the case studied by Deligne in [De2]. Theorem 1.4 for P1−{0, 1,∞}

had previously been obtained by Hain and Matsumoto [H-M, 9.8], as well as Shiho [Sh3] and
Tsuji. Pridham has also obtained some of the results of this paper using a different method
[Pr].

1.5. As in [Ol1] we work in this paper systematically with simplicial presheaves and stacks
[Bl, H-S, Ja, To1]. For any ring R, let SPr(R) denote the category of simplicial presheaves on
the category of affine R–schemes, and let SPr∗(R) denote the category of pointed objects in
SPr(R). By [To1, 1.1.1], there is a natural model category structure on SPr(R) and SPr∗(R),
and we write Ho(SPr(R)) and Ho(SPr∗(R)) for the resulting homotopy categories.

Let X/V be as in 1.1, and assume given a section x : Spec(V )→ Xo. Let L be a crystalline
sheaf on Xo

K associated to some filtered log F–isocrystal (E,FilE, ϕE). Let Cet denote the
smallest full Tannakian subcategory of the category of smooth Qp–sheaves on Xo

K
closed

under extensions and containing LK . Similarly let CdR denote the smallest full Tannakian
subcategory of the category of modules with integrable connection on Xo

K/K closed under
extensions and containing E. Also, let 〈LK〉⊗ (resp. 〈E〉⊗) denote the Tannakian subcategory
of the category of smooth sheaves on Xo

K
generated by LK (resp. the Tannakian subcategory

of the category of modules with integrable connection on Xo
K/K generated by E), and let

π1(〈LK〉⊗, x̄) (resp. π1(〈E〉⊗, x)) denote the Tannaka dual of 〈LK〉⊗ (resp. 〈E〉⊗) with respect
to the fiber functor defined by x.

Assumption 1.6. Assume that the groups π1(〈LK〉⊗, x̄) and π1(〈E〉⊗, x) are reductive and
that E has unipotent local monodromy (see 4.14 for what this means).

In section 4, we explain a construction of certain pointed stacks XCdR
∈ Ho(SPr∗(K)) and

XCet ∈ Ho(SPr∗(Qp)). The fundamental group of XCdR
(resp. XCet) is the Tannaka dual of

CdR (resp. Cet) and cohomology of local systems (in the sense of Toen [To1, 1.3]) agrees with
de Rham cohomology (resp. étale cohomology). The pointed stack XCdR

comes equipped
with a Frobenius automorphism ϕXCdR

: XCdR
⊗K,σK → XCdR

, where σ : K → K denotes the
canonical lift of Frobenius, and XCet has a natural action of the group GK .

We will use Faltings’ approach to p-adic Hodge theory using “almost mathematics” to
compare XCdR

and XCet . As the referee points (and as explained for example in [Ol3]) this

approach naturally leads one to consider a certain localization B̃cris(V ) of Bcris(V ) (see 6.8
for a precise definition). The main result can now be stated as follows.

Theorem 1.7. There is a natural isomorphism in Ho(SPr∗(B̃cris(V )))

(1.7.1) ι : XCdR
⊗K B̃cris(V ) ' XCet ⊗Qp B̃cris(V )

compatible with the Frobenius automorphisms and the action of GK, where XCdR
⊗K B̃cris(V )

(resp. XCet ⊗Qp B̃cris(V )) denotes the restriction of XCdR
(resp. XCet) to the category of affine

schemes over B̃cris(V ).
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We also prove an unpointed version of 1.7 in section 8.

To illustrate the utility of this theorem, let us mention some consequences for homotopy
groups of 1.7 and its proof.

Theorem 1.8. There is an isomorphism of group schemes over Bcris(V )

(1.8.1) π1(CdR, x)⊗K Bcris(V ) ' π1(Cet, x̄)⊗Qp Bcris(V )

compatible with the natural actions of Frobenius and GK.

For any i ≥ 1 one can define homotopy groups πi(XCdR
) (resp. πi(XCet)) which are al-

gebraic groups over K (resp. Qp). The Frobenius automorphism on XCdR
(resp. the GK–

action on Xet) induces a semi–linear automorphism of πi(XCdR
) (resp. an action of GK on

πi(XCet)). This action induces a Frobenius automorphism (resp. GK–action) on the Lie
algebra Lie(πi(XCdR

)) (resp. Lie(πi(XCet))).

Theorem 1.9. For every i ≥ 1, the GK–representation Lie(πi(XCet)) is a pro–object in
the category of crystalline representations, and the K–space with Frobenius automorphism
underlying D(Lie(πi(XCet))) is canonically isomorphic to Lie(πi(XCdR

)).

As mentioned above, in the case i = 1 the group π1(XCet) (resp. π1(XCdR
)) is canonically

isomorphic to π1(Cet, x̄) (resp. π1(CdR, x)). Hence in this case, 1.9 gives:

Theorem 1.10. The GK–representation Lie(π1(Cet, x̄)) is a pro–object in the category of
crystalline representations and the K–vector space with Frobenius automorphism underlying
D(Lie(π1(Cet, x̄))) is canonically isomorphic to the pro–F–isocrystal Lie(π1(CdR, x)).

On the other hand, if for some embedding K ↪→ C the complex manifold Xo(C) is simply
connected, then 1.9 yields p-adic Hodge theory for certain motivic realizations of the higher
rational homotopy groups πi(X

o(C))⊗Q.

In 8.27–8.32 we also prove a generalization of 1.10 for spaces of paths. Suppose x, y ∈ Xo(V )
are two points defining two fiber functors ωdR

x ωdR
y (resp. ωet

x , ωet
y ) for CdR (resp. Cet). Define

schemes over K and Qp respectively

(1.10.1) P dR
x,y := Isom⊗(ωdR

x , ωdR
y ), P et

x,y := Isom⊗(ωet
x , ω

et
y ).

The scheme P dR
x,y has a natural semi–linear automorphism and P et

x,y has a natural action of
GK .

Theorem 1.11. The Galois representation OP et
x,y

is ind–crystalline and the vector space with
semi–linear automorphism underlying D(OP et

x,y
) is canonically isomorphic to OPdR

x,y
.

Theorem 1.7 also has implications for cohomology. Recall that CdR ⊗K B̃cris(V ) (resp.

Cet ⊗Qp B̃cris(V )) is the category of pairs (M,α) (resp. (S, β)), where M (resp. S) is an

ind–object in CdR (resp. Cet) and α : B̃cris(V ) → EndK(M) (resp. β : B̃cris(V ) → EndQp(S))
is a K–algebra (resp. Qp–algebra) homomorphism. In particular, for such an object (M,α)
(resp. (S, β)) we can form its de Rham cohomology H∗dR(M) (resp. étale cohomology H∗et(S))

which is a B̃cris(V )–module.
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Theorem 1.12. Let (S, β) ∈ Cet⊗Qp B̃cris(V ) be an object corresponding under the equivalence

in 1.8 to (M,α) ∈ CdR⊗K B̃cris(V ). Then there is a natural isomorphism of B̃cris(V )–modules

(1.12.1) H∗dR(M) ' H∗et(S).

In particular, we can recover the cohomological p–adic Hodge Theory from 1.7.

In the case when D = ∅ and k is a finite field, the formality theorem of [Ol1, 4.25] can
be applied. Let Get denote the pro–reductive completion of π1(Cet, x̄) and let OGet be its
coordinate ring. Right translation induces a left action of Get on OGet which by Tannaka
duality gives rise to an ind–object V(OGet) in the category of smooth sheaves. Left translation
induces a right action of Get on OGet which commutes with the left action and hence induces
a right action of Get on V(OGet).

Theorem 1.13. Assume D = ∅ and that (E,ϕE) is ι–pure in the sense of [Ke]. Then
the Galois representation Lie(π1(Cet, x̄))) ⊗Qp Bcris(V ) is determined by the cohomology ring
H∗(XK ,V(OGet)) with its natural actions of Get and GK. Furthermore, if LH1(XK ,V(OGet))
denotes the free pro–Lie algebra on the dual of H1(XK ,V(OGet)), then there exists a surjection
of pro–Lie algebras

(1.13.1) π : LH1(XK ,V(OGet))⊗Qp Bcris(V ) −→ Lie(π1(Cet, x̄))⊗Qp Bcris(V )

compatible with the Galois actions whose kernel is generated in degree 2.

For a stronger version of this result see 7.22.

In the case when L and E are the trivial sheaves, the category Cet (resp. CdR) is the
category of unipotent smooth sheaves (resp. unipotent modules with integrable connection)
and various versions of 1.8, 1.9, 1.10, and 1.11 have been obtained by Shiho [Sh3], Tsuji, and
Vologodsky [Vo].

1.14. On a technical level, this paper is in many ways a fusing of the ideas of [Ol1] (and in turn
those of [KPT]) with Faltings’ work in [Fa1] (the necessary aspects of Faltings’ work is also
discussed in detail in [Ol3]). The main point is that the ideas of [Ol1] imply that to obtain the
above theorems it suffices to carry out Faltings construction of the comparison isomorphism
between de Rham and étale cohomology on the level of certain equivariant differential graded
algebras without passing to cohomology. The main ingredient in carrying out this comparison
is systematic use of various standard constructions and result from homotopical algebra, most
notably the functor of Thom–Sullivan cochains. We review the necessary homotopical algebra
(which can be found in [H-S], see also [B-K]) in section 2. In section 3 we review some the
aspects of the convergent topos that we need. In section 4 we review the basic techniques and
results from [Ol1], as well as a mild generalization to take into account a boundary. In section
5 we discuss the étale pointed stack associated to a smooth sheaf and some basic properties.
In section 6 we work through Falting’s construction of the comparison isomorphism, keeping
track of various differential graded algebra structures. In section 7 we then put it all together
to prove 1.7–1.13. In section 8 we explain how to remove the dependence on the base point
and also prove 1.11. In section 9 we explain how to replace the point x ∈ Xo(V ) in the above
with a tangential base point. This requires a rather detailed study of p–adic Hodge theory
on the log point. We conclude in section 10 by briefly discussing a conjecture of Toen which
we feel would be a natural extension of the work discussed in this paper.
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The paper also includes four appendices discussing some technical points which arise in the
paper. Appendix A discusses a generalization of Kato’s “exactification of the diagonal” [Ka,
4.10 (2)]. Appendix B collects some basic observations about localization in proper model
categories, and in appendix C we discuss a version of the coherator (see [T-T]) for algebraic
stacks. Finally in appendix D we discuss how to pass from a comparison isomorphism over

B̃cris(V ) to a comparison isomorphism over Bcris(V ).

Finally let us remark that throughout this paper we assume X is defined over the ring of
Witt vectors of a perfect field of characteristic p > 0. In fact, it suffices to have X defined
over a possibly ramified extension of such a ring. However, in the interest of improving the
exposition we make this simplifying hypothesis.

1.15 (Conventions). We assume familiarity with the basics of logarithmic geometry [Ka].

We also assume some familiarity with model categories for which our reference is [Ho].

For the applications we have in mind, such as 1.3 above, it is important to work with
Deligne–Mumford stacks rather than schemes. However, for the sake of exposition we work
only with schemes below. The reader who so desires can freely replace “scheme” by “Deligne–
Mumford stack” in what follows (in a couple of places our arguments may seem strange to the
reader only interested in schemes, but we have taken some care in writing the arguments in
such a way that they also apply to Deligne–Mumford stacks; in particular, we work exclusively
with the étale topology as opposed to the Zariski topology).

1.16 (Acknowledgements). We are very grateful to B. Toen for numerous enlightening com-
munications concerning the papers [To1] and [KPT] as well as p–adic Hodge Theory and
other topics. We also want to thank R. Hain, J. Lurie, A. Shiho, D. Spivak, T. Tsuji, and S.
Unver for helpful discussions.

We recently learned from T. Tsuji that he is developing a generalization of the theory
of crystalline sheaves to schemes with hollow log structure (such as the log point), which
presumably encompasses also the foundational work we do in section 9. Tsuji’s work might
also help remove the linear reductivity assumption 1.6, which probably is unnecessary.

Finally we are grateful to the referee for some very helpful comments.

The author was partially supported by an NSF post–doctoral research fellowship, NSF
grant DMS-0714086, and an Alfred P. Sloan fellowship.

2. Review of some homotopical algebra

We review in this section some well–known constructions and results of homotopical alge-
bra. We learned the main results from [H-S]. A discussion of the functor of Thom-Sullivan
cochains can also be found in [B-K].

Let (T ,O) be a ringed topos, and assume O is a commutative Q–algebra. In what follows,
we write ModO for the category of O–modules in T .

Review of normalization.
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2.1. Let ∆ denote the category of finite totally ordered sets with order preserving maps. We
usually identify the category with the full sub–category with objects the sets

(2.1.1) [i] := {0, 1, . . . , i}, i ∈ N.
If C is any category, a cosimplicial object in C is a functor X : ∆ → C. The cosimplicial
objects in C form a category, denoted C∆, with morphisms being morphisms of functors. If
X ∈ C∆, we write X i for X([i]). There are natural maps

(2.1.2) di : Xn−1 −→ Xn, si : Xn+1 −→ Xn 0 ≤ i ≤ n,

where di (resp. si) is induced by the unique injective (resp. surjective) map di : [n− 1]→ [n]
(resp. si : [n+1]→ [n]) for which i /∈ di([n−1]) (resp. si(i) = si(i+1)). We shall sometimes
think of an object of C∆ as a collection of objects X i ∈ C together with maps di and si
satisfying the standard simplicial identities [G-J, I 1.3].

2.2. Let A be an abelian category, and let C≥0(A) denote the category of complexes M• in
A for which Mi = 0 for i < 0. The normalization functor is the functor

(2.2.1) N : A∆ −→ C≥0(A)

which sends A ∈ A∆ to the complex whose i–th term is

(2.2.2) Coker((d0, . . . , di−1) : ⊕n−1
j=0A

i−1 −→ Ai)

and whose differential is induced by (−1)idi.

2.3. Given A ∈ A∆, we can also form the chain complex of A, denoted Ã, which is the object
of C≥0(A) whose i–th term is Ai and whose differential is given by

(2.3.1) ∂ :=
i∑

j=0

(−1)idj : Ai−1 −→ Ai.

There is a natural surjective map of complexes

(2.3.2) Ã −→ N(A)

which is a quasi–isomorphism [G-J, III.2.4].

In fact, the map 2.3.2 is split. Let D(A) ⊂ Ã be the sub–complex whose i–th term is

(2.3.3)
i−1⋂
j=0

Ker(sj : Ai −→ Ai−1).

The complex D(A) is called the denormalization of A.

Then the composite

(2.3.4) D(A) −→ Ã −→ N(A)

is an isomorphism of complexes [G-J, III.2.1]. In particular, the following holds:

Corollary 2.4. (i) If O → O′ is a morphism of rings, then there is a natural isomorphism
N(A)⊗O O′ ' N(A⊗O O′).
(ii) If A ∈ Mod∆

O is an object with each Ai flat over O, then N(A) ∈ C≥0(O) is a complex of
flat O–modules.
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2.5. There is a third description of N(A) which is important in the context of the functor
of Thom–Sullivan cochains discussed below. Let Mod∆o

O denote the category of simplicial
O–modules. That is, Mod∆o

O is the category of functors from the opposite category ∆o of ∆
to the category of O–modules. Taking A in the above discussion to be the opposite category
of the category of O–modules, we obtain a normalization functor

(2.5.1) N o : Mod∆o

O −→ C≤0(O),

from Mod∆o

O to the category of complexes of O–modules with support in degrees ≤ 0.

Let

(2.5.2) Y : ∆ −→ Mod∆o

O

be the functor which sends [n] to the simplicial O–module which sends [m] ∈ ∆ to the free
O–module on Hom∆([m], [n]), and let

(2.5.3) Z : ∆ −→ C≤0(O)

be the composite of Y with the normalization functor N o. For [n] ∈ ∆, we write

(2.5.4) (· · · → Zn
p → Zn

p+1 → · · · )

for Z([n]). By the dual of the isomorphism 2.3.4, we have

(2.5.5) Zn
−p = OHom∆([p],[n])/Im(⊕sj :

⊕
OHom∆([p−1],[n]) −→ OHom∆([p],[n])).

Lemma 2.6. If A ∈ Mod∆
O, then the complex

(2.6.1) · · · → HomMod∆
O
(Z•−p+1, A)→ HomMod∆

O
(Z•−p, A)→ · · ·

is isomorphic to the normalization of A.

Proof. Let Set denote the category of sets. By definition of normalization, Z•−p is the cokernel
in the category of simplicial O–modules of the map

(2.6.2) ⊕sj :
⊕
j

OHom∆([p−1],·) −→ OHom∆([p],·).

By the universal property of the free module on a set and Yoneda’s lemma, for every i there
are natural isomorphisms

(2.6.3) HomMod∆(OHom∆([i],·), A) ' HomSet∆(Hom∆([i], ·), A) ' Ai.

It follows that

(2.6.4) HomMod∆(Z•−p, A) ' Ker(⊕sj :
⊕
j

Ap−1 −→ Ap),

and the result follows. �

Review of total complex as an inverse limit.

2.7. Let C(O) denote the category of all complexes of O–modules, and let A ∈ C(O)∆.
Taking the normalization of A, we obtain a double complex of O–modules, and we denote
by Tot(A) the resulting (sum) total complex. We now explain another description of Tot(A)
which will be used below.
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2.8. Let M∆ denote the category whose objects are morphisms f : [i] → [j] (sometimes
denoted just f) in ∆, and for which a morphism from f to g : [i′] → [j′] is a commutative
diagram

(2.8.1)

[i]
f−−−→ [j]x y

[i′]
g−−−→ [j′]

in ∆.

If A,B ∈ C(O)∆, define

(2.8.2) hom(A,B) :M∆ −→ C(O)

by sending f : [i]→ [j] to the complex

(2.8.3) Hom•C(O)(A([i]), B([j])).

Similarly, if A ∈ C(O)∆o
and B ∈ C(O)∆, define

(2.8.4) A⊗B :M∆ −→ C(O)

by sending f : [i]→ [j] to the complex A([i])⊗ B([j]). We define hom←(A,B) and A⊗← B
to be the inverse limits over the categoryM∆ of the functors hom(A,B) and A⊗B.

Proposition 2.9. Let Z be as in 2.5. For A ∈ C(O)∆, there are natural isomorphisms of
complexes

(2.9.1) Tot(A) ' hom←(Z,A) ' Z∗ ⊗← A,

where Z∗ : ∆o → C(O) denotes the functor which sends [i] to the complex Hom•C(O)(Z([i]),O).

Proof. The second isomorphism in 2.9.1 follows from the fact that for every [i] ∈ ∆, the
complex Z([i]) is by definition a complex of flat and finitely generated O–modules, and hence
for any j, there is a natural isomorphism

(2.9.2) HomC(O)(Z([i]), A([j])) ' HomC(O)(Z([i]),O)⊗ A([j]).

To see the first isomorphism, note that the degree k term of hom←(Z,A) is equal to

(2.9.3) lim
([n]→[m])∈M∆

⊕
p+q=k

Hom(Zn
−p, A

m
q ),

which by the following lemma and 2.6 is equal to

(2.9.4)
⊕
p+q=k

Hom(Z•−p, A
•
q) '

⊕
p+q=k

(N(A•q))p.

�

Lemma 2.10. Let X, Y ∈ Mod∆
O. Then there is a natural isomorphism

(2.10.1) lim
([n]→[m])∈M∆

Hom(Xn, Y m)→ HomMod∆
O
(X, Y ).
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Proof. Given δ ∈ lim([n]→[m])∈M∆
Hom(Xn, Y m), define δ̄ : X → Y to be the map of cosimpli-

cial O–modules which in degree n is the map δn : Xn → Y n obtained from (id : [n]→ [n]) ∈
M∆. We leave it to the reader to verify that this is well–defined, and that the resulting map
2.10.1 is an isomorphism. �

The functor of Thom–Sullivan cochains.

2.11. Let dga(O) denote the category of commutative differential N–graded O–algebras.
That is, the category of N–graded O–algebras A = ⊕pAp with a map d : A→ A of degree 1
for which the formulas

(2.11.1) x · y = (−1)pqy · x, d(x · y) = dx · y + (−1)px · dy
hold for x ∈ Ap and y ∈ Aq.

Theorem 2.12 ([H-S, 4.1]). There is a functor

(2.12.1) T : dga(O)∆ −→ dga(O),

together with a natural transformation of functors

(2.12.2)

∫
: (forget ◦ T ) −→ (Tot ◦ forget)

between the two composites

(2.12.3) dga(O)∆ T−−−→ dga(O)
forget−−−→ C(O)

(2.12.4) dga(O)∆ forget−−−→ C(O)∆ Tot−−−→ C(O),

such that for every A ∈ dga(O)∆ the map 2.12.2 applied to A is a quasi–isomorphism.

The functor T is called the functor of Thom–Sullivan cochains.

2.13. The functor T is constructed as follows. Let Rp denote the O–algebra

(2.13.1) O[t0, . . . , tp]/(
∑

ti = 1),

and let ∇(p, •) ∈ dga(O) denote the de Rham–complex of Rp over O. In other words, ∇(p, •)
is the free commutative differential graded algebra generated in degree 0 by variables t0, . . . , tp
and in degree 1 by dt0, . . . , dtp subject to the relations

(2.13.2)
∑

ti = 1,
∑

dti = 0.

The Rp form in a natural way a simplicial ring R•. The face and degeneracy maps are given
by

(2.13.3) di : Rp −→ Rp−1, ditm =

 tm−1 i < m
0 i = m
tm i > m

(2.13.4) si : Rp −→ Rp+1, sitm =

 tm+1 i < m
tm + tm+1 i = m

tm i > m.
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Since the formation of de Rham complex is functorial, the ∇(p, •) define a simplicial differ-
ential graded algebra

(2.13.5) Ω : ∆o −→ dga(O), [p] 7→ ∇(p, •).

The functor T is defined to be the functor which sends A ∈ dga(O)∆ to Ω ⊗← A ∈ dga(O),
where the algebra structure is obtained from the fact that Ω ⊗← A is by construction an
inverse limit of commutative differential graded algebras.

2.14. The transformation of functors 2.12.2 is obtained as follows. Let Ω ∈ C(O)∆o
denote

the functor Ω composed with the forgetful functor dga(O) → C(O). For any p ≥ 0 there is
a well–defined map

(2.14.1)

∫
|∆p|

: ∇(p, p) −→ O.

To construct this map, it suffices to consider the case when T is the punctual topos and
O = Q (recall that O is a Q-algebra). To construct the map in this case, it suffices to show
that the usual integration over the standard simplex

(2.14.2)

∫
|∆p|

: ∇(p, p)⊗Q R −→ R

sends ∇(p, p) to Q, which is immediate.

This integration gives rise to a morphism of functors

(2.14.3)

∫
: Ω −→ Z∗.

If ω ∈ ∇(p, q), define

(2.14.4)

∫
ω ∈ Z∗([p])q = HomC(O)(Z([p]),O)q = HomO(Zp

−q,O)

to be the element induced by the description of Zp
−q given in 2.5.5 and the map

(2.14.5) OHom([q],[p]) −→ O

which sends 1α:[q]→[p] to

(2.14.6)

∫
|∆q |

R(α)∗ω ∈ O,

where R(α)∗ω denotes the pullback of the form ω via the map Rp → Rq induced by the map
α and the simplicial structure on the Rp’s.

Combining this with 2.9, we obtain the morphism 2.12.2.

To complete the sketch of the proof of 2.12, it remains only to see that if A ∈ dga(O)∆,
then the induced map

(2.14.7) Ω⊗← A −→ Z∗ ⊗← A

is a quasi-isomorphism. For this it suffices to consider the case when T is the punctual topos.
Moreover, since ⊗←A preserves homotopy equivalences [H-S, 4.3.1], it suffices to construct a
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morphism of functors τ : Z∗ → Ω and homotopies

(2.14.8) τ ◦
∫
' id,

∫
◦τ ' id.

This is done in [B-G, 2.4].

Remark 2.15. The functor T is functorial with respect to morphisms of topoi. That is, if
f : (T ′,O′)→ (T ,O) is a morphism of ringed topoi, and if T ′ denotes the functor 2.12.1 for
the ringed topos (T ′,O′), then for any A ∈ dga(O)∆o

there is a natural map

(2.15.1) f ∗T (A) −→ T (f ∗A)

compatible with the map 2.12.2.

Remark 2.16. The above construction can be applied to any object M ∈ C(O)∆. More
precisely, if T (M) := Ω⊗←M then the above shows that there is a natural quasi–isomorphism
T (M)→ Tot(M). Furthermore, if A ∈ dga(O)∆ and M → A is a morphism in C(O)∆ then
there is an induced map T (M) → T (A). Observe also that for M,M ′ ∈ C(O)∆ there is a
natural map T (M)⊗ T (M ′)→ T (M ⊗M ′).

Remark 2.17. Since T (A)→ Tot(A) is a quasi–isomorphism, the induced map H∗(T (A))→
H∗(Tot(A)) is an isomorphism. By [H-S, 4.4.2] this isomorphism is compatible with the
multiplicative structures.

Differential graded algebras and cosimplicial algebras.

2.18. It follows from a theorem of Quillen [Qu, Chapter II, §4, Theorem 4] that the category
C≥0(O) has a model category structure in which a morphism f : M → N is a fibration (resp.
equivalence) if it is a surjection with level–wise injective kernel (resp. quasi–isomorphism). By
the Dold–Kan correspondence [G-J, III.2.3], the normalization functor 2.2 induces an equiva-
lence of categories Mod∆

O ' C≥0(O). Through this equivalence, the model category structure
on C≥0(O) gives a model category structure on Mod∆

O. This model category structure on
Mod∆

O is by the theorem of Quillen [Qu, Chapter II, §4, Theorem 4] naturally a simplicial
cofibrantly generated model category structure.

Lemma 2.19. The model categories C≥0(O) and Mod∆
O are right proper in the sense of B.3.

Proof. By the definition of the model category structure on Mod∆
O, it suffices to prove the

lemma for C≥0(O). In this case the assertion amounts to the statement that given a diagram
in C≥0(O)

(2.19.1) A·

g

��
S·

h // R·,

with h a quasi-isomorphism and each gn : An → Rn surjective with injective kernel, the map

(2.19.2) S· ×R· A· → A·
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is a quasi-isomorphism. Let I · ⊂ A· be the kernel of g. Then since g is surjective we have a
morphism of exact sequences of complexes

(2.19.3) 0 // I · // A· ×R· S· //

pr1
��

S· //

h
��

0

0 // I · // A· // R· // 0.

Since the map h is a quasi-isomorphism, it follows that the middle arrow pr1 is a quasi-
isomorphism as well. �

Remark 2.20. Though we will not need it here, it is also true that the model categories
C≥0(O) and Mod∆

O are left proper.

2.21. The model category structure on Mod∆
O enables one to define model category structures

on Alg∆
O and dgaO as follows (see [KPT, 1.3.2] for details). A morphism f : A→ B in dgaO

is a fibration (resp. equivalence) if the underlying morphism in C≥0(O) is a fibration (resp.
equivalence). Similarly, a morphism g : C → D in Alg∆

O is a fibration (resp. equivalence)
if and only if the induced morphism on normalized complexes N(C) → N(D) is a fibration
(resp. equivalence) in C≥0(O). A map f : A→ B in dgaO (resp. Alg∆

O) is a cofibration if for
all n ≥ 1 the map An → Bn (resp. N(A)n → N(B)n) is injective.

Since the forgetful functors

(2.21.1) Alg∆
O → Mod∆

O, dgaO → C≥0(O)

commute with fiber products, it follows that Alg∆
O and dgaO are right proper model categories.

If A ∈ dgaO, then the “shuffle product” [Ma, 8.8] defines on the denormalization D(A) a
structure of an object in Alg∆

O. Since D preserves equivalences and fibrations, it induces a
functor

(2.21.2) D : Ho(dgaO) −→ Ho(Alg∆
O).

This functor is an equivalence with inverse provided by the functor of Thom–Sullivan cochains.

2.22. If f : (T ′,O′) → (T ,O) is a morphism of ringed topoi with O′ and O commutative
Q–algebras and f−1O → O′ flat, then the functor f ∗ is exact and hence its right adjoint f∗
takes injectives to injectives. It follows that the functors

(2.22.1) f∗ : dgaO′ → dgaO, f∗ : Alg∆
O′ → Alg∆

O

preserve fibrations and trivial fibrations and induce derived functors Rf∗ such that the dia-
gram

(2.22.2)

Ho(dgaO′)
D−−−→ Ho(Alg∆

O′)

Rf∗

y yRf∗

Ho(dgaO)
D−−−→ Ho(Alg∆

O)

commutes. Observe that by definition of the model category structures, if A ∈ dgaO′ (resp.
B ∈ Alg∆

O′) then the underlying complex (resp. normalization) of Rf∗A (resp. Rf∗B) is
isomorphic in the derived category to the usual derived functors of the complex underlying
A (resp. the normalized complex of B).
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If (T ,O) is the punctual topos with O = Q we write RΓ instead of Rf∗.

2.23. In what follows we will also consider an equivariant situation. Let K be a field of
characteristic 0 and let G/K be an affine group scheme over K. Let (T ,O) be a ringed topos
with O a K–algebra. We obtain G–equivariant versions of the above results as follows.

Let RepK(G) denote the category of algebraic representations of the group scheme G on
(possibly infinite dimensional) K–vector spaces. A sheaf M on T taking values in RepK(G)
is a functor

(2.23.1) M : T o → RepK(G)

such that the composite

(2.23.2) T o M−−−→ RepK(G)
forget−−−→ VecK

is representable by an object of T . The category of such sheaves M is naturally a K–linear
tensor category and so it makes sense to talk about O–module objects in this category. We
call the resulting objects G–equivariant O–modules and write G−ModO for the category of
G–equivariant O–modules. The category G−ModO is naturally an O–linear tensor category
and so we can define categories G− dgaO and G−Alg∆

O of G–equivariant differential graded
algebras and G–equivariant cosimplicial algebras. By the same reasoning as above there are
natural closed model category structures on these categories.

The above categories can be described more concretely as follows. Let OG denote the
coordinate ring of G. If V is a vector space, then to give an algebraic action of G on V is
equivalent to a comodule structure on V [Sa, I.6.2.2]. That is a map

(2.23.3) ρ : V → V ⊗K OG
such that

(2.23.4) (1⊗ ε) ◦ ρ = id, (1⊗∆) ◦ ρ = (ρ⊗ 1) ◦ ρ,
where δ : OG → OG ⊗OG is the map giving the multiplication and ε : OG → K is the unit.
To give a G–equivariant O–module is equivalent to giving a sheaf of O–modules M together
with maps of sheaves of O-modules ρ : M →M ⊗K OG such that the conditions 2.23.4 hold.

3. Review of the convergent topos

In this section we review for the convenience of the reader some aspects of the convergent
topos. The references for the convergent topos is [Og2] and in the logarithmic context [Sh2].

3.1. Let k be a perfect field of characteristic p > 0, and let V be a complete discrete valuation
ring of mixed characteristic with residue field k. Let π ∈ V denote a uniformizer. In what
follows we often view Spec(V ) (resp. Spf(V )) as a log scheme (resp. log formal scheme in the
sense of [Sh1, Chap.2]) with the trivial log structure (and hence we omit the log structure
from the notation).

If T → Spf(V ) is a morphism of formal schemes, we write T1 ⊂ T for the closed formal
subscheme defined by πOT , and T0 ⊂ T1 for the largest reduced formal subscheme of T1. We
write KT for the sheaf associated to the presheaf of rings on Tet given by

(3.1.1) U 7→ Γ(U,OU ⊗Q).
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3.2. Let

(3.2.1) f : (X,MX)→ Spec(k)

be a finite type morphism of fine log schemes. A pre-widening is a commutative diagram

(3.2.2) (Z,MZ)

z

��

� � i // (T,MT )

��

(X,MX)

f
��

Spec(k) � � / Spf(V ),

where

(i) z : (Z,MZ)→ (X,MX) is a morphism of fine log schemes over k;
(ii) (T,MT ) → Spf(V ) is a morphism essentially of finite type of fine log formal schemes

(but T does not necessarily have the π-adic topology);
(iii) i is an exact closed immersion.

Pre-widenings form a category in the obvious way. We often denote a pre-widening simply
by ((T,MT ), (Z,MZ), z), or even just T if no confusion seems likely to arise.

Definition 3.3. Let ((T,MT ), (Z,MZ), z) be a pre-widening.

(i) ((T,MT ), (Z,MZ), z) is a widening if i : Z ↪→ T is a subscheme of definition.

(ii) ((T,MT ), (Z,MZ), z) is an enlargement if it is a widening, T/V is flat, and if Z contains
T0.

Morphisms of widenings or enlargements are morphisms of pre-widenings. We say that a
pre-widening ((T,MT ), (Z,MZ), z) is affine if T (and hence also Z) is an affine formal scheme.

Remark 3.4. This definition differs from [Sh2, 2.1.9] as we require i to be exact. In Shiho’s
terminology the above would be called ‘exact pre-widenings’ and ‘exact widenings.’

Remark 3.5. We have automatically Z ⊂ T1 since Z is a k-scheme, and therefore the
condition that a widening ((T,MT ), (Z,MZ), z) is an enlargement is equivalent to saying that
T has the π-adic topology.

Remark 3.6. Products exist in the category of widenings. If

(Zi,MZi
) ↪→ (Ti,MTi

), i = 1, 2,

are two widenings, let (Z,MZ) denote the fiber product (Z1,MZ1) ×(X,MX) (Z2,MZ2) in the
category of fine log schemes. We then have a closed immersion

(3.6.1) (Z,MZ) ↪→ (T1,MT1)×̂(T2,MT2),

where the right side denotes the completion along Z of the product of (T1,MT1) and (T2,MT2)
in the category of formal V -schemes. The product in the category of widenings is then given
by the exactification in the sense of A.18 of 3.6.1.
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3.7. Let Enl((X,MX)/V ) denote the category of enlargements. This category has a topology
in which a family of morphisms

(3.7.1) {gλ : ((Tλ,MTλ
), (Zλ,MZλ

), zλ)→ ((T,MT ), (Z,MZ), z)}
is a covering if the following conditions hold:

(i) Each morphism (Tλ,MTλ
)→ (T,MT ) is strict;

(ii) The collection of maps {Tλ → T} is an étale covering of the formal scheme T ;
(iii) For every λ the natural map Zλ → Z ×T Tλ is an isomorphism.

The resulting topos is denoted ((X,MX)/V )conv (the convergent topos). There is a sheaf of
rings K(X,MX)/V (or sometimes written just K if no confusion seems likely to arise) which to
any object ((T,MT ), (Z,MZ), z) ∈ Enl((X,MX)/V ) associates Γ(T,KT ).

If E is a sheaf ofK-modules in ((X,MX)/V )conv and ((T,MT ), (Z,MZ), z) ∈ Enl((X,MX)/V ),
then we denote by ET the sheaf of KT -modules on Tet defined by

(3.7.2) (U → T ) 7→ E((U,MT |U), (Z,MZ)×(T,MT ) (U,MT |U), z|(U,MT |U )).

If

(3.7.3) g : ((T ′,MT ′), (Z
′,MZ′), z

′)→ ((T,MT ), (Z,MZ), z)

is a morphism in Enl((X,MX)/V ), then there is a canonical map

(3.7.4) g∗ET := g−1ET ⊗g−1(KT ) (KT ′)→ ET ′ .

The sheaf E is called an isocrystal if the following hold:

(i) For every object ((T,MT ), (Z,MZ), z) ∈ Enl((X,MX)/V ) the sheaf ET is isocoherent
(see [Sh2, p. 8 (2)]).

(ii) For every morphism g as above, the map 3.7.4 is an isomorphism.

3.8. There is a morphism of topoi

(3.8.1) u : ((X,MX)/V )conv → Xet.

If F ∈ Xet then u∗F is the sheaf

(3.8.2) ((T,MT ), (Z,MZ), z) 7→ Γ(Z, z∗F ),

and if E ∈ ((X,MX)/V )conv then

(3.8.3) u∗E(U) = Γ(((U,MX |U)/V )conv, E).

3.9. Let T = ((T,MT ), (Z,MZ), z) be a widening. Then T defines a sheaf hT in ((X,MX)/V )conv

by associating to any T ′ ∈ Enl((X,MX)/V ) the set of morphisms of widenings T ′ → T . As
explained in [Sh2, 2.1.22 and 2.1.23], there is associated to T a canonical inductive system of
widenings {Tn}n∈N with compatible morphisms of widenings (equivalently, sections of hT )

(3.9.1) Tn → T

such that the induced morphism of sheaves

(3.9.2) lim−→hTn → hT

is an isomorphism.
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3.10. As explained in [Sh2, p. 51], if T is affine then each Tn is also affine. In fact if
T = Spf(A) and I = (g1, . . . , gr) ⊂ A is the ideal defining Z, and Bn = Γ(Tn,OTn) ⊗V K,
then

(3.10.1) Bn = K ⊗V (A[t1, . . . , tr]/(πt1 − gn1 , . . . , πtr − gnr ) + (π − torsion))∧,

where (−)∧ denotes π-adic completion. The transition maps

(3.10.2) Bn+1 → Bn

are given by sending ti to giti.

Lemma 3.11. Let j : M ↪→ N be an inclusion of π-torsion free V -modules such that N/M

is annihilated by π. Then the map on π-adic completions ĵ : M∧ → N∧ is injective.

Proof. Let γ̂ ∈M∧ be an element with ĵ(γ̂) = 0, and fix an integer r. We show that γ̂ maps
to zero in M∧/πr−1M∧ = M/πr−1M .

For this choose a sequence of elements γs ∈M such that γs and γ̂ have the same image in
M/πsM , and such that γs = γr for s ≤ r. Write γs+1 = γs + πsεs with εs ∈M (and uniquely

determined since M is π-torsion free). Since γ̂ is in the kernel of ĵ, there exists for every s
an element bs ∈ N such that j(γs) = πsbs. Since N/M is π-torsion and j is injective, this
implies that γs ∈ πs−1M for all s. Since γs = γr for s ≤ r this implies that γs ∈ πr−1M for
all s. Write γs = πr−1γ′s for some γ′s. Then

(3.11.1) γ′s+1 = γ′s + πs−r+1εs

for s ≥ r since M is π-torsion free, and therefore the elements {γ′s} define an element γ̂′ such
that πr−1γ̂′ = γ̂. Since r was arbitrary this implies that γ̂ = 0. �

3.12. Set

(3.12.1) Mn := A[t1, . . . , tr]/(πt1 − gn1 , . . . , πtr − gnr ) + (π − torsion).

Then Mn is a flat V -module, and Mn ⊗V K = A. In particular, the transition maps jn :
Mn+1 → Mn are injective. Also observe that the cokernel of jn is annihilated by π. By 3.11
this implies that the map on π-adic completions M∧

n+1 →M∧
n is injective. Tensoring with K

we obtain the following.

Corollary 3.13. For every n, the transition map Bn+1 → Bn is injective.

3.14. Associated to the widening T is a topos
→
T defined as follows. For n ∈ N write

(3.14.1) Tn = ((Tn,MTn), (Zn,MZn), zn)
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so we have a commutative diagram

(3.14.2) (Zn,MZn)

��

� � // (Tn,MTn)

γn

��
(Z,MZ)

z

��

� � // (T,MT )

��

(X,MX)

f

��
Spec(k) � � // Spf(V ).

The topos
→
T is the topos associated to the following site:

Objects: pairs (n, U), where n ∈ N and U → Tn is étale.

Morphisms: the set Hom((n, U), (m,V )) is the empty set unless n ≤ m in which case it is
the set of commutative diagrams

(3.14.3) U //

��

V

��
Tn // Tm.

Coverings: a collection of maps {(nλ, Uλ) → (n, U)} is a covering if nλ = n for all λ and
the set of maps {Uλ → U} is an étale covering.

There is a sheaf of rings K→
T

in
→
T given by

(3.14.4) (n, U) 7→ Γ(U,KU).

Giving a sheaf F in
→
T is equivalent to giving a collection of sheaves {Fn ∈ Tn,et} and

transition morphisms ρψ : ψ−1Fm → Fn for every morphism ψ : Tn → Tm satisfying the usual
cocycle condition.

If F is a sheaf of K→
T
-modules, then F is called crystalline (see [Sh2, 2.1.30]) if for every

morphism g : Tn → Tm the transition morphism

(3.14.5) g∗Fm := g−1Fm ⊗g−1KTm
KTn → Fn

is an isomorphism.

There is a morphism of ringed topoi

(3.14.6) γ : (
→
T ,K→

T
)→ (Tet,KT ).

The pushforward functor γ∗ sends a sheaf F to the sheaf

(3.14.7) γ∗F = lim←− γn∗Fn,
where γn : Tn → T is the projection. The functor γ∗ sends a sheaf H on Tet to the collection
of sheaves whose Tn-component is γ∗nH.
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Lemma 3.15. Let F = {Fn} be a crystalline sheaf of K→
T
-modules in

→
T such that each Fn is

a flat isocoherent sheaf of KTn-modules. Then for all n, the transition map

(3.15.1) γn+1∗Fn+1 → γn∗Fn

is injective.

Proof. Note first that since Fn+1 is isocoherent, we have

(3.15.2) γn∗(g
∗Fn+1) ' γn+1∗Fn+1 ⊗γn+1∗KTn+1

γn∗KTn ,

where g : Tn → Tn+1 is the transition morphism. Using this, and the isomorphism 3.14.5

(3.15.3) γn∗(g
∗Fn+1) ' γn∗(Fn)

we see that the map 3.15.1 can be identified with the map

(3.15.4) γn+1∗Fn+1 → (γn+1∗Fn+1)⊗γn+1∗KTn+1
γn∗KTn .

Now the map γn+1∗KTn+1 → γn∗KTn is injective, as this can be verified locally and the affine
case follows from 3.13. Since Fn+1 is flat over KTn+1 this implies that 3.15.4 is injective. �

Lemma 3.16. Let M be a K-vector space (possibly infinite dimensional), and let F = {Fn}
be a sheaf of K→

T
-modules in

→
T such that for every n the transition map 3.15.1 is injective.

Then the natural map

(3.16.1) (γ∗F )⊗K M → γ∗(F ⊗K M)

is an isomorphism.

Proof. To ease notation write (abusively) just Fn for γn∗Fn. We then need to show that the
natural map

(3.16.2) (lim←−Fn)⊗K M → lim←−(Fn ⊗K M)

is an isomorphism. Let {ei}i∈I be a basis for M , and let G denote lim←−Fn. Then we need to
show that the natural map

(3.16.3) ⊕i∈IG→
∏
i∈I

′
G

is an isomorphism, where
∏′

i∈I G ⊂
∏

i∈I G denotes the subsheaf of local sections v ∈
∏

i∈I G
such that for every n the image of v in

∏
i∈I Fn is contained in ⊕i∈Fn. This follows from

noting that since G→ Fn is injective for all n by assumption, the square

(3.16.4) ⊕i∈IG //

��

⊕i∈IFn

��∏
i∈I G //

∏
i∈I Fn

is cartesian for every n. �
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3.17. Let ((X,MX)/V )conv|T denote the localized topos. Then there is also a functor

(3.17.1) φ→
T ∗

: ((X,MX)/V )conv|T →
→
T

sending a sheaf F ∈ ((X,MX)/V )conv|T to the sheaf

(3.17.2) (n, U → Tn) 7→ F (U → Tn → T ).

Recall that φ→
T ∗

is not part of a morphism of topoi, but still by [Sh2, 2.3.1] the functor φ→
T ∗

sends injective sheaves to flasque sheaves. Also if F is a crystalline sheaf of K→
T
-modules then

one can define φ∗→
T
F .

Let

(3.17.3) jT : ((X,MX)/V )conv|T → ((X,MX)/V )conv

be the localization morphism. If E is an isocrystal in ((X,MX)/V )conv we write

(3.17.4) ET := γ∗φ→
T ∗
j∗TE ' lim←− γn∗ETn .

Then there is a commutative diagram of functors

(3.17.5) ((X,MX)/V )conv|T
jT∗

��

φ→
T ∗ // →

T
γ∗ // Tet

'
��

((X,MX)/V )conv
u∗ // Xet Zet.

z∗oo

Lemma 3.18. Assume that z : Z → X is quasi-compact. Let E ∈ ((X,MX)/V )conv|T be a
sheaf of K-modules such that for every morphism T ′ → T of enlargements ET ′ is isocoherent
on T ′ and such that for every morphism g : T ′′ → T ′ of enlargements over T the map
g∗ET ′ → ET ′′ is an isomorphism. Then for any widening W and K-vector space M the
natural map

(3.18.1) (jT∗E)W ⊗K M → (jT∗(E ⊗K M))W

is an isomorphism.

Proof. Write W = ((W,MW ), (Y,MY ), y), and let Wn×T and W ×T denote the products in
the category of widenings (see 3.6). Let

(3.18.2) h : Y ×X Z → Y

be the projection.

Let

(3.18.3) jT |W : ((X,MX)/V )conv|W×T → ((X,MX)/V )conv|W
be the morphism of topoi obtained from the localization morphism

(3.18.4) (((X,MX)/V )conv|W )|W×T→W → ((X,MX)/V )conv|W
and the canonical isomorphism of topoi

(3.18.5) (((X,MX)/V )conv|W )|W×T→W ' ((X,MX)/V )conv|W×T .
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Then there is a commutative diagram of topoi

(3.18.6) ((X,MX)/V )conv|W×T
jT |W

��

jW |T // ((X,MX)/V )conv|T
jT

��
((X,MX)/V )conv|W

jW // ((X,MX)/V )conv.

Furthermore, one verifies immediately that the adjunction map

(3.18.7) j∗W ◦ jT∗ → jT |W ∗ ◦ j∗W |T
is an isomorphism. It follows from the definitions that we also have a commutative diagram
of functors

(3.18.8) (Y ×X Z)et

h∗

��

→
W × T

γW×T∗oo ((X,MX)/V )conv|W×T
jT |W ∗

��

φ →
W×T∗oo

Yet
→
W

γW∗oo ((X,MX)/V )conv|W .
φ→

W∗oo

For any sheaf F ∈ ((X,MX)/V )conv|T we therefore have

(jT∗F )W = γW∗φ→
W∗
j∗W jT∗F (definition)

= γW∗φ→
W∗
jT |W ∗j

∗
W |TF (3.18.7)

= h∗γW×T∗φ →
W×T∗

j∗W |TF (commutativity of 3.18.8)

= h∗ lim←−
n

F(W×T )n ,

where we abusively write F(W×T )n for the pushforward of F(W×T )n to (W × T )et.

Now let E be as in the lemma. Then each of the maps

(3.18.9) E(W×T )n+1 → E(W×T )n

is injective by 3.15 (here we continue with the slightly abusive notation of viewing this as a
map of sheaves on (W ×T )et). Since h∗ is left exact, we conclude by the same argument used
in the proof of 3.16 that the natural map

(3.18.10) (lim←−
n

h∗E(W×T )n)⊗K M → lim←−
n

((h∗E(W×T )n)⊗K M)

is an isomorphism. On the other hand, since h is quasi-compact we also have

(3.18.11) (h∗E(W×T )n)⊗K M ' h∗(E(W×T )n ⊗M)

and therefore the natural map

(3.18.12) (jT∗E)W ⊗M = (lim←−
n

h∗E(W×T )n)⊗KM → lim←−
n

h∗(E(W×T )n⊗M) = jT∗(E⊗KM)W

is an isomorphism. �
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3.19. Suppose given a commutative diagram of fine log schemes

(3.19.1) (X,MX)

f
��

� � i // (P,MP )

g

��
Spec(k) � � // Spec(V ),

where g is log smooth and i is an exact closed immersion. Let (P̂ ,M bP ) denote the formal
completion of P along X with M bP defined to be the pullback of MP . We then have a
commutative diagram

(3.19.2) (X,MX)

f

��

� � i // (P̂ ,M bP )

ĝ
��

// (P,MP )

g

��
Spec(k) � � // Spf(V ) // Spec(V ),

where (X,MX) ↪→ (P̂ ,M bP ) is a widening.

Let E be an isocrystal in ((X,MX)/V )conv, and let E bP be the induced sheaf of K bP -modules.
Then as explained in [Sh2, 2.2.9], there is a canonical integrable connection

(3.19.3) ∇ : E bP → E bP ⊗OP
Ω1

(P,MP )/V

whose associated de Rham-complex we denote by E bP ⊗ Ω·(P,MP )/V . This is a complex of

K-vector spaces on P̂et ' Xet.

For i ≥ 0, define

(3.19.4) ωibP (E) := j bP∗(j∗bPE ⊗OX/V
φ∗bPγ∗Ωi

(P,MP )/V | bP ).

Then [Sh2, 2.3.3 and 2.3.5] implies that for every s > 0 we have Rsu∗ω
ibP (E) = 0 and the

natural map (induced by the commutativity of 3.19.2)

(3.19.5) E bP ⊗ Ωi
(P,MP )/V → u∗ω

ibP (E)

is an isomorphism.

In fact, by the same argument proving [Sh2, 2.3.5] there is a canonical structure of a
complex

(3.19.6) ω·bP (E) : ω0bP (E) d // ω1bP (E) // · · ·

such that the natural map E → ω0bP (E) induces a quasi-isomorphism, and such that the
isomorphisms 3.19.5 extend to an isomorphism of complexes

(3.19.7) E bP ⊗ Ω·(P,MP )/V → u∗ω
·bP (E).

In particular, since the ωibP (E) are acyclic for u∗ this gives an isomorphism in the derived
category

(3.19.8) E bP ⊗ Ω·(P,MP )/V ' Ru∗E.
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Remark 3.20. By the same argument used in [Og2, 0.3.7], if P̂ is affine, then each of the
terms E bP ⊗ Ωi

(P,MP )/V is acyclic for the global section functor. In this case we have an
isomorphism in the derived category

(3.20.1) RΓ(((X,MX)/V )conv, E) ' (Γ(X,E bP )→ Γ(X,E bP ⊗ Ω1
(P,MP )/V )→ · · · ).

3.21. Let G/K be an affine group scheme. As in 2.23, we can then consider G-equivariant
sheaves of K-modules E in ((X,MX)/V )conv. Recall from 2.23 that such a sheaf consists of a
sheaf E in the usual sense, together with morphisms of K-modules in ((X,MX)/V )conv

(3.21.1) ρ : E → E ⊗K OG
such that the equalities 2.23.4 hold.

If E is a flat isocrystal, then it follows from 3.16 that for every widening W , the sheaf of
KW -modules EW on Wet has a natural OG-comodule structure, and hence is a G-equivariant
sheaf in Wet. Similarly (using 3.18) each of the sheaves ωibP (E)W has an induced structure of
a G-equivariant sheaf in Wet.

3.22. If we furthermore fix a diagram 3.19.1, and E is a G-equivariant flat isocrystal, then it
follows from 3.18 that each of the sheaves ωibP (E) has a natural structure of a G-equivariant

sheaf in ((X,MX)/V )conv, which induces for every widening W a G-equivariant structure on
the sheaf ωibP (E)W . Moreover, by functoriality of the construction of the complexes ω·bP (E)
each of the squares

(3.22.1) ωibP (E)

coaction
��

d // ωi+1bP (E)

coaction
��

ωibP (E)⊗K OG d // ωi+1bP (E)⊗K OG

commutes, as well as the square

(3.22.2) E

coaction

��

// ω0bP (E)

coaction
��

E ⊗K OG // ω0bP (E)⊗K OG.

Therefore the complex ω·bP (E) is a complex of G-equivariant sheaves, as is the de Rham
complex E bP ⊗OP

Ω·(P,MP )/V .

4. Simplicial presheaves associated to isocrystals

Review of simplicial presheaves [Bl, H-S, Ja, To1].

4.1. If S is a site, we denote by SPr(S) the category of simplicial presheaves on S. That is,
the category of functors (recall that ∆o denotes the opposite category of ∆)

(4.1.1) F : ∆o −→ Ŝ,

where Ŝ denotes the category of presheaves on S. We write SPr∗(S) for the category of
pointed objects in SPr(S). An object ∗ → F ∈ SPr∗(S) is called connected if the sheaf



Towards non–abelian P–adic Hodge Theory 25

associated to the presheaf R 7→ π0(|F (R)|) is isomorphic to ∗, where |F (R)| denotes the
geometric realization of the simplicial set F (R). For (F, ∗ → F ) ∈ SPr∗(S) and i ≥ 0, we
write πi(F, ∗) for the sheaf on S associated to the presheaf sending U ∈ S to πi(|F (U)|, ∗).
We will view SPr(S) and SPr∗(S) as model categories using the model category structure
defined in [To1, 1.1.1]. Recall that a morphism (F, ∗ → F ) → (F ′, ∗ → F ′) of connected
objects in SPr∗(S) is an equivalence if and only if the induced map

(4.1.2) πi(F, ∗) −→ πi(F
′, ∗)

is an equivalence for every i > 0. This implies in particular that one can define πi for an
object in the homotopy category Ho(SPr∗(S)). We refer to the elements of Ho(SPr(S)) (resp.
Ho(SPr∗(S))) as stacks (resp. pointed stacks).

In what follows, the site S will usually be the category AffB of affine B-schemes with
the fpqc topology for some Q–algebra B, and we write SPr(B) (resp. SPr∗(B)) instead of
SPr(AffB) (resp. SPr∗(AffB)).

Remark 4.2. If S has enough points (which will always be the case in this paper), then a
map F → F ′ in SPr(S) is an equivalence if and only if for every point x of the corresponding
topos S̃ the induced map on stalks F → F ′ is an equivalence.

Remark 4.3. Recall (see the discussion in [To1, 1.1.1]) that there is another model category
structure on SPr(S), called the strong model category structure, in which a morphism F → F ′

is an equivalence (resp. fibration) if for everyX ∈ S the map of simplicial sets F (X)→ F ′(X)
is an equivalence (resp. fibration). We refer to equivalences, cofibrations, and fibrations
with respect to this model structure as strong equivalences, strong cofibrations, and strong
fibrations.

The model category structure on SPr(S) used in 4.1 (and the rest of the paper) is then char-
acterized by the definition of weak equivalences in [To1, 1.1.1] and by declaring cofibrations
to be strong cofibrations (and then fibrations are defined using the right lifting property).
The model category structure on SPr∗(S) is obtained from the model category structure on
SPr(S) as in [Ho, 1.1.8].

The strong model category structure on SPr(S) is clearly a proper model category structure
in the sense of B.5, as the category of simplicial sets with the usual model category structure
is proper. The model category structure on SPr(S) defined in [To1, 1.1.1] is therefore also
left proper (as it is a left localization of a proper model category structure [Hi, 4.1.1]). If S
has enough points then this model category is also right proper, as this can be verified on
stalks by 4.2.

Remark 4.4. If U ∈ S is an object of the site S, then we can consider the category SPr(S|U)
of simplicial presheaves on the category of objects over U . The category S|U has a natural
Grothendieck topology induced by that on S. There is a functor r∗ : SPr(S) → SPr(S|U)
sending F to (V → U) 7→ F (V ). The functor r∗ has a left adjoint r! sending G ∈ SPr(S|U)
to the presheaf

(4.4.1) r!G(V ) =
∐

s∈Hom(V,U)

G(V
s→U).
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In particular, if ∗ → r!G(V ) is a point mapping to the component corresponding to s : V → U ,
then the sheaf π1(r!G, ∗) on S|V is isomorphic to π1(G|s:V→U , ∗). This implies that r! takes
weak equivalences to weak equivalences.

Note also that the functor r∗ takes strong equivalences (resp. strong fibrations) to strong
equivalences (resp. strong fibrations), and therefore r! preserves strong cofibrations (=cofi-
brations). Therefore r! preserves both cofibrations and trivial cofibrations, which implies that
(r!, r

∗) is a Quillen adjunction.

In particular there is an induced functor

(4.4.2) Rr∗ : Ho(SPr(S)) −→ Ho(SPr(S|U)).

Since r∗ preserves arbitrary equivalences, the functor r∗ derives trivially (that is, if F ∈
SPr(S) is a not necessary fibrant object representing an object F h ∈ Ho(SPr(S)) then Rr∗F h

is represented by r∗F ).

Equivariant cosimplicial algebras and pointed stacks.

4.5. Let R be a Q–algebra and G/R an affine flat group scheme. Let G − AlgR denote the
category of R–algebras with right G–action. That is, G−AlgR is the category of R–algebras
in the tensor category of right G–representations RepR(G). We denote by G − Alg∆

R the
category of cosimplicial objects in G−AlgR. Let G−dgaR denote the category of commutative
differential graded algebras in the category of right G–representations. We view G − Alg∆

R

and G − dgaR as closed model categories using 2.21. As discussed in 2.21, the Dold–Kan
correspondence induces an equivalence of categories

(4.5.1) Ho(G− dgaR) ' Ho(G− Alg∆
R).

4.6. Denote by G − SPr(R) (resp. G − SPr∗(R)) the category of objects in SPr(R) (resp.
SPr∗(R)) equipped with a left action of G (viewed as a sheaf via the Yoneda embedding).
As discussed in [KPT, §1.2] there is a model category structure on G − SPr(R) in which a
morphism X → Y is an equivalence (resp. fibration) if the morphism in G−SPr(R) obtained
by forgetting the G-action is an equivalence (resp. fibration). Similarly for G− SPr∗(R).

For any A ∈ G−Alg∆
R , define SpecG(A) to be the simplicial presheaf sending a R–algebra

D to

(4.6.1) [n] 7→ HomR(An, D).

The right action of G on An induces a left action of G on SpecG(A) and hence we obtain a
functor

(4.6.2) SpecG : G− Alg∆
R −→ G− SPr(R).

If G is the trivial group and A ∈ Alg∆
R , we write simply Spec(A) ∈ SPr(R) for the associated

simplicial presheaf.

As explained in [KPT, p. 16], the functor SpecG is right Quillen. We denote by

(4.6.3) RSpecG : Ho(G− Alg∆
R)op −→ Ho(G− SPr(R))

the resulting derived functor.
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4.7. Let EG denote the simplicicial presheaf which is the nerve of the morphism G→ ∗. So
we have

(4.7.1) (EG)m = Gm+1

with the face and degeneracy maps given by the projections and diagonals. The group G
acts on EG through left translation, and we write BG for the quotient. The identity section
of G defines a map ∗ → EG, which is an equivalence. Therefore EG and BG are naturally
pointed simplicial presheaves.

By [KPT, 1.2.1] there are natural equivalences of categories

(4.7.2) Ho(G− SPr(R)) ' Ho(SPr(R)|BG), Ho(G− SPr∗(R)) ' Ho(SPr∗(R)|BG).

For F ∈ Ho(G − SPr(R)), we write [F/G] for the corresponding object of Ho(SPr(R)|BG).
The equivalences 4.7.2 are induced by a Quillen adjunction (De,Mo) between SPr(R)|BG and
G− SPr(R). The functor

(4.7.3) De : G− SPr(R)→ SPr(R)|BG
sends F ∈ G − SPr(R) to (EG × F )/G, where G acts diagonally on EG × F . This functor
then induces an equivalence

(4.7.4) LDe : Ho(G− SPr(R))→ Ho(SPr(R)|BG).

4.8. If A ∈ G − Alg∆
R , then any augmentation A → R (not necessarily compatible with the

action of G) gives [RSpecG(A)/G] a natural structure of an object of Ho(SPr∗(R)). For this
note that the forgetful functor Rep(G) → ModR has a right adjoint M 7→ M ⊗ OG. Hence
giving an augmentation A→ R is equivalent to giving an equivariant map A→ OG.

As discussed in appendix B, the category G − Alg∆
R,/OG

of objects over OG has a natural

model category structure induced by the model category structure on G−Alg∆
R . A morphism

f : A→ A′ in G− Alg∆
R,/OG

is an equivalence (resp. cofibration, fibration) of the underlying

morphism A → A′ in G − Alg∆
R is an equivalence (resp. cofibration, fibration). The functor

SpecG(−) induces a functor

(4.8.1) (G− Alg∆
R,/OG

)o → G− SPr(R)|\SpecG(OG)

which we again denote by SpecG(−). Here G − SPr(R)|\SpecG(OG) denotes the category of
objects of G− SPr(R) under SpecG(OG). We have a commutative diagrams

(4.8.2) (G− Alg∆
R,/OG

)o

forget

��

SpecG(−)
// G− SPr(R)|\SpecG(OG)

forget

��
(G− Alg∆

R)o
SpecG(−)

// G− SPr(R),

and

(4.8.3) G− SPr(R)|\SpecG(OG)

forget
��

De // SPr(R)|BG,\EG
forget

��
G− SPr(R)

De // SPr(R)|BG,
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where SPr(R)|BG,\EG denotes the category of objects in SPr(R)|BG under EG. As explained
in B.7 diagram 4.8.2 is a commutative diagram of right Quillen functors. Passing to the
associated homotopy categories we therefore obtain a commutative diagram

(4.8.4)

Ho(G− Alg∆
R,/OG

)o
RSpecG(−)−−−−−−→ Ho(G− SPr(R)|\SpecG(OG))

forget

y yforget

Ho(G− Alg∆
R)o

RSpecG(−)−−−−−−→ Ho(G− SPr(R)).

Lemma 4.9. The G-equivariant presheaf G = SpecG(OG) is cofibrant in G− SPr(R).

Proof. Let H : G − SPr(R) → SPr(R) be the functor forgetting the G-action. Then for any
F ∈ G− SPr(R) we have

(4.9.1) HomG−SPr(R)(G,F ) = HomSPr(R)(∗, H(F )).

Since H takes fibrations (resp. equivalences) to fibrations (resp. equivalences), the statement
that G is cofibrant follows from the fact that ∗ is cofibrant in SPr(R) (since ∗ is obviously
strongly cofibrant). �

By B.9, the diagram 4.8.3 therefore induces a commutative diagram of derived functors

(4.9.2) Ho(G− SPr(R)|\SpecG(OG))

forget

��

LDe // Ho(SPr(R)|BG,\EG)

forget

��
Ho(G− SPr(R))

LDe // Ho(SPr(R)|BG).

By forgetting the map to BG we also obtain a commutative diagram

(4.9.3) Ho(SPr(R)|BG,\EG) //

forget ))SSSSSSSSSSSSSS
Ho(SPr(R)\EG)

forgetvvmmmmmmmmmmmmm

Ho(SPr(R)).

Now by B.5, the point ∗ → EG induces an equivalence

(4.9.4) Ho(SPr(R)\EG)→ Ho(SPr∗(R))

sending

(4.9.5) (EG→ F ) 7→ (∗ → EG→ F ).

Therefore the diagram

(4.9.6) Ho(SPr(R)\EG) //

forget ((QQQQQQQQQQQQQ
Ho(SPr∗(R))

forgetvvnnnnnnnnnnnn

Ho(SPr(R))
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commutes. Combining 4.8.4, 4.9.2, 4.9.3, and 4.9.6 we obtain a commutative diagram
(4.9.7)

Ho(G− Alg∆
R,/OG

)o

forget

��

RSpecG// Ho(G− SPr(R)\SpecG(OG))
LDe // Ho(SPr(R)|BG,\EG) // Ho(SPr∗(R))

forget

��
Ho(G− SPr(R))o

[RSpecG(−)/G]
// Ho(SPr(R)).

We denote the top horizontal composite again by

(4.9.8) [RSpecG(−)/G] : Ho(G− Alg∆
R,/OG

)o → Ho(SPr∗(R)).

4.10. In what follows it will also be useful to be able to replace OG by an equivalent algebra.
If S ∈ G − Alg∆

R is any object with an equivalence OG → S, then by B.5 there is a natural
equivalence Ho(G−Alg∆

R,/OG
) ' Ho(G−Alg∆

R,/S). Composing this equivalence with 4.9.8 we
obtain a functor

(4.10.1) [RSpecG(−)/G] : Ho(G− Alg∆
R,/S)

o −→ Ho(SPr∗(R)).

4.11. Let R → R′ be a flat morphism of Q–algebras. Then the forgetful functor f : GR′ −
Alg∆

R′ → GR −Alg∆
R has an exact left adjoint A 7→ A⊗R R′ and hence f preserves fibrations

and trivial fibrations. Therefore the pair (⊗RR′, f) is a Quillen adjunction.

If r∗ : SPr(R)→ SPr(R′) denotes the restriction functor 4.4, then the diagram

(4.11.1)

(G− Alg∆
R)op SpecG−−−→ G− SPr(R)

⊗RR
′

y yr∗

(GR′ − Alg∆
R′)

op
SpecGR′−−−−−→ GR′ − SPr(R′)

commutes. It follows that if A ∈ G− Alg∆
R , then Rr∗RSpecG(A) ' RSpecGR′

(A⊗R R′).

Stacks associated to isocrystals.

4.12. Let k be a perfect field, V its ring of Witt vectors, K the field of fractions of V ,
and σ : K → K the automorphism induced by the canonical lift of Frobenius to V . Let
X/V be a smooth proper scheme, D ⊂ X a divisor with normal crossings relative to V , and
x : Spec(V ) → Xo a section. We view X as a log scheme (X,MX) in the sense of Fontaine
and Illusie [Ka] with log structure MX defined by the divisor D. Denote by (Y,MY )/k
the reduction of (X,MX), and by Isoc((Y,MY )/K) the category of log isocrystals on the
convergent site of (Y,MY ) (see section 3).

Let Isoclf((Y,MY )/K) ⊂ Isoc((Y,MY )/K) denote the full subcategory of locally free ob-
jects. Since X/V is proper, the category of Isoclf((Y,MY )/K) is naturally identified with
a full subcategory of the category MIC((XK ,MXK

)/K) of coherent sheaves on the generic
fiber (XK ,MXK

) with integrable logarithmic connection (combine [Sh1, proof of 5.2.9, 5.2.10,
and 3.2.16]). In particular, there is a natural restriction functor

(4.12.1) Isoclf((Y,MY )/K) −→MIC(Xo
K/K),

where Xo := X −D. By [Sa, VI.1.2.2], the category MIC(Xo
K/K) is Tannakian and every

object is locally free.
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Remark 4.13. As in the case without log structures, the category Isoclf((Y,MY )/K) can also
be described as the category of locally free isocrystals on the log crystalline site of (Y,MY )/V
[Sh2, 3.1]. If E ∈ Isoclf((Y,MY )/K) we can therefore compute the cohomology of E in either
the convergent topos or the crystalline topos. By [Sh2, 3.1.1] these two different cohomology
groups are canonically isomorphic. We will therefore simply write H∗cris((Y,MY ), E) for these
groups. From this and the comparison between log crystalline and log de Rham cohomology
[Ka, 6.4] it follows that if (E ,∇) ∈ MIC(XK ,MXK

/K) denotes the module with integrable
connection corresponding to E, then there is a canonical isomorphism

(4.13.1) H∗cris((Y,MY ), E) ' H∗log-dR((XK ,MXK
), (E ,∇)).

4.14. Let R denote the cokernel of the map Ω1
XK/K

→ Ω1
(XK ,MXK

)/K (the sheaf of residues),

and observe that if (E ,∇) ∈MIC((XK ,MXK
)/K) then the composite

(4.14.1) E ∇−−−→ E ⊗ Ω1
(XK ,MXK

)/K −−−→ E ⊗R

is OXK
–linear. In particular, for every point y ∈ XK we obtain a map

(4.14.2) R(y)∗ −→ Endk(y)(E(y)).

We say that (E ,∇) has unipotent local monodromy if for every y ∈ XK the image of 4.14.2
consists of nilpotent endomorphisms (see also [K-N] for this notion in the analytic context).

In local coordinates this condition can be described as follows. Etale locally around y,
there exists an étale morphism

(4.14.3) X −→ Spec(V [T1, . . . , Tr, T
±
r+1, . . . , T

±
n ])

with D given by the equation T1 · · ·Tr = 0 and y ∈ {T1 = · · · = Tr = 0}. The choice of such
a morphism identifies R with the sheaf associated to the module

(4.14.4) ⊕ri=1(OX/(Ti)) · d log(Ti),

so R(y) has a basis given by d log(Ti) (1 ≤ i ≤ r) and the corresponding endomorphisms Di

of Endk(y)(E(y)) all commute. Therefore (E ,∇) has unipotent local monodromy if and only
if the endomorphisms Di are nilpotent. Observe also that it suffices to verify the nilpotence
at closed points y ∈ XK .

We denote the full subcategory of MIC((XK ,MXK
)/K) of vector bundles with integrable

logarithmic connection with unipotent local monodromy by Vnilp(XK ,MXK
).

Remark 4.15. Modules with integrable connection of “geometric origin” often have unipo-
tent local monodromy [Il1].

Lemma 4.16. If (E ,∇) and (F ,Υ) are in Vnilp(XK ,MXK
), then (E ⊗ F ,∇ ⊗ Υ) is also in

Vnilp(XK ,MXK
). The category Vnilp(XK ,MXK

) has internal homs, duals, and is closed under
extensions in MIC((XK ,MXK

)/K).

Proof. Let y ∈ X be a point, τ ∈ R(y)∗ and element and letN (resp. M) be the corresponding
endomorphism of E(y) (resp. F(y)). The endomorphism of E(y) ⊗ F(y) = (E ⊗ F)(y)
corresponding to the connection ∇ ⊗ Υ is then N ⊗ 1 + 1 ⊗M . Since the endomorphisms
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N ⊗ 1 and 1⊗M of E(y)⊗F(y) commute, we have

(4.16.1) (N ⊗ 1 + 1⊗M)r =
r∑
i=0

(
r

i

)
N i ⊗M r−i.

This implies that (E ⊗ F ,∇ ⊗ Υ) ∈ Vnilp(XK ,MXK
). The statement about duals follows

from the fact that the transpose of a nilpotent endomorphism is nilpotent. From this we get
internal homs by the formula

(4.16.2) Hom((E ,∇), (F ,Υ)) = (E ,∇)∗ ⊗ (F ,Υ).

The statement about extensions follows from the observation that if (V,N) is a vector space
with an endomorphism, and if V admits a N–stable filtration Fil such that the induced
endomorphism of gr·Fil(V ) is nilpotent, then N is nilpotent. �

Lemma 4.17. (i) For any (E ,∇) ∈ Vnilp(XK ,MXK
) the natural map on cohomology

(4.17.1) H∗log-dR((XK ,MXK
), (E ,∇)) −→ H∗dR(Xo

K , (Eo,∇o))

is an isomorphism.

(ii) The restriction functor

(4.17.2) Vnilp(XK ,MXK
) −→MIC(Xo

K/K)

is fully faithful with essential image closed under the operations of direct sums, tensor prod-
ucts, duals, internal hom, subquotients, and extensions.

(iii) The category Vnilp(XK ,MXK
) is Tannakian with fiber functor given by

(4.17.3) ωxK
: Vnilp(XK ,MXK

) −→ VecK , (E ,∇) 7→ E(x).

Proof. To see (i), it suffices by a standard reduction to consider the case when K = C. Then
(E ,∇) ∈ Vnilp(XK ,MXK

) is the canonical extension of (Eo,∇o) in the sense of Deligne [De1,
5.2]. From this and [De1, 3.14 and 5.2 (d)] (i) follows.

All the statements of (ii) except for the statement about subquotients follow immediately
from (i) and the natural isomorphisms

(4.17.4) ExtiVnilp(XK ,MXK
)((E ,∇), (F ,Υ)) ' H i

log-dR((XK ,MXK
), (E ,∇)∗ ⊗ (F ,Υ)),

(4.17.5) ExtiMIC(Xo
K/K)((Eo,∇o), (Fo,Υo)) ' H i

dR(Xo
K , (Eo,∇o)∗ ⊗ (Fo,Υo)).

To verify that the essential image is closed under subquotients, note that by the uniqueness
of the canonical extension in [De1, 5.2] it suffices to consider the case when K = C in which
case the result follows from (loc. cit.).

Statement (iii) follows from (ii) and the fact that MIC(Xo
K/K) is Tannakian. �

4.18. Let V cris
nilp ((Y,MY )/K) ⊂ Isoc((Y,MY )/K) denote the full subcategory of objects whose

image in MIC((XK ,MXK
)/K) lies in Vnilp(XK ,MXK

). Since the inclusion functor

(4.18.1) Isoc((Y,MY )/K) ⊂MIC((XK ,MXK
)/K)

has essential image closed under sub–quotients, direct sums, duals, tensor products, and
extensions (see for example [De2, 11.4]), the category V cris

nilp ((Y,MY )/K) is identified with a
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Tannakian subcategory of Vnilp(XK ,MXK
). Moreover, the restriction of the functor 4.17.3 to

V cris
nilp ((Y,MY )/K) is naturally identified with the functor

(4.18.2) V cris
nilp ((Y,MY )/K) −→ Isoc(k/K) ' VecK , E 7→ x∗E.

Lemma 4.19. For any V ∈ V cris
nilp ((Y,MY )/K), the pullback by Frobenius F ∗V is again in

V cris
nilp ((Y,MY )/K).

Proof. Because X/V is proper, the scheme XK is covered by maps Spec(R∧ ⊗V K) → XK ,
where R∧ is the p–adic completion of an affine étale Spec(R) → X which admits an étale
morphism

(4.19.1) Spec(R) −→ Spec(V [T1, . . . , Tr, T
±
r+1, . . . , T

±
n ])

as in 4.14.3. For such an R, there exists a lift of Frobenius

(4.19.2) F̃ : R∧ −→ R∧

sending Ti to T pi . In this case the pullback of F ∗V to Spec(R∧K) is the module V ⊗R∧,F̃ R∧
with connection F ∗(∇) such that

(4.19.3) 〈F ∗(∇)(v ⊗ 1〉), Ti
∂

∂Ti
〉 = p〈∇(v), Ti

∂

∂Ti
〉 ⊗ 1.

Hence if the operator 〈∇(−), Ti
∂
∂Ti
〉 is nilpotent so is the operator 〈F ∗(∇)(−), Ti

∂
∂Ti
〉. This

implies the lemma. �

Lemma 4.20 ([LS-E, 2.1]). For any V ∈ Isoc((Y,MY )/K), the natural map

(4.20.1) F ∗ : H∗cris((Y,MY ),V) −→ H∗cris((Y,MY ), F ∗V)

is an isomorphism.

Proof. Let (Y ′,MY ′) denote the fiber product (Y,MY )⊗k,Frobk
k and let F(Y,MY )/k : (Y,MY )→

(Y ′,MY ′) be the natural map induced by Frobenius on (Y,MY ). Let V ′ be the pullback of V
to (Y ′,MY ′).

Note first that

(4.20.2) H∗cris((Y,MY ), F ∗V) ' H∗cris((Y
′,MY ′), F(Y,MY )/k∗F

∗
(Y,MY )/kV ′)

and F(Y,MY )/k∗F
∗
(Y,MY )/kV ′ ' (F(Y,MY )/k∗OY/K)⊗OY ′/K

V ′ (projection formula).

Sub-Lemma 4.21. The sheaf F(Y,MY )/k∗OY/K is a locally free sheaf of OY ′/K–modules of
finite rank.

Proof. This can be verified locally, so we may assume that there exists an étale morphism

(4.21.1) X → Spec(V [T1, . . . , Tr, T
±
r+1, . . . , T

±
n ])

as in 4.14.3 and let (X̂,M bX) denote the p–adic completion of (X,MX). Let (X̂ ′,M bX′) denote

the base change of (X̂,M bX) via the map Spec(V )→ Spec(V ) induced by the lift of Frobenius,

and let F : (X̂,M bX)→ (X̂ ′,M bX′) be the map induced by Ti 7→ T pi . The morphism F is finite
and flat and the natural map F ∗Ω1

( bX′,M bX′ )/V
→ Ω1

( bX,M bX)/V
becomes an isomorphism after

tensoring with Q (F ⊗Q is log étale). It follows that (F∗O bX)⊗V K has a natural integrable
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connection which defines a locally free crystal A of O(Y ′,MY ′ )/K
–algebras. We leave to the

reader the task of verifying that this crystal A is isomorphic to F(Y,MY )/k∗OY/K . �

It follows that there is a trace map tr : F(Y,MY )/k∗OY/K → OY ′/K such that the composite
OY ′/K → F(Y,MY )/k∗OY/K → OY ′/K is multiplication by some non–zero integer. This implies
that the map 4.20.1 is injective.

To see that 4.20.1 is surjective, choose a totally ramified finite extension V → Ṽ with

fraction field extension K → K̃ such that K̃ contains the p–th roots of 1, and note that there
are natural isomorphisms

(4.21.2) H∗cris((Y,MY ), F ∗V)⊗K K̃ ' H∗(((Y,MY )/K̃)conv, F
∗V),

(4.21.3) H∗cris((Y
′,MY ′),V ′)⊗K K̃ ' H∗(((Y ′,MY ′)/K̃)conv,V ′).

It therefore suffices to show that the natural map

(4.21.4) H∗(((Y ′,MY ′)/K̃)conv,V ′) −→ H∗(((Y,MY )/K̃)conv, F
∗V)

is an isomorphism.

To see that 4.20.1 is surjective, it suffices to show the stronger statement that the map

(4.21.5) F ∗ ◦ tr : Ru∗V ′ → Ru∗[(F(Y,MY )/k∗OY/ eK)⊗O
Y ′/ eK V ′]

is an isomorphism, where u∗ denotes the projection to the étale topos of Y ′. This is a local
assertion so it suffices to verify it in the case when there is an étale morphism as in 4.14.3.
In this case, the map X → X ′ := X ⊗V,σ V induced by Ti 7→ T pi is a lift of Frobenius and the

resulting map X ⊗V Ṽ → X ′ ⊗V Ṽ identifies X ′ ⊗V Ṽ with the quotient of X ⊗V Ṽ by the
natural action of the group µnp ' (Z/pZ)n (since Ṽ contains the p–th roots of 1). It follows
that the map F ∗ ◦ tr is equal to

∑
σ∈µn

p
σ. Since the reduction of each σ is the identity, it

follows that this is simply multiplication by pn and so 4.21.5 is a quasi–isomorphism. �

4.22. Let (E,ϕE) be an F–isocrystal on (Y,MY )/K with E ∈ V cris
nilp ((Y,MY )/K). De-

note by 〈E〉⊗ ⊂ V cris
nilp ((Y,MY )/K) the Tannakian subcategory generated by E, and let

C ⊂ V cris
nilp ((Y,MY )/K) be the smallest Tannakian subcategory closed under extensions, and

containing E. The category C consists of objects V ∈ V cris
nilp ((Y,MY )/K) which admit a filtra-

tion 0 = V0 ⊂ V2 ⊂ · · · Vn = V whose successive quotients are objects of 〈E〉⊗.

Observe that the restriction functor 4.17.2 identifies 〈E〉⊗ (resp. C) with the Tannakian
subcategory of MIC(Xo

K/K) generated by EoK (resp. the smallest Tannakian subcategory
of MIC(Xo

K/K) closed under extensions and containing EoK), where EoK denotes the module
with integrable connection on Xo

K defined by E.

We make the following assumption:

Assumption 4.23. The category 〈E〉⊗ is semi–simple.

This assumption implies in particular that an isocrystal V is in 〈E〉⊗ if and only if V is
isomorphic to a direct summand of Ea ⊗ (E∗)b for some a, b ∈ N.



34 Martin C. Olsson

Lemma 4.24. (i) For any V in C (resp. 〈E〉⊗), the pullback by Frobenius F ∗V is again in C
(resp. 〈E〉⊗).
(ii) The induced functors

(4.24.1) F ∗ : C → C, F ∗ : 〈E〉⊗ → 〈E〉⊗

are equivalences.

Proof. Statement (i) is immediate.

For (ii), note first that the essential image of F ∗ : C → C is closed under extensions. For
given any two objects V1,V2 ∈ C and an extension

(4.24.2) 0 −−−→ F ∗V1 −−−→ V −−−→ F ∗V2 −−−→ 0,

corresponding to a class e ∈ H1
cris(((Y,MY ), F ∗(V∗1 ⊗ V2)), there exists by 4.20 (i)) a class

e′ ∈ H1
cris(((Y,MY ),V∗1 ⊗V2) with F ∗(e′) = e. The class e′ then gives an extension of V2 by V1

inducing V . Note also that 4.20 (i)) implies that F ∗ is fully faithful since for any V1,V2 ∈ C

(4.24.3)

H0
cris(((Y,MY ),V∗1 ⊗ V2) −−−→ H0

cris(((Y,MY ), F ∗(V∗1 ⊗ V2))

'
x '

y
HomC(V1,V2) HomC(F

∗V1, F
∗V2)

is bijective.

Hence it suffices to show that F ∗ : 〈E〉⊗ → 〈E〉⊗ is essentially surjective. For this it suffices
to show that if E ′ ∈ 〈E〉⊗ is an object obtained from E by performing the operations of tensor
product, direct sum, and dual and if V ⊂ F ∗E ′ then there exists a sub–object V ′ ⊂ E ′ with
F ∗V ′ = V . Since 〈E〉⊗ is semi–simple, the subcrystal V ⊂ F ∗E ′ is obtained by projection
from an idempotent e ∈ H0

cris((Y,MY ),End(F ∗E ′)). By 4.20 the map

(4.24.4) F ∗ : H0
cris((Y,MY ),End(E ′)) −→ H0

cris((Y,MY ), F ∗End(E ′))

is an isomorphism, and since F ∗End(E ′) ' End(F ∗E ′) there exists an idempotent e′ ∈
H0

cris((Y,MY ),End(E ′)) with F ∗(e′) = e. The corresponding direct summand V ′ ⊂ E ′ then
pulls back to V . �

4.25. The method of [Ol1] reviewed below associates to C a stackXC ∈ Ho(SPr∗(K)) (the case
when D = ∅ is treated in (loc. cit.) but the same method works in the present logarithmic
situation). The stack XC has the following properties 4.26–4.28.

4.26. There is a canonical isomorphism

(4.26.1) π1(XC) ' π1(C, ωx).

4.27. There is a natural isomorphism ϕXC : XC → XC ⊗K,σ K, where XC ⊗K,σ K denotes the
object of Ho(SPr∗(K)) which to any R ∈ AlgK associates XC(R⊗K,σ−1K). This isomorphism
induces an isomorphism ϕπ1 : π1(XC)→ π1(XC)⊗K,σ K which under the isomorphism 4.26.1
corresponds to the isomorphism induced by Tannaka duality and the equivalence C⊗K,σK →
C induced by Frobenius pullback.
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4.28. For any representation V of π1(XC) corresponding to an isocrystal V on (Y,MY )/K,
there is a canonical isomorphism

(4.28.1) H∗(XC, V ) ' H∗cris((Y,MY ),V),

where H∗(XC, V ) denotes cohomology of the simplicial presheaf XC as defined in [To1, 1.3].
If ϕV : V ⊗K,σ K → V is an isomorphism such that the diagram

(4.28.2)

π1(XC) −−−→ Aut(V )

ϕπ1

y yϕV

π1(XC)⊗K,σ K −−−→ Aut(V σ)

commutes, and if ϕV : F ∗V → V denotes the associated F–isocrystal structure on V , then
the F–isocrystal structure induced by ϕV on H∗(XC, V ) agrees under the isomorphism 4.28.1
with the F–isocrystal structure on H∗cris((Y,MY ),V) induced by ϕV .

4.29. The description of the stack XC in 4.35 below uses the following basic construction.
Let G/K be an algebraic group, and let L be a differential graded algebra in the category
of ind–isocrystals on (Y,M)/K with G–action. To any such algebra L we can associate an
algebra RΓcris(L) ∈ Ho(G − dgaK) whose cohomology ring is H∗cris(L) with the natural G–
action. If L is an equivariant algebra in the category of ind–F–isocrystals then there is an
induced semi–linear automorphism RΓcris(L)→ RΓcris(L) in Ho(G− dgaK).

To construct RΓcris(L) choose an affine étale cover U → Y and an embedding (U,MU) ↪→
(Z,MZ) of (U,MU) into an affine log scheme (Z,MZ) log smooth over V (with the trivial log
structure). For each n ≥ 0, let t : (Z∗n,MZ∗n)→ (Z,MZ)(n+1) denote the universal object over

(Z,MZ)(n+1) defined in A.8.

Recall that the log scheme (Z∗n,MZ∗n) has the following universal property. For each i, let

pri : (Z,MZ)(n+1) → (Z,MZ) be the projection to the i–th factor. Then the natural map
t∗pr∗iMZ → MZ∗n is an isomorphism and (Z∗n,MZ∗n) is universal with this property. That is,

if g : (T,MT ) → (Z,MZ)(n+1) is a morphism of log schemes such that for each i the map
g∗pr∗iMZ →MT is an isomorphism, then g factors uniquely through (Z∗n,MZ∗n). In particular,
the diagonal

(4.29.1) (Z,MZ) � � // (Z,MZ)(n+1)

factors canonically through (Z∗n,MZ∗n). Recall also that by the construction of (Z∗n,MZ∗n) in
the proof of A.8, (Z∗n,MZ∗n) is an affine log scheme.

Let (Un,MUn) denote the n+1–st fold fiber product of (U,MU) over (Y,MY ). By the univer-
sal property of (Z∗n,MZ∗n), the natural embedding (Un,MUn) ↪→ (Z,MZ)(n+1) factors uniquely
through (Z∗n,MZ∗n). Denote by (Zn,MZn) the completion of (Z∗n,M

∗
Zn

) along (Un,MUn). The
(Zn,MZn) form in a natural way a simplicial log formal scheme denoted (Z•,MZ•).

Let (U•,MU•) denote the 0–coskeleton of the map (U,MU) → (Y,MY ) so that there is an
embedding (U•,MU•) ↪→ (Z•,MZ•). Each (Un,MUn) ↪→ (Zn,MZn) is a widening and hence we
can evaluate L on each (Zn,MZn) (in the sense of 3.17) to get a module Ln with logarithmic
connection ∇ : Ln → Ln⊗Ω1

(Zn,MZn )/V . Forming the de Rham complex of this connection, we

obtain a sheaf of differential graded algebras L• ⊗ Ω•(Z•,MZ• ) on Z• with action of the group
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scheme G. From this we get a G–equivariant cosimplicial algebra

(4.29.2) ∆→ G− dgaK , [n] 7→ Γ(Zn,Ln ⊗ Ω•(Zn,MZn )).

In what follows we will write DR(L)U• for this cosimplicial differential graded algebra. We
define RΓcris(L) (also sometimes written RΓcris(L)U• if we want the dependence on U• to
be clear) to be the object of G − dgaK obtained by applying the functor of Thom–Sullivan
cochains to DR(L)U• (note that DR(L)U• and RΓcris(L)U• also depend on (Z•,MZ•) but we
omit this from the notation).

4.30. Since we chose the Zn to be affine, the underlying complex of RΓcris(L) is simply
the usual complex used to compute convergent cohomology by 3.20. This implies that if
(U ′,MU ′) ↪→ (Z ′,MZ′) is a second choice of étale cover and lifting and if we are given a
commutative square

(4.30.1)

(U ′,MU ′) −−−→ (Z ′,MZ′)

ρ

y y
(U,MU) −−−→ (Z,MZ),

where ρ is a morphism over Y , giving rise to a commutative square

(4.30.2)

(U ′•,MU ′•) −−−→ (Z ′•,MZ′•)

ρ

y y
(U•,MU•) −−−→ (Z•,MZ•),

the induced map

(4.30.3) DR(L)U• −→ DR(L)U ′•

is an equivalence and the resulting map

(4.30.4) RΓcris(L)U• −→ RΓcris(L)U ′•

in Ho(G − dgaK) is independent of the choice of the morphism U ′ → U . Furthermore, if
we choose a lifting of Frobenius to (Z,MZ) then the F–isocrystal structure on L induces a
semi–linear equivalence

(4.30.5) DR(L)U• −→ DR(L)U• .

As explained in [Ol1, 2.23], the induced equivalence

(4.30.6) RΓcris(L)⊗K,σ K −→ RΓcris(L)

in Ho(G− dgaK) is independent of the choices.

In what follows it will be also be necessary to describe the G–equivariant algebra RΓcris(L)
in a slightly different manner.

Lemma 4.31. Let L be a differential graded algebra in the category of ind–isocrystals with
G–action on (Y,MY )/K. Associated to the lifting (X,MX)/V of (Y,MY ) to V is a G–
equivariant differential graded algebra R• with each Ri a sheaf on (Y,MY )/K which is acyclic
for the projection u∗ to the étale topos of Y , and a map of G–equivariant algebras L → R•
which is a quasi–isomorphism on the underlying complexes of sheaves.
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Remark 4.32. In the case when L is a sheaf (i.e. concentrated in degree 0), the complex R•
was denoted ω·bX(L) in 3.19.

Proof. Let (T,MT ) denote the object of the convergent site of (Y,MY ) given by (Y,MY ) ↪→
(X,MX). There is then a diagram of topoi

(4.32.1)

((Y,MY )/V )conv|T
φT−−−→ Yet

jT

y
((Y,MY )/V )conv.

For each integer t, there is by [Sh2, 2.3.6] a natural resolution Lt → Rt
• with Rt

j :=

jT∗(φ
∗
TΩj

(X,MX)/V ⊗ j∗TLt) (see also 3.19). The sheaf Rt
j is acyclic for the projection u∗. Fur-

thermore, the complex Rt
• is functorial so we obtain a double complex R•• with an equivalence

L→ R••. Let R• be the associated single complex.

By definition Rs = ⊕i+j=sjT∗(φ∗TΩj
(X,MX)/V ⊗ j∗TLi) and the differential d : Rs → Rs+1 is

induced by the maps

(4.32.2) φ∗TΩj
(X,MX)/V ⊗ j

∗
TLi → φ∗TΩj

(X,MX)/V ⊗ j
∗
TLi+1 ⊕ φ∗TΩj+1

(X,MX)/V ⊗ j
∗
TLi

sending ω ⊗ ` to (δ(`)⊗ ω, (−1)iδ(ω ⊗ `)), where we have written δ for the differentials. We
define an algebra structure on R• by the formula

(4.32.3) (ω ⊗ `) ∧ (ω′ ⊗ `′) := (−1)i
′j(ω ∧ ω′)⊗ (` · `′),

where ω ⊗ ` ∈ jT∗(φ∗TΩj
(X,MX)/V ⊗ j∗TLi) and ω′ ⊗ `′ ∈ φ∗TΩj′

(X,MX)/V ⊗ j∗TLi′ . �

4.33. Let L → R• be the resolution corresponding to our lifting (X,MX)/V . The sheaves
Ri are not isocrystals, but still the value Ri(Z,MZ) of Ri on any affine widening (U,MU) ↪→
(Z,MZ), with (Z,MZ) formally smooth over V , has a canonical integrable connection

(4.33.1) Ri(Z,MZ)→ Ri(Z,MZ)⊗ Ω1
(Z,MZ)/V .

This follows from the construction of Ri (see the proof of [Sh2, 2.3.5] and without log struc-
tures [Og2, 0.5.4]). Moreover, by the proof of the convergent Poincaré lemma [Sh2, 2.3.5 (2)],
the complex R•(Z,MZ) is a resolution of L(Z,MZ).

Let (U•,MU•) ↪→ (Z•,MZ•) be as in 4.29. For each n as in 4.29, let R•(((Un,MUn)/K)cris)
denote the G–equivariant differential graded algebra

(4.33.2) Γ((((Un,MUn)/K)conv),R•).

For each i, let Ri
• denote the module with connection on (Z•,MZ•) obtained by evaluating

Ri on (Z•,MZ•), and let Ri
• ⊗ Ω•(Z•,MZ• ) denote the corresponding de Rham complex of Ri.

Let DR(R•)(Un,MUn ) denote the differential graded algebra with

(4.33.3) DR(R•)s(Un,MUn ) := ⊕i+j=sRi
n ⊗ Ωj

(Zn,MZn ).

If δ denotes the differential of R•n, then the differential on DR(R•)(Un,MUn ) is defined by the
maps

(4.33.4) Ri
n⊗Ωj

(Zn,MZn ) → R
i+1
n ⊗Ωj

(Zn,MZn )⊕R
i
n⊗Ωj+1

(Zn,MZn ), rω 7→ δ(r)ω+(−1)i∇(rω)
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and as in the proof of 4.31 DR(R•)(Un,MUn ) has a differential graded algebra structure given
by

(4.33.5) (r ⊗ ω) ∧ (r′ ⊗ ω′) := (−1)i
′j(r · r′)⊗ (ωω′)

for r ⊗ ω ∈ Ri
n ⊗ Ωj

(Zn,MZn ) and r′ ⊗ ω′ ∈ Ri′
n ⊗ Ωj′

(Zn,MZn ).

We then obtain a diagram of G–equivariant algebras

(4.33.6)

R•(((Un,MUn)/K)cris) −−−→ DR(R•)(Un,MUn )x
DR(L)(Un,MUn )

with all morphisms equivalences. This construction is functorial so the above constructions
induce cosimplicial differential graded algebras R•(((U•,MU•)/K)cris) and DR(R•)U• sitting
in a diagram of equivalences

(4.33.7) R•(((U•,MU•)/K)cris) −−−→ DR(R•)U• ←−−− DR(L)U• .

Applying the functor of Thom–Sullivan cochains T we see that the G–equivariant algebra
RΓcris(L) is canonically isomorphic in Ho(G− dgaK) to T (R•(((U•,MU•)/K)cris)).

4.34. If x ∈ Xo(V ) is a point, then we can apply the preceding discussion with X = Spec(V ),
and x∗L. If Ux,• denotes the simplicial scheme obtained by pulling back U• to x, then we
obtain a commutative diagram

(4.34.1)

R•(((U•,MU•)/K)cris) −−−→ DR(R•)U• ←−−− DR(L)U•y y y
L(x)⊗K OUx,•

id−−−→ L(x)⊗K OUx,•
id−−−→ L(x)⊗K OUx,• .

Here the vertical arrows are induced by the functoriality of the formation of the resolution
L→ R•, and the functoriality of the de Rham complex.

If furthermore, we are given an augmentation L(x)→ K we see that the algebras in 4.33.7
admit natural augmentations to OUx,• . Since the map K → OUx,• is an equivalence the
discussion of 4.8 applies, and there is an isomorphism of pointed stacks

(4.34.2) [RSpecG(RΓcris(L))/G] ' [RSpecGT (R•(((U•,MU•)/K)cris))/G].

4.35. The stack XC is obtained using construction 4.29 as follows. Let G denote the pro–
reductive completion of π1(C, ωx), and let OG be the coordinate ring of G. Right translation
induces a left action of G on OG which by Tannaka duality corresponds to an ind–isocrystal
L(OG) ∈ V cris

nilp ((Y,MY )/K). Left translation induces a right action of G on OG which com-
mutes with the left action and hence induces an action of G on L(OG). Furthermore the
identity section induces a map x∗L(OG) ' OG → K. By definition

(4.35.1) XC ' [RSpecG(RΓcris(L(OG)))/G].

The ind–isocrystal L(OG) has a natural F–isocrystal structure ψ : F ∗L(OG) → L(OG)
which induces a Frobenius automorphism on RΓcris(L(OG)) giving the Frobenius structure
ϕXC .
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4.36. Let us also remark that by cohomological descent we can carry out the above construc-
tion using any diagram

(4.36.1)

(U•,MU•) −−−→ (Z•,MZ•)y
(Y,MY ),

where each (Un,MUn) ↪→ (Zn,MZn) is a widening of affine formal schemes, (Zn,MZn) is
formally smooth over V , and (U•,MU•) → (Y,MY ) is an étale hypercover. In what follows,
we will use the same notation as in the preceding paragraphs in this more general setting as
well. In particular, there are diagram of equivalences

(4.36.2) R•(((U•,MU•)/K)cris) −−−→ DR(R•)U• ←−−− DR(L)U• .

as in 4.33.7, and RΓcris(L) can be computed by applying the functor of Thom–Sullivan
cochains to any of these algebras.

Remark 4.37. If ω : C → ModR is any fiber functor to the category of R–modules, for some
K–algebra R, the preceding constructions can also be carried out with ω instead of ωx. If
G/R denotes the group scheme of tensor automorphisms of ω, then left and right translation
on OG induce an ind–isocrystal Lω with structure of an R–module and right G–action. We
can then apply the constructions of 4.29–4.33 to Lω.

Precisely, for any diagram as in 4.36.1 we obtain a diagram of differential graded R–algebras
with right G–action

(4.37.1) R•ω(((U•,MU•)/K)cris) −−−→ DR(R•ω)U• ←−−− DR(Lω)U•

where all morphisms are equivalences. Moreover, this diagram is functorial in the sense that
for any extension R→ R′ and fiber functor ω′ : C → R′ with an isomorphism σ : ω′ ' ω⊗RR′
there is a natural commutative square of differential graded algebras with right G–action

(4.37.2)

R•ω(((U•,MU•)/K)cris) −−−→ DR(R•ω)U• ←−−− DR(Lω)U•y y y
R•ω′(((U•,MU•)/K)cris) −−−→ DR(R•ω′)U• ←−−− DR(Lω′)U•

If R→ R′ is flat the vertical arrows induce equivalences after tensoring the top row with R′.

5. Simplicial presheaves associated to smooth sheaves

5.1. Let Y/K be a smooth connected scheme over an algebraically closed field K. Denote
by FEt(Y ) the site whose objects are finite étale morphisms U → Y and whose coverings are
surjective morphisms. The inclusion FEt(Y ) ↪→ Et(Y ) induces a morphism of the associated
topoi

(5.1.1) ρ : Yet −→ Yfet.

If ȳ → Y is a geometric point, then the category Yfet is equivalent to the category of ind-
objects in the category of sets with continuous π1(Y, ȳ)–action [SGA4, IV.2.7]. The pullback
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functor ρ∗ takes such a set F to the corresponding sheaf on Yet. Recall [Fa2, Chapter II] that
Y is called a K(π, 1) if for any abelian sheaf A ∈ Yfet the natural map

(5.1.2) H∗(Yfet, A) −→ H∗(Yet, ρ
∗A)

is an isomorphism.

Following [Fa2], if Y/K is a smooth scheme over an arbitrary field K, we will also call
Y a K(π, 1) if each connected component of the geometric fiber YK is a K(π, 1). By [Fa2,
Chapter II, 2.1] (see also [Ol3, 5.4]), any point y ∈ Y admits an open neighborhood U ⊂ Y
which is a K(π, 1).

5.2. If Y is a connected normal scheme, and η̄ : Spec(Ω) → Y is a geometric generic point,
there is a natural isomorphism π1(Y, η̄) ' Gal(ΩY /k(Y )), where ΩY ⊂ Ω denotes the maximal
extension of k(Y ) in Ω which is unramified over all of Y . It will be useful to have a base
point free description of the category of continuous Qp–representations of π1(Y, η̄).

Let GY denote the category whose objects are geometric generic points Spec(Ω) → Y
with Ω a separable closure of k(Y ) and whose morphisms are morphisms of schemes over

Y . Consider the category D̃ whose objects are collections ((Vη̄)η̄∈GY
, {ιs}) where each Vη̄ is

a continuous Qp–representation of Gal(k(η̄)Y /k(Y )) and for every morphism s : η̄′ → η̄ in
GY we are given an isomorphism of Gal(k(η̄′)Y /k(Y ))–representations ιs : s∗Vη̄ → Vη̄′ . The
isomorphisms ιs are also required to satisfy the usual cocycle condition for compositions.

Fix an objet ((Vη̄)η̄∈GY
, {ιs}) ∈ D̃ and η̄ ∈ GY . Let ρη̄ : Gal(k(η̄)Y /k(Y )) → Aut(Vη̄) be

the given action. For each element g ∈ Gal(k(η̄)/k(Y )), the pullback of Vη̄ via the morphism
in GY induced by g : k(η̄) → k(η̄) is the representation ρg of Gal(k(η̄)Y /k(Y )) given by the
composite

(5.2.1) Gal(k(η̄)Y /k(Y ))
h 7→g−1hg−−−−−→ Gal(k(η̄)Y /k(Y ))

ρ−−−→ Aut(Vη̄).

By definition of D̃, we are given an isomorphism ιg : (Vη̄, ρ
g) → (Vη̄, ρ). Denote by D ⊂ D̃

the full subcategory of objects ((Vη̄)η̄∈GY
, {ιs}) such that for every Vη̄ and g as above the

isomorphism ιg is given by ρ(g) : Vη̄ → Vη̄.

We will refer to the category D as the category of Galois modules on Y . If Y is not
connected we define a Galois module on Y to be the data of a Galois module on each connected
component. This terminology is justified by the following lemma:

Lemma 5.3. For any geometric generic point η̄0 : Spec(Ω)→ Y , the functor ({Vη̄}, {ιs}) 7→
Vη̄0 defines an equivalence between the category D and the category of continuous representa-
tions of Gal(ΩY /k(Y )).

Proof. Let F denote the functor ({Vη̄}, {ιs}) 7→ Vη̄0 . For each η̄ → Y , choose an isomorphism
ση̄ : η̄ → η̄0 over Y . Then any morphism f : ({Vη̄}, {ιs})→ ({V ′η̄}, {ι′s}) is determined by the
induced morphism fη̄0 : Vη̄0 → V ′η̄0 since the diagram

(5.3.1)

Vη̄0
fη̄0−−−→ V ′η̄0

σ∗η̄

y yσ∗η̄

Vη̄
fη̄−−−→ V ′η̄
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commutes. Therefore F is faithful. In fact given fη̄0 , use 5.3.1 to define fη̄. Then fη̄ is
independent of the choice of ση̄ : η̄ → η̄0. For if σ′η̄ : η̄ → η̄0 is a second isomorphism,
there exists a unique element g ∈ Gal(k(η̄)/k(Y )) such that σ′η̄ = ση̄ ◦ g∗. If f ′η̄ denotes the
morphism obtained from σ′η̄, the fact that ({Vη̄}, {ιs}) is in D implies that f ′η̄ is equal to the
composite

(5.3.2) Vη̄
ρ(g−1)−−−−→ Vη̄

fη̄−−−→ V ′η̄
ρ′(g)−−−→ V ′η̄ .

Since fη̄ commutes with the action of Gal(k(η̄)/k(Y )), it follows that f ′η̄ = fη̄. This implies
that the functor F is fully faithful.

To see that F is essentially surjective, fix a representation Vη̄0 and choose isomorphisms
ση̄ : η̄ → η̄0 as above. For each η̄, set Vη̄ := σ∗η̄Vη̄0 . For any morphism s : η̄ → η̄′, there
exists a unique element g ∈ Gal(k(η̄′)/k(Y )) such that ση̄′ = ση̄ ◦ s ◦ g∗. Define ιs to be the
isomorphism

(5.3.3) s∗σ∗η̄Vη̄0
ρ(g−1)−−−−→ g∗s∗σ∗η̄Vη̄0 ,

where ρ denotes the action of Gal(k(η̄′)/k(Y )). The value of F on the resulting object
({Vη̄}, {ιs}) ∈ D is then equal to Vη̄0 . �

Remark 5.4. The category D is Tannakian with fiber functor ({Vη̄}, {ιs}) 7→ Vη̄0 .

5.5. Let Y/K be a normal connected scheme of finite type over an algebraically closed field
K, and let L be a differential graded algebra in the ind–category of Galois modules on Y .
We define Galois cohomology of L as follows. Choose a geometric point η̄ → Y mapping
to the generic point and write π for the group π1(Y, η̄). In this paragraph we view L as
a representation of π and denote it simply by L. For each n ≥ 0, let Cn(π, L) denote the
differential graded algebra with

(5.5.1) Cn(π, L)r := {continuous π–equivariant maps πn+1 → Lr},

where π acts on the left of πn+1 via the diagonal action. If δ : [m]→ [n] is a morphism in the
simplicial category ∆, then there is an induced π–equivariant map

(5.5.2) πn+1 −→ πm+1, (a0, . . . , an) 7→ (aδ(0), . . . , aδ(m)),

which induces a morphism of differential graded algebras

(5.5.3) δ∗ : Cm(π, L) −→ Cn(π, L).

These maps are compatible with composition in ∆, and hence we obtain a cosimplicial dif-
ferential graded algebra C•(π, L) ∈ dga∆

Qp
. Applying the functor of Thom–Sullivan cochains

we obtain a differential graded algebra T (C•(π, L)) ∈ dgaQp
. This construction is functorial

in L, so in particular if the sheaf L comes equipped with an action of a group scheme G/Qp

then the resulting algebra T (C•(π, L)) is naturally an object of G− dga∆
Qp

.

Remark 5.6. In the definition of Cn(π, L)r above, when Lr is infinite dimensional the set of
continuous maps πn+1 → Lr should be interpreted as the set of continuous maps from πn+1

to finite dimensional subspaces of Lr.
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5.7. For technical reasons, it will be important to have a base point free description of this
Galois cohomology. For this let Y/K be as above and let E → Y be a finite disjoint union of
geometric points mapping to the generic point of Y . For simplicity in what follows we will
always assume that a geometric generic point Spec(Ω)→ Y has the property that k(Y )→ Ω
is a separable closure of k(Y ) (i.e. no transcendental part). For a smooth sheaf L on Y we
define a cosimplicial module denoted C•(Y,E, L) as follows.

Note first that the scheme E is isomorphic to
∐

p∈E Spec(k(p)) where k(p) is a separable

closure of k(Y ). Define kY (p) ⊂ k(p) to be the maximal extension of k(Y ) in k(p) which
is unramified over Y , and set EY :=

∐
p∈E Spec(kY (p)). Let E•Y be the 0–coskeleton of the

morphism EY → Y . Note that each En
Y is non–canonically isomorphic to a disjoint union of

copies of Spec(kY (p)). In particular, for each point q ∈ En
Y we can form the stalk Lq. Define

Cn(Y,E, L) ⊂
∏

q∈En
Y
Lq as follows.

Fix a separable closure Ω of k(Y ) and let ΩY ⊂ Ω be the maximal subextension unramified
over Y . Choose an isomorphism ι : E '

∐m
i=0 Spec(Ω). This choice of isomorphism induces

an isomorphism

(5.7.1) En
Y '

∐
Fun([n],[m])

Spec(Ω
⊗(n+1)
Y ),

where Ω
⊗(n+1)
Y denotes the (n + 1)–fold tensor product of ΩY over k(Y ) and Fun([n], [m])

denotes the set of all functions [n] → [m] (not necessarily order preserving). Let π denote
the Galois group Gal(ΩY /k(Y )). There is a natural map

(5.7.2)
∐
πn+1

Spec(ΩY ) −→ Spec(Ω
⊗(n+1)
Y )

which on the (g0, . . . , gn)–th component is given by

(5.7.3) ΩY ⊗k(Y ) ΩY · · ·ΩY ⊗k(Y ) ΩY
(g0,...,gn)−−−−−→ ΩY .

There is an action of π on
∐

πn+1 Spec(ΩY ) for which γ ∈ π sends the (g0, . . . , gn)-component
to the (γg0, . . . , γgn)-component via the map

(5.7.4) γ : ΩY → ΩY .

Note that the diagram

(5.7.5) Ω
⊗(n+1)
Y

(g0,...,gn)
//

(γg0,...,γgn) ##GGGGGGGG
ΩY

γ

��
ΩY

commutes, so we have an action of π on
∐

πn+1 Spec(ΩY ) over Spec(Ω
⊗(n+1)
Y ). Furthermore

the map 5.7.3 induces an isomorphism

(5.7.6) [
∐
πn+1

Spec(ΩY )/π] ' Spec(Ω
⊗(n+1)
Y ).
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It follows that ι induces an isomorphism

(5.7.7) En
Y '

∐
Fun([n],[m])

[
∐
πn+1

Spec(ΩY )/π].

With these identifications, the set
∏

q∈En
Y
Lq becomes identified with the set

(5.7.8)
∏

Fun([n],[m])

Homπ−equivariant(π
n+1, LΩ),

and we define Cn(Y,E, L) to be the subset

(5.7.9)
∏

Fun([n],[m])

Homcts
π−equivariant(π

n+1, LΩ).

Lemma 5.8. The subset Cn(Y,E, L) ⊂
∏

q∈En
Y
Lq defined above is independent of the choice

of ι.

Proof. Any other isomorphism ι′ : E '
∐m

i=0 Spec(Ω) is obtained from ι by composing with
an automorphism α of

∐m
i=0 Spec(Ω) over k(Y ). It therefore suffices to verify that Cn(Y,E, L)

is invariant under automorphisms of
∏

q∈En
Y
Lq induced by automorphisms of

∐m
i=0 Spec(Ω).

Any such automorphism is the composite of a permutation of [m] with the automorphism
induced by a sequence (h0, . . . , hm) ∈ πm+1 acting on the i–th component Spec(Ω) by h∗i .
Hence it suffices to consider each of these two kinds of automorphisms in turn.

The action of a permutation τ of [m] is simply that induced by composing a function
[n]→ [m] with τ . Hence the automorphisms obtained in this way preserve Cn(Y,E, L).

The action of (h0, . . . , hm) ∈ πm+1 is induced by the action on

(5.8.1)
∐

(f,g0,...,gn)∈Fun([n],[m])×πn+1

Spec(ΩY )

sending the (f, g0, . . . , gn)–th component to the (f, g0hf(0), . . . , gnhf(n))–th component. From
this description it follows that Cn(Y,E, L) is preserved. �

5.9. Observe that for any morphism E ′ → E, there is a natural induced map C•(Y,E, L)→
C•(Y,E ′, L). We claim that this map is an equivalence. For this it suffices to consider the
case when E ′ = Spec(Ω) is a single geometric generic point and E =

∐m
i=0 Spec(Ω). But in

this case it follows from the construction that

(5.9.1) Cn(Y,E, L) = Cn(Y,E ′, L)Fun([n],[m]).

Thus the result follows from the following lemma:

Lemma 5.10. Let A• be a cosimplicial differential graded Q–algebra and fix m ≥ 0 and a

map h : [0]→ [m]. Denote by A
Fun(•,[m])
• the cosimplicial algebra [n] 7→ A

Fun([n],[m])
n . Then the

map

(5.10.1) A• ' A
Fun(•,[0])
•

h∗−−−→ A
Fun(•,[m])
•

induces a quasi–isomorphism on the associated normalized complexes.
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Proof. If the result holds for A• equal to the constant cosimplicial ring Q, then the result
holds in general by tensoring with A•. So it suffices to consider A• = Q. In this case, the
algebra [n] 7→ QFun([n],[m]) is simply the cosimplicial algebra computing the cohomology of the
constant sheaf Q on the punctual topos with respect to the 0-coskeleton of the covering

(5.10.2)
∐
i∈[m]

∗ −→ ∗.

�

Remark 5.11. If E = Spec(Ω) consists just of a single geometric generic point, then it
follows from the construction that the above C•(Y,E, L) is canonically isomorphic to the
cosimplicial module C•(π, L) defined in 5.5.

5.12. If Y is not connected and Y =
∐

i Yi is the decomposition into connected components,
we modify the above definition of C•(Y,E, L) as follows. We consider a morphism h : E → Y ,
where E is a disjoint union of geometric points mapping to generic points of Y such that
for every e ∈ E the field extension k(h(e)) → k(e) is a separable closure of k(h(e)). Let
Ei ⊂ E be the subscheme of points mapping to Yi so that E =

∐
iEi, and set C•(Y,E, L) :=

⊕iC•(Yi, Ei, L|Yi
).

5.13. In order to deal with base points, we also need functoriality of the above construction
with respect to the inclusion of a point y ∈ Y (K) for Y/K connected and normal. For a family

of geometric generic points E → Y , let ỸE → Y be the normalization of Y in EY (notation as

in 5.7), and let ỸE,y be the pullback to y = Spec(K). There is a natural decomposition ỸE =∐
p∈E Ỹk(p), where Ỹk(p) denotes the normalization of Y in Spec(k(p)) → Y , and hence also

a decomposition ỸE,y =
∐

p∈E Ỹk(p),y. The projection to Spec(K) therefore factors through

a morphism ỸE,y →
∐

p∈E Spec(K). Define specialization data for E relative to y to be a
section s of this map.

The choice of specialization data s determines for each p ∈ E an isomorphism of stalks
Lp ' Ly for any smooth Qp–sheaf L on Y . For this write L = (lim←−Ln)⊗Q for some locally
constant sheaves Ln of Z/(pn)–modules. To obtain the above isomorphism it suffices to
construct a canonical isomorphism of stalks Ln,p ' Ln,y for each n. Since Ln is representable
by a finite étale morphism Un → Y , this in turn amounts to showing that if U → Y is a finite
étale morphism, then the specialization data s determines a canonical bijection Up ' Uy. For
this note that there is a canonical isomorphism

(5.13.1) U ×Y Ỹk(p) '
∐
t∈Up

Ỹk(p),

and hence pulling back via the map s : Spec(K)→ Ỹk(p) we obtain an isomorphism

(5.13.2) Uy '
∐
t∈Uy

Spec(K)→
∐
t∈Up

Spec(K).

This gives the desired isomorphism of stalks.

Remark 5.14. Note that in order to obtain the isomorphism of stalks Lp ' Ly we can
replace EY in the above by the disjoint union of spectra of subfields Ω′p ⊂ k(p) unramified
over Y such that the action of π1(Y, p) on Lp factors through the Galois group of Ω′p.
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5.15. If L is a differential graded algebra (possibly G–equivariant for some pro–algebraic
group scheme G) in the category of ind–smooth Qp–sheaves, and s is a choice of specialization
data for E → Y relative to a point y ∈ Y (K), then the cosimplicial differential graded algebra
C•(Y,E, L) admits a natural augmentation to an algebra equivalent to Ly. For this let |E|
denote the underlying set of E and for any [m] ∈ ∆ let Fun([m], |E|) be the set of functions

[m]→ |E|. We construct an augmentation C•(Y,E, L)→ L
Fun(•,|E|)
y as follows.

Let En
Y be as in 5.7, so that Cn(Y,E, L) is a certain subset of

∏
p∈En

Y
Lp. It suffices to

construct a natural map

(5.15.1)
∏
p∈En

Y

Lp −→
∏

Fun([n],|E|)

Ly.

For this note that the projection ỸE,y →
∐
|E| Spec(K) induces a projection

(5.15.2) Ỹ n
E,y −→

∐
Fun([n],|E|)

Spec(K),

and the specialization data s induces a section sn of this projection. On the other hand,

ỸE → Y is a projective limit of finite étale morphisms. From this and [SGAI, I.10.5] it follows

that Ỹ n
E is isomorphic to the normalization of Y in En

Y . In particular, Ỹ n
E is a disjoint union of

connected components indexed by |En
Y |. We therefore obtain a map λ : Fun([n], |E|)→ |En

Y |,
and the discussion in 5.13 furnishes for every p ∈ Fun([n], |E|) an isomorphism Lλ(p) ' Lp.
In this way we obtain 5.15.1.

Remark 5.16. Observe that any two choices s and s′ of specialization data relative to
y differ by the choice for each p ∈ E of an automorphism of Spec(k(p)) over X. This
implies in particular that the augmentation of the preceding paragraph is canonical up to the
automorphism of C•(Y,E) obtained from an automorphism of E over Y .

5.17. Let X/K be a smooth quasi–compact scheme over a field K, and let K ↪→ K be an
algebraic closure. Let L be a differential graded algebra in the category of ind–smooth sheaves
on Xet, and let LK denotes its restriction to XK . The above discussion enables us to compute
the étale cohomology of LK using group cohomology as follows.

Lemma 5.18. Let U ⊂ Et(X) be a full subcategory closed under products and fiber products
of the category of étale X–schemes such that every étale U → X admits a covering by an
object of U . Then for any étale hypercover U• → X, there exists a hypercover U ′• → X with
each U ′n ∈ U and a morphism U ′• → U• over X.

Proof. This is a standard application of the construction of simplicial spaces in [SGA4, Vbis,
§5]. �

5.19. Fix a finite set of geometric generic points E → XK whose image meets every connected
component of XK . If U → X is an étale scheme there is a natural family of geometric generic
points EU → UK over E → XK given by

(5.19.1)
∐

HomX(E,U)

E → UK .
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Moreover, for any morphism U ′ → U over X there is a natural commutative diagram

(5.19.2)

∐
HomX(E,U ′)E −−−→ U ′

Ky y∐
HomX(E,U)E −−−→ UKy y

E −−−→ X.

Remark 5.20. Specialization data s for E → XK induces for each point u ∈ U(K) lying
over x and q ∈ EU an isomorphism Lq ' Lu.

5.21. By [Fa2, Chapter II, 2.1] (see also [Ol3, 5.4]) and 5.18, there exists an étale hypercover
U• → X with each Un a K(π, 1). For each n, let GC(Un,K , E, L) denote the differential
graded algebra obtained from C•(Un,K , EU , LK) by applying the functor of Thom–Sullivan
cochains. By functoriality, the algebras GC(Un,K , E, L) form in a natural way a cosimplicial
differential graded algebra GC(U•,K , E, L)

(5.21.1) [n] 7→ GC(Un,K , E, L).

Denote by GC(L,E)U• ∈ Ho(dgaQp
) the algebra obtained from GC(U•,K , E, L) by applying

the functor of Thom–Sullivan cochains. If L is a G–equivariant algebra for some affine group
scheme G/Qp then GC(L,E)U• is naturally an object of Ho(G− dgaQp

).

If furthermore x ∈ X(K) is a point and Lx → Qp is a map in dgaQp
then the construction

of 5.15 and the observation 5.20 gives a map of objects of dga∆×∆
Qp

(5.21.2) ([n] 7→ C•(Un,K , E, L))→ ([n] 7→
∏

u∈Un,x

LFun(•,|EUn |)
u ).

For each n and u ∈ Un,x the map Lu → L
Fun(•,|EUn |)
u is an equivalence by 5.10, and hence the

right hand side of 5.21.2) is equivalent to the algebra [n] 7→
∏

u∈Un,x
Lu. This algebra is in turn

equivalent to the algebra [n] 7→ L
|Un,x|
x which since U•,x → x is a hypercovering is equivalent

to the constant algebra Lx. By the reasoning of 4.34 the augmentation Lx → Qp therefore
gives GC(L,E)U• the structure of an object in the homotopy category Ho(G− dgaQp,/OG

) of
algebras over OG.

5.22. If σ : U ′• → U• is a morphism of hypercovers of X with each Un and U ′n a K(π, 1), then
there is a natural induced map

(5.22.1) σ∗ : GC(L,E)U• −→ GC(L,E)U ′• .

Since the cohomology groups of both sides are equal to the étale cohomology of L, it follows
that this morphism is an equivalence. In particular, for any two choices of hypercovers U•
and U ′• we obtain a canonical isomorphism GC(L,E)U• ' GC(L,E)U ′• in Ho(dgaQp

) from the
diagram of equivalences

(5.22.2) GC(L,E)U•
pr∗1−−−→ GC(L,E)U•×XU

′
•

pr∗2←−−− GC(L,E)U ′• .

If there exists a morphism of hypercovers σ : U ′• → U•, then the morphism (pr∗2)
−1 ◦ pr∗1

in Ho(dgaQ) is equal to σ∗. For this consider the diagonal Γσ : U ′• → U• ×X U ′• so that
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σ∗ = Γ∗σ ◦ pr∗1. Since pr2 ◦ Γσ = id, it follows that Γ∗σ = (pr∗2)
−1 and hence σ∗ = Γ∗σ ◦ pr∗1 =

(pr∗2)
−1 ◦ pr∗1.

Since GC(L,E)U• is up to canonical isomorphism independent of the choice of U•, in what
follows we will usually simply write GC(L,E) for GC(L,E)U• .

5.23. The algebra GC(L,E) is also functorial in E. For any morphism E ′ → E of geometric
generic points over XK there is an induced equivalence

(5.23.1) GC(L,E) −→ GC(L,E ′).

This implies that GC(L,E) and GC(L,E ′) are canonically isomorphic by the isomorphism
in Ho(dgaQp

) (or Ho(G− dgaQp
)) obtained from

(5.23.2) GC(L,E) −−−→ GC(L,E ×XK
E ′) ←−−− GC(L,E ′).

Here we abuse notation as E ×XK
E ′ is an infinite disjoint union of geometric generic points.

To deal with this write E ×XK
E ′ = lim←− Ẽi with each Ẽi a finite set collection of geometric

generic points and define GC(L,E×XK
E ′) to be the direct limit of the GC(L, Ẽi) (note that

by the construction everything here can be represented by actual complexes).

By the same reasoning as in 5.22, when there exists a morphism E ′ → E over XK , then
the morphism 5.23.1 is equal to the morphism obtained from 5.23.2 in Ho(dgaQp

) (or Ho(G−
dgaQp

) if L is a G–equivariant sheaf).

5.24. If σ : E → E is an automorphism over XK , then the induced morphism

(5.24.1) σ∗ : GC(L,E) −→ GC(L,E)

in Ho(dgaQp
) (or Ho(G− dgaQp

) if L is a G–equivariant algebra) is the identity. To see this,
choose a quasi–compact subscheme E ′ ⊂ E ×X E containing the diagonal ∆ ⊂ E ×X E and
the graph Γσ of σ. We then have maps

(5.24.2) ∆,Γσ : E → E ′, pr1, pr2 : E ′ → E

such that pri ◦∆ = id, pr1 ◦ Γσ = id, and pr2 ◦ Γσ = σ. Since the induced maps

(5.24.3) ∆∗,Γ∗σ : GC(L,E ′)→ GC(L,E), pr∗1, pr∗2 : GC(L,E)→ GC(L,E ′)

are equivalences and pri ◦ ∆ = id for i = 1, 2 it follows that the maps pr∗i induce the same
map in Ho(dgaQp

) (namely the inverse of ∆∗). From this we deduce that

(5.24.4) σ∗ = Γ∗σ ◦ pr∗2 = Γ∗σ ◦ pr∗1 = id∗.

5.25. The same reasoning combined with 5.16 shows that when X has a point x ∈ X(K)
and Lx has an augmentation Lx → Qp, then the structure on GC(L,E) of an object in
Ho(G− dgaQp,/OG

) constructed in 5.21 is independent of all the choices.

5.26. If E = Spec(Ω) consists of just a single point (so in particular X is geometrically
connected), then the preceding discussion implies that there is a natural action of Gal(K/K)
on GC(L,E). For this observe that since X is geometrically connected, the structure mor-
phism X → Spec(K) induces a surjection Aut(Spec(Ω)/X) → Gal(K/K) whose kernel is



48 Martin C. Olsson

Aut(Spec(Ω)/XK). Any σ ∈ Aut(Spec(Ω)/X) with image σ̄ ∈ Gal(K/K) induces a commu-
tative square

(5.26.1)

Spec(Ω)
σ−−−→ Spec(Ω)y y

XK
σ̄−−−→ XK ,

and hence an automorphism σ∗ : GC(L,E)→ GC(L,E) in Ho(dgaQp
). This gives an action

of Aut(Spec(Ω)/X) on GC(L,E) which by 5.24 factors through Gal(K/K).

Remark 5.27. In the above we have written Aut(Spec(Ω)/X) instead of Gal(Ω/k(X)) so
that the preceding discussion also applies to Deligne–Mumford stacks.

5.28. We can use this construction to associate a pointed stack to a smooth sheaf L on a
smooth geometrically connected pointed scheme (X, x ∈ X(K)) over a field K (see also [To1,

3.5.3]). Let 〈̃LK〉⊗ denote the smallest Tannakian subcategory of the category of smooth
sheaves on XK which is closed under extensions and contains LK .

The point x defines a point x̄ = Spec(K) → XK which defines a fiber functor H 7→ Hx̄

for the category 〈̃LK〉⊗. Let 〈LK〉⊗ denotes the Tannakian subcategory of the category of
smooth sheaves on XK generated by LK .

Assumption 5.29. Assume that the group G := π1(〈LK〉⊗, x̄) is reductive.

Remark 5.30. One can often reduce to the case when G is reductive as follows. Let U ⊂
π1(〈LK〉⊗, x̄) be the unipotent radical. The action of U induces a canonical filtration Fil· on
LK such that for every i the group π1(〈griFil(LK)〉⊗, x̄) is reductive. The point Spec(K)→ X
induces a section of π1(XK , x̄)→ Gal(K/K) which identifies π1(XK , x̄) with the semi–direct
product π1(XK , x̄) o Gal(K/K). By the uniqueness of the unipotent radical, the action of
Gal(K/K) preserves U and hence the filtration descends to a filtration on L. Let L′ denote

the associated graded of this filtration. Then L′ satisfies 5.29 and 〈̃LK〉⊗ = 〈̃L′
K
〉
⊗
.

5.31. Right translation induces a left action of π1(〈̃LK〉⊗, x̄) on the coordinate ring OG which
by Tannaka duality corresponds to a differential graded algebra V(OG) in the category of ind–
smooth sheaves on XK . Furthermore, left translation induces a right action of G on OG which
commutes with the left action and hence induces a right action of G on V(OG).

Applying the construction of 5.17, we obtain a G–equivariant differential graded algebra
RΓet(V(OG)) ∈ G − dgaQp

. Since V(OG)x̄ ' OG has a natural map to Qp, RΓet(V(OG)) is
naturally an object in Ho(G− dgaQp,/OG

). We define

(5.31.1) X〈̃LK〉⊗
:= [RSpec(RΓet(V(OG)))/G] ∈ Ho(SPr∗(Qp)).

Because L is defined over K and not K, the functoriality of the above construction induces
a natural Gal(K/K)–action on X〈̃LK〉⊗

.

Another way to view this action is to note that the sheaf V(OG) is naturally an algebra
in the category of ind–objects of smooth sheaves on XK . For this observe that the section
x : Spec(K) → X induces a section of the natural projection π1(XK , x̄) → Gal(K/K). It
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follows that there is an isomorphism π1(XK , x̄) ' π1(XK , x̄) o Gal(K/K), where Gal(K/K)
acts on π1(XK , x̄) by the natural action on XK . For any σ ∈ Gal(K/K), there is a natural
commutative square

(5.31.2)

Spec(K)
σ∗−−−→ Spec(K)

x̄

y yx̄

XK
σ∗−−−→ XK .

Since σ∗LK ' LK , pullback by σ induces an auto–equivalence σ∗ : 〈LK〉⊗ → 〈LK〉⊗ and
hence also an automorphism σ∗ : G→ G such that the diagram

(5.31.3)

G
σ∗−−−→ Gy y

Aut(Lx̄)
τσ−−−→ Aut(Lx̄)

commutes, where τσ denotes conjugation by the action of σ on Lx̄.

Let λ be the action of π1(XK , x̄) ' π1(XK , x̄)oGal(K/K) on Aut(Lx̄) in which an element
(g, σ) sends A ∈ Aut(Lx̄) to τσ−1(Aρ(g)). Then it follows from the above that λ induces a
right action of π1(XK , x̄) on G, and hence also on OG, whose restriction to π1(XK , x̄) is that
induced by right translation. This action then induces a model for V(OG) over XK,et.

More explicitly, let Set denote the π1(XK , x̄)–module (Sym•Lx̄ ⊗ L∗x̄)det, where π1(XK , x̄)
acts on Lx̄ via the natural identification of smooth sheaves on XK with π1(XK , x̄)–modules
and on L∗x̄ by viewing Lx̄ as the stalk of the smooth sheaf x∗L on Spec(K) and using the
surjection π1(XK , x̄) → Gal(K/K). It follows from the above discussion that the kernel of
the surjection Set → OG induced by the inclusion G ⊂ Aut(Lx̄) is stable under the action of
π1(XK , x̄) and hence we obtain an induced action of π1(XK , x̄) on OG. If V(OG)′ denotes the
model for V(OG) on XK,et constructed above, then there is a surjection of sheaves on XK

(5.31.4) (Sym•L⊗ L∗x)det −→ V(OG)′,

where Lx denotes the pullback of L to Spec(K). This shows in particular that V(OG)′ is a
direct limit of smooth sheaves on XK .

Theorem 5.32. (i) There is a natural isomorphism

(5.32.1) π1(〈̃L〉⊗, x̄) ' π1(X〈̃LK〉⊗
)

compatible with the Gal(K/K)–actions.

(ii) For any representation M of π1(X〈̃LK〉⊗
) corresponding via 5.32.1 to a smooth sheaf M

on XK, there is a natural isomorphism

(5.32.2) H∗(Xg〈L〉⊗ ,M) ' H∗(XK,et,M).

The proof of 5.32 will be in several steps 5.33-5.37 following the outline of [Ol1] in the
crystalline case.
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5.33. Let G̃ denote π1(〈̃LK〉⊗, x̄). By repeating the constructions of 5.31 replacing G by G̃,

we obtain an ind–smooth sheaf V(O eG) of algebras with right G̃–action on XK and a pointed
stack

(5.33.1) X̃ := [RSpec eGRΓet(V(O eG))/G̃] ∈ Ho(SPr∗(Qp)).

There is a natural commutative diagram

(5.33.2)

X̃
π̃−−−→ BG̃

f

y yr

X〈̃LK〉⊗

π−−−→ BG.

Lemma 5.34. The map π̃∗ : π1(X̃)→ π1(BG̃) ' G̃ is an isomorphism.

Proof. By the same reasoning as in [KPT, 1.3.10] the homotopy fiber of π̃ is isomorphic to
F := RSpec(RΓet(V(O eG))) and by the long exact sequence of homotopy groups associated
to π̃ it suffices to show that π1(F ) = 0. By [To1, 2.4.5] the homotopy groups of F are all
pro–unipotent group schemes, so it suffices to show that Hom(π1(F ),Ga) is 0. By [To1, 2.2.6]
this group is isomorphic to

(5.34.1) H1(RΓet(V(O eG))) ' H1(XK ,V(O eG)).

Since first étale cohomology agrees with group cohomology of π1(XK , x̄), there is a natural
isomorphism

(5.34.2) H1(XK ,V(O eG)) ' H1(Rep(π1(XX , x̄)),O eG).

On the other hand, since 〈̃LK〉⊗ is closed under extensions in the category of all smooth
sheaves, there are natural isomorphisms
(5.34.3)

H1(Rep(π1(XX , x̄)),O eG) ' Ext1
π1(XX ,x̄)

(Qp,O eG) ' Ext1eG(Qp,O eG) ' H1(Rep(G̃),O eG).

By [Ol1, 2.18 (i)] O eG is injective in Rep(G̃) and hence these groups are zero. �

Lemma 5.35. (i) For any left representation V of G̃ corresponding to a smooth sheaf V on
XK there is a natural isomorphism

(5.35.1) H∗(XK ,V)→ H∗(X̃, V ).

(ii) For any representation V of G corresponding to a smooth sheaf V on XK there is a natural
isomorphism

(5.35.2) H∗(XK ,V)→ H∗(X〈̃LK〉⊗
, V ).

Proof. We prove (i) leaving to the reader the task of rewriting the proof with G instead of G̃
to get (ii).

By [Ol1, 2.33] the right hand side of 5.35.1 is isomorphic to

(5.35.3) Hm(Rep(G̃), V c ⊗ RΓet(V(O eG))),
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where V c denotes the contragredient representation. On the other hand, by [Ol1, 2.18 (ii)],

there is a natural isomorphism of ind–smooth sheaves with right G̃–action V c ⊗ V(O eG) '
V ⊗ V(O eG), where G̃ acts trivially on V . The natural map V → V ⊗ V(O eG) induces the
desired map 5.35.1.

To prove that 5.35.1 is an isomorphism proceed as follows. Note first that there is a
commutative diagram of categories

(5.35.4)

Rep(G̃)∆ s•−−−→ Vec∆
Qp

Tot

y yTot

Rep(G̃)
s−−−→ VecQp ,

where s and s• take G̃–invariants. For each [n] ∈ ∆ there is a natural restriction functor

jn : Rep(G̃)∆ → Rep(G̃) sending V • ∈ Rep(G̃)∆ to V n which has an exact left adjoint jn!

given by the formula

(5.35.5) jn!F : ∆→ Rep(G̃), [k] 7→ ⊕[n]→[k]F.

In particular, the functor jn takes injectives to injectives. It follows that if I ∈ Rep(G̃)∆ is an

injective object, then Tot(I) is a complex of injectives in Rep(G̃). From this we deduce that
if U• → X is a hypercover with each Un a K(π, 1) then to prove that the morphism 5.35.1 is
an isomorphism it suffices to show for each n that the natural map

(5.35.6) GC(Un,K , E,V)→ RsnGC(Un,K , E,V ⊗ V(O eG))

is an isomorphism (here the notation as as in 5.19). Furthermore, it suffices to prove this for
each connected component W of Un,K . Choose a geometric generic point Spec(Ω)→ W and
let π denote π1(V,Ω). By 5.9, it suffices to show that the natural map

(5.35.7) GC(W, Spec(Ω),V)→ RsGC(W, Spec(Ω),V ⊗ V(O eG))

is an isomorphism. By the description of group cohomology in [SGA3, I.5.3.1]

(5.35.8) RsGC(W, Spec(Ω),V ⊗ V(O eG))

is isomorphic to the simple complex associated to the double complex E·,· with

(5.35.9) Ep,q = Homcts
π (πp+1, (V ⊗ V(O eG))Ω ⊗Qp O

⊗qeG ),

where O eG is viewed as a trivial π–module, GC(W, Spec(Ω),V) is isomorphic to the complex
with p–th term Homcts

π (πp+1,VΩ) and the map 5.35.1 is the one induced by the map VΩ ↪→
VΩ ⊗ V(O eG)Ω.

This double complex can also be viewed as the double complex computing the continuous
cohomology of the complex of π–representations

(5.35.10) (V⊗V(O eG))Ω⊗O⊗−eG : · · · → (V⊗V(O eG))Ω⊗O⊗qeG → (V⊗V(O eG))Ω⊗O⊗q+1eG → · · · ,

where the differential is as in [SGA3, I.5.3]. Thus it suffices to show that the natural map

V → (V⊗V(O eG))Ω⊗O⊗−eG is a quasi–isomorphism. Since V is a trivial right G̃–representation,

to prove this it suffices to show that the right G̃–module V(O eG)Ω is injective in the category of

right G̃–modules and that the G̃–invariants of V(O eG)Ω are equal to Qp. By [SGAI, V.5.7] any
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two stalks of a smooth sheaf are isomorphic, and hence V(O eG)Ω is non–canonically isomorphic
to V(O eG)x̄ ' O eG. Thus the result follows from [Ol1, 2.18]. �

Corollary 5.36. For any representation V of π1(X〈̃LK〉⊗
), the pullback map

(5.36.1) f ∗ : H∗(X〈̃LK〉⊗
, V )→ H∗(X̃, f ∗V )

is an isomorphism.

Proof. Since π1(X〈̃LK〉⊗
)) has pro–reductive completion equal to G, every representation V

admits a filtration whose graded pieces are obtained from representations of G. Using the
long exact sequence of cohomology, this reduces the problem to the case when V is obtained
from a representation of G. In this case, the corollary follows from 5.35 which identifies both
sides with étale cohomology. �

5.37 (Proof of 5.32). By 5.34, π1(〈̃LK〉⊗, x̄) ' π1(X̃) so to prove 5.32 (i)) it suffices to show

that the map f∗ : π1(X̃) → π1(X〈̃LK〉⊗
) is an isomorphism. For this it suffices by Tannaka

duality to show that the pullback functor

(5.37.1) f ∗ : Rep(π1(X〈̃LK〉⊗
))→ Rep(π1(X̃))

is an equivalence. Since the kernel of G̃ → G is pro–unipotent, every object of Rep(π1(X̃))
admits a filtration whose graded pieces are obtained from representation of G and hence are
in the essential image of f ∗. Thus to prove that 5.37.1 is an equivalence it suffices to show
that for two objects V1, V2 ∈ Rep(π1(X〈̃LK〉⊗

)) the pullback functor

(5.37.2) ExtiRep(π1(X
〈̃L

K
〉⊗

))(V1, V2)→ Exti
Rep(π1( eX))

(f ∗V1, f
∗V2)

is an isomorphism for i = 0, 1. Setting M = V ∗1 ⊗ V2 this is equivalent to the map

(5.37.3) H i(Rep(π1(X〈̃LK〉⊗
)),M)→ H i(Rep(π1(X̃)), f∗M)

being an isomorphism for i = 0, 1. By definition of cohomology there are natural isomorphisms

(5.37.4) H i(Rep(π1(X〈̃LK〉⊗
)),M) ' H i(X〈̃LK〉⊗

,M),

(5.37.5) H i(Rep(π1(X̃)), f∗M) ' H i(X̃, f ∗M)

for i = 0, 1. Thus 5.32 (i)) follows from 5.35.

Statement 5.32 (ii)) also follows from 5.35 and the identification in 5.34. This completes
the proof of 5.32. �

Remark 5.38. By the same argument used in [KPT, 1.3.11] the pointed stack X〈̃LK〉⊗
is a

schematic homotopy type in the sense of [To1].

Remark 5.39. By [To1, 3.3.2] the proof of 5.32 shows that the map X̃ → X〈̃LK〉⊗
is an

isomorphism of pointed stacks.
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5.40. There is a variant of the above constructions which will be used below. Let V be
a complete discrete valuation ring of mixed characteristic (0, p), field of fractions K, and
let V → R be a smooth V –algebra with Spec(R/pR) connected. Assume given a divisor
D ⊂ Spec(R) with normal crossings relative to V , and let Spec(Ro) ⊂ Spec(R) be the
complement of D. Denote by R∧ the p–adic completion of R and set R∧o := R∧⊗RRo. Since
Spec(R/pR) is connected the scheme Spec(R∧) is also connected. Let E → Spec(RK) be a
finite set of geometric generic points meeting every connected component of Spec(RK), and

let Ê → Spec(R∧
K

) denote the generic points obtained by completing the fields k(p) (p ∈ E)

with respect to the p–adic topology induced by that on R (if Spec(R∧) is empty define Ê to
be the empty set). For a smooth sheaf L on Spec(Ro

K
) with pullback L∧ to Spec(R∧o

K
) we can

then apply the construction of 5.7 to Spec(R∧o
K

) to obtain a cosimplicial differential graded
algebra

(5.40.1) [n] 7→ Cn(R∧o
K
, Ê, L∧).

If Spec(R∧) is empty we define Cn(R∧o
K
, Ê, L∧) to be zero. There is a natural map

(5.40.2) C•(Ro
K
, E, L)→ C•(R∧o

K
, Ê, L∧).

Furthermore, for any morphism E ′ → E there is a natural commutative diagram

(5.40.3)

C•(Ro
K
, E, L) −−−→ C•(R∧o

K
, Ê, L∧)y y

C•(Ro
K
, E ′, L) −−−→ C•(R∧o

K
, Ê ′, L∧),

and the cosimplicial algebra C•(R∧o
K
, Ê, L∧) is functorial in R.

If Spec(R) is a disjoint union
∐

i Spec(Ri) with each Spec(Ri/pRi) connected, we set

(5.40.4) C•(R∧o
K
, Ê, L∧) := ⊕iC•(R∧oi,K , Êi, L

∧),

where Êi denotes the subscheme of E whose image lies in Spec(Ri). If U = Spec(R) we also

sometimes write C•(U∧o
K
, Ê, L∧) for C•(R∧o

K
, Ê, L∧).

We denote by GC(U∧o
K
, Ê, L∧) or GC(R∧o

K
, Ê, L∧) the differential graded algebra obtained

by applying the functor of Thom–Sullivan cochains to C•(U∧o
K
, Ê, L∧). By construction there

is a natural map

(5.40.5) GC(U o
K
, L, E) −→ GC(U∧o

K
, Ê, L∧).

5.41. Let X/V be a smooth scheme and D ⊂ X a divisor with normal crossings relative
to V . Denote by Xo the complement of D, and fix a collection of geometric generic points
E → XK meeting every connected component. Let L be a differential graded algebra in the
category of ind–objects of smooth Qp–sheaves on Xo

K .

Choose a hypercover U• → X with each Un a disjoint union ofK(π, 1)’s, and letGC∧(E,L)U•
(or simply GC∧(E,L) if the reference to U• is clear) be the differential graded algebra ob-
tained by applying the functor of Thom–Sullivan cochains to the cosimplicial differential
graded algebra

(5.41.1) [n] 7→ GC(U∧o
n,K

, Ê, L∧).
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The maps 5.40.5 induce a morphism GC(L,E) → GC∧(L,E) in Ho(dgaQp
). If L is a sheaf

of G–equivariant differential graded algebras for some affine group scheme G/Qp then we get
GC∧(L,E) and GC(L,E)→ GC∧(L,E) in Ho(G− dgaQp

).

Remark 5.42. As in 4.37, the above can also be carried out with any fiber functor ω :

〈̃LK〉⊗ → ModR taking values in the category of R–modules for some Qp–algebra R. If
G/R denotes the group scheme of tensor automorphisms of ω then the (G,G)–bimodule
OG corresponds to an ind–smooth sheaf Vω on XK,et with R–module structure and right
G–action.

In particular, if (X,D)/V is as in 5.41 and U• → X is a hypercover with each Un a disjoint
union of K(π, 1)’s, then we obtain a morphism of differential graded R–algebras with right
G–action

(5.42.1) GC(Vω, E)U• → GC∧(Vω, E)U• .

Furthermore, if R → R′ is a morphism of Qp–algebras and ω′ : 〈̃LK〉⊗ → ModR′ is a fiber
functor with an isomorphism ω′ ' ω ⊗R R′ then there is a natural commutative diagram

(5.42.2)

GC(Vω, E)U• −−−→ GC∧(Vω, E)U•y y
GC(Vω′ , E)U• −−−→ GC∧(Vω′ , E)U• .

If R → R′ is flat then the vertical arrows become equivalences after tensoring the top row
with R′.

6. The comparison Theorem

6.1. Let k be a perfect field of characteristic p > 0, V the ring of Witt vectors of k, and
K the field of fractions of V . Let X/V be a smooth proper scheme with XK geometrically
connected, D ⊂ X a divisor with normal crossings relative to V , and Xo = X −D. We write
MX be for the log structure on X defined by D.

Following [Fa1], we call an étale U = Spec(R) ⊂ X small if Spec(R/pR) is connected and
there exists an étale map

(6.1.1) Spec(R) −→ Spec(V [T1, . . . , Ts, T
±
s+1, . . . , T

±
r ])

for some r and s such that MU is defined by the divisor T1 = · · · = Ts = 0. We call U very
small if U is small and Spec(RK)o := Spec(R) ×X Xo

K
is a K(π, 1). By [Fa2, Chapter II,

2.1] (see also [Ol3, 5.4]), any étale map U → X admits a covering by a disjoint union of very
small étale X–schemes.

The ring Bcris(R
∧) [Fa1, Fo1, Fo2, Fo3, Fo4, Ts1].

6.2. For any small étale Spec(R) → X and choice of an algebraic closure Frac(R) ↪→ Ω,
Fontaine’s theory gives a ring Bcris(R

∧) as follows. Let R∧ denote the p–adic completion of

R and let Ω̂ denote the completion of Ω with respect to the topology defined by the p–adic

topology on R. There is a natural extension of the inclusion R ↪→ Ω to an inclusion R∧ ↪→ Ω̂.



Towards non–abelian P–adic Hodge Theory 55

Let L ⊂ Ω̂ denote the maximal field extension of Frac(R∧) such that the normalization R
∧

of R∧ in L is unramified over Spec(R∧)×X Xo
K . Set

(6.2.1) S := lim←−R
∧
/pR

∧
,

where the projective limit is taken with respect to Frobenius. Since S is perfect, the ring
of Witt vectors W (S) has a canonical lift of Frobenius. An element x ∈ W (S) can be
represented by a vector (x0, x1, x2, . . . ) where each xi = (xi0, xi1, . . . ) is an infinite vector

with xij ∈ R
∧
/pR

∧
.

Let R
†

denote the p-adic completion of R
∧
. There is a natural map

(6.2.2) θ : W (S) −→ R
†

defined by sending x as above to

(6.2.3) θ(x) = lim−→
m

(x̃p
m

0m + px̃p
m−1

1m + · · ·+ pmx̃mm),

where x̃ij ∈ R
∧

is any lift of xij. The assumption that R is small ensures that the map θ is
surjective [Ts1, A1.1].

We set J = Ker(θ) and define Acris(R
∧) to be the p–adic completion of the divided power

envelope DJ(W (S)). We thus obtain a diagram

(6.2.4)

Spec(R
†
) −−−→ Spec(Acris(R

∧))y
Spec(R).

Choose elements εm ∈ R
∧

with ε0 = 1, εpm+1 = εm, and ε1 6= 1. Let ε ∈ S denote the
element obtained from the reductions of the εi, and let [ε] ∈ W (S) be the Teichmuller lift of
ε. Set πε := [ε]− 1 ∈ W (S) and

(6.2.5) t = log([ε]) =
∑
m≥1

(−1)m−1(m− 1)!π[m]
ε ∈ Acris(R

∧).

The ring Bcris(R
∧) is defined by

(6.2.6) Bcris(R
∧) := Acris(R

∧)[
1

t
].

By [Ts1, A3.2], we have tp−1 ∈ pAcris(R
∧), and therefore p is invertible in Bcris(R

∧).

6.3. The ring Acris(R
∧) has a lift of Frobenius ϕAcris(R∧) induced by the canonical lift of

Frobenius to W (S). This lifting of Frobenius induces a semi–linear automorphism ϕBcris(R∧)

of Bcris(R
∧). In particular, the enlargement

(6.3.1)

Spec(R
∧
/pR

∧
) −−−→ Spec(Acris(R

∧))y
Spec(R/pR)

obtained from 6.2.4 comes equipped with a lift of Frobenius.
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Remark 6.4. The fact that 6.3.1 is an enlargement, and not just a widening, follows from

the fact that the kernel of the map Acris(R
∧) → R

†
is the p-adic completion of a divided

power ideal. This implies that any element of

(6.4.1) Ker(Acris(R
∧)/pAcris(R

∧)→ R
∧
/pR

∧
)

is nilpotent.

6.5. Define a filtration I [·] on Acris(R
∧) by

(6.5.1) I [r] := {x ∈ Acris(R
∧)|ϕn(x) ∈ FilrAcris(R

∧) for all n ≥ 0},

where FilrAcris(R
∧) denotes the filtration obtained as the p–adic completion of the filtration

on DJ(W (S)) defined by the PD–ideals J [r]. The element t ∈ Acris(R
∧) lies in Fil1Acris(R

∧)
so we obtain a filtration FilBcris(R∧) on Bcris(R

∧) by declaring that 1/t has degree −1. The
automorphism ϕBcris(R∧) preserves this filtration.

6.6. The natural action of Gal(R
∧
/R∧) on S induces an action of Gal(R

∧
/R∧) on Acris(R

∧)
which in turn induces an action ρBcris(R∧) of Galois on Bcris(R

∧). This action is continuous
and compatible with the filtration. Furthermore the induced action on the enlargement 6.3.1
commutes with the lift of Frobenius.

If s : Spec(Ω′)→ Spec(Ω) is a morphism of geometric generic points of Spec(R), then there
is a natural isomorphism

(6.6.1) ιs : s∗Bcris(R
∧)→ Bcris(R

∧)′,

where Bcris(R
∧)′ denotes the Gal(R

′∧
/R∧)–module obtained by replacing Ω with Ω′ in the

above construction. It follows that the association Ω 7→ Bcris(R
∧) defines a Galois module in

the sense of 5.2 on Spec(R∧) ×X Xo
K equipped with a semi–linear Frobenius automorphism

and filtration.

6.7. There is a natural log structure MAcris(R∧) on Spec(Acris(R
∧)) defined as follows. Choose

an étale map as in 6.1.1, and write t1, . . . , ts ∈ R for the images of the Ti (i = 1, . . . , s). For

each i and l, the extension R[X]/(Xpl − ti) is étale over R[1/(pt1 · · · ts)]. It follows that for

each i, we can choose a sequence τi,n of elements in R
∧

such that τ pi,n = τi,n−1 and τi,0 = ti.
Let τi ∈ S denote the corresponding element. We then get a map

(6.7.1) β : Nr → W (S), ei 7→ [τi],

where [τi] denotes the Teichmuller lift of τi. This defines a log structure on W (S) and hence

in turn also a log structure on Acris(R
∧). Note that the log structure on R

∧
induced by this

map β composed with θ is simply the log structure induced by the pulling back MR via the

map Spec(R
∧
)→ Spec(R).

We show that the above log structure on Acris(R
∧) is independent of the choices as follows.

Consider a second map as in 6.1.1 giving elements t′1, . . . , t
′
s ∈ R defining the log structure,

and let τ ′i,n be a choice of roots of the t′i. Then there exists a unique sequence ui,n ∈ R
∧∗

such
that upi,n = ui,n−1 and such that τi,n = ui,nτ

′
i,n. Letting ui denote the corresponding element

of S, we see that [τi] = [ui] · [τ ′i ] in Acris(R
∧), and hence we get a canonical isomorphism

between the associated log structures.
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It follows from the above discussion that the enlargement 6.3.1 has a natural structure of
a logarithmic enlargement

(6.7.2)

(Spec(R
∧
/pR

∧
),MR|R∧/pR∧) −−−→ (Spec(Acris(R

∧)),MAcris(R∧))y
(Spec(R/p),MR/p).

Note also that the action of Gal(R
∧
/R∧) extends naturally to an action on the log scheme

(Spec(Acris(R
∧)),MAcris(R∧)).

6.8. We will apply Faltings’ theory of “almost mathematics” (see for example [Ol3, §2])
to modules over Bcris(V ). Let Λ ⊂ Q denote the subring Z[1/p], and let Λ+ := Λ ∩ Q>0.
Following [Ol3, §11], for every α ∈ Λ+ we define a principal ideal mcris,α ⊂ Bcris(V ) as follows.
Fix a sequence (τm)m≥0 of elements of V with τ0 = p and τ pm+1 = τm for all m ≥ 0. We define
τm to be 0 if m < 0. For any n ∈ Z, define λ1/pn ∈ SV to be the element (am)m≥0 with

(6.8.1) am = τn+m,

and let δ1/pn ∈ W (SV ) be the Teichmuller lifting of λ1/pn . For any α = s/pn ∈ Λ+ we then
define

(6.8.2) δα := (δ1/pn)s ∈ W (SV ).

Let mcris,α ⊂ Bcris(V ) be the ideal generated by δα. As explained in [Ol3, §11], the ideals
mcris,α satisfy the necessary conditions enabling us to apply the almost theory.

In what follows we denote by B̃cris(V ) the ring Bcris(V )[δ−1
α ]α∈Λ+ .

The category MF∇X (Φ).

6.9. Let (X,MX)/V be as in 6.1 and let (X0,MX0)/k be the reduction.

We define the category MF∇X (Φ) as in [Fa1, Ts2]. If E is an isocrystal on (X0,MX0)/V ,
let (E ,∇E) denote the module with logarithmic connection on (XK ,MXK

) obtained by eval-
uating E on the enlargement (X0,MX0) ↪→ (X∧,MX∧), where (X∧,MX∧) denotes the p–adic
completion of (X,MX)/V . The category MF∇X (Φ) is defined to be the category of triples
(E,ϕE,FilE), where (E,ϕE) is an F–isocrystal on (X0,MX0)/V and FilE is a decreasing
filtration on E satisfying Griffith’s transversality

(6.9.1) ∇E(FiliE) ⊂ Fili−1
E ⊗ Ω1

(XK ,MXK
)/K .

6.10. If (E,FilE, ϕE) ∈ MF∇X (Φ) and Spec(R) → X is étale and small, we can evaluate
E on the enlargement 6.7.2 to get a Acris(R

∧) ⊗ Q–module E((Spec(Acris(R
∧)),MAcris(R∧))).

Inverting t ∈ Acris(R
∧), we get a Bcris(R

∧)–module which we denote simply by E(Bcris(R
∧)).

The F–isocrystal structure ϕE induces a semi–linear automorphism of the Bcris(R
∧)–module

E(Bcris(R
∧)).

The Bcris(R
∧)–module E(Bcris(R

∧)) also has a natural filtration FilE(Bcris(R∧)) defined as
follows. Since (X,MX)/V is smooth, we can choose a morphism

(6.10.1) r : (Spec(Acris(R
∧)),MAcris(R∧))→ (Spec(R),MSpec(R))
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such that the diagram

(6.10.2)

(Spec(R
∧
),MR∧) −−−→ (Spec(Acris(R

∧)),MAcris(R∧))y yr

(Spec(R),MSpec(R))
id−−−→ (Spec(R),MSpec(R))

commutes. The choice of such an r gives an isomorphism

(6.10.3) σr : E(Bcris(R
∧)) ' E(Spec(R))⊗R Bcris(R

∧),

and we define FilE(Bcris(R∧)) to be the tensor product filtration of FilE(Spec(R)) and the filtration
FilBcris(R∧) on Bcris(R

∧).

Lemma 6.11. The filtration FilE(Bcris(R∧)) is independent of the choice of r.

Proof. Let r′ : Spec(Acris(R
∧))→ Spec(R) be a second retraction, and let τ : E(Spec(R))⊗R,r

Bcris(R
∧)→ E(Spec(R))⊗R,r′ Bcris(R

∧) be the composite
(6.11.1)

E(Spec(R))⊗R,r Bcris(R
∧)

σ−1
r−−−→ E(Bcris(R

∧))
σr′−−−→ E(Spec(R))⊗R,r′ Bcris(R

∧).

Choose an étale morphism as in 6.1.1 and let ∇i : E(Spec(R)) → E(Spec(R)) denote the
induced operator ∇Ti

∂
∂Ti

(the dual of dlog(Ti)). Then τ is given by the formula

(6.11.2) τ(e⊗ 1) =
∑
n∈Nd

1

n!
(
d∏
i=1

(r(Ti) · r′(Ti)−1 − 1)ni)⊗ (
∏

1≤i≤d

∏
0≤j<ni

(∇i − j))(e).

In particular, if e ∈ FilsE(Spec(R)), then

(6.11.3) τ(e⊗ 1) ∈
∑
n∈Nd

Fil
P
ni

Bcris(R∧) ⊗ Fil
s−(

P
ni)

E(Spec(R)).

�

6.12. The module E(Bcris(R
∧)) also comes equipped with a continuous action of Gal(R

∧
/R∧)

which commutes with the Frobenius automorphism induced by the F–isocrystal structure as

well as the filtration. As in 6.6, this Gal(R
∧
/R∧)–module E(Bcris(R

∧)) is functorial for
morphisms s : Spec(Ω′) → Spec(Ω) of geometric generic points of Spec(R), and hence
E(Bcris(R

∧)) is naturally viewed as a Galois module in the sense of 5.2 with semi–linear
automorphism. In what follows it is necessary to avoid choosing a geometric generic point so
we will usually view E(Bcris(R

∧)) as a Galois module in this sense. Note in particular that
E(Bcris(R

∧)) when viewed in this way is functorial in R. We hope the ambiguous notation
does not cause too much confusion.

If U = Spec(R)→ X is a disjoint union of small and étale X–schemes and (E,FilE, ϕE) ∈
MF∇X (Φ), we write E(Bcris(U

∧)) (or E(Bcris(R
∧))) for the filtered Galois module with semi–

linear automorphisms on U∧oK := Spec(R∧) ×X Xo
K obtained from the construction 6.10 on

each connected component.

Associated sheaves and comparison.
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6.13. If L is a smooth Qp–sheaf on Xo
K and U → X is small and étale, the pullback of L to

U∧oK is a Galois module on U∧oK which we denote by LU∧o
K

. Define an association ι between

(E,FilE, ϕE) ∈MF∇X (Φ) and a smooth Qp–sheaf L on Xo
K to be a collection of isomorphisms

of Galois modules, one for each small étale U → X,

(6.13.1) ιU : E(Bcris(U
∧)) ' LU∧o

K
⊗Bcris(U

∧)

compatible with the semi–linear Frobenius automorphisms, and the filtrations. Furthermore,
we require that the isomorphisms ιU be compatible with morphisms over X. In what follows
it will also be important to consider differential graded algebras with an action of an algebraic
group. Let GdR/K and Get/Qp be algebraic groups and assume given an isomorphism GdR⊗K
Bcris(V ) ' Get ⊗Qp Bcris(V ). If (E,FilE, ϕE) is a GdR–equivariant differential graded algebra
in MF∇X (Φ) and L is a Get–equivariant differential graded algebra in the category of smooth
Qp sheaves on Xo

K then an association ι between (E,FilE, ϕ) and L is also required to be
compatible with the algebra structures and GdR⊗K Bcris(V ) ' Get⊗Qp Bcris(V )–actions. We
hope that the context makes clear what we mean by “association” in what follows.

Let us also recall that a smooth sheaf L on XK is called crystalline if it is associated to
some object in MF∇X (Φ).

Remark 6.14. In order to make sense of pullback of associations, it is convenient to restrict
attention to certain subcategories of the category of disjoint unions of small étale morphisms
U → X. If U ⊂ Et(X) is a full subcategory with each U ∈ U a disjoint union of small and
étale morphisms and such that every small and étale V → X admits a covering by an object
of U , then the topos corresponding to U is equal to Xet. Define a U–association between
(E,FilE, ϕE) and L to be the data of compatible isomorphisms 6.13.1 over each U ∈ U . In
the comparison between cohomologies below, it suffices to consider U–associations. We leave
it to the reader to make the necessary modifications.

6.15. Fix a geometric generic point E = Spec(Ω) → Xo
K

. Note that the projection E →
Spec(K) determines an inclusion K ↪→ Ω.

Let GdR/K and Get/Qp be algebraic groups and assume given an isomorphism GdR ⊗K
Bcris(V ) ' Get⊗QpBcris(V ). To ease notation we write simply GBcris(V ) for GdR⊗KBcris(V ) and
Get ⊗Qp Bcris(V ) identified by the given isomorphism. Let (E,Fil, ϕE) be a GdR–equivariant
differential graded algebra in MF∇X (Φ) associated by ι to a Get–equivariant differential graded
algebra L in the category of smooth Qp–sheaves on Xo

K . We construct a natural equivalence

(6.15.1) RΓcris(E)⊗K B̃cris(V ) ' GC(L,E)⊗Qp B̃cris(V )

in Ho(G eBcris(V ) − dga eBcris(V )) compatible with the Frobenius automorphisms and Gal(K/K)–
actions.

Remark 6.16. In the above the notation Bcris(V ) indicates the ring obtained by the con-
struction in 6.2 using the specified embedding K ↪→ K.
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6.17. Let E → R• be as in 4.31. For any étale U → X which is a disjoint union of very small
X–schemes we have a diagram of differential graded algebras
(6.17.1)

GC(U o
K
, EU , L) −−−→ GC(U∧o

K
, ÊU , L

∧) −−−→ GC(U∧o
K
, ÊU , L

∧ ⊗Qp Bcris(U
∧))

'
y

GC(U∧o
K
, ÊU ,R•(Bcris(U

∧))) ←−−− GC(U∧o
K
, ÊU , E(Bcris(U

∧))).

Let λU : GC(U o
K
, EU , L)→ GC(U∧o

K
, ÊU ,R•(Bcris(U

∧))) denote the composite. Observe that

the inclusion K ↪→ Ω induces a natural map EU → Spec(K). It follows that

(6.17.2) GC(U∧o
K
, ÊU , E(Bcris(U

∧))) and GC(U∧o
K
, ÊU ,R•(Bcris(U

∧)))

are naturally Bcris(V )–modules.

The natural map

(6.17.3) R•(((U∧,MU∧)/K)cris) −→ R•(Bcris(U
∧))

induces a map

(6.17.4) R•(((U∧,MU∧)/K)cris) −→ GC(U∧o
K
, ÊU ,R•(Bcris(U

∧)))

since R•(((U∧,MU∧)/K)cris) is a complex of trivial Galois modules. As in 4.33.6, we thus
obtain a diagram of GBcris(V )–equivariant differential graded algebras

(6.17.5)

GC(U o
K
, EU , L)⊗Qp Bcris(V )

λU⊗Bcris(V )−−−−−−−→ GC(U∧o
K
, ÊU ,R•(Bcris(U

∧)))xε

R•(((U∧,MU∧)/K)cris)⊗K Bcris(V )y'
DR(E)(U∧,MU∧)⊗K Bcris(V )

'−−−→ DR(R•)(U∧,MU∧)⊗K Bcris(V ).

This diagram is functorial in U . In particular, if U• → X is a hypercover with each Un a
disjoint union of very small X–schemes, we obtain a diagram of simplicial differential graded
algebras

(6.17.6)

GC(U o
•,K , EU• , L)⊗Qp Bcris(V )

λU•⊗Bcris(V )−−−−−−−−→ GC(U∧o•,K , ÊU• ,R
•(Bcris(U

∧
• )))xε•

R•(((U∧• ,MU∧• )/K)cris)⊗K Bcris(V )y'
DR(E)(U∧• ,MU∧• )⊗K Bcris(V )

'−−−→ DR(R•)(U∧• ,MU∧• )⊗K Bcris(V ).

By the proof of [Fa1, 5.6] (see also [Ol3, 12.5 and 13.21]), the morphisms λU• ⊗Bcris(V ) and
ε• induce equivalences on the differential graded algebras obtained by applying the functor
of Thom–Sullivan cochains after inverting the elements δα ∈ Bcris(V ) (α ∈ Λ+). Thus we
obtain the desired equivalence 6.15.1 by applying the functor of Thom–Sullivan cochains to
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the diagram 6.17.6. The naturality of the construction implies that the equivalence 6.15.1 is
compatible with the actions of Gal(K/K) as well as the Frobenius automorphisms.

Pullback of associations.

6.18. One can define pullback of associations as follows. Let f : W → X be a morphism of
smooth proper V –schemes, and assume that the inverse image of D in W is a divisor with
normal crossings on W . Denote by MW the associated log structure on W so that (W,MW )
is a log smooth log scheme over V . The morphism f extends in uniquely to a morphism of
log schemes f : (W,MW )→ (X,MX).

An object (E,FilE, ϕE) ∈ MF∇X (Φ) can be pulled back to an object f ∗(E,FilE, ϕE) ∈
MF∇W (Φ) with F–isocrystal the usual pull–back of (E,ϕ) and filtration the one obtained by
pullback from FilE. Also, if L is a smooth Qp–sheaf on Xo

K it can be pulled back to a smooth
Qp–sheaf f ∗L on W o

K .

Let U ⊂ Et(W ) denote the full subcategory of étale morphisms U → W which are disjoint
unions of small and étale W–schemes such that there exists a commutative diagram

(6.18.1)

U −−−→ Vy y
W −−−→ X

with V → X a disjoint union of small and étale morphisms. The category U satisfies the
assumptions of 6.14.

Proposition 6.19. An association ι between (E,FilE, ϕE) and L induces a natural U–
association f ∗(ι) between f ∗(E,FilE, ϕE) and f ∗L.

Proof. Let U = Spec(P ) be in U and choose a diagram

(6.19.1)

Spec(P ) −−−→ Spec(R)y y
W −−−→ X

with Spec(R) → X small and étale. Let u : R∧ → P∧ be the induced map on p–adic

completions. Choose algebraic closures Frac(P ) ↪→ Ω and Frac(R) ↪→ Ω′ and define R
∧

and P
∧

as in 6.2. By the same argument as in [Ts1, 1.4.3], the map u extends to a map

ū : R
∧ → P

∧
, and any two such extensions differ by composing with a unique element of

Gal(R
∧
/R∧). Choose one such extension ū. By associating to σ ∈ Gal(P

∧
/P∧) the unique

element λ ∈ Gal(R
∧
/R∧) such that σ ◦ ū = ū ◦ λ, we get a continuous homomorphism

(6.19.2) λ : Gal(P
∧
/P∧) −→ Gal(R

∧
/R∧).

If ρ : Gal(R
∧
/R∧) → Aut(L) is a continuous representation corresponding to a smooth Qp–

sheaf, then the pullback sheaf is the sheaf corresponding to the representation ρ ◦ λ. The
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choice of ū also induces a commutative diagram

(6.19.3)

Spec(P
∧
) −−−→ Spec(Acris(P

∧))y y
Spec(R

∧
) −−−→ Spec(Acris(R

∧))

which is compatible with the Galois actions, Frobenius automorphisms, filtrations, and log
structures. Furthermore, this diagram identifies f ∗(E,FilE, ϕE)(Bcris(P

∧)) with

(6.19.4) E(Bcris(R
∧))⊗Bcris(R∧) Bcris(P

∧)

with filtration induced by that on E(Bcris(R
∧)). We now define f ∗(ι) to be the isomorphism

making the diagram

(6.19.5)

f ∗E(Bcris(P
∧))

f∗(ι)−−−→ f ∗L⊗Qp Bcris(P
∧)

'
y y'

E(Bcris(R
∧))⊗Bcris(R∧) Bcris(P

∧)
ι⊗Bcris(P

∧)−−−−−−−→ L⊗Qp Bcris(P
∧)

commute. We leave it to the reader to verify that this isomorphism is independent of the
choice of the diagram 6.18.1 and the extension ū and therefore defines an association. �

6.20. In particular, if x ∈ Xo(V ) is a point then we can pull back associations to x = Spec(V ).
Let GdR, Get, (E,FilE, ϕE) ∈ MF∇X (Φ) and L be as in 6.15, and assume in addition we are
given augmentations edR : x∗E → K and eet : Lx̄ → Qp such that the induced diagram

(6.20.1)

x∗E ⊗K Bcris(V )
x∗(ι)−−−→ Lx̄ ⊗Qp Bcris(V )

edR

y yeet

Bcris(V )
id−−−→ Bcris(V )

commutes.

By 4.34, 5.21, and 5.25 the algebras RΓcris(E) and RΓet(L) are naturally viewed as objects
of Ho(GdR − dgaK,/OGdR

) and Ho(Get − dgaQp,/OGet
) respectively. Chasing through the above

constructions one sees that the equivalence 6.15.1 extends naturally to an equivalence in
Ho(G eBcris(V ) − dga eBcris(V ),/OG eBcris(V )

). We leave the details of this verification to the reader.

7. Proofs of 1.7–1.13

7.1. Let (X,MX)/V be as in 6.1 and x : Spec(V ) → Xo a section. Let (E,FilE, ϕE) ∈
MF∇X (Φ) be associated to L on Xo

K and assume E ∈ V cris
nilp ((Y,MY )/K), where (Y,MY )

denotes the reduction of (X,MX). Denote by CdR the smallest Tannakian subcategory of
V cris

nilp ((Y,MY )/K) closed under extensions and containing E, and by Cet the smallest Tan-
nakian subcategory of the category of smooth Qp–sheaves on Xo

K
closed under extensions

and containing the restriction of L to Xo
K

.

For the remainder of this section we make the following assumption:
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Assumption 7.2. The categories 〈E〉⊗ ⊂ V cris
nilp ((Y,MY )/K) and 〈LK〉⊗ are semi–simple.

Equivalently, the groups GdR := π1(〈E〉⊗, ωx) and Get := π1(〈L〉⊗, ωx̄) are reductive.

Tannakian considerations.

7.3. Let D be a semi–simple Tannakian category over a field Υ of characteristic 0 and assume
E ∈ D is an object such that 〈E〉⊗ = D. The category D can then be described as follows.

Let N[T±] ⊂ Z[T±] be the subset of elements
∑
aiT

i with ai ∈ N for every i. For any

(7.3.1) P =
∑
i

aiT
i ∈ N[T±],

let P (E) denote ⊕i(V ⊗i)⊕ai ∈ D, where if i is negative V ⊗i denotes the dual of V ⊗(−i).
Consider the category D′ defined as follows. The objects of D′ are pairs (P, e) where P ∈
N[T±] and e ∈ EndD(P (E)) is an idempotent. A morphism (P, e)→ (P ′, e′) is defined to be
an equivalence class of elements λ ∈ HomD(P (E), P ′(E)) such that the diagram

(7.3.2)

P (E)
λ−−−→ P ′(E)

e

y ye′

P (E)
λ−−−→ P ′(E)

commutes. Here λ ∼ λ′ if λ ◦ e = λ′ ◦ e (or equivalently e′ ◦ λ = e′ ◦ λ′). Note that the
condition that 7.3.2 commutes is equivalent to saying that λ is in the equalizer of the two
maps

(7.3.3) ? ◦ e, e′◦? : HomD(P (E), P ′(E)) −→ HomD(P (E), P ′(E)),

and λ ∼ λ′ if they map to the same element under ? ◦ e.
There is a natural functor

(7.3.4) D′ −→ D
which sends (P, e) to Im(e : P (E) → P (E)). It follows from the fact that D is semi–simple
and the definition of D′ that 7.3.4 is an equivalence.

Let DdR (resp. Det) denote the category 〈E〉⊗ (resp. 〈L〉⊗).

Proposition 7.4. There is a unique equivalence of Tannakian categories

(7.4.1) θ : DdR ⊗K Bcris(V )→ Det ⊗Qp Bcris(V )

such that θ(P (E)) = P (L) for every P ∈ N[T±], and for any other P ′ ∈ N[T±] the diagram

(7.4.2)

HomDdR⊗Bcris(V )(P
′(E), P (E))

θ−−−→ HomDet⊗Bcris(V )(P
′(L), P (L))

'
y y'

H0
dR(P (E)⊗ P ′(E)∗)⊗K Bcris(V )

ι−−−→ H0
et(P (L)⊗ P ′(L)∗)⊗Qp Bcris(V )

commutes, where ι is the comparison isomorphism. Here uniqueness means that if θ′ is
another such functor then there exists a unique isomorphism λ : θ → θ′ such that for every
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P ∈ N[T±] the diagram

(7.4.3)

θ(P (E))
λ−−−→ θ′(P (E))

=

y y=

P (L)
id−−−→ P (L)

commutes.

Proof. By [Sa, II.1.5.3.1], to give a functor θ as in 7.4.1 is equivalent to giving a K–linear
functor

(7.4.4) DdR −→ Det ⊗Qp Bcris(V ).

Let D′dR be as in 7.3. Identifying DdR with D′dR as in 7.3.4, we see that giving θ is equivalent
to giving a functor

(7.4.5) θ̃ : D′dR −→ Det ⊗Qp Bcris(V ).

We define θ̃ to be the functor which sends (P, e) to the image of

(7.4.6) ι(e) : P (L)⊗Bcris(V ) −→ P (L)⊗Bcris(V ),

where ι(e) denotes the image of e under the map given by ι

(7.4.7)

HomDdR
(P (E), P (E)) HomDet⊗Bcris(V )(P (L)⊗Bcris(V ), P (L)⊗Bcris(V ))

'
y y'

H0
dR(P (E)⊗ P (E)∗)

ι−−−→ H0(P (L)⊗ P (L)∗)⊗Qp Bcris(V ).

Similarly there is a functor

(7.4.8) η̃ : D′et −→ DdR ⊗K Bcris(V )

sending (Q, `) ∈ D′et to the image of

(7.4.9) ι−1(`) : Q(E)⊗Bcris(V )→ Q(E)⊗Bcris(V ).

We leave it to the reader to verify that the resulting functors

(7.4.10) θ : DdR ⊗K Bcris(V )→ Det ⊗Qp Bcris(V ), η : Det ⊗Qp Bcris(V )→ Det ⊗K Bcris(V )

are inverses and that θ has the required properties. The uniqueness statement follows from
the equivalence DdR ' D′dR and [Sa, II.1.5.3.1]. �

The association between L(OGdR
) and V(OGet).

7.5. Let L(OGdR
) be the ind–isocrystal defined in 4.35 and V(OGet) the ind–smooth sheaf on

Xo
K

defined in 5.28.

Because pullback by Frobenius induces an auto–equivalence of 〈E〉⊗, the ind–isocrystal
L(OGdR

) has a natural F–isocrystal structure ϕOGdR
. This F–isocrystal structure ϕOGdR

can

be described as follows. By [Sa, II.2.3.2.1], the isocrystal L(OGdR
) represents the functor on

〈E〉⊗ which to any E ′ ∈ 〈E〉⊗ associates ωx(E
′)∗. Since pullback by Frobenius induces an

auto–equivalence on 〈E〉⊗, there exists for any E ′ ∈ 〈E〉⊗ a pair (E ′′, s), where E ′′ ∈ 〈E〉⊗



Towards non–abelian P–adic Hodge Theory 65

and s : F ∗E ′′ ' E ′ is an isomorphism. Moreover, by the full faithfulness of F ∗ the pair (E ′′, s)
is unique up to unique isomorphism. Hence we have canonical isomorphisms

(7.5.1) Hom(E ′, F ∗L(OGdR
)) ' F ∗Hom(E ′′,L(OGdR

)) ' F ∗ωx(E
′′)∗ ' ωx(E

′)∗.

Therefore L(OGdR
) and F ∗L(OGdR

) represent the same functor and hence are canonically
isomorphic. This canonical isomorphism is ϕOGdR

.

7.6. Let r be the rank of E and L, and let MdR (resp. Met) be the dual of
∧r E (resp.

∧r L).
Set

(7.6.1) AdR := Sym•(E ⊗ E(x)∗)⊗ Sym•(MdR ⊗MdR(x)∗),

(7.6.2) Aet := Sym•(L⊗ L∗x)⊗ Sym•(Met ⊗M∗
et,x).

The sheaf AdR (resp. Aet) has a natural action of GdR (resp. Get) induced by the GdR-
action (resp. Get–action) on E(x)∗ and MdR(x)∗ (resp. L∗x and M∗

et,x). The determinant
map det : End(E(x)) → End(MdR(x)∗) (resp. det : End(Lx̄) → End(M∗

et,x̄)) sends GdR

(resp. Get) to Aut(MdR(x)∗) (resp. Aut(M∗
et,x̄)). Composing with the natural isomorphism

Aut(MdR(x)∗) → Aut(MdR(x)∗) (resp. Aut(M∗
et,x̄) → Aut(M∗

et,x̄)) sending an automorphism
to its inverse (note that these group schemes are abelian) we obtain homomorphisms tdR :
GdR → Aut(MdR(x)∗) (resp. tet : Get → Aut(M∗

et,x̄)). As in 7.9, the maps tdR and tet induce
maps

(7.6.3) MdR ⊗MdR(x)∗ → L(OGdR
), Met ⊗Met,x → V(OGet).

which in turn induce surjections

(7.6.4) AdR → L(OGdR
), Aet → V(OGet).

Note that since L and Met are crystalline sheaves associated to E and MdR (with their
natural filtered F–isocrystal structures), the sheaf Aet is an ind–crystalline sheaf associated
to AdR. In particular there is a natural filtration on AdR and we define FilL(OGdR

) to be the
image of this filtration under 7.6.4.

Proposition 7.7. The sheaf V(OGet) is associated to (L(OGdR
),FilL(OGdR

), ϕL(OGdR
)).

Remark 7.8. We are abusing language in the statement of 7.7 as

(7.8.1) V(OGet) and (L(OGdR
),FilL(OGdR

), ϕL(OGdR
))

are only ind–objects in the categories of smooth Qp–sheaves andMF∇X (Φ) respectively. An as-
sociation between such ind–sheaves should be interpreted as saying that we can write V(OGet)
as an inductive limit lim−→Li of crystalline sheaves such that if (Ei,FilEi

, ϕEi
) is the correspond-

ing inductive system in MF∇X (Φ) then

(7.8.2) (L(OGdR
),FilL(OGdR

), ϕL(OGdR
)) ' lim−→(Ei,FilEi

, ϕEi
).

The proof of 7.7 will be in several steps 7.9–7.14.

7.9. Let D be a Tannakaian category over some field Υ of characteristic 0. Assume D = 〈E〉⊗
for some E ∈ D and that

(7.9.1) ω, ω′ : D −→ ModR
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are two fiber functors, where R is a Υ–algebra. Let DR denote the base change D ⊗Υ R [Sa,
II.1.5.2]. Recall that DR is the category of pairs (V, ρ), where V is an ind–object in D and
ρ : R → EndD(L) is a Υ–algebra homomorphism. Any fiber functor η : D → ModR induces
a unique functor (which we denote by the same letter ) η : DR → ModR sending (V, ρ) to
η(V )⊗R⊗ΥRR, where the second factor of R⊗ΥR acts on η(V ) via ρ and the tensor product
is taken via the diagonal map R⊗Υ R→ R [Sa, II.1.5.3.2].

Let H = π1(D, ω) and let OH be its coordinate ring. The module OH has a structure of
a (H,H)–module induced by left and right translation. There is a natural inclusion H ⊂
GL(ω(E)) inducing a surjection

(7.9.2) Sym•(ω(E)⊗R ω(E)∗)det −→ OH
compatible with the left and right H–actions. The left action of H corresponds by Tannaka
duality to a morphism

(7.9.3) Sym•(E ⊗Υ ω(E)∗)det −→ L(OH)

of objects of DR with right H–action. Applying ω′ we obtain a surjection of algebras with
right H–action

(7.9.4) Sym•(ω′(E)⊗R ω(E)∗)det −→ ω′(L(OH)).

The left hand side of 7.9.4 with its right H–action is the coordinate ring of the R–scheme
Isom(ω′(E), ω(E)) with its natural left H–action coming from the action on ω(E). The
algebra ω′(L(OH)) thus is obtained from an H–invariant closed subscheme

(7.9.5) T ⊂ Isom(ω′(E), ω(E)).

Lemma 7.10. The subscheme T ⊂ Isom(ω′(E), ω(E)) is equal to

(7.10.1) Isom⊗(ω′, ω) ⊂ Isom(ω′(E), ω(E)).

Proof. By [Sa, II.2.3.2.1], the functor HomDR
(·,L(OH)) with its right H–action is the functor

(7.10.2) DR −→ (right H–modules)

sending V to HomR(ω(V ), R). It follows that for any V ∈ D and W ∈ DR there is a natural
isomorphism of right H–modules

(7.10.3) HomDR
(W,V ∗ ⊗Υ L(OH)) ' ω(W )∗ ⊗R ω(V )∗ ' HomDR

(W,L(OH)⊗R ω(V )∗).

By Yoneda’s lemma, this isomorphism is obtained from an isomorphism V ∗ ⊗Υ L(OH) '
L(OH)⊗R ω(V )∗ of objects in DR with right H–action.

Thus we find that for any V ∈ D there is a natural isomorphism
(7.10.4)
HomR(ω′(V ), ω′(L(OH))) ' ω′(V ∗⊗ΥL(OH)) ' ω′(L(OH)⊗Rω(V )∗) ' ω′(L(OH))⊗Rω(V )∗.

In other words, for every V ∈ D there is a natural isomorphism

(7.10.5) ω′(V )∗|Spec(ω′(L(OH))) ' ω(V )∗|Spec(ω′(L(OH))).

This defines a map

(7.10.6) Spec(ω′(L(OH))) −→ Isom⊗(ω′, ω)

over R. By construction this map is compatible with the H–actions and the inclusions into
Isom(ω′(E), ω(E)), and since both are H–torsors it is an isomorphism. �



Towards non–abelian P–adic Hodge Theory 67

7.11. Let U = Spec(R) → X be a small étale morphism and fix a geometric generic point
Spec(Ω)→ Spec(RK). Define

(7.11.1) ωdR
Bcris(U∧) : DdR −→ ModBcris(U∧), F 7→ F (Bcris(U

∧)),

and

(7.11.2) ωet
Bcris(U∧) : Det −→ ModBcris(U∧)

to be the functor sending A ∈ Det to the Qp–vector space which is the stalk of A at Spec(Ω)→
Spec(RK) tensored with Bcris(U

∧) (here we write Bcris(U
∧) for the ring obtained by applying

the construction of 6.2 using the chosen geometric generic point of U). Here DdR and Det are
as in 7.4.

Lemma 7.12. The two tensor functors

(7.12.1) ωx ⊗K Bcris(V ), (ωx̄ ⊗Qp Bcris(V )) ◦ θ : DdR ⊗K Bcris(V ) −→ ModBcris(V )

are naturally isomorphic. Similarly the two functors

(7.12.2) ωdR
Bcris(U∧), ω

et
Bcris(U∧) ◦ θ : DdR ⊗K Bcris(V ) −→ ModBcris(U∧)

are naturally isomorphic.

Proof. Observe first that the functor ωx ⊗K Bcris(V ) is isomorphic to the functor which to
any F ∈ DdR associates x∗F (Bcris(V )). Let D′dR be as in 7.3. For any (P, e) ∈ D′dR, the image
under ωx ⊗K Bcris(V ) of (P, e) is equal to the image of the map

(7.12.3) e : x∗P (E)(Bcris(V )) −→ x∗P (E)(Bcris(V ))

induced by e. The value of (ωx̄ ⊗Qp Bcris(V )) ◦ θ on (P, e) is equal to the image of the map

(7.12.4) θ(e) : P (L)x̄ ⊗Qp Bcris(V ) −→ P (L)x̄ ⊗Qp Bcris(V )

induced by e under the isomorphismH0
et(P (L)⊗P (L)∗)⊗QpBcris(V ) ' H0

dR(P (E)⊗P (E)∗)⊗K
Bcris(V ) obtained from the association ι. From the construction of pullback of associations
6.19, it follows that ι induces an isomorphism λ : x∗P (E)(Bcris(V )) ' P (L)x̄ ⊗Qp Bcris(V )
such that the diagram

(7.12.5)

x∗P (E)(Bcris(V ))
λ−−−→ P (L)x̄ ⊗Qp Bcris(V )

e

y yθ(e)

x∗P (E)(Bcris(V ))
λ−−−→ P (L)x̄ ⊗Qp Bcris(V )

commutes. This gives the isomorphism between the functors in 7.12.1. A similar argument
left to the reader defines an isomorphism between the functors in 7.12.2. �

7.13. Let ι denote the association between Aet and AdR. We claim that there is a unique
association ῑ between (L(OGdR

),FilL(OGdR
), ϕL(OGdR

)) and V(OGet) such that for every very
small U → X the induced diagram of Galois modules

(7.13.1)

AdR(Bcris(U
∧)) −−−→ L(OGdR

)(Bcris(U
∧))

ι

y yῑ

Aet ⊗Bcris(U
∧) −−−→ V(OGet)⊗Bcris(U

∧)
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commutes. Observe that any such ῑ is automatically compatible with Frobenius, the Galois
action, and the filtrations.

To prove the existence of ῑ, note that by 7.10 to give the map ῑ is equivalent to giving an
isomorphism ῑ∗ such that the diagram

(7.13.2)

Isom⊗(ωdR
Bcris(U∧), ωx ⊗K Bcris(U

∧)) −−−→ Isom(ωdR
Bcris(U∧)(E), ωx(E)⊗K Bcris(U

∧))

ῑ∗

y yι

Isom⊗(ωet
Bcris(U∧), ωx̄ ⊗Qp Bcris(U

∧)) −−−→ Isom(ωet
Bcris(U∧)(L), ωx̄(L)⊗Qp Bcris(U

∧))

commutes. By construction, the isomorphism ι∗ is that induced by the isomorphisms in 7.12
together with the identifications

(7.13.3) ωx ⊗K Bcris(U
∧) ' ωx ⊗K Bcris(V )⊗Bcris(V ) Bcris(U

∧),

(7.13.4) ωx̄ ⊗Qp Bcris(U
∧) ' ωx̄ ⊗Qp Bcris(V )⊗Bcris(V ) Bcris(U

∧).

The existence of ῑ∗ therefore follows from 7.12.

Corollary 7.14. The sheaf V(OGet) is an ind–crystalline sheaf on Xo
K.

Proof. With notation as in 7.6, let Fs ⊂ L(OGdR
) be the sub–isocrystal which is the image

of ⊕i+j≤sSymi(E ⊗ E(x)∗) ⊗ Symj(MdR ⊗MdR(x)∗), and let Ls ⊂ V(OGet) be the image of
⊕i+j≤sSymi(L ⊗ L∗x̄) ⊗ Symj(Met ⊗ Met,x). Then by construction the association between
V(OGet) and L(OGdR

) induces an association between Ls and Fs. Since V(OGet) is equal to
lim−→Ls the corollary follows. �

This completes the proof of 7.7. �

Corollary 7.15. There is a natural isomorphism GdR ⊗K Bcris(V ) ' Get ⊗Qp Bcris(V ) and
the association of 7.7 is compatible with the GdR and Get actions.

Proof. This follows from 7.12 and the construction. �

Corollary 7.16. There is a natural isomorphism

(7.16.1) RΓcris(L(OGdR
))⊗K B̃cris(V ) ' GC(L)⊗Qp B̃cris(V )

in Ho(G eBcris(V ) − dga eBcris(V ),/OG eBcris(V )

), where G eBcris(V ) denotes GdR ⊗K B̃cris(V ) ' Get ⊗Qp

B̃cris(V ).

Proof. This follows from 6.13–6.20. �

Theorem 1.7 follows from this corollary, the construction of XCdR
and XCet , and 4.11. �

Remark 7.17. The assumption that the groups GdR and Get are reductive could be elimi-
nated if we knew that any smooth subsheaf of a crystalline sheaf is again crystalline. For then
using the filtration defined by the unipotent radical as in 5.30, one can reduce to the case when
GdR and Get are reductive. Recent work of Tsuji in this direction (private communication)
may enable one to remove this assumption.
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Proof of 1.8.

The isomorphism XCdR
⊗K B̃cris(V ) ' XCet ⊗Qp B̃cris(V ) induces an isomorphism

(7.17.1)

π1(CdR, x)⊗KB̃cris(V ) ' π1(XCdR
⊗KB̃cris(V )) ' π1(XCet⊗QpB̃cris(V )) ' π1(Cet, x̄)⊗QpB̃cris(V ).

Equivalently we obtain an isomorphism of Hopf algebras

(7.17.2) Oπ1(CdR,x) ⊗K B̃cris(V ) ' Oπ1(Cet,x̄) ⊗Qp B̃cris(V )

compatible with Frobenius and the Galois actions. By D.3 this isomorphism is obtained from
an isomorphism of Hopf algebras

(7.17.3) Oπ1(CdR,x) ⊗K Bcris(V ) ' Oπ1(Cet,x̄) ⊗Qp Bcris(V )

compatible with Frobenius and Galois. This implies 1.8.

Proof of 1.9.

Since πi(XCdR
) and πi(XCet) are pro–algebraic group schemes and πi(XCdR

) ⊗K Bcris(V ) '
πi(XCet)⊗Qp Bcris(V ), Theorem 1.9 follows from the following lemma:

Lemma 7.18. Let Get/Qp be a pro–algebraic group scheme with action of Gal(K/K) and
assume GdR/K is another pro–algebraic group scheme with an isomorphism

(7.18.1) ι : Get ⊗Qp Bcris(V ) ' GdR ⊗K Bcris(V )

compatible with the actions of Gal(K/K). Then Lie(Get) can be written as a projective limit
lim←−Li of finite dimensional Qp–Lie algebras with Gal(K/K)–action such that each Li is a
crystalline representation.

Proof. Let Set (resp. SdR) denote Iet/I
2
et (resp. IdR/I

2
dR), where Iet (resp. IdR) denotes the

ideal of the identity in OGet (resp. OGdR
). Then Lie(Get) (resp. Lie(GdR)) is equal to the dual

of Set (resp. SdR).

The isomorphism ι induces an isomorphism

(7.18.2) ι∗ : Set ⊗Qp Bcris(V ) ' SdR ⊗K Bcris(V )

compatible with the Gal(K/K)–actions. Write SdR = lim−→Mj where each Mj is a finite–
dimensional K–vector space, and set

(7.18.3) Vj := Set ∩ (Mj ⊗K Bcris(V )) ⊂ Set ⊗Qp Bcris(V ).

Then Vj ⊂ Set is Galois stable and finite–dimensional since Vj ⊗Qp Bcris(V ) injects into
Mj ⊗K Bcris(V ) and hence has finite rank (since Bcris(V ) is an integral domain for example
by [Ts1, A3.3]). Furthermore Set = lim−→Vj.

The Lie algebra structure on Lie(Get) is given by the dual of a map

(7.18.4) ρ : Set −→ Set ⊗ Set.

Furthermore, to give a quotient Lie(Get)→ L of Lie algebras is equivalent to giving a subspace
L∗ ⊂ Set such that ρ(L∗) is contained in L∗ ⊗ L∗. Since Get is pro–algebraic, we can write
Set = lim−→Si where each Si ⊂ Set is a finite–dimensional subspace and ρ(Si) ⊂ Si ⊗ Si.

Let S
i
be the intersection of all sub–Galois representations of Set containing Si. Since Si ⊂

ρ−1(S
i ⊗ Si), we have ρ(S

i
) ⊂ S

i ⊗ Si. Also, since Set = lim−→Vj and Si is finite dimensional
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we must have Si, and hence also S
i
, contained in some Vj. This implies that S

i
is finite

dimensional. Dualizing we obtain the first part of the lemma. The second statement follows

from the following which shows that each of the S
i
is a crystalline representation. �

Sub-Lemma 7.19. Let W ′ ⊂ W be an inclusion of Gal(K/K)–representations which are
direct limits of finite dimensional Galois representations. Then the diagram

(7.19.1)

D(W ′)⊗K Bcris(V ) −−−→ D(W )⊗K Bcris(V )

α′

y yα

W ′ ⊗Qp Bcris(V ) −−−→ W ⊗Qp Bcris(V )

is cartesian. In particular, if α is an isomorphism and W ′ is finite dimensional, then W ′ is
crystalline.

Proof. Let W ′′ = W/W ′ and consider the diagram
(7.19.2)

0 −−−→ D(W ′)⊗K Bcris(V ) −−−→ D(W )⊗K Bcris(V )
π−−−→ D(W ′′)⊗K Bcris(V )yα′

yα

yα′′

0 −−−→ W ′ ⊗Qp Bcris(V ) −−−→ W ⊗Qp Bcris(V ) −−−→ W ′′ ⊗Qp Bcris(V ) −−−→ 0.

By [Fo1, 5.1.2 (ii)] all the vertical maps are injective. From this and a diagram chase the
result follows. �

Proof of 1.12.

Let M (resp. S) be a representation of π1(XCdR
)⊗ B̃cris(V ) (resp. π1(XCet)⊗ B̃cris(V )) over

B̃cris(V ).

Lemma 7.20. There is a natural isomorphism
(7.20.1)

H∗(XCdR
⊗K B̃cris(V ),M) ' H∗(XCdR

,M f ) (resp. H∗(XCet⊗Qp B̃cris(V ), S) ' H∗(XCet , S
f )),

where M f (resp. Sf) denotes the representation of π1(XCdR
) (resp. π1(XCet)) obtained by

viewing M as a K–vector space (resp. Qp–vector space).

Proof. We give the proof for CdR, leaving the proof for Cet to the reader (using the same
argument).

Write π for π1(XCdR
) and π eBcris(V ) for the base change to B̃cris(V ). The projection XCdR

→
τ≤1XCdR

' Bπ gives XCdR
the structure of an object of Ho(SPr∗(K)|Bπ). Let AffπK denote

the site whose objects are affine K–schemes and for which a morphism T ′ → T in AffπK is
a pair (f, g ∈ π(T ′)), where f : T ′ → T is a K–morphism and g ∈ π(T ′) is an element. If
(s, h ∈ π(T ′′)) is a morphism T ′′ → T ′ for some third object T ′ ∈ AffK , then the composite
(s, h)◦(f, g) is the morphism (s◦f, h ·s∗(g)). We view AffπK as a site by declaring a morphism
(f, g) to be a covering if f is faithfully flat and quasi–compact. The category of presheaves
on AffπK is naturally equivalent to the category of presheaves on AffK with action of the sheaf
π, and by [KPT, 1.2.1] there is a natural equivalence

(7.20.2) Ho(SPr∗(K)|Bπ) ' Ho(SPr∗(AffπK)).
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Let FdR ∈ Ho(SPr∗(AffπK)) be the object corresponding to XCdR
.

Replacing K by B̃cris(V ) in the above we obtain a site Aff
π eBcris(V )eBcris(V )

and an equivalence

(7.20.3) Ho(SPr∗(B̃cris(V ))|Bπ eBcris(V )
) ' Ho(SPr∗(Aff

π eBcris(V )eBcris(V )
)).

There is a morphism of sites AffπK → Aff
π eBcris(V )eBcris(V )

sending T → Spec(K) to T ⊗K B̃cris(V ). We

therefore have adjoint functors

(7.20.4) f ∗ : SPr∗(AffπK)→ SPr∗(Aff
π eBcris(V )eBcrisV

), f∗ : SPr∗(Aff
π eBcris(V )eBcrisV

)→ SPr∗(AffπK).

For any F ∈ SPr∗(AffπK) the pullback f ∗F is the simplicial presheaf

(7.20.5) (W → Spec(B̃cris(V ))) 7→ F (W → Spec(B̃cris(V ))→ Spec(K)).

In particular, f ∗ preserves cofibrations and equivalences so the pair (f ∗, f∗) is a Quillen
adjunction and f ∗ derives trivially.

It follows from the construction of the equivalence 7.20.3 that f ∗FdR corresponds under the

equivalence 7.20.3 to XCdR
⊗ B̃cris(V ). The representation M of π corresponds to a sheafM

on Aff
π eBcris(V )eBcris(V )

and the induced representation M f of π corresponds to the sheaf f∗M. Fix an

integer m and let K(M,m) ∈ Ho(SPr∗(Aff
π eBcris(V )eBcris(V )

)) (resp. K(f∗M,m) ∈ Ho(SPr∗(AffπK)))

be the corresponding classifying stack [To1, 1.3]. By definition of cohomology [To1, 1.3] there
are isomorphisms

(7.20.6) Hm(XCdR
⊗ B̃cris(V ),M) ' [f ∗FdR, K(M,m)]

Ho(SPr∗(Aff
π eBcris(V )eBcris(V )

))
,

(7.20.7) Hm(XCdR
,M f ) ' [FdR, K(f∗M,m)]Ho(SPr∗(Affπ

K)).

Since

(7.20.8) [f ∗FdR, K(M,m)]
Ho(SPr∗(Aff

π eBcris(V )eBcris(V )
))
' [FdR,Rf∗K(M,m)]Ho(SPr∗(Affπ

K))

to prove the lemma it suffices to exhibit a natural isomorphism Rf∗K(M,m) ' K(f∗M,m).

Let M → I• be an injective resolution in the category of abelian sheaves on Aff
π eBcris(V )eBcris(V )

.

For any T ∈ AffπK , the complex f∗I(T ) computes the cohomology ofM restricted to the site

Aff
π eBcris(V )eBcris(V )

|T⊗ eBcris(V ). Since this site is equivalent to the site of affine schemes over T ⊗B̃cris(V )

with the fpqc topology and the restriction of M to this site is quasi–coherent, all higher
cohomology groups are zero. Thus the complex f∗I

• is exact.

Let I be the complex τ≤mI
•[m] and note that there is a natural quasi–isomorphism

M[m] → I. Applying the denormalization functor [G-J, III.2.3], we obtain an equivalence
of simplicial presheaves D(M[m]) → D(I). Since πi(M[m]) ' Hi(M[m]) for every i [G-J,
III.2.7], the simplicial presheaf D(M), and hence also D(I), is a representative for K(M,m).

The simplicial presheaf D(I) is also fibrant in SPr∗(Aff
π eBcris(V )eBcris(V )

). To see this note that since

D(I) is a simplicial presheaf of abelian groups, for any object W ∈ Aff
π eBcris(V )eBcris(V )

the simplicial

set D(I)(W ) is fibrant in the category of simplicial sets [G-J, I.3.4]. By [To1, 1.1.2] to prove
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that D(I) is fibrant it suffices to show that for every hypercover U• → W of an object W the
natural map

(7.20.9) D(I)(W ) −→ holim∆D(I)(Un)

is an equivalence. This is done in [DHI, 7.9].

Since D(I) is fibrant Rf∗K(M,m) is isomorphic to f∗D(I) ' D(f∗I). On the other hand,
since f∗M→ f∗I

• is a quasi–isomorphism, the natural map f∗M[m]→ f∗I is also a quasi–
isomorphism, and hence D(f∗I) ' D(f∗M[m]). It follows that Rf∗K(M,m) ' K(f∗M,m)
as desired. �

To prove 1.12, note that by 4.28 and 5.32.2, we have

(7.20.10) H∗dR(M) ' H∗(XCdR
,M f ), H∗et(S) ' H∗(XCet , S

f ).

Hence to prove 1.12 it suffices to exhibit a natural isomorphism

(7.20.11) H∗(XCdR
⊗K B̃cris(V ),M) ' H∗(XCet ⊗Qp B̃cris(V ), S).

Such an isomorphism is provided by 1.7. �

Formality and proof of 1.13.

7.21. Assume k is a finite field, D = ∅, and fix an embedding ι : K ↪→ C. Let (E,FilE, ϕE)
and L be as in 7.1, and assume in addition that (E,ϕE) is ι–pure in the sense of [Ke]. Denote
by H∗cris(L(OGdR

)) (resp. H∗et(V(OGet)) the crystalline cohomology (resp. étale cohomology)
of L(OGdR

) (resp. V(OGet)). Cup–product gives H∗cris(L(OGdR
)) (resp. H∗et(V(OGet))) the

structure of a GdR–equivariant (resp. Get–equivariant) differential graded algebra. In [Ol1,
proof of 4.25], it is shown that there is an isomorphism

(7.21.1) RΓcris(L(OGdR
)) ' H∗cris(L(OGdR

))

in Ho(GdR − dgaK). On the other hand, Faltings’ cohomological comparison isomorphism
gives an isomorphism

(7.21.2) H∗cris(L(OGdR
))⊗K Bcris(V ) ' H∗et(V(OGet))⊗Qp Bcris(V )

in Ho(GBcris(V )−dgaBcris(V )), where we write GBcris(V ) for GdR⊗K Bcris(V ) ' Get⊗Qp Bcris(V ).

Theorem 7.22. There exists an isomorphism in Ho(G eBcris(V ) − dga eBcris(V )) compatible with

the Gal(K/K)–actions

(7.22.1) GC(V(OGet))⊗Qp B̃cris(V ) ' H∗et(V(OGet))⊗Qp B̃cris(V ).

Proof. There are isomorphisms in Ho(G eBcris(V )−dga eBcris(V )) compatible with the Gal(K/K)–
actions
(7.22.2)

GC(V(OGet))⊗Qp B̃cris(V ) ' RΓcris(L(OGdR
))⊗K B̃cris(V ) ' H∗cris(L(OGdR

))⊗K B̃cris(V )

and by 7.21.2

(7.22.3) H∗cris(L(OGdR
))⊗K Bcris(V ) ' H∗et(V(OGet))⊗Qp Bcris(V ).

�
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To obtain 1.13 from this, note that the isomorphism

(7.22.4) π1(Cet, x̄)⊗Qp B̃cris(V ) ' π1([RSpecGet
(H∗(V(OGet)))/Get])⊗Qp B̃cris(V )

defined by 7.22 fits into a commutative diagram of isomorphisms

(7.22.5) π1(Cet, x̄)⊗Qp B̃cris(V ) //

��

π1([RSpecGet
(H∗(V(OGet)))/Get])⊗Qp B̃cris(V )

��

π1(XCdR
)⊗K B̃cris(V ) // π1([RSpecGdR

(H∗cris(L(OGdR
)))/GdR])⊗K B̃cris(V ).

By D.3 this diagram is induced by a commutative diagram of isomorphisms over Bcris(V )

(7.22.6) π1(Cet, x̄)⊗Qp Bcris(V ) //

��

π1([RSpecGet
(H∗(V(OGet)))/Get])⊗Qp Bcris(V )

��
π1(XCdR

)⊗K Bcris(V ) // π1([RSpecGdR
(H∗cris(L(OGdR

)))/GdR])⊗K Bcris(V ).

We therefore get an isomorphism of Galois representations

(7.22.7) Lie(π1(Cet, x̄))⊗Qp Bcris(V ) ' Lie(π1([RSpecGet
(H∗(V(OGet)))/Get]))⊗Qp Bcris(V ).

In particular, Lie(π1(Cet, x̄)) ⊗Qp Bcris(V ) is determined by H∗et(V(OGet)). We also have a
Galois invariant isomorphism

(7.22.8) Lie(π1([RSpecGet
(H∗(V(OGet)))/Get]))⊗Qp Bcris(V ) ' Lie(π1(XCdR

))⊗K Bcris(V ),

and by [Ol1, 4.2]

(7.22.9) Lie(π1(XCdR
)) ' LH1(L(OGdR

))/(quadratic relations),

where H1(L(OGdR
)) denotes the dual of H1

cris(L(OGdR
)). Base changing to Bcris(V ) and using

the isomorphism H1
cris(L(OGdR

))⊗K Bcris(V ) ' H1
et(V(OGet))⊗Qp Bcris(V ) we find that

(7.22.10) Lie(π1(Cet, x̄))⊗Qp Bcris(V ) ' LH1(V(OGet))⊗Qp Bcris(V )/(quadratic relations).

8. A base point free version

In this section we describe a base point free version of 1.7 and some consequences.

Review of twisted theory [Ol1, 3.7–3.28]

8.1. Recall that a gerbe over a site C is a stack G over C such that the following two conditions
hold:

(i) For every object U ∈ C there exists a covering {Ui → U}i∈I of U such that G(Ui) is
nonempty for all i ∈ I.

(ii) For any U ∈ C and two objects α, β ∈ G(U), there exists a covering {Ui → U}i∈I
such that the restrictions of α and β to each Ui are isomorphic.

8.2. If C is a site and G is a gerbe on C, the G–twisted site, denoted CG, is the site whose
objects are pairs (U, ω), where U ∈ C is an object and ω ∈ G(U) is an object. A morphism
(U ′, ω′)→ (U, ω) is a pair (f, f b), where f : U ′ → U is a morphism in U and f b : f ∗(ω)→ ω′

is an isomorphism in G(U ′). A collection of maps {(U ′i , ω′i) → (U, ω)} is a covering family if
the underlying family {U ′i → U} of maps in C is a covering family.
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Note that for any object (U, ω) ∈ CG the site CG|(U,ω) is naturally equivalent to C|U .

Assume that for any object U ∈ C and ω ∈ G(U), the sheaf Aut(ω) on C|U which to any
f : U ′ → U associates Aut(f ∗ω) is cofibrant viewed as a constant object in SPr(C|U). This
holds for example if Aut(ω) is representable.

Let BG ∈ SPr(C) be the simplicial presheaf which to any U associates the nerve of the
category G(U).

The following generalization of [KPT, 1.2.1] is shown in [Ol1, 3.12]:

Lemma 8.3. There is a natural equivalence of homotopy categories

(8.3.1) Ho(SPr(C|G)) ' Ho(SPr(C)|BG).

8.4. Let R be a Q–algebra, and consider the site AffR of affine R-schemes with the fpqc
topology. Following [Sa, III.2.2.2], we say that a gerbe G over AffR is Tannakian if fpqc
locally on Spec(R) the gerbe G is isomorphic to BG for an affine and flat group scheme
G. The condition that a gerbe G over AffR is Tannakian is equivalent to the following two
conditions:

(i) The diagonal

(8.4.1) ∆ : G → G × G
is representable and affine.

(ii) There exists an fpqc covering Spec(R′)→ G for some flat R-algebra R′.

8.5. For a Tannakian gerbe over AffR, denote by AffR,G be the resulting G–twisted site. Define
a sheaf F on AffR,G to be quasi–coherent if for any object (S, ω) ∈ AffR,G the restriction of
F to AffR,G|(S,ω) ' AffS is a quasi–coherent sheaf. Denote by G − dgaR (resp. G − Alg∆

R)
the category of differential graded algebras (resp. cosimplicial algebras) in the category of
quasi–coherent sheaves on AffR,G. There are natural model category structures on G − dgaR
and G − Alg∆

R just as in 2.21, and the Dold–Kan correspondence induces an equivalence of
categories

(8.5.1) Ho(G − dgaR) ' Ho(G − Alg∆
R).

There is also a functor

(8.5.2) SpecG : (G − Alg∆
R)op −→ SPr(AffR,G)

sending A to the simplicial presheaf

(8.5.3) (Spec(S), ω) 7→ ([n] 7→ HomS(A(Spec(S), ω)n, S)).

Here the transition maps are defined as follows. If

(8.5.4) (Spec(S ′), ω′)→ (Spec(S), ω)

is a morphism in AffR,G, then since A is quasi-coherent the natural map

(8.5.5) S ′ ⊗S A(Spec(S), ω)→ A(Spec(S ′), ω′)

is an isomorphism. For any [n] ∈ ∆ we there obtain a map
(8.5.6)
HomS(A(Spec(S), ω)n, S)→ HomS′(S

′ ⊗S A(Spec(S), ω)n, S
′) ' HomS′(A(Spec(S ′), ω′), S ′).
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As in [KPT, p. 16] the functor 8.5.2 is right Quillen and we denote by

(8.5.7) RSpecG : Ho(G − AlgR)op −→ Ho(SPr(AffR,G))

the resulting derived functor. We denote by

(8.5.8) [RSpecG(−)/G] : Ho(G − AlgR)op −→ Ho(SPr(R)|BG)
the composite of this functor with the equivalence 8.3.1.

Remark 8.6. The site AffR,G is equivalent to the big fpqc site of G, and the above notion of
quasi–coherent sheaf agrees with that of [LM-B, 13.2.2].

Gerbes and 1–truncated stacks

8.7. Fix a base ring R. A simplicial presheaf F ∈ SPr(R) is 1–truncated if the map F → τ≤1F
is an equivalence, where τ≤1F is the simplicial presheaf sending U ∈ C to τ≤1F (U) (see [G-J,
VI.3.4]) for the definition of τ≤n). Equivalently, F is 1–truncated if for any object U ∈ AffR
and point ∗ → F (U) the sheaves πi(F |U , ∗) on AffU are zero for i > 1. In particular, if F → F ′

is an equivalence then F is 1–truncated if and only if F ′ is 1–truncated. Thus it makes sense
to say that a stack F ∈ Ho(SPr(R)) is 1–truncated. Let Ho(SPr≤1(R)) ⊂ Ho(SPr(R)) denote
the full subcategory of connected 1–truncated stacks.

If G is a gerbe over R we obtain a 1–truncated stack BG by associating to any U/R the
nerve of the groupoid G(U). Let GerbeR denote the category whose objects are gerbes over
R and whose morphisms are equivalences classes of morphisms, where f, g : G → G ′ are
equivalent if there exists an isomorphism of functors σ : f → g.

The following proposition is well–known though we were unable to find a proof in the
literature.

Proposition 8.8. The functor G 7→ BG defines an equivalence GerbeR ' Ho(SPr≤1(R)).

Proof. For a simplicial presheaf F ∈ SPr(R) such that for every U ∈ AffR the simplicial set
F (U) is fibrant (this holds for example if F is fibrant in SPr(R) by the definition [To1, 1.1.1])
define πps(F ) to be prestack which to any U ∈ AffR associates the fundamental groupoid [G-J,
I.8] of F (U), and let π(F ) be the associated stack. If F → F ′ is an equivalence of fibrant
objects in SPr(R) then the induced morphism of stacks π(F )→ π(F ′) is an equivalence, and
hence π induces a functor

(8.8.1) π : Ho(SPr≤1(R))→ GerbeR.

It follows from the construction that for F an object of Ho(SPr≤1(R)) there is a natural
equivalence F → Bπ(F ). Also if G is a gerbe then by [G-J, I.3.5] for any U ∈ AffR the
simplicial set BG(U) is fibrant, and it follows from the definitions that there is a natural
equivalence G ' πBG. In particular the functor G 7→ BG induces an equivalence of categories.

�

Equivariant algebras

8.9. Let G/R be a Tannakian gerbe. Denote by ÃffR,G the small fpqc site of G, as defined in
C.1.
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Let G − d̃gaR (resp. G − Ãlg
∆

R) denote the category of differential graded algebras (resp.

cosimplicial algebras) in the category of sheaves of O–modules on ÃffR,G whose cohomology
sheaves are quasi–coherent, where O denotes the structure sheaf (see C.4 for the notion of a
quasi-coherent sheaf in this context). The model category structure provided by 2.21 on the
category of cosimplicial algebras (resp. differential graded algebras) in the category of sheaves

of O–modules on ÃffR,G induces a model category structure on G − d̃gaR (resp. G − Ãlg
∆

R) in
which a morphism f : A→ B is a fibration if the morphism on underlying complexes (resp.
normalized complexes) is a level–wise surjection with injective kernel. A morphism f is an
equivalence if the underlying morphism of complexes of sheaves (resp. normalized complexes)
is a quasi–isomorphism.

There are natural inclusions jdga : G−dgaR ↪→ G−d̃gaR (resp. jAlg : G−Alg∆
R ↪→ G−Ãlg

∆

R).

Lemma 8.10. The inclusions jdga and jAlg have right adjoints udga and uAlg.

Proof. Recall from C.6 that the inclusion

(8.10.1) j : (quasi–coherent sheaves on AffR,G) ⊂ (sheaves of O–modules on ÃffR,G)

has a right adjoint

(8.10.2) u : (sheaves of O–modules on ÃffR,G)→ (quasi–coherent sheaves on AffR,G).

The functor u is constructed as follows.

Since G is a Tannakian there exists a flat surjection Spec(R′) → G corresponding to an
object (R′, ω′) ∈ AffR,G. Let R′′ be the coordinate ring of Spec(R′) ×G Spec(R′) and let
pr∗i : R′ → R′′ (i = 1, 2) be the maps induced by the two projections. Denote by ω′ :
Spec(R′) → G and ω′′ : Spec(R′′) → G the projections. For any sheaf of O–modules F on

ÃffR,G the quasi-coherent sheaf uF is defined to be the equalizer of the two maps

(8.10.3) ω′∗F(R′, ω′)̃ ⇒ ω′′∗F(R′′, ω′′)̃ .

Observe that for two sheaves of O–modules F and F ′ there is a natural map uF ⊗ uF ′ →
u(F⊗F ′). It follows that the functor u extends in a natural way to the category of cosimplicial
O–modules (resp. differential graded O–modules), and if A is a sheaf of cosimplicial algebras
(resp. differential graded algebras) then uA also has a natural structure of a cosimplicial
algebra (resp. differential graded algebra). It then follows from the fact that u is right adjoint
to j that the resulting functors udga and uAlg are right adjoint to jdga and jAlg respectively. �

The functor jdga (resp. jAlg) clearly preserves cofibrations and trivial cofibrations so the
pair (jdga, udga) (resp. (jAlg, uAlg)) is a Quillen adjunction.

Proposition 8.11. The adjunctions (jdga, udga) (resp. (jAlg, uAlg)) are Quillen equivalences.

Proof. It is clear that a morphism f : A→ B in G − dgaR (resp. G −Alg∆
R) is an equivalence

if and only if jdga(f) (resp. jAlg(f)) is an equivalence, so by [Ho, 1.3.16] it suffices to show

that if Y ∈ G − d̃gaR (resp. G − Ãlg
∆

R) is fibrant then the natural map jdgaudgaY → Y (resp.
jAlguAlgY → Y ) is an equivalence. For this it suffices to show that if I• is a complex of injective
O–modules with quasi–coherent cohomology sheaves then the natural map juI• → I• is an
equivalence, where j and u are as in the proof of 8.10. This follows from C.9. �
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Corollary 8.12. The functors jdga and jAlg induce equivalences

(8.12.1) Ho(G − dgaR) ' Ho(G − d̃gaR), Ho(G − Alg∆
R) ' Ho(G − Ãlg

∆

R).

In particular, the functors 8.5.7 and 8.5.8 induce functors

(8.12.2) RSpecG : Ho(G − Ãlg
∆

R)op → Ho(SPr(AffR,G)),

(8.12.3) [RSpecG(−)/G] : Ho(G − Ãlg
∆

R)op → Ho(SPr(R)|BG).

8.13. Let (X,MX)/V , (E,FilE, ϕE) and L be as in 7.1 and assume that 7.2 holds. We do
not, however, choose a point x. Let DdR (resp. Det) denote 〈E〉⊗ (resp. 〈LK〉⊗) and let
GdR/K (resp. Get/Qp) be the gerbe of fiber functors for DdR (resp. Det). By 7.4, there is a
natural equivalence θ : DdR ⊗K Bcris(V ) ' Det ⊗Qp Bcris(V ) which induces an equivalence of
gerbes GdR ⊗K Bcris(V ) ' Get ⊗Qp Bcris(V ) compatible with Frobenius structures and Galois
actions (note that the proof of 7.4 does not require the existence of the point x).

We now construct stacks YdR ∈ Ho(SPr(K)|BGdR
) and Yet ∈ Ho(SPr(Qp)|BGet) and an

equivalence θ̃ : YdR ⊗K Bcris(V ) ' Yet ⊗Qp Bcris(V ) in Ho(SPr(Bcris(V ))|BGBcris(V )
), where we

have written GBcris(V ) for GdR ⊗K Bcris(V ) ' Get ⊗Qp Bcris(V ).

The stacks YdR, Yet, and the isomorphism θ̃ have the following property. If we choose a
point x as in 7.1, then the stacks YdR and Yet are canonically isomorphic to the stacks obtained
from XCdR

and XCet by forgetting the base points. Furthermore, θ̃ is equal to the isomorphism
obtained from 1.7.

8.14. If G̃dR (resp. G̃et) denotes the stack of fiber functors for CdR (resp. Cet) then there is

a natural isomorphism in GerbeK (resp. GerbeQp
) between G̃dR (resp. G̃et) and the gerbe

associated by 8.8 to τ≤1YdR (resp. τ≤1Yet).

For this recall (see [Sa, III.2.3.2.2]) that for any K–algebra R (resp. Qp–algebra R) the
Tannakian category CdR ⊗K R (resp. Cet ⊗Qp R) can be recovered as the tensor category of
morphisms of stacks over R

(8.14.1) G̃dR ⊗K R→ VecR (resp. G̃et ⊗Qp R→ VecR),

where VecR denotes the stack over R which to any R→ R′ associates the groupoid of coherent
sheaves on Spec(R′).

Let TanR denote the category whose objects are Tannakian categories over R, and whose
morphisms A → B are equivalence classes of tensor A → B, where ω ∼ ω′ if there exists
an isomorphism of functors ω ' ω′. Then there is a fully faithful functor Tanop

R ↪→ GerbeR
sending a Tannakian category C to its gerbe of fiber functors.

In particular, θ̃ and the identifications τ≤1YdR ' BG̃dR and τ≤1Yet ' BG̃et induce an

equivalence CdR ⊗K B̃cris(V ) ' Cet ⊗Qp B̃cris(V ) in TanBcris(V ). This equivalence agrees with
the one in 1.8 obtained after choosing a base point.

Construction of YdR.
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8.15. Fix a hypercover U• → X with each Un a disjoint union of very small étale X–schemes.
This hypercover defines a diagram of formal log schemes

(8.15.1)

(U•,MU•)⊗ Z/(p) −−−→ (U∧• ,MU∧• )y
(Y,MY )

as in 4.36.1.

Consider the presheaf Aps of differential graded algebras on AffK,GdR
which to any (R,ω)

associates DR(Lω)U• (see 4.37 for the notation), and let A denotes the associated sheaf of
differential graded algebras on AffK,GdR

.

Lemma 8.16. The algebra A is in GdR − d̃gaK.

Proof. We have to show that the sheaf associated to the presheaf (R,ω) 7→ H i(Aps(R,ω)) is
quasi–coherent. As mentioned in 4.37 for any flat morphism R→ R′ the map

(8.16.1) H i(Aps(R,ω))⊗R R′ → H i(Aps(R′, ω|R′))
is an isomorphism. We need to show that this also holds for arbitrary morphisms h : R→ R′

fitting into a commutative diagram

(8.16.2) Spec(R′)
h //

ω′

$$JJJJJJJJJ
Spec(R)

ω

zzuuuuuuuuu

GdR,

where ω and ω′ are flat.

To verify that the morphism 8.16.1 is an isomorphism, it suffices to verify that it becomes

an isomorphism after a faithfully flat base change R → R̃. For such a faithfully flat map
there is a commutative square

(8.16.3)

H i(Aps(R,ω))⊗R (R′ ⊗R R̃) −−−→ H i(Aps(R′, ω|R′))⊗R R̃y y
H i(Aps(R̃, ω| eR))⊗R R′ −−−→ H i(Aps(R′ ⊗R R̃, ω|R′⊗R

eR)),

where the vertical maps are isomorphisms. Hence to prove that 8.16.1 is an isomorphism

we may replace R by R̃ and R̃ ⊗R R′. Since any two fiber functors for GdR are fpqc–locally
isomorphic we may therefore assume that there exists a fiber functor ω0 : GdR → VecK′ for
some field K ′ and a morphism K ′ → R such that ω = ω0|R. In this case we have a diagram

(8.16.4) H i(Aps(K ′, ω0))⊗K′ R′
α−−−→ H i(Aps(R,ω))⊗R R′

β−−−→ H i(Aps(R′, ω|R′))
and α and β ◦ α are isomorphisms. It follows that β is also an isomorphism. �

8.17. The stack YdR is defined to be the image of A under
(8.17.1)

Ho(GdR − d̃gaK)
2.21.2 and 8.12.1−−−−−−−−−→ Ho(GdR − Alg∆

K)
[RSpecGdR

(−)/GdR]
−−−−−−−−−−−→ Ho(SPr(K)|BGdR

).
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8.18. To construct the isomorphism between τ≤1YdR and the gerbe of fiber functors for CdR,

consider the site ÃffK,eGdR
. Let (R,ω) ∈ ÃffK,eGdR

be an object and let G̃ω denote the group

scheme Aut⊗(ω). The left and right translation actions of G̃ω on O eGω
induce an ind–isocrystal

L̃ω with R–module structure and right G̃ω–action on X/K and can form DR(L̃ω)U• as in

4.37. Let Ãps be the presheaf of differential graded algebras on ÃffK,eGdR
which to any (R,ω)

associates DR(L̃ω)U• and let Ã be the associated sheaf of differential graded algebras. By

the same argument as in the proof of 8.16 the algebra Ã is in G̃dR − d̃gaK .

8.19. There is a morphism of topoi

(8.19.1) r : (ÃffK,eGdR
)̃→ (ÃffK,GdR

)̃

defined as follows. The functor r∗ sends a sheaf F ∈ (ÃffK,GdR
) to the sheaf sending (R,ω) ∈

ÃffK,eGdR
to F (R,ω|DdR

). Note that the projection G̃dR → GdR is flat so if (R,ω) ∈ ÃffK,eGdR

then (R,ω|DdR
) ∈ ÃffK,eGdR

.

For a flat morphism ω : Spec(R)→ GdR, let G̃ω denote the fiber product Spec(R)×GdR
G̃dR.

Then the projection morphism G̃ω → G̃dR is flat, and the functor r∗ sends a sheaf G on

ÃffK,eGdR
to the sheaf

(8.19.2) (R,ω) 7→ Γ(ÃffR,eGω
, G).

For any A ∈ GdR−dgaK (resp. A ∈ GdR− d̃gaK) the pullback r∗A is an object of G̃dR−dgaK
(resp. G̃dR − d̃gaK). The functor r∗ clearly also preserves arbitrary equivalences and hence
induces a functor

(8.19.3) r∗ : Ho(GdR − dgaK)→ Ho(G̃dR − dgaK).

Similarly there is a natural functor

(8.19.4) r∗ : Ho(GdR − Alg∆
K)→ Ho(G̃dR − Alg∆

K).

As in 2.22 the functors 8.19.3 and 8.19.4 are part of a Quillen adjunction.

8.20. If f : BG̃dR → BGdR denotes the morphism of simplicial presheaves induced by the

natural morphism of gerbes G̃dR → GdR sending ω to ω|DdR
, then there are adjoint functors

(8.20.1) f! : SPr(K)|B eGdR
→ SPr(K)|BGdR

, (F → BG̃dR) 7→ (F → BG̃dR → BGdR),

(8.20.2) f ∗ : SPr(K)|BGdR
→ SPr(K)|B eGdR

, (F → BGdR) 7→ (F ×BGdR
BG̃dR → BG̃dR).

By [Ho, 1.1.11], the functor f ∗ preserves fibrations and trivial fibrations and hence the pair
(f!, f

∗) is a Quillen adjunction. It follows from the various constructions that the following
diagram commutes:

(8.20.3)

Ho(GdR − dgaK)op 2.21.2−−−→ Ho(GdR − Alg∆
K)op

[RSpecGdR
(−)/GdR]

−−−−−−−−−−−→ Ho(SPr(K)|BGdR
)

r∗

y r∗

y yRf∗

Ho(G̃dR − dgaK)op 2.21.2−−−→ Ho(G̃dR − Alg∆
K)op

[RSpec eGdR
(−)/eGdR]

−−−−−−−−−−−→ Ho(SPr(K)|B eGdR
).
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Let ỸdR ∈ Ho(SPr(K)B eGdR
) denote the stack obtained from the bottom row of 8.20.3 applied

to Ã (where Ã is defined as in 8.18). The natural map r∗A → Ã and the commutativity of
8.20.3 implies that there is a natural commutative diagram

(8.20.4)

ỸdR
π̃−−−→ BG̃dR

f

y y
YdR

π−−−→ BGdR

in Ho(SPr(K)).

Proposition 8.21. The map f is an equivalence and the map π̃ induces an equivalence

τ≤1ỸdR ' BG̃dR. In particular, there is a natural isomorphism τ≤1YdR ' BG̃dR in Ho(SPr≤1(K)).

Proof. It suffices to prove the proposition after replacing K by a field extension. In particular,
let k ⊂ k′ be a separable field extension (where k is the residue field of V ) such that Xo⊗V k
has a k′–valued point, and let V ′ be the ring of Witt vectors of k′. Then the base change
X ⊗V V ′ satisfies the assumptions of 8.13 and in addition there is a point x ∈ Xo(V ′).

Replacing V by V ′ and X by X ⊗V V ′ we may therefore assume that G̃dR is trivial with
trivialization defined by a point x ∈ Xo(K). In this case the proposition follows from the
proof of [Ol1, 2.27]. �

Construction of Yet.

8.22. The construction of Yet follows the same outline as the construction of YdR.

Fix a hypercover U• → X with each Un a disjoint union of very small étale X–schemes,
and let E → XK be a fixed choice of geometric generic points.

Consider the presheaf Bps of differential graded algebras on AffQp,Get which to any (R,ω)
associates GC(Vω, E) (see 5.42 for the notation), and let B be the associated sheaf of differ-

ential graded algebras. By the same reasoning as in the proof of 8.16 B lies in Get − d̃gaQp
.

The stack Yet is defined to be the image of B under the composite
(8.22.1)

Ho(Get − d̃gaQp
)

2.21.2 and 8.12.1−−−−−−−−−→ Ho(Get − Alg∆
Qp

)
[RSpecGet

(−)/Get]
−−−−−−−−−−→ Ho(SPr(Qp)|BGet).

By the same reasoning as in the proof of 8.21, there is a natural isomorphism τ≤1Yet ' BG̃et

in Ho(SPr≤1(Qp)).

The comparison isomorphism θ̃.

8.23. Let G eBcris(V ) denote the gerbe GdR ⊗K B̃cris(V ) ' Get ⊗Qp B̃cris(V ).

To construct the desired equivalence θ̃, it suffices in the notation of 8.15 and 8.22 to
construct an equivalence of sheaves of differential graded algebras between A|Aff eBcris(V ),G eBcris(V )

and B|Aff eBcris(V ),G eBcris(V )

.
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Lemma 8.24. For any object (R,ω) ∈ Aff eBcris(V ),G eBcris(V )
and very small étale U → X there

is a natural isomorphism

(8.24.1) Lω(Bcris(U
∧))⊗Bcris(V )⊗KBcris(V ),∆ Bcris(V ) ' Vω,U∧

K
⊗Bcris(V ) Bcris(U

∧)

of Galois modules on U∧
K
. This isomorphism is functorial in U .

Proof. Choose a geometric generic point Spec(Ω)→ UK and view Bcris(U
∧) (resp. Vω,U∧

K
) as a

representation of π1(U
o
K
, Spec(Ω)). Let ωdR

Bcris(U∧) and ωet
Bcris(U∧) be as in 7.11. By 7.12 there is a

natural isomorphism between these two fiber functors for DdR⊗KBcris(V ) ' Det⊗QpBcris(V ).
Define schemes

(8.24.2) IdR := Isom⊗(ωdR
Bcris(U∧)⊗Bcris(U∧) (Bcris(U

∧)⊗Bcris(V )R), ω⊗R (R⊗Bcris(V )Bcris(U
∧))),

(8.24.3) Iet := Isom⊗(ωet
Bcris(U∧)⊗Bcris(U∧) (Bcris(U

∧)⊗Bcris(V )R), ω⊗R (R⊗Bcris(V )Bcris(U
∧))).

The isomorphism in 7.12 induces an isomorphism IdR ' Iet of affine schemes over R. To
prove the lemma it suffices to show that the coordinate ring of IdR (resp. Iet) is canonically
isomorphic to the left hand side (resp. right hand side) of 8.24.1.

By 7.10, the coordinate ring of IdR is isomorphic to

(8.24.4) (ωdR
Bcris(U∧) ⊗Bcris(U∧) (Bcris(U

∧)⊗Bcris(V ) R))(Lω ⊗R (R⊗Bcris(V ) Bcris(U
∧)))

which equals
(8.24.5)
(Lω(Bcris(U

∧))⊗Bcris(V ) (R⊗Bcris(V ) Bcris(U
∧)))⊗((R⊗Bcris(V )Bcris(U∧))⊗2,∆ (R⊗Bcris(V ) Bcris(U

∧)).

We leave to the reader the task of showing that this expression is canonically isomorphic to
Lω(Bcris(U

∧))⊗Bcris(V )⊗Bcris(V ) Bcris(V ) as desired.

Similarly, the coordinate ring of Iet is isomorphic to

(8.24.6) (Vω,Ω ⊗Bcris(V ) (Bcris(U
∧)⊗Bcris(V ) R))⊗(R⊗Bcris(V )Bcris(U∧))⊗2 (R⊗Bcris(V ) Bcris(U

∧))

which is canonically isomorphic to Vω,Ω ⊗Bcris(V ) Bcris(U
∧). �

8.25. Let Aps
2 (resp. Aps

3 ) denote the presheaf of differential graded algebras on AffK,GdR

which to any (R,ω) associates the differential graded R–algebra (notation as in 4.37)

(8.25.1) DR(R•ω)U• (resp. R•ω(((U•,MU•)/K)cris)),

and let A2 (resp. A3) denote the associated sheaves of differential graded algebras. The
formation of the diagram 4.37.1 is functorial in (R,ω) so there is a natural diagram of sheaves
of differential graded algebras

(8.25.2) A3 −−−→ A2 ←−−− A.

Finally define Qps to be the presheaf of differential graded algebras on AffBcris(V ),GBcris(V )

which to any (R,ω) associates the differential graded algebra obtained by applying the functor
of Thom–Sullivan cochains to the cosimplicial differential graded algebra

(8.25.3) [n] 7→ GC(U∧o
n,K

, ÊU ,R•ω(Bcris(U
∧)))⊗Bcris(V )⊗Bcris(V ),∆ Bcris(V ),
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and let Q be the associated sheaf of differential graded algebras. By 8.24 and the argu-
ment of 6.17 there is a natural diagram of presheaves of differential graded algebras on
AffBcris(V ),GBcris(V )

(8.25.4) Bps −−−→ Qps ←−−− Aps
3 −−−→ A

ps
2 ←−−− Aps,

and hence also a diagram of sheaves of differential graded algebras on AffBcris(V ),GBcris(V )

(8.25.5) B a−−−→ Q b←−−− A3
c−−−→ A2

d←−−− A.

Lemma 8.26. The morphisms a, b, c, and d restrict to equivalences on Ãff eBcris(V ),G eBcris(V )
. In

particular, there is natural isomorphism

(8.26.1) B|fAff eBcris(V ),G eBcris(V )

' A|fAff eBcris(V ),G eBcris(V )

in Ho(G eBcris(V ) − d̃ga eBcris(V )).

Proof. First observe that if k → k′ is a finite extension of fields, where k is the residue field
V , and if V ′ is the ring of Witt vectors of k′ then we obtain the same sheaves of algebras
on Aff eBcris(V ),G eBcris(V )

when we apply the above construction to X ⊗V V ′. We may therefore

assume that there exists a point x ∈ Xo(V ) as in 7.1.

Let ωx ∈ GBcris(V )(Bcris(V )) be the fiber functor defined by the point x and the isomorphism
in 7.12. Any object (R,ω) fpqc–locally admits a flat morphism to (Bcris(V ), ωx). Now it
follows from the construction of the algebras that if Bcris(V ) → R is a flat morphism then
the horizontal arrows in the following diagram

(8.26.2)

Bps(Bcris(V ), ωx)⊗Bcris(V ) R −−−→ Bps(R,ωx|R)y y
Qps(Bcris(V ), ωx)⊗Bcris(V ) R −−−→ Qps(R,ωx|R)x x
Aps

3 (Bcris(V ), ωx)⊗Bcris(V ) R −−−→ Aps
3 (R,ωx|R)y y

Aps
2 (Bcris(V ), ωx)⊗Bcris(V ) R −−−→ Aps

2 (R,ωx|R)x x
Aps(Bcris(V ), ωx)⊗Bcris(V ) R −−−→ Aps(R,ωx|R)
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are equivalences. Thus it suffices to show that the maps in the diagram

(8.26.3)

Bps(Bcris(V ), ωx) −−−→ Qps(Bcris(V ), ωx)x
Aps

3 (Bcris(V ), ωx)y
Aps(Bcris(V ), ωx) −−−→ Aps

2 (Bcris(V ), ωx)

induces equivalences after tensoring with B̃cris(V ). This follows from the observation that this
diagram is equal to the diagram obtained by applying the functor of Thom–Sullivan cochains
to the diagram 6.17.6. �

This completes the construction of θ̃.

P–adic Hodge theory for spaces of paths

In the following 8.27–8.32 we prove 1.11.

8.27. Let x, y ∈ Xo(K) be two points as in 7.1 giving rise to fiber functors ωdR
x , ωdR

y , and
ωet
x , ωet

y and define

(8.27.1) P dR
x,y := Isom⊗(ωdR

x , ωdR
y ), P et

x,y := Isom⊗(ωet
x , ω

et
y ).

The scheme P dR
x,y (resp. P et

x,y) is a torsor under π1(CdR, ωx) (resp. π1(Cet, ωx)) and the natural

action of Gal(K/K) on ωet
x and ωet

y induces an action of Gal(K/K) on P et
x,y compatible with

the action on π1(Cet, x). Similarly, there is a natural semi–linear Frobenius automorphism
ϕPdR

x,y
of P dR

x,y compatible with the Frobenius automorphism on π1(CdR, ωx).

8.28. For a site C let SPr∗‘
∗(C) denote the category of simplicial presheaves F with a map

∗
∐
∗ → F . By the same argument as in [Ho, 1.1.8] the model category structure on SPr(C)

induces a natural model category structure on SPr∗‘
∗(C). For F ∈ SPr∗‘

∗(C) we denote
by xF : ∗ → F (resp. yF : ∗ → F ) the point obtained from the first (resp. second) inclusion
∗ ↪→ ∗

∐
∗.

Define PxF ,yF
to be the sheaf associated to the presheaf which to any U ∈ C associates the

set of homotopy classes of paths in |F (U)| between xF and yF . If π0(F ) = {∗}, then the sheaf
PxF ,yF

is naturally a torsor under π1(F, xF ). In particular, if F → F ′ is an equivalence in
SPr∗‘

∗(C) then the induced map PxF ,yF
→ PxF ′ ,yF ′

is an isomorphism. Thus the association
F 7→ PxF ,yF

passes to the homotopy category Ho(SPr∗‘
∗(C)). Note also that PxF ,yF

depends
only on τ≤1F .

If G is a gerbe on C and x, y ∈ G are two global objects, then BG is naturally an object of
SPr∗‘

∗(C), and there is a natural isomorphism

(8.28.1) PxBG ,yBG ' IsomG(x, y).

8.29. The points x, y ∈ Xo(K) give YdR (resp. Yet) the structure of an object of Ho(SPr∗‘
∗(K))

(resp. Ho(SPr∗‘
∗(Qp))) as follows.

Let GdR (resp. Get) denote the pro–reductive completion of π1(CdR, x) (resp. π1(Cet, x)),
and let L(OGdR) (resp. V(OGet)) be the ind–F–isocrystal (resp. ind–smooth sheaf) obtained
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from x as in 4.35 (resp. 5.31). Denote by P
dR

x,y (resp. P
et

x,y) the scheme

(8.29.1) Isom⊗(ωdR
x |DdR

, ωdR
y |DdR

), (resp. Isom⊗(ωet
x |Det , ω

et
y |Det)).

As in 7.10, there is a natural isomorphism

(8.29.2) ωdR
y (L(OGdR)) ' O

P
dR
x,y

(resp. ωet
y (V(OGet)) ' O

P
et
x,y

)

compatible with the action of GdR (resp. Get).

It follows that RΓcris(L(OG)) (resp. RΓet(V(OG))) has the map to K (resp. Qp) in-
duced by x and also an equivariant map to O

P
dR
x,y

(resp. Oet
Px,y

). Applying the functor

[RSpecGdR(−)/GdR] (resp. [RSpecGet(−)/Get]) and noting that [RSpecGdR(O
P

dR
x,y

)/GdR] (resp.

[RSpecGet(OP et
x,y

)/Get]) is isomorphic to ∗ we see that YdR (resp. Yet) is naturally an object

of Ho(SPr∗‘
∗(K)) (resp. Ho(SPr∗‘

∗(Qp))).

Note also that the F–isocrystal structure on YdR extends naturally to an F–isocrystal
structure in the category Ho(SPr∗‘

∗(K)). Similarly, there is a natural action of Gal(K/K)
on Yet in Ho(SPr∗‘

∗(Qp)).

Proposition 8.30. There is a natural isomorphism

(8.30.1) PxYdR
,yYdR

' P dR
x,y (resp. PxYet ,yYet

' P et
x,y)

compatible with the action of Frobenius (resp. Gal(K/K)).

Proof. We give the proof of the isomorphism PxYdR
,yYdR

' P dR
x,y leaving the proof of the other

isomorphism to the reader (using the same argument).

Let ỸdR be as in 8.18. The same argument as in 8.29 gives ỸdR the structure of an

object of Ho(SPr∗‘
∗(K)) such that the equivalence f : ỸdR → YdR of 8.21 is an equiva-

lence in Ho(SPr∗‘
∗(K)). Furthermore, τ≤1ỸdR is by 8.21 isomorphic in Ho(SPr∗‘

∗(K)) to
Bπ1(CdR, x) with the second point given by the quotient map

(8.30.2) [P dR
x,y/π1(CdR, x)] −→ Bπ1(CdR, x).

This is exactly the point defined by y. The proposition follows from this and the discussion
in 8.28. �

8.31. The equivalence 7.4.1 together with the isomorphisms in 7.12 induces a natural iso-
morphism

(8.31.1) P
dR

x,y ⊗K B̃cris(V ) ' P
et

x,y ⊗Qp B̃cris(V )

compatible with the Frobenius and Galois actions. We leave to the reader the verification that

the comparison isomorphism 7.16 is compatible with this second point defined by P
dR

x,y and

P
et

x,y (this essentially amounts to verifying that the comparison isomorphism is functorial).

We thus obtain an isomorphism YdR⊗K B̃cris(V ) ' Yet⊗Qp B̃cris(V ) in Ho(SPr∗‘
∗(B̃cris(V )))

compatible with the action of Frobenius and Galois. Combining this with 8.30 we obtain an
isomorphism

(8.31.2) P dR
x,y ⊗K B̃cris(V ) ' P et

x,y ⊗Qp B̃cris(V )
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compatible with the action of Frobenius and Galois. By [Ol3, 15.2] applied to the coordinate
rings of P dR

x,y and P et
x,y this isomorphism is induced by an isomorphism

(8.31.3) P dR
x,y ⊗K Bcris(V ) ' P et

x,y ⊗Qp Bcris(V )

compatible with Frobenius and Galois actions. The following lemma 8.32 combined with 7.19
now proves 1.11. �

Lemma 8.32. The Galois representation OP et
x,y

is a direct limit of finite–dimensional sub–
Galois representations.

Proof. Write OPdR
x,y

as a direct limit lim−→j
Wj of finite dimensional subspaces, and let Vj :=

(Wj⊗K Bcris(V ))∩OP et
x,y

. Then as in the proof of 7.18, Vj is finite dimensional, Galois stable,
and OP et

x,y
= lim−→j

Vj. �

9. Tangential base points

In this section we explain how the point x ∈ Xo(V ) used in the constructions of this paper
can be replaced by a tangential base point [De2, §15]. We assume the reader is familiar with
the basics of the Kummer étale topology (an excellent summary is [Il2]).

9.1. Let X/V and D ⊂ X be as in 1.1, and fix a point b ∈ D(V ). We write Mb for the
log structure on b = Spec(V ) obtained from the log structure MX on X by pullback. Let
(bk,Mbk) denote the reduction of (b,Mb) modulo p (so bk = Spec(k)).

Throughout this section we make the following assumption.

Assumption 9.2. The sheaf M b on the étale site of b is trivial.

Remark 9.3. In general, this assumption holds after making a finite étale extension V → V ′.
For if b̄→ b is a geometric point, then the action of π1(b, b̄) on M b,b̄ ' Nr must preserve the

irreducible elements. It follows that the action of π1(b, b̄) on M b,b̄ factors through a finite
quotient which gives the desired extension V → V ′.

De Rham tangential base point.

9.4. The closed immersion (bk,Mbk) ↪→ (b,Mb) defines an object of the convergent site of
(bk,Mbk)/V and hence for any isocrystal E on (bk,Mbk)/K we obtain a module with integrable
connection (Eb, N) on the generic fiber (Spec(K),MK)/K of (b,Mb) (note that since (b,Mb) is
not smooth over V the association E 7→ (Eb, N) does not define an equivalence of categories).
The natural map d log : Mb → Ω1

(b,Mb)/V
defines a canonical isomorphism Ω1

(b,Mn)/V 'M
gp

b ⊗Z

V , and the differential d : V → Ω1
(b,Mb)/V

is zero. Thus the connection N is simply a K–linear

map Eb → Eb ⊗Z M
gp

b and the integrablity condition on N amounts to the condition that for
any two elements ρ, ρ′ ∈ Hom(M

gp

b ,Z) the induced endomorphisms

(9.4.1) Nρ, Nρ′ : Eb −→ Eb
commute. We say that E is unipotent if the endomorphisms Nρ are nilpotent for all ρ ∈
Hom(M

gp

b ,Z) (see 9.8 below for a different interpretation of this condition).
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Let Vnilp((bK ,MbK )/K) denote the category of pairs (E , N) consisting of a K–vector space

E with a linear map E → E ⊗Z M
gp

b such that the endormorphisms Nρ defined above are all
nilpotent and commute.

Proposition 9.5. The functor sending E to (Eb, N) induces an equivalence between the cat-
egory of unipotent isocrystals on (bk,Mbk)/K and the category Vnilp((bK ,MbK )/K)

Proof. Choose an isomorphism Mb ' V ∗ ⊕Nr. Let Tb denote the completion at the origin of
the affine space Spec(Sym• Ω1

(b,Mb)/Spec(V )) and let MTb
be the log structure on Tb obtained

from the map Nr → OTb
sending the i–th standard generator ei to d log(ei) ∈ Ω1

(b,Mb)/Spec(V ),

so that there is a closed immersion (b,Mb) ↪→ (Tb,MTb
).

Since (Tb,MTb
) is formally log smooth over V , evaluation on the widening (bk,Mbk) ↪→

(Tb,MTb
) induces a functor from the category of unipotent isocrystals on (bk,Mbk)/K to the

category of modules with integrable connection (E ,∇) on (Tb,K ,MTb,K
). We call a module with

integrable connection (E ,∇) on (Tb,K ,MTb,K
) unipotent if for any 1 ≤ i ≤ r the endomorphism

(9.5.1) ∇i : E → E

defined by the dual of d log(ei) induces a nilpotent endomorphism of E ⊗ k(bK).

For any unipotent isocrystal E on (bk,Mbk)/K with associated module with integrable con-
nection (E ,∇) on (Tb,K ,MTb,K

), the comparison between crystalline and de Rham cohomology
gives an isomorphism

(9.5.2) H∗cris((bk,Mbk)/K,E) ' H∗dR((Tb,K ,MTb,K
), (E ,∇)).

Looking at H0 and H1, it follows that the functor E 7→ (E ,∇) is fully faithful with essential
image closed under extensions. In particular, we obtain an equivalence of categories between
the category of unipotent isocrystals on (b,Mb)/K and the category of unipotent modules
with integrable connection on (Tb,K ,MTb,K

).

A pair (E , N) as in the proposition defines a module with connection (E ⊗ OTb,K
,∇N) by

taking V to be the trivial vector bundle E ⊗K OTb,K
and ∇ the connection defined by

(9.5.3) ∇(e⊗ 1) = N(e)⊗ 1 ∈ E ⊗Z M
gp

b ⊗Z OTb,K
' E ⊗K Ω1

Tb,K/K
.

Here we use the isomorphism Ω1
Tb,K/K

' OTb,K
⊗Z M

gp

b provided by the map d log.

Lemma 9.6. The functor (E , N) 7→ (E ⊗ OTb,K
,∇N) is fully faithful.

Proof. Since the functor is compatible with tensor products and duals it suffices to show that
for (E , N) ∈ Vnilp((bK ,MbK )/K) the natural reduction map

(9.6.1) H0
dR(E ⊗ OTb,K

,∇N)→ Ker(N)

is an isomorphism.

If e ∈ Ker(N) then ∇(e⊗ 1) = 0, so 9.6.1 is clearly surjective.

To see that 9.6.1 is injective proceed as follows. Since the operators Nρ commute and are
nilpotent, there exists a basis e1, . . . , en for E such that for each i we have N(ei) =

∑
j<i ωijej
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for some ωij ∈ Ω1
(bK ,MbK

)/K . If
∑

i gei is a horizontal vector, then we find that

(9.6.2) 0 = ∇(
∑
i

giei) =
∑
i

(dgiei + gi
∑
j<i

ωijej).

Using descending induction in j one sees from this formula that dgi lies in K ⊗Z M
gp

bK
⊂

Ω1
(Tb,K ,MTb,K

)/K for every i. On the other hand, if I ⊂ OTb,K
denotes the ideal of the origin,

then the image of d : OTb,K
→ Ω1

(Tb,K ,MTb,K
)/K is contained in I · Ω1

(Tb,K ,MTb,K
)/K . This implies

that all the functions gi are constant, and hence the map 9.6.1 is injective. �

Let (E ,∇) be a module with integrable connection on (Tb,K ,MTb,K
)/K with nilpotent

residue, and fix a basis e1, . . . , en for Eb such that for every i ∈ [1, n] we have N(ei) =∑
j<i ωijej for some ωij ∈ K ⊗Z M

gp

b .

Lemma 9.7. There exists a unique basis {ẽi} for E reducing to the basis {ei} for Eb such
that ∇(ẽi) =

∑
j<i ωij ẽj ∈ E ⊗Z M

gp

b ' E ⊗ Ω1
(Tb,K ,MTb,K

)/K for every i ∈ [1, n].

Proof. Let I ⊂ OTb,K
be the ideal defining bK and observe that the differential sends I to

I ⊗ Ω1
(Tb,K ,MTb,K

)/K . It follows that the connection ∇ induces for all m ≥ 0 a map, which we

denote by the same letter

(9.7.1) ∇ : E/ImE −→ (E/ImE)⊗ Ω1
(Tb,K ,MTb,K

)/K .

To prove the existence of the desired basis {ẽi} it suffices to show that if a basis {ẽi} exists
with the desired properties modulo Im then after adding suitable elements of ImE to this
basis we obtain a basis that works also modulo Im+1. For then passing to the limit in m
yields the desired basis for E .

So assume given a basis {ẽi} with the desired properties modulo Im. We show by induction
on i = 1, . . . , n that we can modify ẽi so that ∇(ẽi) is congruent to

∑
j<i ωij ẽj modulo Im+1E .

For the case i = 1, note that since e1 ∈ Ker(N) we can write ∇(ẽ1) =
∑

i λiei with
λi ∈ ImΩ1

(Tb,K ,MTb,K
)/K . Since ∇ is integrable, we have

(9.7.2) 0 = ∇2(ẽ1) =
∑
i

(dλiẽi + λi ∧ (
∑
j<i

ωij ẽj)).

The coefficient of ẽj in this expression is equal to

(9.7.3) dλj +
∑
i>j

λi ∧ ωij.

In particular if λi = 0 for i > j0 then dλj0 = 0. In this case, λj0 defines a closed form in
Ω1
Tb,K/K

(without log poles) which is exact by the usual Poincare lemma [B-O, proof of 6.12].

Let ηj0 ∈ OTb,K
be a function with dηj0 = λj0 . Note that since the differential d preserves

the ideal I we can choose ηj0 ∈ Im. Set ẽ′1 := ẽ1 − ηj0 ẽj0 . Then if ∇(ẽ′1) = λ′1ẽ
′
1 +

∑
i>1 λ

′
iẽi

we have λ′i = 0 for i > j0 − 1. Proceeding by descending induction on j0 we obtain the case
i = 1.
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Next we modify ẽi assuming that ∇(ẽs) =
∑

j<s ωsj ẽj for s < i. Write

(9.7.4) ∇(ẽi) =
∑
j<i

ωij ẽj +
∑
j

λj ẽj

with λj ∈ ImΩ1
(Tb,K ,MTb,K

)/K . Then by induction and using the fact that the operators Nρ

commute, we have ∇(
∑

j<i ωij ẽj) = 0, so again we find that

(9.7.5) dλj +
∑
i>j

λj ∧ ωij = 0.

Repeating the inductive argument used in the case i = 1, we obtain the desired modification
of ẽi.

Finally we prove the uniqueness of the basis {ẽi}. For this assume {ẽ′i} is another basis
with the same properties. Then ẽ1 − ẽ′1 is closed and in IE . Write ẽ1 − ẽ′1 =

∑
i giẽi with

gi ∈ I. Then

(9.7.6) ∇(ẽ1 − ẽ′1) =
∑
i

(dgiẽi + gi
∑
j<i

ωij ẽj).

If not all gi = 0, then there exists a largest integer i0 for which gi0 6= 0. The above formula
then implies that dgi0 = 0, which is impossible since d is injective on I. Consequently all
gi = 0 and ẽ1 = ẽ′1.

Looking at the module with integrable connection E/(ẽ1) and using induction on the rank,
it follows that for each i ≥ 2 there exists gi ∈ I so that ẽi = ẽ′i + giẽ1. By induction on k we
then show that ẽi = ẽ′k. If the result holds for k < k0, then we have

(9.7.7) ∇(ẽk0) =
∑
j<k0

ωk0j ẽj = ∇(ẽ′k0),

and hence ∇(gk0 ẽ1) = dgk0 ẽ1 = 0. Again since d is injective on I it follows that gk0 = 0 and
hence ẽk0 = ẽ′k0 . This completes the proof of the uniqueness and the lemma. �

Combining 9.6 and 9.7 we obtain 9.5. �

Corollary 9.8. If E is a unipotent isocrystal on (bk,Mbk)/K, then there exists a canonical
filtration Fil on E by sub–isocrystals such that the associated graded grFilE is a direct sum of
trivial isocrystals.

Proof. If (E , N) is the object in Vnilp((bK ,MbK )/K) associated to E, then since the operators
Nρ commute and are nilpotent there exists a canonical filtration FilE on E defined inductively
by setting Fil0E := Ker(N) and FiliE equal to the inverse image of Fil0E/Fili−1 . This filtration on

E combined with 9.5 induces a canonical filtration on E with the desired properties. �

Corollary 9.9. The category of unipotent isocrystals on (bk,Mbk)/K is Tannakian with fiber
functor given by sending an isocrystal E to its value on (b,Mb). The fundamental group of
this Tannakian category is canonically isomorphic to the vector group scheme GdR over K
sending a K–algebra R to R⊗Z Hom(M

gp

b ,Z).
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Proof. The first statement follows from 9.5 since the category Vnilp((bK ,MbK )/K) is clearly
Tannakian.

To calculate the fundamental group π1, choose a basis e1, . . . , er for M
gp

b and let ρ1, . . . , ρr
be the corresponding dual basis. The category Vnilp((bK ,MbK )/K) is then identified with
the category of K–vector spaces E with commuting nilpotent operators Nρ1 , . . . , Nρr . Expo-
nentiating these operators we see that the category Vnilp((bK ,MbK )/K) is equivalent to the
category of vector spaces E with commuting unipotent automorphisms Uρ1 , . . . , Uρr . This
category is in turn equivalent to the category of representations of Gr

a ' GdR. We leave to
the reader the verification that this isomorphism π1 ' GdR is independent of the choice of
basis for M

gp

b . �

9.10. Multiplication by p on Mb induces a lift of Frobenius F̃ : (b,Mb) → (b,Mb). If E is
an isocrystal on (bk,Mbk)/K with corresponding object (E , N) ∈ Vnilp((bK ,MbK )/K), then
F ∗E corresponds to the pair (E ⊗K,σ K, pN). In particular, pullback by Frobenius induces
an auto–equivalence of the category of unipotent isocrystals on (bk,Mbk)/K. If GdR ' K ⊗Z
Hom(M

gp

b ,Z) denotes the fundamental group of this category, then it follows from the proof
of 9.9 that the isomorphism FGdR

: GdR → GdR ⊗K,σ K induced by Frobenius is equal to

the map induced by multiplication by p on Hom(M
gp

b ,Z), or equivalently the semi–linear
automorphism pσ on K.

Denote by K(1) the F–isocrystal with underlying vector space K and semi–linear auto-
morphism pσ. Then the above discussion implies that GdR is isomorphic as a vector group
scheme with semi–linear automorphism to K(1)⊗Z Hom(M

gp

bK
,Z).

Corollary 9.11. The functor

(9.11.1) ωdR
b : Vnilp(XK ,MXK

) −→ VecK

sending a module with integrable log connection (E ,∇) to E(b) is a fiber functor.

Proof. It suffices to verify that the functor is faithful and exact. Let X∗K be the completion
of XK along b. The functor sending (E ,∇) to the pullback (E∗,∇∗) of (E ,∇) to X∗K is exact
and faithful, and the residue of ∇∗ is nilpotent. The result therefore follows from 9.7. �

9.12. For a Tannakian subcategory C ⊂ Vnilp(XK ,MXK
), we write π1(C, b) for the Tannaka

dual of C with respect to the fiber functor 9.11.1.

If (E,ϕ) is an F–isocrystal, and CdR is as in 7.1, we can by 4.37 construct a natural pointed
stack XCdR

∈ Ho(SPr∗(K)) with semi–linear Frobenius automorphism using the fiber functor
9.11.1. Moreover, the fundamental group of XCdR

is naturally isomorphic to π1(CdR, b) and
the cohomology of local systems on XCdR

is isomorphic to crystalline cohomology (this follows
from the same reasoning used in [Ol1].

Étale tangential base point.

9.13. Let (bK ,MbK
) be the base change of (b,Mb) to Spec(K).

Choose an isomorphism MbK ' K∗ ⊕M bK corresponding to a section of the projection
MbK → M bK (note that here we are using 9.2), and define a log geometric point (b̄,Mb̄) →
(bK ,MbK

) in the sense of [Il2, 4.1] as follows. The scheme b̄ is equal to Spec(K). Let
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P ⊂M
gp

bK
⊗Z Q be the submonoid of elements m ∈M gp

bK
⊗Q for which there exists an integer

n so that n · m is in M bK , and let Mb̄ be the monoid K
∗ ⊕ P with map to K sending all

nonzero elements of P to 0. The map to (bK ,MbK
) is induced by the natural map M bK

→ P
and the above splitting of Mb.

Note that since the splitting MbK ' K∗ ⊕ M bK is defined over K and not K, for any
σ ∈ Gal(K/K) there is a natural commutative diagram

(9.13.1)

(b̄,Mb̄)
σ̃−−−→ (b̄,Mb̄)y y

(bK ,MbK
)

σ−−−→ (bK ,MbK
),

where the map σ is the natural action on (bK ,MbK
). In particular, the group Gal(K/K) acts

on the log étale fundamental group π1((bK ,MbK
), (b̄,Mb̄)) [Il2, §4].

Lemma 9.14. There is a canonical isomorphism between π1((bK ,MbK
), (b̄,Mb̄)) and

(9.14.1) Hom(M bK ,Z)⊗Z Ẑ(1) := (lim←−
n

Hom(M bK , µn(K))),

compatible with the action of Gal(K/K), where Gal(K/K) acts on the right hand side of
9.14.1 via the natural action on µn(K).

Proof. This is discussed in [Il2, 4.7]. �

9.15. For an integer n ≥ 1 let LCZ/(n)(bK ,MbK
) denote the category of locally constant

sheaves of Z/(n)–modules of finite type on the Kummer étale site of (bK ,MbK
), and define

the category of smooth Qp–sheaves on (bK ,MbK
) to be the category

(9.15.1) SmQp(bK ,MbK
) := (lim←−

r

LCZ/(pr)(bK ,MbK
))⊗Zp Qp.

Taking the stalk at (b̄,Mb̄) identifies the category SmQp(bK ,MbK
) with the category of con-

tinuous Qp–representations of π1((bK ,MbK
), (b̄K ,Mb̄K

)).

Let Smunip
Qp

(bK ,MbK
) be the category of smooth Qp–sheaves L which admit an exhaus-

tive filtration F • such that the successive quotients F i/F i+1 are trivial sheaves. The cate-

gory Smunip
Qp

(bK ,MbK
) is equivalent to the category of unipotent representations of the group

π1((bK ,MbK
), (b̄,Mb̄)). It follows from this that Smunip

Qp
(bK ,MbK

) is Tannakian with fiber func-
tor sending a sheaf L to L(b̄,Mb̄)

. Furthermore, the Tannaka dual Get is canonically isomorphic

to the vector group scheme over Qp defined by the Qp–vector space Hom(M
gp

bK
,Z)⊗Qp(1).

For any σ ∈ Gal(K/K), pullback by σ : (bK ,MbK
) → (bK ,MbK

) induces an auto–

equivalence of Smunip
Qp

(bK ,MbK
) compatible with the fiber functor defined by (b̄,Mb̄). Under

the isomorphism Get ' Hom(M
gp

bK
,Z) ⊗ Qp(1) the induced action of Gal(K/K) on Get is

simply the action of Gal(K/K) on Hom(M
gp

bK
,Z)⊗Qp(1) described in 9.14.

Corollary 9.16. There is a natural isomorphism ιG : GdR ⊗K Bcris(V ) ' Get ⊗Qp Bcris(V )
compatible with the action of Galois and Frobenius.
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Proof. By the discussion in 9.10 and 9.15 it suffices to exhibit a natural association between
K(1) and Qp(1). This can be done as follows. Let β : Qp(1) ↪→ Bcris(V ) be the map defined
in [Fo4, 2.3.4]. Then the Galois invariants of Qp(1) ⊗Qp Bcris(V ) are equal to Qp(1) ⊗Qp K ·
β(Qp(1)) ⊂ Qp(1)⊗Qp Bcris(V ) with Frobenius action given by ξ ⊗ η 7→ ξ ⊗ pη. If ξ ∈ Qp(1)
is a generator, we therefor obtain an isomorphism

(9.16.1) (Qp(1)⊗Qp Bcris(V ))Gal(K/K) ' Qp(1)⊗Qp K · β(Qp(1)) ' K(1)

by sending ξ ⊗ β(ξ−1) to 1 ∈ K. Moreover, this isomorphism is independent of the choice of
the generator ξ. �

9.17. By [Il2, 4.7 (c)], restriction induces an equivalence of categories between the category
of finite Kummer étale log schemes over (XK ,MXK

) and the category of finite étale schemes
over Xo

K
. By passing to the limit it follows that the category of smooth Qp–sheaves (defined

as in 9.15) on the log étale site of (XK ,MXK
) is equivalent via the restriction functor to the

category of smooth Qp–sheaves on Xo
K

. In particular, for a Tannakian category C of smooth
Qp–sheaves on Xo

K
, there is a natural fiber functor obtained from the composite

(9.17.1) ωet
b : (smooth Qp–sheaves on Xo

K
) ' SmQp(XK ,MXK

)
L7→L(b̄,Mb̄)

−−−−−−→ VecQp .

We denote the corresponding group scheme by π1(C, b̄).

9.18. We can also modify the construction of the stack XCet in 5.31 to the situation of the
fiber functor 9.17.1 instead of that defined by a point in Xo.

For this let E → XK be a finite collection of geometric generic points whose image meets

every connected component of XK . For each point e ∈ E, let X̃o
e → XK be the normalization

of XK in the maximal subfield of k(E) unramified over Xo
K

. The scheme X̃o
e is naturally

a projective limit of finite étale Xo
K

–schemes, and hence by the equivalence [Il2, 4.7 (c)] is

obtained from a projective system (X̃e,M eXe
) of Kummer étale coverings of (XK ,MXK

). In

particular, the pullback of (X̃e,M eXe
) to (b̄,Mb̄) is a disjoint union of log schemes isomorphic

to (b̄,Mb̄). Define specialization data for E relative to b to be a collection of sections of the
maps

(9.18.1) (X̃e,M eXe
)×(XK ,MX

K
) (b̄,Mb̄)→ (b̄,Mb̄),

one for each e ∈ E.

Note that by [Il2, 4.6], any two choices of specialization data differ by the action of an

element in
∏

e∈E π1(X
o
K
, e) on the log schemes {(X̃e,M eXe

)}.
Using the same method discussed in 5.31, we then obtain a pointed stackXCet ∈ Ho(SPr∗(Qp))

which is independent of the choice of specialization data, whose fundamental group is π1(Cet, b),
and whose cohomology groups compute étale cohomology.

Pullback of associations and comparison.

9.19. Let

(9.19.1) (Spec(K),MK)→ (bK ,MbK )
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be a log geometric point, and define MV to be the log structure on Spec(V ) given by

(9.19.2) MV := {m ∈MK |nm ∈ V
∗ ⊕V ∗ Mb for some positive n ∈ Z}.

Here we viewMb ⊂MbK as a submonoid ofMK . If we choose an isomorphismMK ' K
∗⊕Qr

≥0

for some r, where Q≥0 ⊂ Q denotes the submonoid of nonnegative rational numbers, then it

follows from the definition that MV ' V
∗ ⊕Qr

≥0 with the map to V obtained by sending all
nonzero elements of Qr

≥0 to 0.

Denote by (Spec(V /pV ),MV /pV ) the reduction modulo p. For each positive integer n define

(9.19.3)
1

pn
MV/pV := {m ∈MV /pV |pnm ∈MV/pV },

where we view MV/pV as a submonoid of MV /pV . Denote by N the inverse limit

(9.19.4) N := lim←−
n

1

pn
MV/pV ,

where the inverse limit is taken with respect to the multiplication by p maps 1
pn+1MV/pV →

1
pnMV/pV . The maps

(9.19.5)
1

pn
MV/pV −→ V /pV

induced by the map MV → V define a map of monoids

(9.19.6) N → S := lim←−V /pV ,

where the maps V /pV → V /pV on the right hand side are the Frobenius maps. Let MAcris(V )

be the log structure on Spec(Acris(V )) associated to the prelog structure

(9.19.7) N −−−→ S
t−−−→ W (S) −−−→ Acris(V ),

where t denotes the Teichmuller lifting. It follows from the construction that the diagram

(9.19.8)

MAcris(V )
d−−−→ Mby y

Acris(V )
θ−−−→ V

commutes, where d is the map induced by the projection of N onto Mb.

9.20. If we choose an isomorphism MV ' V
∗ ⊕Qr

≥0, then N is isomorphic to

(9.20.1) (lim←−(V /pV )∗)⊕ Nr.

From this it follows that the log structure MAcris(V ) admits a chart by Nr and that the
morphism of log schemes

(9.20.2) (Spec(V ),Mb|V )→ (Spec(Acris(V )),MAcris(V ))

induced by 9.19.8 is a log closed immersion.
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9.21. The construction of the log structure MAcris(V ) is functorial in (Spec(K),MK). This

implies that for any g ∈ π1((bK ,MbK ), (Spec(K),MK)) there is a natural commutative dia-
gram

(9.21.1)

(Spec(V ),Mb|V ) −−−→ (Spec(Acris(V )),MAcris(V ))

g

y yg

(Spec(V ),Mb|V ) −−−→ (Spec(Acris(V )),MAcris(V )),

where the action of g on the rings Acris(V ) and V is given by the action of the image of g in
Gal(K/K). The usual action of Frobenius on Acris(V ) also extends to an action on the log
scheme (Spec(Acris(V )),MAcris(V )) by considering the multiplication by p map on N .

It follows that for any log geometric point (b̄,Mb̄)→ (bK ,MbK ) we obtain an enlargement

(9.21.2) (Spec(V /pV ),Mb|V /pV ) ↪→ (Spec(Acris(V )),MAcris(V ))

with action of the group π1((bK ,MbK ), (b̄,Mb̄)) and a Frobenius automorphism. In particular,
for any F–isocrystal E on the convergent topos of (bk,Mbk)/K we can evaluate E on this en-
largement to obtain a Bcris(V )–module with continuous action of π1((bK ,MbK ), (b̄,Mb̄)) and a
semi–linear Frobenius automorphism. We will denote this data simply byE(Bcris(V ),MBcris(V )).

Definition 9.22. Let (E,ϕ) be an F–isocrystal on (bk,Mbk)/K, and let L be a smooth log–
étale sheaf on (bK ,MbK ). An association between (E,ϕ) and L is the data of an isomorphism

(9.22.1) ι(b̄,Mb̄)
: E(Bcris(V ),MBcris(V )) ' L⊗Qp Bcris(V )

of π1((bK ,MbK ), (b̄,Mb̄))–modules compatible with the action of Frobenius for every log geo-
metric point (b̄,Mb̄). These isomorphisms are furthermore required to be compatible with
morphisms of log geometric points over (bK ,MbK ) as in 6.13.

Remark 9.23. Note that as in 5.3 the data of an association is equivalent to the data of
the isomorphism 9.22.1 for the choice of a single log geometric point. However, the above
definition makes the notion independent of the choice of such a point.

9.24. If we fix a log geometric point (b̄,Mb̄)→ (bK ,MbK ) and isomorphisms Mb̄ ' K
∗⊕Qr

≥0

and Mb ' V ∗ ⊕ Nr such that the map Mb → Mb̄ sends Nr to Qr
≥0, then we can describe

everything explicitly as follows.

These choices induce an isomorphism

(9.24.1) π1((bK ,MbK ), (b̄,Mb̄)) ' Ẑ(1)r o Gal(K/K),

where the semi–direct product is taken with respect to the natural action of Gal(K/K) on
Z(1), as well as an isomorphism

(9.24.2) Ω1
(b,Mb)/V

' ⊕ri=1V · d log(ei),

where ei denotes the i–th standard generator of Nr.

For a unipotent F–isocrystal (E,ϕ) on (bk,Mbk)/K with associated object (E , N) ∈ Vnilp(bK ,MbK ),
define endomorphisms Ni : E → E by the formula

(9.24.3) N(e) =
r∑
i=1

Ni(e)d log(ei),
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and for an element σ ∈ π1((bK ,MbK
) let σi ∈ Ẑ(1) be the i–th component of σ. Denote by σ̄i

the image of σi in Zp(1).

There is a map

(9.24.4) (Spec(Acris(V )),MAcris(V ))→ (b,Mb)

obtained from the map Nr → MAcris(V ) which sends the i–th standard basis element ei ∈ Nr

to the Teichmuller lift of the element

(9.24.5) { 1

pn
∈ Qr

≥0} ∈ lim←−
1

pn
MV/pnV = N.

This retraction and the fact that E is an isocrystal gives an isomorphism

(9.24.6) E(Bcris(V ),MBcris(V )) ' E ⊗K Bcris(V ).

With this identification, the action of π1((bK ,MbK ), (b̄,Mb̄)) ' Ẑ(1) o Gal(K/K) on E ⊗K
Bcris(V ) is as follows: The group Gal(K/K) acts via the action on the second factor Bcris(V )

and an element σi of the i–th component Ẑ(1) ⊂ Ẑ(1)r acts by the formula

(9.24.7) m⊗ 1 7→
∑
s≥0

N s(m)⊗ β(σ̄i)
s,

where β : Zp(1) ↪→ Bcris(V ) is the map defined in [Ts1, p. 396]. The validity of this formula
follows from the same reasoning used in [Fa1, top of p. 37].

9.25. If (E,ϕ,FilE) ∈ MF∇X (Φ) is associated via ι to a smooth sheaf L on Xo
K , which we

view as a smooth sheaf on the log étale site of (XK ,MXK
), then the pullbacks b∗(E,ϕ) and

b∗L are naturally associated. This can be seen as follows.

Assume first that there exists a morphism (b,Mb) → U = Spec(R) over X where U is a
very small étale X–scheme. Let (b̄,Mb̄)→ (b,Mb) be a log geometric point. Let R/R denote
the normalization of R in the maximal extension of Frac(R) unramified over U o

K .

Let (T,MT ) be the completion of U along b, with MT the pullback of the log structure
MU . Let S be the coordinate ring of T , and let S be the normalization of S in the maximal
extension of Frac(S) which is unramified over S[1/pt1 · · · tr].

Also choose specialization data as in 9.18. That is, a morphism s filling in the following
diagram

(9.25.1) (b̄,Mb̄)
s //

��

(Spec(S ⊗K),MS⊗K)

��
(b,Mb) // (T,MT ).

Here the log structure on Spec(S ⊗K) is defined as in 9.18.

Note that s also defines a commutative diagram

(9.25.2) (b̄,Mb̄)
s //

��

(Spec(R⊗K),MR⊗K)

��
(b,Mb) // (U,MU),
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and hence by [Il2, 4.6], the specialization data s defines an isomorphism

(9.25.3) Gal(R/R) ' π1((UK ,MUK
), (b̄,Mb̄)).

The specialization data s includes a map S → V , which in turn defines a morphism
Acris(S)→ Acris(V ). This map can be extended to a morphism of enlargements

(9.25.4)

(Spec(V /pV ),MV |V /pV ) −−−→ (Spec(Acris(V )),MAcris(V ))y y
(Spec(S/pS),MS|S/pS) −−−→ (Spec(Acris(S)),MAcris(S))

as follows. The log structure MAcris(S) defined in 6.7 admits the following alternate description
in this case. Define

(9.25.5)
1

pn
Γ(S,MS) := {m ∈ Γ(S,MS)|pnm ∈ Γ(S,MS)},

and define

(9.25.6) NS := lim←−
n

1

pn
Γ(S,MS),

where the inverse limit is taken with respect to the multiplication by p maps. There is then
a natural map

(9.25.7) NS → lim←−(S/pS)

which when composed with the Teichmuller map defines a monoid map NS → Acris(S). The
log structure MAcris(S) is canonically isomorphic to the log structure associated to this prelog
structure.

This alternate description of MAcris(S) shows in particular that the natural map Acris(S)→
Acris(V ) extends to a morphism of logarithmic enlargements as in 9.25.4, where the map on
log structures is induced by the natural map NS → N (where N is as in 9.19.4).

9.26. The choice of the specialization map s induces an action of π1((bK ,MbK ), (b̄,Mb̄)) on
E(Bcris(S)). It follows from the construction that the morphism of enlargements 9.25.4 is
compatible with this action, and in addition is compatible with the Frobenius automorphisms.
It follows that there is a canonical map

(9.26.1) E(Bcris(S))→ E(Bcris(V ),MBcris(V ))

compatible with the action of π1((bK ,MbK ), (b̄,Mb̄)) and Frobenius. In other words, there is
a canonical isomorphism

(9.26.2) E(Bcris(V ),MBcris(V )) ' E(Bcris(S))⊗Bcris(S) Bcris(V )

compatible with the actions (note that a priori the action of π1((bK ,MbK ), (b̄,Mb̄)) need not
descend to this quotient but the above shows that in fact it does descend).

On the other hand, the given association ι between (E,ϕ,FilE) and L defines an isomor-
phism

(9.26.3) E(Bcris(S)) ' L⊗Qp Bcris(S).
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Tensoring with Bcris(V ) we obtain an isomorphism of π1((bK ,MbK ), (b̄,Mb̄))-modules

(9.26.4) b∗E(Bcris(V ),MBcris(V )) ' b∗L⊗Qp Bcris(V )

compatible with Frobenius. This is the desired pullback of the association ι. We leave to the
reader the verification that it is independent of the choices in the above construction.

Remark 9.27. In the above we assume that there was a very small étale X–scheme U
and a morphism (b,Mb) → (U,MU) over (X,MX). By [Fa2, II.2.1], such a neighborhood
always exists when X is a scheme. To deal with the situation of X an algebraic space or
Deligne–Mumford stack, one can proceed as follows. First note that after making a finite
étale extension V → V ′ we do have such a morphism ρ, and hence we obtain an isomorphism

(9.27.1) E(Bcris(V ),MBcris(V )) ' L⊗Qp Bcris(V )

compatible with Frobenius and the action of the subgroup

(9.27.2) π1((bK′ ,MbK′ ), (b̄,Mb̄)) ⊂ π1((bK ,MbK ), (b̄,Mb̄)),

where K ′ denotes the field of fractions of V ′. To define the pullback of ι it is therefore enough
to prove that the isomorphism 9.27.1) is also compatible with the action of Gal(K ′/K). If
g ∈ Gal(K ′/K), then the conjugate g ◦9.27.1◦g−1 is the isomorphism obtained from the map

(9.27.3) (bK′ ,MbK′ )
g−−−→ (bK′ ,MbK′ )

ρ−−−→ (U,MU),

and hence the desired extension of the action to π1((bK ,MbK ), (b̄,Mb̄)) follows from the inde-
pendence of 9.27.1 on the choice of the map ρ.

Comparison theorem.

Let CdR and Cet be as in 7.1.

Theorem 9.28. With notation as in 9.12 and 9.18, there is a natural isomorphism

(9.28.1) XCdR
⊗K B̃cris(V ) ' XCet ⊗Qp B̃cris(V )

in Ho(SPr∗(B̃cris(V ))) compatible with the actions of Frobenius and Galois.

Proof. Let X̃CdR
denotes the pointed stack obtained from carrying out the construction of

4.35 (see also 4.37) using the fiber functor

(9.28.2) ω̃ : CdR −→ Mod eBcris(V ),

sending an isocrystal to its value on the enlargement 9.21.2. Then the proof of 1.7 carries
over to give an isomorphism

(9.28.3) X̃CdR
' XCet ⊗Qp B̃cris(V )

compatible with the Galois action. In fact, there is even a natural action of π1((bK ,MbK ), (b̄,Mb̄))
on both sides of 9.28.3 induced by the action on the enlargement 9.21.2 and the natural action
on the fiber functor defined by (b̄,Mb̄). Chasing through the proof of 1.7 one sees that the
isomorphism 9.28.3 is compatible with this action. On the other hand, the argument of 5.24
shows that the action of π1((bK ,MbK ), (b̄,Mb̄)) on XCet factors through Gal(K/K).

To prove the theorem, it therefore suffices to define an isomorphism XCdR
⊗K B̃cris(V ) '

X̃CdR
compatible with Frobenius and Gal(K/K)–action.
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For this choose an isomorphism Mb ' V ∗⊕Nr for some r and for each i = 1, . . . , r choose a
sequence of elements mi

n ∈Mb̄ with pn ·mi
n = ei, where ei denotes the i–th standard generator

of Nr. The choice of the mi
n defines a map Mb → N , where N is as in 9.24.5, and hence we

obtain a morphism of log schemes

(9.28.4) r : (Spec(Acris(V )),MAcris(V ))→ (b,Mb).

Note that the choice of the mi
n define an isomorphism Mb̄ ' K

∗ ⊕ Qr
≥0. Furthermore, the

description in 9.14 of the group π1((bK ,MbK ), (b̄,Mb̄)) shows that there is a unique isomor-
phism

(9.28.5) π1((bK ,MbK ), (b̄,Mb̄)) ' Ẑ(1)r o Gal(K/K)

such that the elements mi
n are invariant under the action of Gal(K/K). It follows that the

retraction r is Gal(K/K)–equivariant. We therefore obtain an isomorphism of fiber functors

(9.28.6) ωb ⊗K B̃cris(V ) ' ω̃

compatible with Frobenius and the action of Gal(K/K). This isomorphism then induces an

isomorphism of stacks XCdR
⊗K B̃cris(V ) ' X̃CdR

over B̃cris(V ) compatible with the action of
Gal(K/K) and Frobenius.

To complete the proof of 9.28 it remains only to see that the isomorphism XCdR
⊗K

B̃cris(V ) ' X̃CdR
is independent of the choice of r above. For this observe that a second

choice of elements {mi′
n} differs from {mi

n} by the action of an element σ in

(9.28.7) I := Ker(π1((bK ,MbK ), (b̄,Mb̄))→ Gal(K/K)).

It follows that the isomorphism XCdR
⊗K B̃cris(V ) ' X̃CdR

obtained from the collection {mi′
n}

differs from the one obtained from {mi
n} by the action on X̃CdR

of an element in I. But as

we have already shown that the action of I on X̃CdR
is trivial it follows that the isomorphism

XCdR
⊗K B̃cris(V ) ' XCet ⊗Qp B̃cris(V ) constructed above is independent of the choices. �

Corollary 9.29. There is a natural isomorphism

(9.29.1) π1(CdR, b)⊗K Bcris(V ) ' π1(Cet, b̄)⊗Qp Bcris(V )

compatible with Frobenius and Galois actions.

Proof. This follows from the same argument proving 1.8. �

The log scheme (b,Mb) is a K(π, 1).

Proposition 9.30. If E is a unipotent isocrystal on (bk,Mbk)/K, then there is a natural
isomorphism

(9.30.1) H∗cris((bk,Mbk)/K,E) ' H∗(GdR, E),

where the right hand side denotes group cohomology of the representation E obtained from E
by applying the functor in 9.5.
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Proof. Choose an embedding (b,Mb) ↪→ (Tb,MTb
) as in the proof of 9.7. We first construct

the isomorphism 9.30.1 using this choice, and then prove that it is independent of the choice.

The crystalline cohomology of (bk,Mbk)/K is computed by the de Rham complex of the
module with connection E(Tb,K ,MTb,K

) on (Tb,K ,MTb,K
) over K. On the other hand, the de

Rham complex of (E , N) on (bK ,MbK ) over K is naturally isomorphic to the Hochschild com-
plex of the representation E of Lie(GdR) corresponding to (E , N) [K-T, 4.27]. The restriction
map from the de Rham cohomology of E(Tb,K ,MTb,K

) to the de Rham cohomology of (E , N)

therefore defines a map

(9.30.2) H∗cris((bk,Mbk)/K,E)→ H∗(GdR, E).
Filtering E by sub–isocrystals such that the successive quotients are trivial isocrystals and
consideration of the associated long exact sequences shows that to prove that the restriction
map 9.30.2 is an isomorphism it suffices to consider the case when E is the trivial isocrystal.

Let K{{t1, . . . , tr}} denote the value of K(bk,Mbk
)/K on the widening

(9.30.3) (bk,Mbk) ↪→ (Spf(V [[t1, . . . , tr]]),MV [[t1,...,tr]]),

where the log structure MV [[t1,...,tr]] is induced by the natural map Nr → V [[t1, . . . , tr]].

Then the de Rham complex of K(bk,Mbk
)/K is given by the de Rham complex of

(9.30.4) d : K{{t1, . . . , tr}} → K{{t1, . . . , tr}} ⊗K Ω(log), ti 7→ ti ⊗ d log(ti).

where Ω(log) denotes the free K-vector space with basis d log(ti) (i = 1, . . . , r). The de Rham
complex of (E , N) is the complex with zero differential and i–th term

(9.30.5) Ωi(log) :=
i∧

Ω(log).

Let J ⊂ K{{t1, . . . , tr}} be the ideal defined by (t1, . . . , tr) so that setting J to zero defines
a map of complexes

(9.30.6) K{{t1, . . . , tr}} ⊗ Ω·(log)→ Ω·(log).

We claim that this reduction map is a quasi-isomorphism.

For this let Ω denote the free K-vector space of rank r and basis {dti}. Then the kernel of
9.30.6 is the complex

(9.30.7) J → K{{t1, . . . , tr}} ⊗K Ω→ K{{t1, . . . , tr}} ⊗K Ω2 → · · · ,
which agrees with the usual de Rham complex computing the convergent cohomology of the
point Spec(k) (with no log structure) except in degree 0. Since Spec(k) has trivial cohomology,
the map

(9.30.8) K → (K{{t1, . . . , tr}} → K{{t1, . . . , tr}} ⊗K Ω→ K{{t1, . . . , tr}} ⊗K Ω2 → · · · )
is a quasi-isomorphism, which implies that 9.30.7 is acyclic so 9.30.6 is a quasi-isomorphism.

It remains only to see that the functor 9.30.2 is independent of the choices. For this note
that the functor which to any representation V of GdR associates the corresponding isocrystal
V defines a functor

(9.30.9) j : Rep(GdR)→ (sheaves on convergent site of (bk,Mbk)/K).
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Furthermore, there is a natural isomorphism of functors

(9.30.10) (V 7→ V GdR)→ Γcris ◦ j.
By the universality of the δ-functor H∗(GdR,−) we therefore obtain a map of δ–functors

(9.30.11) H∗cris((bk,Mbk)/K, j(−))← H∗(GdR,−).

This gives a canonical description of the map 9.30.2 and hence completes the proof of the
Proposition. �

Corollary 9.31. Let L(OGdR
) denote the ind–isocrystal on (bk,Mbk)/K obtained from the

coordinate ring OGdR
with its natural action of GdR coming from right translation. Then

H i
cris((bk,Mbk)/K,L(OGdR

)) = 0 for i > 0 and H0
cris((bk,Mbk)/K,L(OGdR

)) = K.

Proof. This follows from [Ol1, 2.18 (i)] and the above which shows that OGdR
is injective in

Rep(GdR) and has GdR–invariants equal to K. �

9.32. Let E be a unipotent isocrystal on (bk,Mbk)/K. We can also compute cohomology of
E using a resolution as in 4.31. Choose an inclusion i : (b,Mb) ↪→ (Tb,MTb

) as in the proof of
9.5. By the same construction used in the proof of 4.31, we obtain a complex R• of sheaves
on (bk,Mbk)/K with a morphism E → R•.

Recall that Ri is constructed as follows. Let

(9.32.1) j : ((bk,Mbk)/V )conv|(Tb,MTb
) → ((bk,Mbk)/V )conv

be the localization morphism. Let

(9.32.2) φ∗γ∗ : Tb,et → ((bk,Mbk)/V )conv|(Tb,MTb
)

be the functor defined in 3.17. If Ωi
(Tb,MTb

)/K denotes the sheaf of logarithmic differentials of

(Tb,MTb
) tensored with K then by definition we have

(9.32.3) Ri = j∗φ
∗γ∗Ωi

(Tb,MTb
)/K .

The inclusion i : (b,Mb) ↪→ (Tb,MTb
) induces a morphism of topoi

(9.32.4) ε : ((bk,Mbk)/V )conv|(b,Mb) → ((bk,Mbk)/V )conv|(Tb,MTb
)

which sits in a commutative diagram

(9.32.5) ((bk,Mbk)/V )conv ((bk,Mbk)/V )conv|(b,Mb)
j̃oo

ε

��
((bk,Mbk)/V )conv|(Tb,MTb

).

j
jjUUUUUUUUUUUUUUUU

Observe that there is also a commutative diagram of functors

(9.32.6) Tb,et
φ∗Tb

γ∗

//

i∗

��

((bk,Mbk)/V )conv|(Tb,MTb
)

ε∗

��
(Spec(V ))et

φ∗bγ
∗

// ((bk,Mbk)/V )conv|(b,Mb).
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9.33. Let

(9.33.1) T = ((bk,Mk) ↪→ (Spf(A),MA)), T ′ = ((bk,Mk) ↪→ (Spf(B),MB))

be two widenings. Let

(b,Mb) ↪→ (IT,T ′ ,MT,T ′)

denote the product in the category of widenings of T and T ′. By definition this object
represents the functor

(9.33.2) (widenings (bk,Mk) ↪→ (Spf(C),MC))op → Set

sending (bk,Mk) ↪→ (Spf(C),MC) to the set of pairs (f, g), where

(9.33.3) f : ((bk,Mk) ↪→ (Spf(C),MC))→ T

and

(9.33.4) g : ((bk,Mk) ↪→ (Spf(C),MC))→ T ′

are morphisms of widenings.

Remark 9.34. Note that IT,T ′ comes equipped with two morphisms of widenings

(9.34.1) pr1 : IT,T ′ → T, pr2 : IT,T ′ → T ′.

Remark 9.35. Since (bk,Mbk) is hollow, if (bk,Mk) ↪→ (Spf(C),MC) is a widening then the
nonunits of MC map to topologically nilpotent elements of C. The images of the nonunits in
MC therefore define an ideal. We let C0 denote the quotient of C by this ideal, and let T0

denote the resulting widening

(9.35.1) (bk,Mbk) ↪→ (Spf(C0),MC0).

Observe that if T ′ is hollow then the natural map

(9.35.2) IT0,T ′ → IT,T ′

is an isomorphism.

9.36. By definition of the localized topos, for any F ∈ ((bk,Mbk)/V )conv|(Tb,MTb
) the sheaf

j∗F associates to any enlargement T : (bk,Mbk) ↪→ (Spf(A),MA) the set F (I(Tb,MTb
),T ). If T

is hollow, then by 9.35 this is equal to F (I(b,Mb),T ).

9.37. Let Ĝr
m denote the formal completion of Gr

m,V along the closed immersion Spec(k) ↪→
Gr
m,V defined by the identity section. Then there is a canonical isomorphism

(9.37.1) I(b,Mb),(b,Mb) ' Ĝr
m

with the log structure on Ĝr
m given by the map Nr → ObGr

m
sending all nonzero elements to

0. If u1, . . . , ur are the standard coordinates on Gr
m then the two projections

(9.37.2) pr1, pr2 : (Ĝr
m,MbGr

m
)→ (b,Mb)

are induced by the two maps

(9.37.3) τ1, τ2 : Nr → O∗bGr
m
⊕ Nr,

where τ1(ei) = (1, ei) and τ2(ei) = (ui, ei).
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This implies that for any morphism of widenings T → (b,Mb) there is a canonical isomor-
phism

(9.37.4) IT,(b,Mb) ' T ×̂Ĝr
m,

where the right side denotes the product in the category of formal V -schemes.

By a similar argument one sees that if Z → (Tb,MTb
) is a morphism of widenings, then

(9.37.5) IZ,(Tb,MTb
) ' Z×̂Ĝr

m.

Lemma 9.38. Let Ri
(b,Mb)

denote the value of Ri on the enlargement (bk,Mbk) ↪→ (b,Mb).

Let ∇ denote the connection on Ri
(b,Mb)

and let DR(Ri
(b,Mb)

) denote the associated de Rham
complex. Then the natural map

(9.38.1) (Ri
(b,Mb)

)∇ → DR(Ri
(b,Mb)

)

is a quasi-isomorphism.

Proof. Note first that it follows from the construction of the complex R• that if

(9.38.2) 0→ E1 → E → E2 → 0

is an exact sequence of isocrystals on (bk,Mbk)/K then there is a natural exact sequence of
complexes

(9.38.3) 0→ R•1 → R• → R•2 → 0

where R•i denotes the complex obtained from Ei. By consideration of a filtration of E and
the corresponding long exact sequences of cohomology groups, it therefore suffices to prove
the lemma when E is the trivial isocrystal K.

In this case, we can compute Ri
(b,Mb)

with its connection as follows. Let Ω(log) denote

i∗Ω1
(Tb,MTb

)/K . By the discussion in 9.36, and using the isomorphism 9.37.1, we see that

(9.38.4) Ri
(b,Mb)

= K{{u1 − 1, . . . , ur − 1}} ⊗K Ωi(log),

where Ωi(log) =
∧i Ω(log) and K{{u1− 1, . . . , ur− 1}} is defined to be the value of K on the

widening

(9.38.5) (bk,Mbk) ↪→ (Ĝr
m,MbGr

m
).

Moreover, it follows from the construction of the connection that

(9.38.6) ∇((uj − 1)k ⊗ ω) = (k(uj − 1)k + (uj − 1)k−1)⊗ ω)dlog(tj),

where we write d log(tj) for the image of the j-th standard generator of Nr under the map

(9.38.7) Nr // Mb

d log // Ω1
(b,Mb)/V

.

Note that it follows from 9.38.6 that it further suffices to prove the lemma in the case when
i = 0, which we assume henceforth.

Let Ω1bGr
m/V

denote the free K{{u1 − 1, . . . , ur − 1}} module on generators dui/ui (i =

1, . . . , r). If we identify K{{u1 − 1, . . . , ur − 1}} ⊗K Ω1
(b,Mb)/V

with Ω1bGr
m/V

via the map
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sending d log(tj) to duj/uj, then the connection 9.38.6 becomes identified with the standard
connection

(9.38.8) d : K{{u1 − 1, . . . , ur − 1}} → K{{u1 − 1, . . . , ur − 1}} ⊗ Ω1bGr
m/V

.

Now the de Rham complex of this connection computes the convergent cohomology of Spec(k)
over K (with no log structures), and hence the de Rham complex is acyclic. �

Lemma 9.39. The map E → R• in 9.32 is a quasi-isomorphism.

Proof. It suffices to show that the map

(9.39.1) j∗E → j∗R•

is a quasi-isomorphism in ((bk,Mbk)/V )conv|(Tb,MTb
). For any enlargment Z : (bk,Mk) ↪→

(Z,MZ) with a morphism Z → (Tb,MTb
) the value of j∗Ri on Z is by the isomorphism

9.37.5 equal to

(9.39.2) OZ{{u1 − 1, . . . , ur − 1}} ⊗OTb
Ωi

(Tb,MTb
)/V ,

where OZ{{u1, . . . , ur − 1}} denotes the value of K on the widening

(9.39.3) (bk,Mbk) ↪→ Z×̂Ĝr
m.

It follows from the construction of the map Di : Ri → Ri+1 that it restricts over Z to the
unique OZ–linear map sending (

∏
j(uj − 1)aj)⊗ ω to

(9.39.4) (
∑
j

ajuj(u1 − 1)a1 · · · (uj − 1)aj−1 · · · (ur − 1)ar)⊗ d log(t′j) ∧ ω,

where {d log(t′j)} denotes the basis for Ω1
(Tb,MTb

)/V defined by the chart Nr → MTb
. Observe

that Di(uj)/uj = dlog(t′j).

Let R̃• denote the resolution of K in (Spec(k)/V )conv given by the embedding Spec(k) ↪→
Ĝr
m. If

(9.39.5) σ : (Spec(k)/V )conv|bGr
m
→ (Spec(k)/V )conv

is the localization morphism, then

(9.39.6) R̃i := σ∗φ
∗bGr

m
γ∗ΩibGr

m
.

Now from the explicit formula 9.39.4 and the observation that Di(uj)/uj = dlog(t′j), we see
that under the canonical isomorphism of topoi (where the right side is the convergent topos
with no log structures)

(9.39.7) ((bk,Mbk)/V )conv|(Tb,MTb
) ' (Spec(k)/Tb)conv

the complex j∗R• becomes identified with the restriction of R̃• to (Spec(k)/Tb)conv. Since R̃•
is a resolution of K by [Og2, 0.5.4] this implies the lemma. �
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Corollary 9.40. Let E(b,Mb) denote value of E on the enlargement (bk,Mbk) ↪→ (b,Mb). Then
the natural map E(b,Mb) → R•(b,Mb)

is a quasi-isomorphism. In particular, by 9.38 we have a
diagram of quasi-isomorphisms

(9.40.1) R•,∇(b,Mb)

��
DR(E(b,Mb)) // DR(R•(b,Mb)

).

Lemma 9.41. The reduction map

(9.41.1) DR(R•(Tb,MTb
))→ DR(R•(b,Mb)

)

is a quasi-isomorphism.

Proof. As in the proof of 9.38 it suffices to consider the case when E is the trivial isocrystal.
Since K → R• is a quasi-isomorphism, it suffices to show that the reduction map

(9.41.2) DR(K(Tb,MTb
))→ DR(K(b,Mb))

is a quasi-isomorphism. This follows from the same argument used in the proof of 9.30. �

Summary 9.42. The map E → R• is a quasi–isomorphism, and the maps

(9.42.1) DR(R•(Tb,MTb
))→ DR(R•(b,Mb)

), R•,∇(b,Mb)
→ DR(R•(b,Mb)

)

are quasi–isomorphisms, where R•(Tb,MTb
) (resp. R•(b,Mb)

) is the restriction of R• to (Tb,MTb
)

(resp. (b,Mb)) with the natural connection defined by the isocrystal structure, and DR(−)
denotes the de Rham complex of (−). In particular, the de Rham complex of E(Tb,MTb

) is

naturally isomorphic in the derived category to R•,∇(b,Mb)
.

There is also an étale version of 9.30.

Proposition 9.43. For any unipotent Qp–sheaf L on (bK ,MbK
), there is a natural isomor-

phism

(9.43.1) H∗((bK ,MbK
), L) ' H∗(Get, L(b̄,Mb̄)

),

where the right hand side denotes group cohomology.

Proof. Since any Kummer étale map V → (bK ,MbK
) is a Kummer covering [Il2, 3.11],

the cohomology H∗((bK ,MbK
), L) is isomorphic to the continuous group cohomology of the

π1((bK ,MbK
), (b̄,Mb̄))–module L(b̄,Mb̄)

. The functor which sends a representation L of Get to
H∗((bK ,MbK

), L) defines a cohomological δ–functor on the category Rep(Get), and hence the

natural isomorphism H0(Get,−) ' H0((bK ,MbK
),−) induces a natural morphism of coho-

mological δ–functors

(9.43.2) H∗(Get,−)→ H∗((bK ,MbK
),−).

To prove that this map is an isomorphism, choose an isomorphism Mb ' K∗⊕Nr defining
isomorphisms

(9.43.3) π1((bK ,MbK
), (b̄,Mb̄)) ' Ẑ(1)r, Get ' Ẑ(1)r ⊗bZ Ga.
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The exact sequence

(9.43.4) 0 −−−→ Ẑ(1)r−1 a 7→(a,0)−−−−→ Ẑ(1)r −−−→ Ẑ(1) −−−→ 0

induces for every representation L of Get spectral sequences [Se, I.2.6]

(9.43.5) Epq
2 = Hp(Ẑ(1), Hq(Ẑ(1)r−1, L)) =⇒ Hp+q(Ẑ(1)r, L)

(9.43.6) Epq
2 = Hp(Ẑ(1)⊗bZ Ga, H

q((Ẑ(1)⊗Z Ga)
r−1, L)) =⇒ Hp+q(Get, L).

These spectral sequences are compatible with the morphisms of δ–functors 9.43.2. This
reduces the problem to the case when r = 1.

When r = 1, the groups H i(Ẑ(1), L) are zero for i > 1 by [Se, p. I-19, exemple 1]. Also
the groups H i(Get, L) are zero for i > 1 (this can be seen for example by noting that the
Hochschild complex computing this cohomology has no terms in degrees ≥ 2). Thus in this
special case it suffices to consider i = 0 and i = 1 in which case the result is clear (for i = 0
both the groups compute invariants, and for i = 1 they compute extensions of Qp by L). �

Corollary 9.44. Let V(OGet) denote the ind–sheaf corresponding to the coordinate ring OGet

with Get–action induced by right translation. Then H i((bK ,MbK
),V(OGet)) = 0 for i > 0 and

H i((bK ,MbK
),V(OGet)) = Qp.

Proof. As in 9.31, this follows from [Ol1, 2.18 (i)] which shows that OGet is injective in the
category Rep(Get) and has Get–invariants equal to Qp. �

Compatibility with ιG.

9.45. Let CdR and Cet be as in 7.1. The functors 9.11.1 and 9.17.1

(9.45.1) ωdR
b : CdR → Vnilp(b,Mb), ωet

b : Cet → (unipotent smooth sheaves on (bK ,MbK
))

induce by Tannaka duality morphisms of group schemes

(9.45.2) `dR : GdR → π1(CdR, b), `et : Get → π1(Cet, b).

Theorem 9.46. The diagram

(9.46.1)

GdR ⊗K Bcris(V )
`dR−−−→ π1(CdR, b)⊗K Bcris(V )

ιG

y yιC

Get ⊗Qp Bcris(V )
`et−−−→ π1(Cet, b)⊗Qp Bcris(V )

commutes.

The proof is in several steps 9.47–9.58.

9.47. Let OGdR
(resp. OGet) denote the coordinate ring of GdR (resp. Get) which we view as

a GdR–bimodule (resp. Get–bimodule) with the action coming from left and right translation.
Denote by L(OGdR

) (resp. V(OGet)) the unipotent isocrystal on (bk,Mbk)/K (resp. smooth
log-étale sheaf on (bK ,MbK

)) with right GdR–action (resp. Get–action) induced by Tannaka
duality and the left action.

Let L(OGdR
) denote the ind–object in Vnilp(bK ,MbK ) obtained from L(OGdR

), and denote
by RΓdR(L(OGdR

)) its de Rham complex. The ring structure on OGdR
gives this the structure
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of a differential graded algebra and the right action of GdR makes it an object of GdR−dgaK .
Denote by YdR the stack obtained from this equivariant differential graded algebra:

(9.47.1) YdR := [RSpecGdR
(RΓdR(L(OGdR

)))/GdR].

Similarly, let RΓet(V(OGet)) denote the group cohomology of the representation V(OGet).
The cohomology RΓet(V(OGet)) is a Get–equivariant differential graded algebra, and we define

(9.47.2) Yet := [RSpecGet
(RΓet(V(OGet)))/Get].

As in 4.34 and 5.21, the identity elements of GdR and Get give YdR and Yet natural structures
of pointed stacks.

Lemma 9.48. The projections YdR → BGdR and Yet → BGet are isomorphisms in Ho(SPr∗(K))
and Ho(SPr∗(Qp)) respectively.

Proof. As in [KPT, 1.3.10], the homotopy fiber of YdR → BGdR (resp. Yet → BGet) is
isomorphic to RSpec(RΓdR(L(OGdR

))) (resp. RSpec(RΓet(V(OGet)))). The result therefore
follows from 9.31 and 9.44. �

9.49. More generally, if U• → b is an étale hypercover, we can define RΓdR(L(OGdR
))U•

to be the GdR–equivariant differential graded algebra obtained by applying the functor of
Thom–Sullivan cochains to the GdR–equivariant cosimplicial algebra which associates to [n] ∈
∆ the de Rham complex of L(OGdR

) restricted to (Un,Mb|Un). There is a natural map
RΓdR(L(OGdR

))→ RΓdR(L(OGdR
))U• which cohomological descent implies is an isomorphism.

Let U• → X be an étale hypercover with each Un an affine scheme, and let Ub,• be the
pullback to b. Denote by RΓdR(L(OGdR

))U• the GdR–equivariant differential graded algebra
obtained from the cosimplicial differential graded algebra which to [n] ∈ ∆ associates the
de Rham complex of the module with connection L(OGdR

) restricted to (Un,MUn). There is
a natural map GdR → GdR which induces a morphism L(OGdR

)|Ub,• → L(OGdR
) of modules

with integrable connection on (Ub,•,MB|Ub,•). We therefore obtain a map of differential graded
algebras

(9.49.1) RΓdR(L(OGdR
))U• → RΓdR(L(OGdR

))Ub,• .

If we view RΓdR(L(OGdR
))U• as a GdR–equivariant algebra via the map GdR ↪→ GdR, then

this map is even GdR–equivariant. Here GdR denotes the Tannaka dual of the category
DdR := 〈E〉⊗ with respect to the fiber functor defined by (b,Mb).

Applying the functor RSpecGdR
we obtain a diagram of pointed stacks

(9.49.2) YdR → [RSpecGdR
(RΓdR(L(OGdR

))U•)/GdR]→ XCdR
.

Lemma 9.50. The induced map

(9.50.1) GdR ' π1(YdR)→ π1(XCdR
) ' π1(CdR, b)

is the map `dR.

Proof. Let X̃ be as in 5.33. Recall that if G̃ := π1(CdR, ω
dR
b ), then X̃ is given by

(9.50.2) X̃ := [RSpec eGRΓet(V(O eG))/G̃].
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The same construction used to define the map 9.49.2 gives a map YdR → X̃ lifting the map
to XCdR

such that the diagram

(9.50.3)

YdR
π−−−→ BGdRy `dR

y
X̃

π̃−−−→ BG̃

commutes, where π and π̃ denote the natural projections. Applying the functor π1 the Lemma
follows. �

9.51. There is a similar description of the map `et.

If (b̄i,Mb̄i)→ (bK ,MbK ) (i = 1, 2) are two geometric points, define their product

(9.51.1) (b̄1,Mb̄1)×̃(bK ,MbK
)(b̄2,Mb̄2)

as in the following lemma (note that a log geometric point is naturally a pro–log scheme):

Lemma 9.52. Let f : (X,MX) → (Y,MY ) and (Z,MZ) → (Y,MY ) be morphisms of fine
log algebraic spaces, and let (P,MP ) := (X,MX) ×(Y,MY ) (Z,MZ) be the fiber product in
the category of integral log schemes. Consider the category C whose objects are morphisms
t : (T,MT ) → (P,MP ) of log algebraic spaces such that the maps t∗pr∗1MX → MT and
t∗pr∗2MY → MT are both isomorphisms. Then the category C has a final object which we
denote by

(9.52.1) (X,MX)×̃(Y,MY )(Z,MZ).

If (X,MX) = lim←−(Xi,MXi
) and (Z,MZ) = lim←−(Zj,MZj

) are pro–objects in the category of
fine log schemes over (Y,MY ) then we also define

(9.52.2) (X,MX)×̃(Y,MY )(Z,MZ) := lim←−
i,j

(Xi,MXi
)×̃(Y,MY )(Zj,MZj

).

Proof. This follows from A.3. �

Remark 9.53. For a log geometric point (b̄,Mb̄)→ (bK ,MbK ), the fiber product

(9.53.1) (b̄,Mb̄)×̃(bK ,MbK
)(b̄,Mb̄)

is isomorphic to

(9.53.2)
∐
g∈π

(b̄,Mb̄),

where π denotes the group π1((bK ,MbK ), (b̄,Mb̄)). Indeed there is a natural map

(9.53.3)
∐
g∈π

(b̄,Mb̄)→ (b̄,Mb̄)×̃(bK ,MbK
)(b̄,Mb̄)

which on the g–th component is 1×g. That this map is an isomorphism can be seen by noting
that the universal property of (b̄,Mb̄)×̃(bK ,MbK

)(b̄,Mb̄) implies that this scheme represents the

functor overK which to anyK–scheme T associates the set of pairs (ρ, α), where ρ : T → b̄ is a
morphism over K and α : Mb̄|T → ρ∗Mb̄ is an isomorphism over MbK |T . Choose isomorphisms
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Mb ' V ∗ ⊕ Nr and Mb̄ ' K
∗ ⊕ Qr

≥0 such that the map Mb → Mb̄ sends Nr to Qr
≥0. As in

9.14, these choices induce an isomorphism

(9.53.4) π ' Ẑ(1)r o Gal(K/K),

where an element g ∈ Gal(K/K) acts on the log structure Mb̄ by the map

(9.53.5) K
∗ ⊕Qr

≥0 → K
∗ ⊕Qr

≥0, (u, q) 7→ (g(u), q).

Now by Galois theory, if (ρ, α) is a pair as above, then ρ is obtained from the structure
morphism T → b̄ by composing with an element g ∈ Gal(K/K). The isomorphism α is
then induced by a map of monoids Qr

≥0 → O∗T sending all elements of Nr to 1. Such a map

of monoids is precisely given by an element of Ẑ(1). From this it follows that 9.53.3 is an
isomorphism.

9.54. We can now carry out the construction of 5.21 replacing products of geometric points
by ×̃ defined above. For any étale hypercover Ub,• → bK and choice of log geometric points
E → (bK ,MbK

), we obtain a Get–equivariant differential graded algebra GC(V(OGet))Ub,•

canonically isomorphic in Ho(Get − dgaQp
) to the algebra RΓet(V(OGet)) obtained from the

choice of a single log geometric point (b̄,Mb̄) → (bK ,MbK ). Moreover if Ub,• is obtained by
base change from a hypercover of bK , then there is a natural action in the homotopy category
of Gal(K/K) on this algebra.

9.55. Let U• → X be an étale hypercover, with each Un a finite disjoint union of very
small affine X–schemes. Denote by Ub,• the base change to b. Let W• denote the simplicial

formal scheme obtained by completing U• along the ideal defined by b, and let Û• denote the
simplicial affine scheme obtained by taking the spectrum in each degree of the cosimplicial
algebra

(9.55.1) [n] 7→ Γ(Wn,OWn).

Observe that for any morphism [n]→ [m] in ∆ the corresponding map Ûm → Ûn is finite and
étale. Moreover, there is a natural diagram of simplicial log schemes

(9.55.2) (Ub,•,MUb,•) −−−→ (Û•,MbU•) −−−→ (U•,MU•),

where the log structures are all obtained by pullback from MX .

9.56. Let E → XK be a family of geometric generic points, and for each e ∈ E choose a
commutative diagram

(9.56.1)

ê −−−→ ey y
Spec(ÔX,bK ) −−−→ Spec(OX,bK ),

where ÔX,bK denotes the completion of the strict henselization OX,bK and ê → Spec(ÔX,bK )

is a geometric generic point. Denote by Ê → Spec(ÔXb,K
) the resulting family of geometric

generic points.
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Observe that for each [n] ∈ ∆, there is a natural commutative diagram

(9.56.2)

∐
Hom

Spec( bOX,b
K

)
( bE,bUn,K) Ê −−−→

∐
HomX(E,Un,K)Ey y

Ûn −−−→ Un.

This follows from observing that any lifting ê→ Un of the composite ê→ e→ X necessarily
factors through e.

It follows that if G is an algebraic group and L an ind–smooth sheaf of G–equivariant
differential graded algebras on the log étale site of (XK ,MXK

), then there is a natural map
of cosimplicial G–equivariant differential graded algebras

(9.56.3) ([n] 7→ GC(Un,K , E, L))→ ([n] 7→ GC(Ûn,K , Ê, L|bU•)).
Here the notation is as in 5.21. Let GC(L|bU• , Ê) ∈ Ho(G− dgaQp

) denote the G–equivariant
differential graded algebra obtained by applying the functor of Thom–Sullivan cochains to

the cosimplicial algebra ([n] 7→ GC(Ûn,K , Ê, L|bU•)). As in 5.24, the object GC(L|bU• , Ê) in the
homotopy category is up to canonical isomorphism independent of the choices. Furthermore,
the map 9.56.3 induces a canonical morphism in the homotopy category

(9.56.4) GC(L,E) −→ GC(L|bU• , Ê).

9.57. In particular, if Get denotes π1(〈L|XK
〉⊗, ωet

b ) and V(OGet) denotes the ind–smooth
sheaf with right Get–action corresponding to the coordinate ring OGet , then there is a natural
map

(9.57.1) GC(V(OGet), E) −→ GC(V(OGet)|bU• , Ê)

in Ho(Get − dgaQp
).

There is also a natural map

(9.57.2) GC(V(OGet)|bU• , Ê)→ RΓet(V(OGet))

in Ho(Get − dgaQp
) defined as follows.

First view V(OGet) as a Get–equivariant sheaf using the natural map Get → Get, and let

(X̂b,M bXb
) denote Spec(ÔX,bK ) with log structure that obtained by pullback from MX .

Choose for each e ∈ Ê a section se of the map (X̂e∼
(b̄,Mb̄)

,M bX(b̄,Mb̄)e∼
) → (b̄,Mb̄), where

(X̂e∼
(b̄,Mb̄)

,M bX(b̄,Mb̄)e∼
) → (X̂K ,M bXK

) denotes the universal covering space (a pro–log scheme)

obtained from the geometric point e (see [Il2, 4.6] for the definition of the universal covering
space).

Now note that each connected component of Ûn maps isomorphically to X̂K . It follows

that for each lifting ρ : e → Ûn of the geometric point e → X̂K , the section se induces a
section of the map

(9.57.3) (Ûρ∼
n,K

,MbUρ∼
n,K

)×(bUn,MbUn
),ρ (b̄,Mb̄)→ (b̄,Mb̄).
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Hence for any n there is a canonical bijection of sets

(9.57.4) B : (liftings ê of e to Ûn,K)→ (liftings of (b̄,Mb̄)→ (X̂K ,M bXK
) to (Ûn,K ,MbUn,K

)).

Furthermore, for each lifting ê there is a canonical isomorphism

(9.57.5) π1((Ûn,K ,MbUn,K
), ê) ' π1((Ûn,K ,MbUn,K

), B(ê)),

and for any smooth sheaf L on (X̂K ,M bXK
) and lifting ê there is a natural isomorphism

Lê ' LB(ê) compatible with the identification 9.57.5. On the other hand, for each lifting ρ of

(b̄,Mb̄) to Ûn,K , the natural map

(9.57.6) π1((bK ,MbK ), ρ)→ π1((Ûn,MbUn
), ρ)

is an isomorphism. From this it follows that there is a natural isomorphism in Ho(Get−dgaQp
)

(9.57.7) GC(V(OGet)|bU• , Ê) ' RΓet(V(OGet)|(bK ,Mb
K

)).

The map Get → Get induces a natural map

(9.57.8) V(OGet)|(bK ,Mb
K

) → V(OGet)

compatible with the right Get–action. We therefore obtain a map

(9.57.9) RΓet(V(OGet)|(bK ,Mb
K

))→ RΓet(V(OGet))

in Ho(Get − dgaQp
). This map combined with 9.57.7 induces the map 9.57.2.

Applying the RSpecGet
(−)–functor we then obtain a diagram of pointed stacks

(9.57.10) Yet → [RSpecGet
(RΓet(V(OGet)))/Get]→ XCdR

.

From this we obtain a morphism

(9.57.11) Get ' π1(Yet)→ π1(XCet) ' π1(Cet, b).

By an argument similar to the one used in 9.50 this map is equal to `et.

9.58. The comparison isomorphism ιG can be described as follows. Let L(OGdR
)→ R• be the

resolution discussed in 9.42, and let W• → bK be an étale hypercover. Choose also a family
of log geometric points E → (bK ,MbK

).

Observe that by 9.16 and the discussion in 9.24, the sheaf V(OGet) is naturally associated
to L(OGdR

) by an association compatible with the right action of Get⊗Qp Bcris(V ) ' GdR⊗K
Bcris(V ). Then as in 6.17.6 we obtain a commutative diagram

(9.58.1)

GC(V(OGet)|W• , E)⊗Qp Bcris(V )
a−−−→ GC(R•(Bcris(W•),MBcris(W•,b)), E)xb

R•(W•,Mb|W•)
∇ ⊗K Bcris(V )yc

DR((L(OGdR
)|W• , N))⊗K Bcris(V )

d−−−→ DR(R|W•)⊗K Bcris(V ).
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The map a is the composite

(9.58.2)

GC(V(OGet)|W• , E)⊗Qp Bcris(V ) −−−→ GC(V(OGet)⊗Qp Bcris(V )|W• , E)

ι

y
GC(R•(Bcris(W•),MBcris(W•)), E) ←−−− GC(L(OGdR

)(Bcris(W•),MBcris(W•)), E),

where ι denotes the association. Hence a becomes an equivalence after tensoring with B̃cris(V ).
The map c is an equivalence by 9.42, and the map d is an equivalence since R• is a resolution
of L(OGdR

).

Finally note that by 9.44 there is a natural quasi–isomorphismBcris(V )→ GC(V(OGet)|W• , E)⊗Qp

Bcris(V ), and similarly by 9.31 there is a natural quasi–isomorphism

(9.58.3) Bcris(V )→ DR((L(OGdR
)|W• , N))⊗K Bcris(V ).

Furthermore, since all the morphisms in 9.58.1 are morphisms of differential graded Bcris(V )–
algebras, the two induced maps Bcris(V )→ DR(R|W•)⊗K Bcris(V ) are equal. It follows that
the map b is also an equivalence.

From the diagram 9.58.1 we therefore obtain an isomorphism

(9.58.4) ιY : YdR ⊗K B̃cris(V )→ Yet ⊗Qp B̃cris(V )

such that the diagram of isomorphisms

(9.58.5)

YdR ⊗K B̃cris(V )
ιY−−−→ Yet ⊗Qp B̃cris(V )y y

BGdR ⊗K B̃cris(V )
ιG−−−→ BGet ⊗Qp B̃cris(V )

commutes. To complete the proof of 9.46, it now only remains to observe that there is a
natural morphism of diagrams from 6.17.6 to 9.58.1, and hence the induced diagram

(9.58.6)

YdR ⊗K B̃cris(V )
δdR−−−→ XCdR

⊗K B̃cris(V )

ιY

y yιC

Yet ⊗Qp B̃cris(V )
δet−−−→ XCet ⊗Qp B̃cris(V )

commutes. Applying the π1–functor we obtain that 9.46 commutes after tensoring with

B̃cris(V ). But then by [Ol3, 15.2] the diagram 9.46 commutes already over Bcris(V ). �

10. A generalization

In this section we formulate a conjecture which we learned from some communications with
Toen (though of course any mistakes are entirely due to the present author).

10.1. Let X, V , and K be as in 6.1, and assume for simplicity that the residue field k is
separably closed.

As in 8.2, if Υ is any field and G is a gerbe over the category of affine Υ–schemes with the
fpqc topology, one can associate to G a simplicial presheaf BG ∈ SPr(Υ) such that for any
Υ–algebra R the simplicial set BG(R) is the nerve of the groupoid G(R).
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10.2. Let Gcris denote the gerbe of fiber functors for the category of crystalline representations
of Gal(K/K) and consider the category Ho(SPr∗(Qp)|BGcris). Denote by

(10.2.1) ωet ∈ G(Qp)

the fiber functor which associates to a crystalline representation the underlying Qp–vector
space. If Hcris denotes the gerbe of fiber functors for the category of F–isocrystals on k/K
then there is also a natural functor

(10.2.2) ωD : Hcris −→ Gcris

which to a fiber functor η for FIsoc(k/K) associates the fiber functor for the category of crys-
talline representations sending V to η(D(V )). Finally there is a fiber functor ωdR ∈ Hcris(K)
which sends an F–isocrystal to its underlying K–vector space. Moreover, by definition of
crystalline representation there is a natural isomorphism

(10.2.3) ωet ⊗Qp Bcris(V ) ' (ωdR ◦ ωD)⊗K Bcris(V ).

We thus obtain a commutative diagram of simplicial presheaves

(10.2.4)

Spec(Bcris(V )) −−−→ Spec(Qp)

ωdR⊗Bcris(V )

y yωet

BHcris −−−→ BGcris.

In particular, if F ∈ Ho(SPr(K)|BGcris) then by pulling back we obtain a stack D(F ) ∈
Ho(SPr∗(K)|BHcris

) and Fet ∈ Ho(SPr∗(Qp)) together with an isomorphism

(10.2.5) Fet ⊗Qp Bcris(V ) ' ωdR(D(F ))⊗K Bcris(V ).

There is a natural action of Gal(K/K) on ωet which induces an action of Gal(K/K) on
Fet. Similarly there is a semi–linear Frobenius automorphism of ωdR which induces a semi–
linear automorphism ϕ : ωdR(D(F ))σ → ωdR(D(F )). Because the isomorphism of fiber
functors 10.2.3 is compatible with these structures it follows that the isomorphism 10.2.5 is
compatible with the Frobenius structures and Galois actions.

10.3. Now let (E,FilE, ϕE) and L be associates sheaves as in 7.1. Let CdR and Cet be as in
1.5 giving rise to stacks XCdR

∈ Ho(SPr∗(K)) and XCet ∈ Ho(SPr∗(Qp)). By 1.7 there is a
natural isomorphism

(10.3.1) ι : XCdR
⊗K B̃cris(V ) ' XCet ⊗Qp B̃cris(V ).

Finally we note that it is shown in [Ol1, 3.62] that there is a natural stack

(10.3.2) FCdR
∈ Ho(SPr∗(Qp)|BHcris

)

giving rise to XCdR
with its F–isocrystal structure.

The following conjecture would be a natural extension of the results of this paper.

Conjecture 10.4. There exists a stack FC ∈ Ho(SPr∗(Qp)|BGcris) and isomorphisms D(FC) '
FCdR

, ωet(F ) ' XCet identifying the isomorphism ι with the natural isomorphism (ωdR ◦
D)(FC)⊗Bcris(V ) ' ωet(FC)⊗Qp Bcris(V ).
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Appendix A. Exactification

A.1. Let f : (X,MX)→ (S,MS) be a morphism of fine log schemes, let (D,MD) denote the
fiber product

(A.1.1) (X,MX)×(S,MS) (X,MX)

in the category of fine log schemes, and let

(A.1.2) ∆ : (X,MX)→ (D,MD)

denote the diagonal morphism. Write pi : (D,MD) → (X,MX) (i = 1, 2) for the two
projections.

A.2. Let C denote the category whose objects are morphisms of fine log algebraic spaces
over (S,MS)

(A.2.1) (g, gb) : (T,MT )→ (D,MD)

such that the two composite maps

(A.2.2) (T,MT )
g // (D,MD)

pi // (X,MX)

are strict. Morphisms in C are (D,MD)-morphisms.

Proposition A.3. The category C has a final object

(A.3.1) π : (D̃,M eD)→ (D,MD).

Proof. Let C ′ denote the category whose objects are pairs

(A.3.2) (g : T → X ×S X, ι),

where g is a morphism of S-spaces, and ι : g∗p∗1MX → g∗p∗2MX is an isomorphism of log
structures on T such that the diagram

(A.3.3) t∗MS

fb

yyttttttttt
fb

%%JJJJJJJJJ

g∗p∗1MX
ι // g∗p∗2MX

commutes, where t : T → S is the structure morphism. A morphism

(A.3.4) (g : T → X ×S X, ι)→ (g′ : T ′ → X ×S X, ι′)

is an X ×S X-morphism h : T → T ′ such that the induced diagram

(A.3.5) h∗g′∗p∗1MX
h∗ι′ //

'
��

h∗g′∗p∗2MX

'
��

g∗p∗1MX
ι // g∗p∗2MX

commutes. Let

(A.3.6) F : C → C ′
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be the functor sending (g, gb) : (T,MT ) → (D,MD) to the underlying algebraic space T
(which is a X ×S X-space via the natural projection D → X ×S X) and the isomorphism

(A.3.7) (p1g)
∗MX

(p1g)b

// MT

(p2g)b−1

// (p2g)
∗MX .

Lemma A.4. The functor A.3.6 is an equivalence of categories.

Proof. For an object (g : T → X ×S X, ι) ∈ C ′, let gi : T → X (i = 1, 2) be the composite
pi ◦ g. We then obtain a commutative diagram of fine log algebraic spaces

(A.4.1) (T, g∗2MX)

(g1,ι)

��

(g2,id)
// (X,MX)

f
��

(X,MX)
f // (S,MS),

and therefore also an object

(A.4.2) ((T, g∗2MX)→ (D,MD)) ∈ C .

This construction defines a functor

(A.4.3) G : C ′ → C .

It follows immediately from the construction that there are natural isomorphisms FG ' idC ′

and GF ' idC . �

It follows that in order to prove A.3, it suffices to show that the category C ′ has a final
object. Let

(A.4.4) I : (Algebraic spaces/X ×S X)op → Set

be the functor sending g : T → X ×S X to the set of isomorphisms ι : g∗p∗1MX → g∗p∗2MX

such that the diagram A.3.3 commutes. Then by the very definition of C ′ to show that C ′

has a final object it suffices to show that I is an algebraic space.

This follows from the general theory in [Ol2]. Let Log(S,MS) denote the stack defined in
[Ol2]. By [Ol2, 1.1] the stack Log(S,MS) is an algebraic stack, and in particular the diagonal
morphism

(A.4.5) ∆ : Log(S,MS) → Log(S,MS) ×S Log(S,MS)

is representable. This implies that I is representable, as I is isomorphic to the fiber product
of the diagram

(A.4.6) X ×S X
p∗1MX×p∗2MX

��
Log(S,MS)

∆ // Log(S,MS) ×S Log(S,MS).

�
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A.5. The diagonal map ∆ : (X,MX)→ (D,MD) is in particular an object of C , and therefore
we obtain a factorization of ∆

(A.5.1) (X,MX)

∆

''e∆ // (D̃,M eD)
π // (D,MD),

where ∆̃ is strict. The underlying morphism of algebraic spaces of ∆̃ is an immersion since

this is the case for ∆. The morphism ∆̃ is therefore an exact immersion of log schemes. We

call ∆̃ the exactification of ∆.

Example A.6. Let S = Spec(R) for some ring R, and let MS be the trivial log structure on
S. Let X = A2

R with log structure MX induced by the map

(A.6.1) N2 → R[x, y], (n,m) 7→ xnym.

Let S denote the stack theoretic quotient of A2
R by the action of G2

m given on scheme-valued
points by

(A.6.2) (u1, u2) ∗ (a, b) := (u1a, u2b).

Then the map

(A.6.3) MX : X → Log(S,O∗S)

factors through S as

(A.6.4) X
A // S

B // Log(S,O∗S),

where B is étale by [Ol2, 5.25] and A is the natural projection. Let J denote the fiber product
of the diagram

(A.6.5) X

A×A
��

S
∆ // S×S S.

Then there is a commutative diagram

(A.6.6) J

γ

��

X
/ �

j
??~~~~~~~~

� � e∆ // D̃,

where γ is étale since B is étale. On the other hand, there is a natural isomorphism (see for
example the discussion in [Ol2, 3.11 and 5.14])

(A.6.7) J ' Spec(R[x, y, u±1 , u
±
2 ]),

with the first (resp. second) projection J → X is given by the map

(A.6.8) x 7→ x, y 7→ y (resp. x 7→ u1x, y 7→ u2y),

and the diagonal map j is defined by u1 = u2 = 1.
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A.7. More generally, for any finite set K, let (DK ,MDK ) denote the fiber product of the
diagram

(A.7.1)
∏

k∈K(X,MX)
Q

k∈K f

��
(S,MS)

∆K //
∏

k∈K(S,MS),

where ∆K denotes the diagonal, and define CK to be the category with objects (S,MS)-
morphisms

(A.7.2) g : (T,MT )→ (DK ,MDK )

such that for every k ∈ K the composite morphism

(A.7.3) (T,MT )
g // (DK ,MDK )

pk // (X,MX)

is strict, where pk : (DK ,MDK ) → (X,MX) denotes the projection to the k-th factor. Mor-
phisms in CK are (DK ,MDK )-morphisms.

Proposition A.8. The category CK has a final object

(A.8.1) πK : (D̃K ,M eDK )→ (DK ,MDK ).

Proof. Fix an isomorphism K = {0, . . . , n} for n+1 = |K|. We may without loss of generality
assume that n ≥ 2, as the case n = 1 is A.3. Then

(A.8.2) (DK ,MDK ) ' (D,MD)×p2,(X,MX),p1 (D,MD)× · · · ×p2,(X,MX),p1 (D,MD).︸ ︷︷ ︸
n

From this and the definition of CK it then follows that an initial object is given by

(A.8.3) (D̃,M eD)×p2,(X,MX),p1 (D̃,M eD)× · · · ×p2,(X,MX),p1 (D̃,M eD)︸ ︷︷ ︸
n

with the projection to (DK ,MDK ) induced by the maps π : (D̃,M eD)→ (D,MD). �

A.9. As before, the multidiagonal

(A.9.1) ∆K : (X,MX)→ (DK ,MDK )

factors as

(A.9.2) (X,MX)
e∆K // (D̃K ,M eDK )

πK // (DK ,MDK ).

A.10. Finally note that if h : K → K ′ is a morphism of finite sets, then h induces a
commutative diagram

(A.10.1) (D̃K′
,M eDK′ )

πK′
//

h
��

(DK′
,MDK′ )

h

��
(X,MX)

e∆K′
88ppppppppppp e∆K // (D̃K ,M eDK )

πK // (DK ,MDK ).
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A.11. In the category of fine log formal schemes there is a more general notion of exactification
generalizing the charted exactification discussed in [Sh2, 2.1.14]. We explain this notion of
exactification after some preliminaries.

Lemma A.12. Let (X,MX) be a fine log scheme, and let π : MX → N be a surjection of
constructible sheaves of monoids such that if η̄ → X is a generization [SGA4, VIII.7.2] of a
geometric point s̄→ X then the diagram

MX,s̄

��

πs̄ // Ns̄

��
MX,η̄

πη̄ // Nη̄

is cocartesian, where the vertical arrows are the specialization maps. Let

I : (Sch/X)op → Set

be the functor which to any X-scheme f : T → X associates the set of morphisms of log
sctructures f ∗MX →MT on T such that the induced map f−1MX →MT factors through an
isomorphism f−1N →MT . Then I is an algebraic space.

Proof. Note first that since π : MX → N is surjective if ρ : f ∗MX → MT is an element of
I(T ) then the map ρ is surjective. In particular, there are no nontrivial automorphisms of
MT compatible with ρ. Therefore I is naturally a substack of Log(X,MX), and to prove the
lemma it suffices to show that I is algebraic.

In fact, I is an open substack of Log(X,MX). This is equivalent to saying that if f :
(T,MT ) → (X,MX) is a morphism of fine log schemes, then the condition that the map
f−1MX → MT factors through an isomorphism f−1N → MT is representable by an open
subset of T .

Let U ⊂ T be the set of points s ∈ T for which the map MX,f(s̄) → MT,s̄ factors through

an isomorphism Nf(s̄) → MT,s̄. We claim that U is open. Since f−1MX , f−1N , and MT are
constructible sheaves on T , the set U is constructible. Therefore it suffices to show that U
is closed under generization. For this let η ∈ T be a generization of s ∈ U and consider the
diagram

(A.12.1) MX,f(s̄)
//

��

Nf(s̄)

��

' // MT,s̄

��

MX,f(η̄) 88
// Nf(η̄)

//___ MT,η̄.

Since the map MX,f(s̄) →MT,s̄ is surjective, the square

MX,f(s̄)
//

��

MT,s̄

��

MX,f(η̄)
// MT,η̄
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is cocartesian. Since the left square in A.12.1 is also cocartesian by assumption, this implies
that the dotted arrow in A.12.1 exists an is an isomorphisms.

This completes the proof that U is open, and it follows that the condition that f−1MX →
MT factors through an isomorphism f−1N →MT is represented by (U,MT |U). �

A.13. Let (Z,MZ) ↪→ (T,MT ) be a closed immersion of fine log formal schemes, where Z ⊂ T
is a subscheme of definition. Let C denote the category of commutative squares of fine log
formal schemes

(A.13.1) (U,MU) � � i //

a

��

(W,MW )

��
(Z,MZ) � � // (T,MT ),

where U ⊂ W is a subscheme of definition. Also let C0 ⊂ C denote the full subcategory of
squares for which the morphism a is strict.

Proposition A.14. The category C has a final object, and this final object is in C0.

Proof. Let J ⊂ OT denote the ideal defining Z, and let (Tn,MTn) denote the reduction of
(T,MT ) modulo Jn+1. Since J is an ideal of definition by assumption (Tn,MTn) is fine log
scheme, and there is a closed immersion (Z,MZ) ↪→ (Tn,MTn) defined by a nilpotent ideal.
In particular, the étale sites of Tn and Z are canonically isomorphic. We therefore obtain
a surjection πn : MTn → MZ of constructible sheaves of monoids on Tn,et. Moreover, this

surjection satisfies the assumptions of A.12. Let (T̃n,MeTn
) denote the log algebraic space

representing the functor in A.12 applied to πn : MTn → MZ , so we have a commutative
diagram

(T̃n,MeTn
)

��
(Z,MZ)

+ �

88rrrrrrrrrr
� � // (Tn,MTn).

Lemma A.15. The algebraic space T̃n is affine over Tn. In particular, T̃n is a scheme.

Proof. We may clearly work étale locally on Tn. Let z̄ → Tn be a geometric point, and choose
a finitely generated group G and a homomorphism

(A.15.1) G→Mgp
Tn,z̄

such that the induced map G→M
gp

Tn,z̄ is surjective. Then the composite map

G→M
gp

Tn,z̄ →M
gp

Z,z̄

is also surjective. Let P ⊂ G (resp. Q ⊂ G) denote the inverse image of MTn,z̄ (resp. MZ,z̄)
under A.15.1 (resp. the composite map G → Mgp

Tn,z̄
→ Mgp

Z,z̄). We then have a commutative
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diagram

P
� � //

��

Q

��
MTn,z̄

// MZ,z̄.

Observe that Q is the localization of P by a face F ∈ P . By [Ka, 2.10], after possible replacing
Tn by an étale neighborhood of z̄, we can extend this commutative diagram to a commutative
diagram of fine log schemes

(Z,MZ) //

��

(Tn,MTn)

��
Spec(Q→ Z[Q]) // Spec(P → Z[P ]),

where the vertical arrows are charts. Here for a fine monoid M we write Spec(M → Z[M ])
for the log scheme with underlying scheme Spec(Z[M ]) and log structure induced by the map

M → Z[M ]. In this situation, the scheme T̃n can be described explicitly as

T̃n = Spec(Z[Q])×Spec(Z[P ]) Tn.

�

Observe that by definition there is an isomorphism

(T̃n,MeTn
)×(Tn,MTn ) (Tn−1,MTn−1).

In particular, all the underlying topological spaces of the T̃n are canonically identified with

the topological space |T̃0| of T0. Let OeT denote the sheaf on |T̃0| given by

OeT := lim←−
n

OeTn
.

Also define MeT on T̃0,et to be the sheaf of monoids

MeT := lim←−
n

MeTn
.

We then have a commutative diagram of ringed spaces with log structures

(T̃ ,MeT )

��
(Z,MZ)

+ �

99ssssssssss
� � // (T,MT ).

Lemma A.16. (T̃ ,MeT ) is a fine formal log scheme.
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Proof. The assertion is étale local on T . We may therefore assume that T = Spf(A) for some
ring A, and as in the proof of A.15 that there exists a commutative diagram

(Z,MZ) //

��

(T,MT )

��
Spec(Q→ Z[Q]) // Spec(P → Z[P ]),

where the vertical arrows are charts and the map P → Q is injective and induces an isomor-

phism P gp → Qgp. In this case, T̃ is equal to the formal spectrum of the J-adic completion
of A⊗Z[P ] Z[Q], and the log structure MT is induced by the natural map Q→ Z[Q]. �

Let T ex denote the completion of T̃ along the closed subscheme Z, and let MT ex denote the
pullback of MeT to T ex. Then

(Z,MZ) � � //

id
��

(T ex,MT ex)

��
(Z,MZ) � � // (T,MT )

is an object of C0. We claim that this is the final object of C.

Lemma A.17. The inclusion C0 has a left adjoint L : C → C0.

Proof. Consider an object A.13.1 of C. On Wet ' Uet we then have a diagram of log structures

MW

����
a∗MZ

// MU .

Let M ′
W denote the fiber product of this diagram. Then M ′

W is a log structure with map to
OW given by the composite

M ′
W →MW → OW .

Moreover, the projection MW → a∗MZ induces an isomorphism i∗M ′
W ' a∗MZ over U .

Moreover, one sees easily that M ′
W is fine, and that the diagram of fine log formal schemes

(U,MU)

��

� � // (W,MW )

��
(U, a∗MZ) � � // (W,M ′

W ).

is cocartesian. In particular, there is a natural map (W,M ′
W ) → (T,MT ) (this also follows

from the construction of M ′
W ). We define L by sending A.13.1 to the diagram

(U, a∗MZ)

��

// (W,M ′
W )

��
(Z,MZ) // (T,MT ).

�
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Since the inclusion C0 ⊂ C has a left adjoint, to prove that (T ex,MT ex) is a final object in
C it suffices to show that (T ex,MT ex) is a final object in C0. So consider an object A.13.1
with a strict. Let I ⊂ OW be the ideal of U in W , and for n ≥ 0 let Wn ⊂ W denote the
closed subscheme defined by In+1 (note that by assumption U is a subscheme of definition of
W ). Then to construct the desired arrow (W,MW ) → (T ex,MT ex) it suffices to construct a
morphism (Wn,MWn)→ (T ex,MT ex) for every n. We may therefore in addition assume that
W is a scheme and that i : U ↪→ W is defined by a nilpotent ideal. In this case we get by the

universal property of (T̃n,MeTn
) a commutative diagram

(U,MU) � � //

��

(W,MW )

��

(Z,MZ) � � // (T̃n,MeTn
).

Composing with the map (T̃n,MeTn
)→ (T̃ ,MeT ) we obtain a commutative diagram

(U,MU) � � //

��

(W,MW )

��

(Z,MZ) � � // (T̃ ,MeT ).

Since the ideal of U in W is nilpotent the morphism (W,MW ) → (T̃ ,MeT ) factors uniquely
through (T ex,MT ex) and so we finally obtain a commutative diagram

(U,MU) � � //

��

(W,MW )

��
(Z,MZ) � � // (T ex,MT ex).

The uniqueness of this diagram also follows from the universal property of (T̃ ,MeT ). This
completes the proof of A.14. �

Remark A.18. We call the final object (Z,MZ) ↪→ (T ex,MT ex) in A.14 the exactification of
(Z,MZ) ↪→ (T,MT ).

Appendix B. Remarks on localization in model categories

B.1. Let C be a model category. For any object S ∈ C the localized category C|S of objects
over S has, by a similar argument to the one used in [Ho, 1.1.8], a model category structure
in which a morphism

(B.1.1) X
f //

��@
@@

@@
@@

Y

����
��

��
�

S

is a cofibration (resp. fibration, weak equivalence) if the underlying morphism f : X → Y is
a cofibration (resp. fibration, weak equivalence) in C.
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B.2. Let h : S → R be a morphism in C. Let

(B.2.1) F : C|S → C|R
be the functor sending X → S to the composite

(B.2.2) X → S → R.

The functor F has a right adjoint

(B.2.3) U : C|R → C|S
which sends Y → R to

(B.2.4) pr2 : Y ×R S → S.

Let ϕ : FU → idC be the adjunction map. Then since F clearly preserves cofibrations and
trivial cofibrations the triple (F,U, ϕ) is a Quillen adjunction [Ho, 1.3.1].

B.3. Recall [Hi, 13.1.1] that a model category C is called right proper if for every cartesian
diagram in C

(B.3.1) P
p //

��

X

g

��
A

h // B

with g a fibration and h a weak equivalence, the map p : P → X is a weak equivalence.

Proposition B.4. Suppose C is right proper, and that h : S → R is a weak equivalence in
C. Then the Quillen adjunction

(B.4.1) (F,U, ϕ) : C|S → C|R
is a Quillen equivalence.

Proof. By the definition of a Quillen equivalence [Ho, 1.3.12], it suffices to show that given a
commutative diagram in C

(B.4.2) X
f //

k
��

Y

g

��
S

h // R

with k a cofibration and g a fibration, the map f is a weak equivalence if and only if the
induced map

(B.4.3) f ′ : X → S ×R Y

is a weak equivalence. This follows from the 2-out-of-3 property for weak equivalences applied
to the diagram

(B.4.4) X
f ′ // S ×R Y

pr2 // Y,

and the fact that the map pr2 : S×RY → Y is a weak equivalence since C is right proper. �
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Remark B.5. Similarly a model category is called left proper if for every pushout diagram

(B.5.1) B

g

��

h // A

��
X // P

with g a cofibration and h a weak equivalence, the map X → P is a weak equivalence.

If C is a left proper model category and h : S → R is a weak equivalence in C, then by
applying B.4 to the opposite category Co (with the natural model category structure) one
obtains that the functor

(B.5.2) C|\R → C|\S

between the model categories of objects under R and S respectively is a Quillen equivalence.

A model category which is both left and right proper is called proper.

B.6. Quillen adjunctions extend naturally to localized model categories. To explain this, let
C and D be model categories, and let

(B.6.1) F : C → D, U : D → C, ϕ : FU → idC

be a Quillen adjunction (so F is left adjoint to U).

Fix an object X ∈ D. We then get model categories D\X and C\U(X) of object under X
and U(X) respectively. As noted in B.1 (applied to Do and Co) there are natural model
category structures on D\X and C\U(X).

The functor U induces a functor

(B.6.2) U\X : D\X → C\U(X), (X → Y ) 7→ (U(X)→ U(Y )).

This functor has a left adjoint

(B.6.3) F\X : C\U(X) → D\X

sending U(X)→ Z to the pushout of the diagram

(B.6.4) FU(X)

ϕ

��

// F (Z)

X.

The functor U\X preserves fibrations and trivial fibrations, as this is true of U . The pair
(F\X , U\X) is therefore a Quillen adjunction by [Ho, 1.3.4].

B.7. The forgetful functor

(B.7.1) fX∗ : D\X → D, (X → Y ) 7→ Y

has a left adjoint f ∗X sending Z ∈ D to Z
∐
X with the natural map X → Z

∐
X. The pair

(f ∗X , fX∗) is a Quillen adjunction since fX∗ clearly preserves fibrations and trivial fibrations.
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We therefore obtain a commutative diagram of right Quillen functors

(B.7.2) D\X

fX∗
��

U\X // C\U(X)

fU(X)∗
��

D
U // C.

Passing to the associated homotopy categories we obtain a commutative diagram of derived
functors

(B.7.3) Ho(D\X)

RfX∗
��

RU\X // Ho(C\U(X))

RfU(X)∗
��

Ho(D)
RU // Ho(C).

Observe that since fX∗ preserves arbitrary equivalences we have RfX∗ ' fX∗.

B.8. Dually, let Y ∈ C be an object. We can then consider the localized categories C\Y and
D\F (Y ). Let

(B.8.1) F \Y : C\Y → D\F (Y )

be the functor sending Y → Z to F (Y ) → F (Z). This functor has a right adjoint U\Y

sending F (Y )→ X to the composite

(B.8.2) Y
adjunction−−−−−−→ UF (Y ) −−−→ F (X).

Since F takes cofibrations to cofibrations and trivial cofibrations to trivial cofibrations, the
same is true of F \Y . Therefore (F \Y , U\Y ) is a Quillen adjunction.

We have a commutative diagram of functors

(B.8.3) C\Y

fY ∗
��

F \Y
// D\F (Y )

fF (Y )∗
��

C
F // D.

As above, this implies that there is a natural transformation

(B.8.4) η : LF ◦ RfY ∗ → RfF (Y )∗ ◦ LF \Y .

Proposition B.9. If Y is a cofibrant object in C, then B.8.4 is an equivalence, so we have
a commutative diagram

(B.9.1) Ho(C\Y )

fY ∗
��

F \Y
// Ho(D\F (Y ))

fF (Y )∗
��

Ho(C)
F // Ho(D).

Proof. If Y → Z is a cofibration, then we have

(B.9.2) RfF (Y )∗LF \Y (Y → Z) = F (Z).
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On the other hand,

(B.9.3) LF (RfY ∗(Y → Z) = F (Z ′),

where Z ′ → Z is a cofibrant replacement. Now if Y is cofibrant then Z is also cofibrant, so
the map F (Z ′)→ F (Z) is an equivalence. �

Appendix C. The coherator for algebraic stacks

In this section we discuss a version of the coherator for an algebraic stacks (see [T-T] for
the case of schemes and [Jo, 10.1] for a result in the lisse-étale topology).

C.1. Let S be a scheme, and let X be a stack over the category of affine S-schemes AffS
with the fpqc topology. Assume that the diagonal

(C.1.1) ∆ : X →X ×X

is representable and affine, and that there exists an fpqc surjection ω : Spec(R)→X .

Define Xfpqc to be the topos associated to the small fpqc site of X :

Objects: flat S-morphisms t : T →X , where T ∈ AffS.

Morphisms: 2-commutative triangles over S

(C.1.2) T ′ //

!!CC
CC

CC
CC

T

}}||
||

||
||

X .

Coverings: A collection of morphisms {Ti → T}i∈I is a covering if the underlying collection
of maps in AffS is an fpqc covering in the usual sense (see for example [Vi, page 30]).

The topos Xfpqc is ringed with structure sheaf given by

(C.1.3) OX (T →X ) := Γ(T,OT ).

Remark C.2. If f : X → Y is a morphism of stacks satisfying the conditions of C.1, then
just as in the case of the lisse-étale site [LM-B, 12.2] there is a functor

(C.2.1) f∗ : Xfpqc → Yfpqc

sending F ∈Xfpqc to the sheaf

(C.2.2) (T → Y ) 7→ Γ((T ×Y X )fpqc, F ).

This functor has a left adjoint f ∗ but this functor is not in general exact. If f is flat, however,
then f ∗ is exact (it is just the restriction functor) and f induces a morphism of topoi

(C.2.3) Xfpqc → Yfpqc.

Remark C.3. Recall that if T is a scheme, then there is a natural morphism of ringed topoi

(C.3.1) ε : Tfpqc → TZar.

A sheaf of OTfpqc
-modules E is called quasi-coherent if E is isomorphic to ε∗F for some quasi-

coherent sheaf (in the usual sense) on TZar. Furthermore, the pullback functor ε∗ induces an
equivalence of categories between quasi-coherent sheaves on TZar and quasi-coherent sheaves
of OTfpqc

-modules (this follows from descent theory [Vi, 4.23]).
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C.4. By standard considerations, the category of OX -modules in Xfpqc is equivalent to the
category of collections of data {(E(T,t), ϕ)} consisting of a sheaf OT -modules E(T,t) in Tfpqc for
every flat morphism t : T → X , and for every morphism f : (T ′, t′) → (T, t) a morphism of
OT ′-modules

(C.4.1) ϕ : f ∗E(T,t) → E(T ′,t′).

These morphisms are further required to satisfy a natural cocycle condition for compositions.

A sheaf of OX -modules E is called quasi-coherent if each E(T,t) is quasi-coherent and if
the transition morphisms C.4.1 are all isomorphisms. Let Qcoh(X ) denote the category of
quasi-coherent sheaves on X , and let Mod(X ) denote the category of all OX -modules. Then
there is a natural inclusion

(C.4.2) j : Qcoh(X ) ↪→ Mod(X ).

The following lemma is the main reason we consider the small fpqc site as opposed to the
big site.

Lemma C.5. The essential image of j is closed under kernels, cokernels, and extensions.

Proof. It is immediate that the essential image of j is closed under cokernels and extensions.
For the statement about kernels, let f : E → F be a morphism of quasi-coherent sheaves,
and let K denote the kernel in Mod(X ). Then for any flat morphism t : T → X with
T ∈ AffS, the restriction KT,Zar of K to TZar is simply the kernel of the map of Zariski sheaves
ET,Zar → FT,Zar induced by f . It therefore suffices to show that if h : (T ′, t′) → (T, t) is a
morphism in the small fpqc site of X then the induced map

(C.5.1) h∗KT,Zar → KT ′,Zar

is an isomorphism. Since t and t′ are flat, there exists a flat surjection p : P → T ′ and a
commutative diagram

(C.5.2) P

p

��

q // T

t
��

T ′
t′ // X

with q also flat. To verify that C.5.1 is an isomorphism, it suffices to show that it becomes
an isomorphism after applying p∗. It therefore suffices to show that the analogues of C.5.1
for the morphism P → T ′ and the morphism q are isomorphisms. This follows from the
observation that C.5.1 is clearly an isomorphism if h is flat. �

Lemma C.6. The functor j has a right adjoint

(C.6.1) u : Mod(X )→ Qcoh(X ).

Moreover, the adjunction map id→ uj is an isomorphism.

Remark C.7. The functor u of C.6 is called the coherator.
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Proof. Let ω : U0 → X be an fpqc surjection with U affine, and let U1 denote U0 ×X U0 so
we have a diagram

(C.7.1) U1
**
44

η

!!
U0

ω // X .

For F ∈ Mod(X ), define

(C.7.2) u(F ) := Ker(ω∗Γ(U0, F )̃ ⇒ η∗Γ(U1, F )̃),

where Γ(U0, F )̃ (resp. Γ(U1, F )̃) denotes the quasi-coherent sheaf on U0 (resp. U1) associated
to Γ(U0, F ) (resp. Γ(U1, F )). Since F is a sheaf for the fpqc topology the sequence

(C.7.3) 0→ F → ω∗ω
∗F ⇒ η∗η

∗F

is exact. From the commutative diagram

(C.7.4) 0 // F // ω∗ω
∗F

--
22 η∗η

∗F

0 // u(F )

OO�
�
�

// ω∗Γ(U0, F )̃
..

OO

00 η∗Γ(U1, F )̃

OO

we then obtain a map ju(F )→ F . From this definition of u(F ) it is clear that the adjunction
map uj(G)→ G is an isomorphism if G ∈ Qcoh(X ).

If G is a quasi-coherent sheaf, and ϕ : G→ F is a morphism of sheaves where F ∈ Mod(X )
then the induced maps ω∗G → ω∗F and η∗G → η∗F factor uniquely through Γ(U0, F )̃ and
Γ(U1, F )̃ respectively. It follows that ϕ also factors through a unique map G → u(F ). This
implies that u is a right adjoint to j. �

C.8. Since j is exact, the functor u takes injectives to injectives, and for any F ∈ D+(Mod(X ))
there is a canonical map

(C.8.1) jRu(F )→ F.

Theorem C.9. The functor j induces an equivalence of categories

(C.9.1) j : D+(Qcoh(X ))→ D+
qcoh(Mod(X )),

where D+
qcoh(Mod(X )) ⊂ D+(Mod(X )) denotes the full subcategory of complexes with quasi-

coherent cohomology sheaves. A quasi-inverse to j is given by

(C.9.2) Ru : D+
qcoh(Mod(X ))→ D+(Qcoh(X )).

Proof. For a flat morphism U → X with U an affine scheme, let SU denote the following
site:

Objects: Morphisms of affine schemes V → U such that the composite morphism V →
U →X is flat.

Morphisms: Morphisms of U -schemes.

Coverings: A collection of maps {Vi → V }i∈I in SU is a covering if it is an fpqc covering
in the usual sense.
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Then Xfpqc|U is equivalent to the topos associated to SU . As in C.4 the category of
sheaves of OX |U -modules (where OX |U is the restriction of OX ) is equivalent to the category
of collections of data {EV→U , ϕ} consisting of a sheaf of OVfpqc

-modules on Vfpqc for every
(V → U) ∈ SU , and a transition morphism

(C.9.3) ϕ : f ∗EV→U → EV ′→U ,

for every morphism (V → U) → (V ′ → U) in SU . These transition morphisms are further
required to satisfy a natural cocycle condition. A sheaf E of OX |U -modules is called quasi-
coherent if each EV→U is quasi-coherent, and if the transition maps C.9.3 are all isomorphisms.

Lemma C.10. Let U → X be a flat morphism with U an affine scheme, and let F be a
quasi-coherent sheaf on Xfpqc|U .

(i) We have H i(Xfpqc|U , F ) = 0 for i > 0.

(ii) If ω : Xfpqc|U →Xfpqc is the projection, then we have Riω∗F = 0 for i > 0.

Proof. Note first that (ii) follows immediately from (i) as Riω∗F is equal to the sheaf asso-
ciated to the presheaf which to any flat morphism W → X associates H i(Xfpqc|U×X W , F ),
where W is an affine scheme (and note that U ×X W is affine since X has affine diagonal).

Statement (i) can be seen as follows (this is essentially the same as in the usual case of the
big fpqc site). For any fpqc covering P : V → U with V an affine scheme, let V· denote the
0-coskeleton of P (see for example [LM-B, 12.4]). We then have a spectral sequence [De4,
1.4.5]

(C.10.1) Epq
1 = Hq(Xfpqc|Vp , F ) =⇒ Hp+q(Xfpqc|U , F ).

The q = 0 line in this spectral sequence is the complex

(C.10.2) F (V0)→ F (V1)→ F (V2)→ · · · ,

which is exact by the usual flat descent theory (see for example [Mi, I.2.18]).

This in turn implies that the natural map

(C.10.3) H1(Xfpqc|U , F )→ H1(Xfpqc|V , F )

is injective. Since any cohomology class α ∈ H1(Xfpqc|U , F ) maps to zero in H1(Xfpqc|V , F )
for some fpqc covering V → U this implies that H1(Xfpqc|U , F ) = 0. This proves (i) for i = 1.

For general i, we proceed by induction on i ≥ 1. So fix an integer i and assume that for
any flat morphism W →X with W an affine scheme, and quasi-coherent sheaf G on Xfpqc|W
we have Hj(Xfpqc|W , G) = 0 for 1 ≤ j ≤ i − 1. Then the spectral sequence C.10.1 and the
exactness of C.10.2 shows that for any fpqc covering V → U the pullback map

(C.10.4) H i(Xfpqc|U , F )→ H i(Xfpqc|V , F )

is injective. Since for any class α ∈ H i(Xfpqc|U , F ) there exists an fpqc covering V → U such
that α maps to zero in H i(Xfpqc|V , F ), it follows that H i(Xfpqc|U , F ) = 0. �

Let ω : U0 →X be an fpqc covering with U0 affine, and let A : U· →X be the associated
simplicial space.
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Lemma C.11. Let I ∈ Mod(X ) be an injective sheaf, and let Ĩ· be the sheaf in the localized
topos Xfpqc|U· whose restriction to each Xfpqc|Un is equal to the quasi-coherent sheaf associated

to Γ(Un, I). Then RiA∗(Ĩ·) = 0 for i > 0, where

(C.11.1) A : Xfpqc|U· →Xfpqc

is the projection.

Proof. Since the natural map I → ω∗ω
∗I is injective and hence a direct summand, it suffices

to consider the case when I = ω∗J for an injective sheaf J in X |U0 .

Let P· denote U· ×X U0 and consider the commutative diagram of topoi

(C.11.2) Xfpqc|P·
B //

η

��

Xfpqc|U0

ω

��
Xfpqc|U·

A // Xfpqc.

Let J̃· denote the sheaf in Xfpqc|P· whose restriction to Xfpqc|Pn is the quasi-coherent sheaf

associated to Γ(Xfpqc|Pn , J). Then we have Ĩ· = η∗J̃·.

For any natural number n and i ≥ 0, the restriction of Riη∗J̃· to Xfpqc|Un is equal to the

sheaf associated to the presheaf on SUn which to any V → Un associatesH i(Xfpqc|V×UnPn , J̃n).

By C.10 it follows that Riη∗J̃· = 0 for i > 0. To prove C.11 it therefore suffices to show that

(C.11.3) Ri(A∗ ◦ η∗)(J̃·) = Ri(ω∗ ◦B∗)(J̃·) = 0

for i > 0.

Let J̃−1 denote the quasi-coherent sheaf on Xfpqc|U0 associated Γ(Xfpqc|U0 , J). We show
that the natural map

(C.11.4) J̃−1 → RB∗J̃·

is an isomorphism. This will complete the proof C.11 for then we have

(C.11.5) Ri(ω∗ ◦B∗)(J̃·) ' Riω∗J̃−1

and the right side is zero by C.10 (ii).

To see that C.11.4 is an isomorphism, consider the spectral sequence [De4, 1.4.5]

(C.11.6) Epq
1 = RqBp∗J̃p =⇒ Rp+qB∗J̃·,

where Bp : Xfpqc|Pp →Xfpqc|U0 is the projection. As in the proof of C.10 (ii), it follows from

C.10 (i) that RqBp∗J̃p = 0 for q > 0. Therefore RB∗J̃· is represented by the complex

(C.11.7) C · : B0∗J̃0 → B1∗J̃1 → · · ·
which is the normalized complex of the cosimplical module

(C.11.8) F· : [n] 7→ Bn∗J̃n.

Let ρ : J̃−1 → F· be the natural map. The identity map U0 → U0 over X induces a section
of the projection P· → U0. This section in turn induces for every n a map

(C.11.9) gn : Pn → Pn+1
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given by the map

(C.11.10)
Pn = P0 ×U0 P0 · · · ×U0 Pn︸ ︷︷ ︸

n+1

−−−→ P0 ×U0 P0 · · · ×U0 Pn︸ ︷︷ ︸
n+2

= Pn+2

which on scheme-valued points is given by

(C.11.11) (α0, . . . , αn) 7→ (sB0(α0), α0, . . . , αn).

The map gn defines a morphism of topoi

(C.11.12) gn : Xfpqc|Pn →Xfpqc|Pn+1 ,

and therefore also a map

(C.11.13) g∗n : Bn+1∗J̃n+1 → Bn∗J̃n.

Exactly as in the case of faithfully flat descent [Mi, I, proof of 2.18] these maps give a
homotopy between the identity map on C · and the zero map. From this it follows that

(C.11.14) J̃−1 → C ·

is a quasi-isomorphism. �

Lemma C.12. Let F be a quasi-coherent sheaf on X . Then the adjunction map

(C.12.1) F → RA∗A
∗F

is an isomorphism.

Proof. Again by [De4, 1.4.5] there is a spectral sequence

(C.12.2) Epq
1 = RqAp∗A

∗
pF =⇒ Rp+qA∗A

∗F.

By C.10 (ii) we have RqAp∗A
∗
pF = 0 for q > 0, which implies that RA∗A

∗F is represented by
the complex

(C.12.3) A0∗A
∗
0F → A1∗A

∗
1F → A2∗A

∗
2F → · · · .

By classical fpqc descent [Mi, I.2.18] the adjunction map F → A0∗A
∗
0F induces a quasi-

isomorphism between F and C.12.3. �

Lemma C.13. Let F be a quasi-coherent sheaf on X . Then the adjunction map

(C.13.1) jRu(j(F ))→ j(F )

is an isomorphism.

Proof. Choose an injective resolution F → I · in the category Mod(X ). Let Ĩ ·· be the complex

on Xfpqc|U· whose j-th term is Ĩj· . For any n ≥ 0, the complex

(C.13.2) Γ(Xfpqc|Un , I
0)→ Γ(Xfpqc|Un , I

1)→ Γ(Xfpqc|Un , I
2)→ · · ·

computes RΓ(Xfpqc|Un , F ). By C.10 (i) it follows that the natural map

(C.13.3) An∗A
∗
nF → An∗Ĩ

·
n

is a quasi-isomorphism. By C.12 we therefore obtain an isomorphism in the derived category

(C.13.4) F ' RA∗A
∗F ' Tot((p, q) 7→ Ap∗Ĩ

q
p),



130 Martin C. Olsson

where the right side denotes the total complex of the indicated complex. On the other hand,
by C.11 the natural map

(C.13.5) ju(I ·) = (A∗Ĩ
0
· → A∗Ĩ

1
· → · · · )→ Tot((p, q) 7→ Ap∗Ĩ

q
p)

is a quasi-isomorphism. Since jRu(F ) = ju(I ·) we conclude that the adjunction map

(C.13.6) jRu(j(F ))→ j(F )

is an isomorphism. �

We can now complete the proof of C.9. We need to show that the adjunction maps

(C.13.7) jRu→ id, and id→ (Ru) ◦ j
are isomorphisms.

Note first that if ϕ : F → G is a morphism in D+(Qcoh(X )), then ϕ is an isomorphism if
and only if j(ϕ) : j(F )→ j(G) is an isomorphism in D+(Mod(X )). Therefore to verify that
the adjunction map

(C.13.8) id→ (Ru) ◦ j
is an isomorphism it suffices to show that the adjunction map

(C.13.9) j → j ◦ (Ru) ◦ j
is an isomorphism. For this in turn it suffices to show that the adjunction map jRu→ id is
an isomorphism.

For this note that if F ∈ D+
qcoh(Mod(X )) then there is a spectral sequence (the spectral

sequence of a filtered complex [De3, 1.4.6])

(C.13.10) Epq
1 = jRqu(H p(F )) =⇒ jRp+qu(F ).

Since each H p(F ) is quasi-coherent this implies that the natural map

(C.13.11) jRnu(F )→ juH n(F ) = H n(F )

is an isomorphism. �

Remark C.14. In the case of an algebraic stack in the usual sense [LM-B], one could replace
the small fpqc topology in the above with the lisse-étale topology [LM-B, §12].

Appendix D. B̃cris(V )-admissible implies crystalline.

D.1. Let V be a complete discrete valuation ring of mixed characteristic (0, p), field of frac-
tions K, and perfect residue field k. Let W be the ring of Witt vectors of k, and let K0 ⊂ K
be the field of fractions of W . Let K ↪→ K be an algebraic closure, and let Acris(V ), Bcris(V ),

and B̃cris(V ) be the rings defined in 6.2.

Let us recall the construction of these rings. Let V ⊂ K denote the integral closure of V ,
and let SV denote the ring of sequences (an)n≥0, where an ∈ V /pV and apn+1 = an for all
n ≥ 0. Then SV is a perfect ring and we can form the ring of Witt vectors W (SV ). As in
6.2.2 there is a surjection

(D.1.1) θ : W (SV )→ V
∧
,
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where V
∧

denotes the p-adic completion of V . If J denotes the kernel of θ then Acris(V ) is
defined to be the p-adic completion of the divided power envelope DJ(W (SV )).

Fix elements εm ∈ V with ε0 = 1, εpm+1 = εm, and ε1 6= 1. Let ε ∈ SV be the element
defined by the reductions of the εm, and let [ε] ∈ W (SV ) be its Teichmuller lifting. Define
πε := [ε]− 1 ∈ W (SV ). Then one verifies (see for example 6.2.5) that the series

(D.1.2)
∑
m≥1

(−1)m−1(m− 1)!π[m]
ε

converges to an element t ∈ Acris(V ). We define Bcris(V ) to be the localization Acris(V )[1/t].

Fix a sequence of elements τm (m ≥ 0) with τ0 = p and τ pm+1 = τm. As in 6.8 let λ1/pn

denote the element given by the sequence (am)m≥0 with am = τm+n, and let δ1/pn := [λ1/pn ].

We define B̃cris(V ) to be the ring obtained from Bcris(V ) by inverting the elements δ1/pn

(n ≥ 0). Note that δp
n

1/pn = δ1 so we also have B̃cris(V ) = Bcris(V )[1/δ1].

The action ofGK on V induces an action ofGK on SV , W (SV ), and Acris(V ) by functoriality.
Let χ : GK → Z∗p denote the cyclotomic character. Then it follows from the construction
that GK acts on t by

(D.1.3) g ∗ t = χ(g)t.

In particular, the action of GK on Acris(V ) induces an action on Bcris(V ). Also the choice of
the elements τm defines a homomorphism

(D.1.4) ρ : GK → Zp(1) = lim←−
n

µpn .

If g ∈ GK then the image ρ(g) = (ζn)n≥0 in Zp(1) is characterized by the equality

(D.1.5) ρ(τn) = ζnτn.

There is also a map

(D.1.6) α : Zp(1)→ Acris(V )∗

sending a sequence (ζn)n≥0 to the Teichmuller lifting [ζ] of the element ζ ∈ SV defined by
the reductions of the ζn. One verifies immediately from the construction that for g ∈ GK we
have

(D.1.7) g ∗ δ1 = α(ρ(g)) · δ1.

In particular, the GK-action on Bcris(V ) induces an action of GK on B̃cris(V ).

Definition D.2. Let A/Qp be a (possibly infinite dimensional) vector space with action of

the group GK (not necessarily continuous). We say that A is B̃cris(V )-admissible if there
exists a K0-vector space M0 and an isomorphism

(D.2.1) A⊗Qp B̃cris(V ) 'M0 ⊗K0 B̃cris(V )

compatible with the Galois actions, where GK acts on the left through the action on each

factor and on the right with trivial action on M0 and the natural action on B̃cris(V ).

We say that A is crystalline if A = ∪iAi, where each Ai ⊂ A is a finite dimensional
subrepresentation, the action on each Ai is continuous (where Ai is given the usual p-adic
topology), and Ai is crystalline (in the usual sense [Fo1, 5.1.4]).
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The main result of this appendix is the following:

Theorem D.3. Let A/Qp be a B̃cris(V )-admissible representation. Then A is crystalline.

D.4. We begin the proof by recalling some facts about the ring B+
dR and its field of fractions

BdR. Let (Bn, Jn, [ ]) be the divided power ring which is the reduction of Acris(V ) modulo pn.
Then we set

(D.4.1) B+
dR := lim←−

r

(Q⊗ lim←−
n

Bn/J
[r]
n ).

There is a natural map Acris(V )⊗Q→ B+
dR, and one can show (see for example [Fo4, 1.5.2])

that B+
dR is a complete discrete valuation ring and that the image of t ∈ Acris(V ) in B+

dR is a
uniformizer. The field BdR is defined to be the field of fractions of B+

dR. There is a natural
inclusion Bcris(V ) ↪→ BdR. Note that the action of GK on Acris(V ) induces an action of GK

on B+
dR and BdR.

Proposition D.5. Let d be an integer, and let A ⊂ (BdR)d be a finite dimensional Qp-
subspace that is stable under GK. Then the restriction of the GK-action to A defines a
continuous action on A (where A is given the usual p-adic topology).

Proof. First note that the action of GK on A is continuous if and only if for some i the
action of GK on A(i) is continuous, since A ' A(i)⊗Qp(−i) and the tensor product of two
continuous representations is again continuous. After possible replacing A by ti · A ' A(i)
we may therefore assume that A ⊂ (B+

dR)d.

Since A is finite dimensional we get in this case an injection

(D.5.1) A ↪→ (Q⊗ lim←−
n

Bn/J
[r]
n )d

for some r. By [Ts1, A2.10] each Bn/J
[r]
n is flat over Z/(pn) and the natural map

(D.5.2) Bn+1/J
[r]
n+1 ⊗ Z/(pn)→ Bn/J

[r]
n

is an isomorphism for all n. This also implies that lim←−nBn/J
[r]
n is flat over Zp.

To ease notation we write Cn (resp. C) for the ring Bn/J
[r]
n (resp. lim←−Bn/J

[r]
n ) in what

follows. We view C as a topological ring with the p-adic topology (so each Cn is given the
discrete topology). The topology on C also defines a topology on Q⊗ C.

Lemma D.6. The map ρ : GK × A→ A is continuous if and only for every v ∈ A the map

(D.6.1) ρv : GK → A, g 7→ g(v)

is continuous.

Proof. The ‘only if’ direction is immediate as for every v ∈ A there is a commutative diagram

(D.6.2) GK × {v}� _

��

ρv

$$IIIIIIIIII

GK × A
ρ // A,

and the inclusion {v} ↪→ A is the inclusion of a closed point.
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For the ‘if’ direction choose a lattice

(D.6.3) Λ = Zpe1 + · · ·Zper ⊂ A,

and for i = 1, . . . , r define

(D.6.4) Ui := ρ−1
ei

(Λ) ⊂ GK .

By assumption each Ui is open in GK , and therefore

(D.6.5) U := U1 ∩ · · · ∩ Ur = {g ∈ GK |g(Λ) ⊂ Λ}
is an open subgroup of GK . Since GK is compact it follows that there exists g1, . . . , gs ∈ GK

such that

(D.6.6) GK = ∪si=1U · gi.
Let t be an integer such that

(D.6.7) gi(Λ) ⊂ 1

pt
Λ

for i = 1, . . . , s. Then we find that g(ptΛ) ⊂ Λ for all g ∈ GK .

Now consider an open subset v + pkΛ ⊂ A for some v ∈ Λ, and let (g, x) ∈ ρ−1(v + pkΛ).
Denote by H the intersection U ∩ ρ−1

v (v+ pkΛ) which is an open subset of GK . Then for any
y ∈ pk+tΛ and u ∈ H we have

(D.6.8) ρuρg(x+ y) = ρu(v + pkλ) ∈ v + pkΛ,

where λ ∈ Λ. We conclude that

(D.6.9) H · g × {x+ pk+tΛ} ⊂ ρ−1(v + pkΛ).

�

Lemma D.7. The p-adic topology on A agrees with the topology induced by the topology on
Q⊗ C.

Proof. Let Λ ⊂ A be a lattice whose image in Q ⊗ C is contained in C. For every n let
Ψn ⊂ Cn be the image of Λ. Let Kn denote the kernel of the projection Λ/pnΛ→ Ψn so we
have an exact sequence

(D.7.1) 0→ Kn → Λ/pnΛ→ Ψn → 0.

Passing to the limit (and using the fact that the kernels {Kn} satisfy the Mittag-Leffler
condition since Λ/pnΛ is an artinian module) we get an exact sequence

(D.7.2) 0→ lim←−Kn → Λ→ lim←−Ψn → 0.

Moreover the composite map

(D.7.3) Λ→ lim←−Ψn → C = lim←−Cn
is injective, which implies that lim←−Kn = 0 and that Λ ' lim←−Ψn.

For every n let Un ⊂ Λ denote the kernel of the map Λ→ Ψn. Then the {Un} form a basis
of open subsets around 0 ∈ A for the induced topology. Note also that we have pnΛ ⊂ Un.

To prove that the p-adic topology agrees with the induced topology, it therefore suffices to
show that for any integer n there exists an integer k such that Un+k ⊂ pnΛ. For this note
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that since lim←−Kn = 0 there exists an integer k such that the image of Kn+k in Kn is zero.
This implies that there exists a dotted arrow filling in the following diagram

(D.7.4) Λ

�� %%KKKKKKKKKKK

Λ/pn+kΛ

��

// // Ψn+k

yyt
t

t
t

t

Λ/pnΛ,

and hence Un+k ⊂ pnΛ. �

Since A has the induced topology, to prove that for any v ∈ A the map

(D.7.5) ρv : GK → A, g 7→ g · v

is continuous, it suffices to show that the composite map

(D.7.6) GK

ρv // A
� � // Q⊗ C

is continuous. In particular, this will follow if we show that for every x ∈ Q⊗ C the map

(D.7.7) ρx : GK → Q⊗ C, g 7→ g · x

is continuous. For this in turn it suffices to show that for every x ∈ C and integer n the
subgroup

(D.7.8) Gx(k) := {g ∈ GK |gx− x ∈ pnC} ⊂ GK

is open. For this in turn it suffices to show that for any integer n and x ∈ Bn/J
[r]
n the

subgroup

(D.7.9) Hx := {g ∈ GK |g(x) = x}

is open. Let f : Wn(SV ) → Bn/J
[r]
n denote the natural map, and let Jn ⊂ Wn(SV ) denote

the image of Ker(θ). Then any element x ∈ Bn/J
[r]
n can be written as a finite sum of terms

of the form f(y) (y ∈ Wn(SV )) and f(y)[i] (y ∈ Jn, 0 ≤ i < r). It therefore suffices to show
that for x = f(y) the subgroup Hx ⊂ GK is open. This can be seen as follows. Write

(D.7.10) y = (a0, . . . , an−1) ∈ Wn(SV )

with ai = (aim) ∈ SV (so we have aim ∈ V /pV ). Define a
1/pi

i ∈ SV to be the element
(bm) ∈ SV with

(D.7.11) bm = ai,m+i.

We have a commutative diagram

(D.7.12) Bn

g

��
Wn(SV )

θn //

f
99rrrrrrrrrrr

V /pnV ,



Towards non–abelian P–adic Hodge Theory 135

where θn denotes the reduction of the map θ. Choose for i = 0, . . . , n − 1 a lifting ỹi of

θn([a
1/pi

i ]). Then one shows as in [Ts1, A1.5] that we have

(D.7.13) f(y) =
n−1∑
i=0

piỹp
n−i

i .

It therefore suffices to show that for any e = (em) ∈ SV and u := θn([e]) ∈ V /pnV the
subgroup

(D.7.14) Ku := {g ∈ GK |g(u) = u}

is open in GK . For this note that by definition of the map θ we have

(D.7.15) θn([e]) = ẽp
n

n

for any lifting ẽn ∈ V /pnV of en. This therefore reduces the proof to showing that for any
element z ∈ V /pnV the subgroup

(D.7.16) {g ∈ GK |g(z) = z} ⊂ GK

is open which is immediate. This completes the proof of D.5. �

Returning to the proof of D.3, let A be a B̃cris(V )-admissible representation, and fix a
K0-space M0 with a GK-equivariant isomorphism

(D.7.17) A⊗Qp B̃cris(V ) 'M0 ⊗K0 B̃cris(V ).

Write M0 = ∪iNi where Ni ⊂M0 is a finite dimensional subspace, and set (intersection inside

A⊗Qp B̃cris(V ))

(D.7.18) Ai := A ∩ (Ni ⊗K0 B̃cris(V )).

Then Ai ⊂ A is a subrepresentation of GK . We have a commutative diagram

(D.7.19) Ai ⊗Qp B̃cris(V )

a

**
// Ni ⊗K0 B̃cris(V )

� � // A⊗Qp B̃cris(V ),

where the map a is an inclusion. It follows that the natural map

(D.7.20) Ai ⊗Qp B̃cris(V )→ Ni ⊗K0 B̃cris(V )

is an inclusion. Since Ni is finite dimensional, this implies that Ai is also finite dimensional.
We conclude that A = ∪iAi, where Ai ⊂ A is a finite dimensional subrepresentation. The
composite map

(D.7.21) Ai ↪→ Ni ⊗K0 B̃cris(V ) ↪→ Ni ⊗K0 BdR ' B
dim(Ni)
dR

identifies Ai with a finite dimensional Qp-subspace of B
dim(Ni)
dR which is GK-stable. It follows

from this and D.5 that the action of GK on Ai is continuous. Since A = ∪iAi we have proven
the following:

Corollary D.8. Let A be a B̃cris(V )-admissible GK-representation. Then A = ∪iAi, where
each Ai ⊂ A is a continuous subrepresentation of finite dimension.
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For a Qp-representation A (possibly infinite dimensional) define

(D.8.1) Dgcris(A) := (A⊗Qp B̃cris(V ))GK .

Then Dgcris(A) is a K0-vector space.

Recall from [Ol3, 15.4 and 15.5] that the functor Dgcris has the following properties:

(i) For any finite dimensional continuous GK-representation A the natural map

(D.8.2) Dgcris(A)⊗K0 B̃cris(V )→ A⊗Qp B̃cris(V )

is injective.
(ii) For any finite dimensional continuous GK-representation A the K0-space Dgcris(A) is

finite dimensional and

(D.8.3) dimQpA ≥ dimK0Dgcris(A).

If A is an infinite dimensional GK-representation which can be written as a union A = ∪iAi of
finite dimensional continuous subrepresentations, then it follows from (i) and the isomorphism

(D.8.4) Dgcris(A) ' lim−→
i

Dgcris(Ai)
that the natural map

(D.8.5) Dgcris(A)⊗K0 B̃cris(V )→ A⊗Qp B̃cris(V )

is injective.

Lemma D.9. Let A be a B̃cris(V )-admissible GK-representation. Then any subrepresentation

and quotient representation of A is also B̃cris(V )-admissible.

Proof. Consider an exact sequence of GK-representations

(D.9.1) 0→ A′ → A→ A′′ → 0

with A a B̃cris(V )-admissible representation. It follows from D.8 that both A′ and A′′ are
equal to the unions of their finite dimensional continuous subrepresentations. This implies
that we have a commutative diagram
(D.9.2)

0 // Dgcris(A′)⊗K0 B̃cris(V ) //
� _

��

Dgcris(A)⊗K0 B̃cris(V ) //

'
��

Dgcris(A′′)⊗K0 B̃cris(V )
� _

��

0 // A′ ⊗Qp B̃cris(V ) // A⊗Qp B̃cris(V ) // A′′ ⊗Qp B̃cris(V ) // 0,

where all the vertical arrows are inclusions and the middle arrow is an isomorphism. A
diagram chase then shows that all the vertical arrows in fact are isomorphisms. �

This now completes the proof of D.3. For if A is a B̃cris(V )-admissible representation, we
can by D.8 and D.9 write A = ∪iAi where each Ai ⊂ A is a continuous finite dimensional

subrepresentation which is also B̃cris(V )-admissible. The theorem now follows from [Ol3,

15.5] which shows that any finite dimensional continuous B̃cris(V )-admissible representation
is crystalline. �
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Remark D.10. If A is a (possibly infinite dimensional) crystalline representation of GK , and
of M0 is a K0-vector space with a GK-equivariant isomorphism

(D.10.1) A⊗Qp B̃cris(V ) 'M0 ⊗K0 B̃cris(V ),

then by [Ol3, 15.3 and 15.7] we have Dgcris(A) = M0, the natural map Dcris(A)→ Dgcris(A) is
an isomorphism, and the isomorphism D.10.1 is induced by the isomorphism

(D.10.2) A⊗Qp Bcris(V ) ' Dcris(A)⊗K0 Bcris(V ) 'M0 ⊗K0 Bcris(V ).
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[LM-B] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik 39, Springer-

Verlag, Berlin (2000).
[LS-E] B. Le Stum and J.-Y. Etesse, Fonctions L Associées aux F-isocristaux surconvergents. I, Math. Ann.

296 (1993), 557-576.
[Ma] S. MacLane, Homology, Grundlehren der mathematischen Wissenschaften 114, Springer–Verlag (1975).
[Mi] J. Milne, Etale cohomology, Princeton University Press (1980).
[Na] H. Nakamura, Galois rigidity of profinite fundamental groups, Sugaku Expositions 10 (1997), 195–215.
[Og1] A. Ogus, F-crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque 221 (1994).
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