TOWARDS NON-ABELIAN P-ADIC HODGE THEORY IN THE GOOD

REDUCTION CASE

MARTIN C. OLSSON

ABSTRACT. We develop a non—abelian version of P—adic Hodge Theory for varieties (pos-
sible open with “nice compactification”) with good reduction. This theory yields in partic-
ular a comparison between smooth p—adic sheaves and F—isocrystals on the level of certain
Tannakian categories, p—adic Hodge theory for relative Malcev completions of fundamental
groups and their Lie algebras, and gives information about the action of Galois on funda-
mental groups.
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1.1. The aim of this paper is to study p-adic Hodge theory for non-abelian invariants. Let

us begin, however, by reviewing some of the abelian theory.
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Let k be a perfect field of characteristic p > 0, V' the ring of Witt vectors of k, K the field
of fractions of V, and K < K an algebraic closure of K. Write Gk for the Galois group
Gal(K/K). Let X/V be a smooth proper scheme, and denote by Xy the generic fiber of K.
Let D C X be a divisor with normal crossings relative to V', and set X° := X — D. Denote
by H (X%) the étale cohomology of X% with coefficients Q, and by Hig(X%) the algebraic
de Rham cohomology of X7.. The vector space H, ;‘t(X%) has a natural action pxe of G, and
the space Hjg(X%) is a filtered F—isocrystal. That is, the space H}r (X ) comes equipped
with a filtration Fil'XIo{ and a semi-linear (with respect to the canonical lift of Frobenius to
V) Frobenius automorphism @yo : Hiz(Xf) — Hig(Xf). The theory of p-adic Hodge
theory implies that the two collections of data (Hg (X%), pxg) and (Hig(X%), Filye , oxg)
determine each other [Fal, Fa2, Fa3, Tsl].

1.2. More precisely, let Bes(V) denote the ring defined by Fontaine [Fol, Fo2, Fo3|, M Fy
the category of K—vector spaces M with a separated and exhaustive filtration Fil' and a
semi-linear automorphism ¢y, : M — M, and let Rep&f(G k) be the category of continuous
representations of G on Q,—vector spaces. The ring Be,;s(V') comes equipped with an action

of Gk, a semi-linear Frobenius automorphism, and a filtration. There is a functor
(1.2.1) D : Repg; (Gx) — MFk

sending a representation L to (L ®g, Beis(V))% with the semi-linear automorphism and
filtration induced by that on B,s(V). For any L € Rep(G) there is a natural transformation

(122) ag, . D(L) ®K BcriS(V) — L ®Qp Bcris(V)

which by [Fol, 5.1.2 (ii)] is always injective. The representation L is called crystalline if
the map «y, is an isomorphism, in which case L and D(L) are said to be associated. The
precise statement of the comparison between between étale and de Rham cohomology in the
above situation is then that (Hj(X%), pxg) and (Hig(X%), Filxo , ¢xg ) are associated. In
particular there is a natural isomorphism

(1.2.3) Hig(XE) ©k Bais(V) ~ HG (XE) ©g, Beis(V)
compatible with the actions of G, the filtrations, and the Frobenius automorphisms.

There is also a version of the comparison 1.2.3 with coefficients. In [Fal, Chapter V
(f)] Faltings defines a notion of a crystalline sheaf on the scheme X, which is a smooth
Qp—sheaf L on X3 . which is associated in a suitable sense to a filtered log F-isocrystal
(E,Filg, op) on X;/K (see 6.13 for a precise definition). For such a sheaf L, the étale
cohomology H *(X%,et’ L) is a Galois representation (here Lz denotes the restriction of L
to X2 ) and the log de Rham cohomology Hjg(X, E) is naturally viewed as an object of

MFK.7 In [Fal, 5.6, Faltings shows that the representation H*(X%. _,
is associated to Hig(Xk, E).

The main goal of this paper is to generalize to the level of certain homotopy types the
above comparisons between cohomology.

L) is crystalline and

1.3. Before explaining the main results of the paper, let us discuss an example which provided
motivation for this work and hopefully helps put the more technical results below in context.
This example is not discussed in the body of the paper and the reader who so desires can skip
to 1.5. Let g > 3 be an integer and M the moduli space of smooth curves of genus g. If we fix
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a point p € Mg(C) corresponding to a curve C, the fundamental group m (Mg (C), p) (where
MZ((C) is viewed as an orbifold) is naturally identified with the so—called mapping class group
'y which has a long and rich history (see [Hal, Ha3, H-L, Na] for further discussion). The
first homology of the universal curve over M7 . defines a local system on My . which by our
choice of base point defines a representation

(1.3.1) T, — Aut(H,(C,Z)).

The kernel is the so—called Torelli group denoted T,. Associated to the representation 1.3.1
is a pro—algebraic group G called the relative Malcev completion and a factorization

(1.3.2) T, — G — Aut(H,(C,C)).

The kernel of G — Aut(H,(C,C)) is a pro—unipotent group which we denote by U,. If 7,
denotes the Malcev completion of T, then there is a natural map 7, — U, whose kernel is
isomorphic to Q [Ha3] (here the assumption g > 3 is used). Let uy denote the Lie algebra of
U,. The interest in the group uy derives from the fact that it carries a natural mixed Hodge
structure which Hain and others have used to obtain information about the group 7.

The construction of the mixed Hodge structure on u, suggests that the Lie algebra u, should
in a suitable sense be a motive over Z. In particular, there should be an étale realization, de
Rham realization, and a p-adic Hodge theory relating the two similar to the cohomological
theory. A consequence of the work in this paper is that this is indeed the case.

To explain this, choose the curve C' to be defined over QQ, and assume C has good reduction.
Let m: C° — Mj o be the universal curve and let £ = le(Q’CO/MOQ ) be the relative de
i 7,Qp

Rham cohomology of C? which is a module with connection on Mg, and let L = R'7°Q, be the
relative p—adic étale cohomology. The module with connection E has a natural structure of a
filtered log F-isocrystal (E, Filg, ) and is associated to the smooth Q,—sheaf L [Fal, 6.3].

Let (E)g be the smallest Tannakian subcategory of the category of modules with connection

on Mg o which is closed under extensions and contains £, and let (L@p)® denote the smallest

o

Tannakian subcategory of the category of smooth QQ,—sheaves on M which is closed under

9,Qp
extensions and contains Lg (the restriction of L to /\/l‘; T ). The point p € M{ o (Q,) defined
»p
by C' defines fiber functors for these Tannakian categories, and using Tannaka duality we

— —_— —_—

obtain pro-algebraic groups 7 ({£),) and 7r1(<L@p>®) over Q,. The group m ((E),) comes

.
equipped with a Frobenius automorphism ¢ (really a semi-linear automorphism but we are

working over Q,) and the group 7T1(<L@p>®) comes equipped with an action of the Galois
group Gal(Q,/Q,). Let ul® (resp. uf') denote the Lie algebra of the pro—unipotent radical

of m1({E),) (resp. 7T1(<L@p>®)). The Frobenius automorphism ¢ induces an automorphism
Pudr of ugR and the Galois action on 7T1(<L@p>®) induces a Galois action pyer on u'. By [Ha2,
3.1] any embedding Q, — C induces a natural isomorphisms of Lie algebras u, ~ u‘giR ®q, C
and u, ~ 1 ®g, C. It is therefore natural to call uj® (resp. u') the de Rham (resp. étale)
realization of u,. The p-adic Hodge theory studied in this paper (in particular 1.10 below)
now yields the following result:



4 Martin C. Olsson

Theorem 1.4. The Gal(@p/@p)—representation ugt 1s pro—crystalline, and there is a natural
1somorphism D(ugt) ~ ugR compatible with the Frobenius automorphisms.

Similar results also hold for the moduli spaces Mg ,, of n—pointed genus g curves. Note that
64~ P'—{0,1,00} is the case studied by Deligne in [De2]. Theorem 1.4 for P* — {0, 1,00}
had previously been obtained by Hain and Matsumoto [H-M, 9.8], as well as Shiho [Sh3] and

Tsuji. Pridham has also obtained some of the results of this paper using a different method
[Pr].

1.5. As in [Ol1] we work in this paper systematically with simplicial presheaves and stacks
[Bl, H-S, Ja, Tol|. For any ring R, let SPr(R) denote the category of simplicial presheaves on
the category of affine R—schemes, and let SPr,(R) denote the category of pointed objects in
SPr(R). By [Tol, 1.1.1], there is a natural model category structure on SPr(R) and SPr.(R),
and we write Ho(SPr(R)) and Ho(SPr,(R)) for the resulting homotopy categories.

Let X/V be asin 1.1, and assume given a section x : Spec(V) — X°. Let L be a crystalline
sheaf on X¢ associated to some filtered log F-isocrystal (E, Filg, ¢g). Let Ce denote the
smallest full Tannakian subcategory of the category of smooth @Q,-sheaves on X2. closed
under extensions and containing L. Similarly let Cqr denote the smallest full Tannakian
subcategory of the category of modules with integrable connection on X¢./K closed under
extensions and containing E. Also, let (L#)g (resp. (E)g) denote the Tannakian subcategory
of the category of smooth sheaves on X% generated by Lz (resp. the Tannakian subcategory
of the category of modules with integrable connection on X% /K generated by E), and let
m((Lg)e, ) (resp. m((E)g,z)) denote the Tannaka dual of (L) (resp. (E)g) with respect
to the fiber functor defined by .

Assumption 1.6. Assume that the groups m ({Lz)s,Z) and m ({(E)g,z) are reductive and
that E has unipotent local monodromy (see 4.14 for what this means).

In section 4, we explain a construction of certain pointed stacks X¢,, € Ho(SPr.(K)) and
Xe,, € Ho(SPr.(Q,)). The fundamental group of X . (resp. Xc,,) is the Tannaka dual of
Car (resp. Ce) and cohomology of local systems (in the sense of Toen [Tol, 1.3]) agrees with
de Rham cohomology (resp. étale cohomology). The pointed stack X¢,, comes equipped
with a Frobenius automorphism ¢ Xegy - Xen Q0 K — Xe,y, where 0 : K — K denotes the
canonical lift of Frobenius, and X, has a natural action of the group Gk.

We will use Faltings’ approach to p-adic Hodge theory using “almost mathematics” to
compare X¢,, and X¢,. As the referee points (and as explained for example in [Ol13]) this

approach naturally leads one to consider a certain localization Ecris(V) of Beis(V) (see 6.8
for a precise definition). The main result can now be stated as follows.

Theorem 1.7. There is a natural isomorphism in Ho(SPr,(Beis(V)))
(1.7.1) L Xeyn Ok EcriS(V) ~ Xc., Qq, EcriS(V)

compatible with the Frobenius automorphisms and the action of G, where X, @k Ecris(V)

(resp. Xe., ®q, Beris(V)) denotes the restriction of Xe,, (resp. Xe,, ) to the category of affine
schemes over Bes(V).
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We also prove an unpointed version of 1.7 in section 8.

To illustrate the utility of this theorem, let us mention some consequences for homotopy
groups of 1.7 and its proof.

Theorem 1.8. There is an isomorphism of group schemes over Beys(V)
(181) 1 (Cde QT) ®K Bcris(v) ~ M (Cet, Zi') ®Qp BcriS(V)

compatible with the natural actions of Frobenius and G .

For any ¢ > 1 one can define homotopy groups m;(Xc,,) (resp. m;(Xc,,)) which are al-
gebraic groups over K (resp. Q,). The Frobenius automorphism on Xc , (resp. the Gx—
action on X ) induces a semi-linear automorphism of m;(Xc,,,) (resp. an action of Gk on
mi(Xe,.)). This action induces a Frobenius automorphism (resp. Gg-—action) on the Lie
algebra Lie(m;(Xc,,)) (resp. Lie(m(Xe,,)))-

Theorem 1.9. For every i > 1, the G -representation Lie(m;(Xc,,)) is a pro-object in
the category of crystalline representations, and the K—space with Frobenius automorphism
underlying D(Lie(m;(Xe,,))) is canonically isomorphic to Lie(m;(Xey,))-

As mentioned above, in the case i = 1 the group m(Xe,,) (resp. m(Xc,,)) is canonically
isomorphic to m;(Cet, ) (resp. m1(Car,x)). Hence in this case, 1.9 gives:

Theorem 1.10. The Gk -representation Lie(m(Cet, T)) is a pro—object in the category of
crystalline representations and the K—vector space with Frobenius automorphism underlying
D(Lie(m1(Cet, T))) @s canonically isomorphic to the pro—F—isocrystal Lie(m(Cyr, x)).

On the other hand, if for some embedding K < C the complex manifold X°(C) is simply
connected, then 1.9 yields p-adic Hodge theory for certain motivic realizations of the higher
rational homotopy groups m;(X°(C)) ® Q.

In 8.27-8.32 we also prove a generalization of 1.10 for spaces of paths. Suppose z,y € X°(V)
are two points defining two fiber functors wifwi® (resp. w', we') for Car (resp. Ce). Define
schemes over K and Q, respectively

dR .__ ®/, dR , dR et .__ ®(, et et
(1.10.1) Py = Isom®(wy ™ wy, "), Pry o= Isom®(wg', wy').

The scheme P has a natural semi-linear automorphism and Pg' has a natural action of

Gk.

Theorem 1.11. The Galois representation Opgjsy 15 ind—crystalline and the vector space with
semi—linear automorphism underlying D(Op;;y) s canonically isomorphic to Opéil‘y{.

Theorem 1.7 also has implications for cohomology. Recall that Cqr ®x EcriS(V) (resp.

Cet ®q, Beris(V)) is the category of pairs (M, ) (resp. (S,3)), where M (resp. S) is an
ind-object in Car (resp. Ce) and a : Beis(V) — Endg (M) (resp. B : Beis(V) — Endg, (5))
is a K-algebra (resp. Q,-algebra) homomorphism. In particular, for such an object (M, «)
(resp. (S, 3)) we can form its de Rham cohomology Hjy (M) (resp. étale cohomology H (S))

which is a Beis(V)-module.
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Theorem 1.12. Let (S, 3) € Cet®q, écriS(V) be an object corresponding under the equivalence
in 1.8 to (M, a) € Cqr @k Beis(V'). Then there is a natural isomorphism of Bes(V')—modules

(1.12.1) Hin (M) ~ H%(S).

In particular, we can recover the cohomological p—adic Hodge Theory from 1.7.

In the case when D = ) and k is a finite field, the formality theorem of [Ol1, 4.25] can
be applied. Let G denote the pro-reductive completion of m1(Ce, T) and let Og,, be its
coordinate ring. Right translation induces a left action of G¢ on Og,, which by Tannaka
duality gives rise to an ind—object V(Og,,) in the category of smooth sheaves. Left translation
induces a right action of G on Og,, which commutes with the left action and hence induces
a right action of G, on V(Og,,).

Theorem 1.13. Assume D = () and that (E,¢g) is t—pure in the sense of [Ke|. Then
the Galois representation Lie(m(Cet, T))) ®q, Beris(V') is determined by the cohomology ring
H*(X%,V(Og¢,,)) with its natural actions of Gy and Gg. Furthermore, if LH, (X7, V(Og,,))
denotes the free pro—Lie algebra on the dual of H (X%, V(Og.,)), then there exists a surjection
of pro—Lie algebras

(1.13.1) 7 LH (X%, V(Og.,)) ®q, Beis(V) — Lie(m1(Cet, T)) ®q, Beris(V)

compatible with the Galois actions whose kernel is generated in degree 2.

For a stronger version of this result see 7.22.

In the case when L and FE are the trivial sheaves, the category Ce (resp. Cgr) is the
category of unipotent smooth sheaves (resp. unipotent modules with integrable connection)
and various versions of 1.8, 1.9, 1.10, and 1.11 have been obtained by Shiho [Sh3], Tsuji, and
Vologodsky [Vo].

1.14. On a technical level, this paper is in many ways a fusing of the ideas of [O11] (and in turn
those of [KPT]) with Faltings’ work in [Fal| (the necessary aspects of Faltings” work is also
discussed in detail in [O13]). The main point is that the ideas of [Ol1] imply that to obtain the
above theorems it suffices to carry out Faltings construction of the comparison isomorphism
between de Rham and étale cohomology on the level of certain equivariant differential graded
algebras without passing to cohomology. The main ingredient in carrying out this comparison
is systematic use of various standard constructions and result from homotopical algebra, most
notably the functor of Thom—Sullivan cochains. We review the necessary homotopical algebra
(which can be found in [H-S], see also [B-K]) in section 2. In section 3 we review some the
aspects of the convergent topos that we need. In section 4 we review the basic techniques and
results from [Ol1], as well as a mild generalization to take into account a boundary. In section
5 we discuss the étale pointed stack associated to a smooth sheaf and some basic properties.
In section 6 we work through Falting’s construction of the comparison isomorphism, keeping
track of various differential graded algebra structures. In section 7 we then put it all together
to prove 1.7-1.13. In section 8 we explain how to remove the dependence on the base point
and also prove 1.11. In section 9 we explain how to replace the point z € X°(V') in the above
with a tangential base point. This requires a rather detailed study of p—adic Hodge theory
on the log point. We conclude in section 10 by briefly discussing a conjecture of Toen which
we feel would be a natural extension of the work discussed in this paper.
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The paper also includes four appendices discussing some technical points which arise in the
paper. Appendix A discusses a generalization of Kato’s “exactification of the diagonal” [Ka,
4.10 (2)]. Appendix B collects some basic observations about localization in proper model
categories, and in appendix C we discuss a version of the coherator (see [T-T]) for algebraic
stacks. Finally in appendix D we discuss how to pass from a comparison isomorphism over
Beis(V') to a comparison isomorphism over Bes(V).

Finally let us remark that throughout this paper we assume X is defined over the ring of
Witt vectors of a perfect field of characteristic p > 0. In fact, it suffices to have X defined
over a possibly ramified extension of such a ring. However, in the interest of improving the
exposition we make this simplifying hypothesis.

1.15 (Conventions). We assume familiarity with the basics of logarithmic geometry [Kal.
We also assume some familiarity with model categories for which our reference is [Ho].

For the applications we have in mind, such as 1.3 above, it is important to work with
Deligne—-Mumford stacks rather than schemes. However, for the sake of exposition we work
only with schemes below. The reader who so desires can freely replace “scheme” by “Deligne—
Mumford stack” in what follows (in a couple of places our arguments may seem strange to the
reader only interested in schemes, but we have taken some care in writing the arguments in
such a way that they also apply to Deligne-Mumford stacks; in particular, we work exclusively
with the étale topology as opposed to the Zariski topology).

1.16 (Acknowledgements). We are very grateful to B. Toen for numerous enlightening com-
munications concerning the papers [Tol] and [KPT| as well as p-adic Hodge Theory and
other topics. We also want to thank R. Hain, J. Lurie, A. Shiho, D. Spivak, T. Tsuji, and S.
Unver for helpful discussions.

We recently learned from T. Tsuji that he is developing a generalization of the theory
of crystalline sheaves to schemes with hollow log structure (such as the log point), which
presumably encompasses also the foundational work we do in section 9. Tsuji’s work might
also help remove the linear reductivity assumption 1.6, which probably is unnecessary.

Finally we are grateful to the referee for some very helpful comments.

The author was partially supported by an NSF post—doctoral research fellowship, NSF
grant DMS-0714086, and an Alfred P. Sloan fellowship.

2. REVIEW OF SOME HOMOTOPICAL ALGEBRA

We review in this section some well-known constructions and results of homotopical alge-
bra. We learned the main results from [H-S]. A discussion of the functor of Thom-Sullivan
cochains can also be found in [B-K].

Let (7, O) be a ringed topos, and assume O is a commutative Q—algebra. In what follows,
we write Modp for the category of O—modules in 7.

Review of normalization.
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2.1. Let A denote the category of finite totally ordered sets with order preserving maps. We
usually identify the category with the full sub—category with objects the sets

(2.1.1) [i]:={0,1,...,i}, ieN,

If C is any category, a cosimplicial object in C is a functor X : A — C. The cosimplicial
objects in C form a category, denoted C?, with morphisms being morphisms of functors. If
X € CA, we write X for X([i]). There are natural maps

(2.1.2) di: X" — X" g X" X" 0<i<n,

where d; (resp. s;) is induced by the unique injective (resp. surjective) map d; : [n — 1] — [n]
(resp. s; : [n+1] — [n]) for which ¢ ¢ d;([n —1]) (resp. s;(i) = s;(i+1)). We shall sometimes
think of an object of C® as a collection of objects X' € C together with maps d; and s;
satisfying the standard simplicial identities [G-J, I 1.3].

2.2. Let A be an abelian category, and let C=°(A) denote the category of complexes M, in
A for which M; = 0 for i < 0. The normalization functor is the functor

(2.2.1) N:A® — C=%(A)
which sends A € A® to the complex whose i-th term is
(222) COkeI‘((do, Ce ,difl) . @7;(}14171 — Al)

and whose differential is induced by (—1)d;.

2.3. Given A € A®, we can also form the chain complex of A, denoted E, which is the object
of C2%(A) whose i—th term is A* and whose differential is given by

(2.3.1) 0:=> (—1)d;: A7 — A",
=0

There is a natural surjective map of complexes

(2.3.2) A — N(A)

which is a quasi-isomorphism [G-J, I11.2.4].

In fact, the map 2.3.2 is split. Let D(A) C A be the sub-complex whose i-th term is
i—1
(2.3.3) [ Ker(s; : A" — A,
=0

The complex D(A) is called the denormalization of A.
Then the composite
(2.3.4) D(A) — A — N(A)
is an isomorphism of complexes [G-J, II1.2.1]. In particular, the following holds:

Corollary 2.4. (i) If O — O’ is a morphism of rings, then there is a natural isomorphism
N(A) ®(9 O/ ~ N(A ®(9 O/)

(ii) If A € Mod5 is an object with each A* flat over O, then N(A) € CZ°(O) is a complex of
flat O—modules.
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2.5. There is a third description of N(A) which is important in the context of the functor
of Thom-Sullivan cochains discussed below. Let Modéo denote the category of simplicial
O-modules. That is, Modéo is the category of functors from the opposite category A° of A
to the category of O—modules. Taking A in the above discussion to be the opposite category
of the category of O—modules, we obtain a normalization functor

(2.5.1) N°: Mod5  — C=%(0),

from Modéo to the category of complexes of O-modules with support in degrees < 0.
Let

(2.5.2) Y : A — Mody'

be the functor which sends [n] to the simplicial O—module which sends [m] € A to the free
O-module on Homa ([m], [n]), and let

(2.5.3) 7Z: A — C=°(0)

be the composite of Y with the normalization functor N°. For [n] € A, we write
(2.5.4) (= 2y =2y )

for Z([n]). By the dual of the isomorphism 2.3.4, we have

(2.5.5) Zﬁp — (f)HomA([pHn])/Im(@Sj . @ OHfoma(lp=1L]) __, (f)Homa([pHn])).

Lemma 2.6. If A € Modé, then the complex
(2.6.1) e — HomModé (Z:p—l-h A) — HomModé(Z:;w A)— -

is isomorphic to the normalization of A.

Proof. Let Set denote the category of sets. By definition of normalization, Z*  is the cokernel
in the category of simplicial O-modules of the map

(2.6.2) Ds; : @@Hom([p—l],-) __, @Homa([r])
j

By the universal property of the free module on a set and Yoneda’s lemma, for every i there
are natural isomorphisms

(2.6.3) Homyqa (O"mal) ) 4) ~ Homg,,a (Homa ([i], <), A) =~ A"
It follows that
(2.6.4) Homy 42 (Z°,, A) ~ Ker(®s; : @5 AP — A7),
J
and the result follows. U

Review of total complex as an inverse limit.

2.7. Let C(O) denote the category of all complexes of O-modules, and let A € C(O)2.
Taking the normalization of A, we obtain a double complex of O—-modules, and we denote
by Tot(A) the resulting (sum) total complex. We now explain another description of Tot(A)
which will be used below.
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2.8. Let M, denote the category whose objects are morphisms f : [i] — [j] (sometimes
denoted just f) in A, and for which a morphism from f to g : [/] — [j] is a commutative
diagram

(2.8.1) T l

in A.

If A, B € C(O)*, define
(2.8.2) hom(A, B) : My — C(O)
by sending f : [i] — [j] to the complex
(2.8.3) Homg, ) (A([i]), B([7]))-
Similarly, if A € C(O)2” and B € C(O)?, define
(2.8.4) A®B: Max— C(O)

by sending f : [i{] — [j] to the complex A([i]) ® B([j]). We define hom. (A, B) and A®. B
to be the inverse limits over the category Mx of the functors hom(A, B) and A ® B.

Proposition 2.9. Let Z be as in 2.5. For A € C(O)%, there are natural isomorphisms of
complexes

(2.9.1) Tot(A) ~ hom. (Z,A) ~ Z* ®._ A,
where Z* : A? — C(O) denotes the functor which sends [i] to the complex Homg, o) (Z([1]), O).
Proof. The second isomorphism in 2.9.1 follows from the fact that for every [i] € A, the

complex Z([:]) is by definition a complex of flat and finitely generated O—modules, and hence
for any 7, there is a natural isomorphism

(2.9.2) Home(o)(Z([1)), A([5])) ~ Home o) (£([i]), O) © A([]).

To see the first isomorphism, note that the degree k term of hom. (Z, A) is equal to

(2.9.3) lim @ Hom(Z" , A7),

([n]—=[m]) EMa

which by the following lemma and 2.6 is equal to

(2.9.4) P Hom(z*, A3) ~ D (N(A),.

p+q=Fk p+q=k

Lemma 2.10. Let X,Y € Mod5. Then there is a natural isomorphism

(2.10.1) ([n]e%ilr]l)leMA Hom(X™,Y™) — Homyoqa (X, Y).
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Proof. Given § € lim ) m))emn Hom(X", V™), define § : X — Y to be the map of cosimpli-
cial O-modules which in degree n is the map 4, : X™ — Y obtained from (id : [n] — [n]) €
M. We leave it to the reader to verify that this is well-defined, and that the resulting map
2.10.1 is an isomorphism. U

The functor of Thom-Sullivan cochains.

2.11. Let dga(Q) denote the category of commutative differential N—graded O-algebras.
That is, the category of N-graded O-algebras A = ®,A, with a map d : A — A of degree 1
for which the formulas

(2.11.1) r-y=(—DMy-z, dz-y)=drv-y+(—1)Pz-dy
hold for z € A, and y € A,.

Theorem 2.12 ([H-S, 4.1]). There is a functor

(2.12.1) T : dga(O)® — dga(0),

together with a natural transformation of functors

(2.12.2) / : (forget o T') — (Tot o forget)
between the two composites

(2.12.3) dga(0)A —— dga(0) Lorget, C(0)
(2.12.4) dga(0)d =4 co)d L 0(0),

such that for every A € dga(O)® the map 2.12.2 applied to A is a quasi-isomorphism.

The functor T is called the functor of Thom—Sullivan cochains.

2.13. The functor T is constructed as follows. Let R, denote the O-algebra

(2.13.1) Olto, ... t,)/ (O _ti =1),

and let V(p, ) € dga(O) denote the de Rham-complex of R, over O. In other words, V(p, ®)
is the free commutative differential graded algebra generated in degree 0 by variables to, ..., 1,
and in degree 1 by dto, ..., dt, subject to the relations

(2.13.2) dti=1, > dt;=0.

The R, form in a natural way a simplicial ring R,. The face and degeneracy maps are given
by

tme1 1 <m
(2133) dz . Rp e Rp_l, ditm = 0 1=m

t, 1>Mm

tm+l 1<m
(2134) Si: Rp — Rp+1, Sitm = tm + tm+1 1=m
tm 1> m.
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Since the formation of de Rham complex is functorial, the V(p, @) define a simplicial differ-
ential graded algebra

(2.13.5) Q:A° — dga(O), [p]+— V(p,e).

The functor T is defined to be the functor which sends A € dga(0)* to Q ®._ A € dga(0O),
where the algebra structure is obtained from the fact that 2 ®._ A is by construction an
inverse limit of commutative differential graded algebras.

2.14. The transformation of functors 2.12.2 is obtained as follows. Let Q € C'(O)2” denote
the functor €2 composed with the forgetful functor dga(O) — C(O). For any p > 0 there is
a well-defined map

(2.14.1) /IA | :Vi(p,p) — O.

To construct this map, it suffices to consider the case when 7 is the punctual topos and
O = Q (recall that O is a Q-algebra). To construct the map in this case, it suffices to show
that the usual integration over the standard simplex

(2.14.2) / :V(p,p) @R — R
1A

sends V(p,p) to Q, which is immediate.

This integration gives rise to a morphism of functors
(2.14.3) / 1 Q — 7"
If w e V(p,q), define

(2.14.4) /w € Z*([p])q = Homeo)(Z([p]), O)q = Homp (2%, O)
to be the element induced by the description of Z” given in 2.5.5 and the map

(2.14.5) oHom(ldlP) __, »
which sends 1.4 to

(2.14.6) /A |R(a)*w €0,

where R(a)*w denotes the pullback of the form w via the map R, — R, induced by the map
a and the simplicial structure on the R,’s.

Combining this with 2.9, we obtain the morphism 2.12.2.

To complete the sketch of the proof of 2.12, it remains only to see that if A € dga(O)=,
then the induced map

(2.14.7) Q0. A—Z"0_A

is a quasi-isomorphism. For this it suffices to consider the case when 7 is the punctual topos.
Moreover, since ®. A preserves homotopy equivalences [H-S, 4.3.1], it suffices to construct a
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morphism of functors 7 : Z* —  and homotopies

(2.14.8) TO / ~ id, /OT ~ id.

This is done in [B-G, 2.4].

Remark 2.15. The functor T is functorial with respect to morphisms of topoi. That is, if
f:(7T",0") — (7T,0) is a morphism of ringed topoi, and if 7" denotes the functor 2.12.1 for
the ringed topos (77, 0’), then for any A € dga(O)’ there is a natural map

(2.15.1) f*T(A) — T(f*A)
compatible with the map 2.12.2.

Remark 2.16. The above construction can be applied to any object M € C(O)%. More
precisely, if T(M) := Q®. M then the above shows that there is a natural quasi-isomorphism
T(M) — Tot(M). Furthermore, if A € dga(O)* and M — A is a morphism in C(O)* then
there is an induced map T(M) — T(A). Observe also that for M, M’ € C(O)* there is a
natural map T(M) @ T(M') — T(M @ M').

Remark 2.17. Since T'(A) — Tot(A) is a quasi-isomorphism, the induced map H*(T'(A)) —
H*(Tot(A)) is an isomorphism. By [H-S, 4.4.2] this isomorphism is compatible with the
multiplicative structures.

Differential graded algebras and cosimplicial algebras.

2.18. It follows from a theorem of Quillen [Qu, Chapter II, §4, Theorem 4] that the category
C=°(0) has a model category structure in which a morphism f : M — N is a fibration (resp.
equivalence) if it is a surjection with level-wise injective kernel (resp. quasi-isomorphism). By
the Dold—Kan correspondence [G-J, 111.2.3], the normalization functor 2.2 induces an equiva-
lence of categories Modé ~ C=%(O). Through this equivalence, the model category structure
on C=2%(0) gives a model category structure on Modé. This model category structure on
Modé is by the theorem of Quillen [Qu, Chapter II, §4, Theorem 4] naturally a simplicial
cofibrantly generated model category structure.

Lemma 2.19. The model categories C=°(O) and Mod(A9 are right proper in the sense of B.3.

Proof. By the definition of the model category structure on Modé, it suffices to prove the

lemma for C=°(©). In this case the assertion amounts to the statement that given a diagram
in C=9(0)

(2.19.1) A
ig
gt R,

with h a quasi-isomorphism and each g, : A” — R" surjective with injective kernel, the map

(2.19.2) S Xp A — A
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is a quasi-isomorphism. Let I' C A" be the kernel of g. Then since g is surjective we have a
morphism of exact sequences of complexes

(2.19.3) 0—I ——=AXpS—5—=0
O
0 r A R 0.
Since the map h is a quasi-isomorphism, it follows that the middle arrow pr; is a quasi-
isomorphism as well. O

Remark 2.20. Though we will not need it here, it is also true that the model categories
CZ%(O) and Mod3 are left proper.

2.21. The model category structure on Modé enables one to define model category structures
on Alg5 and dga,, as follows (see [KPT, 1.3.2] for details). A morphism f: A — B in dga,
is a fibration (resp. equivalence) if the underlying morphism in C=°(0) is a fibration (resp.
equivalence). Similarly, a morphism g : C' — D in Alg5 is a fibration (resp. equivalence)
if and only if the induced morphism on normalized complexes N(C') — N(D) is a fibration
(resp. equivalence) in CZ°(O). A map f: A — B in dga, (resp. Alg3) is a cofibration if for
all n > 1 the map A,, — B,, (resp. N(A), — N(B),) is injective.

Since the forgetful functors
(2.21.1) Algs — Mod5, dga, — C=°(0)
commute with fiber products, it follows that Algé and dga,, are right proper model categories.

If A € dgap, then the “shuffle product” [Ma, 8.8] defines on the denormalization D(A) a
structure of an object in Algé. Since D preserves equivalences and fibrations, it induces a
functor

(2.21.2) D : Ho(dga,) — Ho(Alg5).
This functor is an equivalence with inverse provided by the functor of Thom—Sullivan cochains.

2.22. If f: (7',0') — (7,0) is a morphism of ringed topoi with O’ and O commutative
Q-algebras and 'O — O’ flat, then the functor f* is exact and hence its right adjoint f,
takes injectives to injectives. It follows that the functors

(2.22.1) fo 1 dgay — dgap, f.:Algs — Algh

preserve fibrations and trivial fibrations and induce derived functors Rf, such that the dia-
gram

Ho(dgay) 2, Ho(Alg5)
(2.22.2) Rf*l lRf*
Ho(dgay) LN Ho(Alg3)

commutes. Observe that by definition of the model category structures, if A € dgay, (resp.
B € Alg5) then the underlying complex (resp. normalization) of Rf,A (resp. Rf.B) is
isomorphic in the derived category to the usual derived functors of the complex underlying
A (resp. the normalized complex of B).
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If (7,0) is the punctual topos with O = Q we write RI" instead of Rf,.

2.23. In what follows we will also consider an equivariant situation. Let K be a field of
characteristic 0 and let G/K be an affine group scheme over K. Let (7, O) be a ringed topos
with O a K-algebra. We obtain G—equivariant versions of the above results as follows.

Let Repg(G) denote the category of algebraic representations of the group scheme G on
(possibly infinite dimensional) K—vector spaces. A sheaf M on 7 taking values in Repy (G)
is a functor

(2.23.1) M : T° — Repg(G)

such that the composite

forget

(2.23.2) 70 M, Repy (G) —— Veck

is representable by an object of 7. The category of such sheaves M is naturally a K-linear
tensor category and so it makes sense to talk about O—module objects in this category. We
call the resulting objects G'—equivariant O-modules and write G — Modp for the category of
G—equivariant O-modules. The category G — Modp is naturally an O-linear tensor category
and so we can define categories G — dga, and G — Algé of G—equivariant differential graded
algebras and G—equivariant cosimplicial algebras. By the same reasoning as above there are
natural closed model category structures on these categories.

The above categories can be described more concretely as follows. Let Og denote the
coordinate ring of GG. If V is a vector space, then to give an algebraic action of G on V is
equivalent to a comodule structure on V' [Sa, 1.6.2.2]. That is a map

(2.23.3) p:V—=>Veg0Og
such that
(2.23.4) (I1®e)op=id, (1®A)op=(p®1)op,

where 0 : Og — Og ® Og is the map giving the multiplication and € : Og — K is the unit.
To give a G—equivariant O-module is equivalent to giving a sheaf of O-modules M together
with maps of sheaves of O-modules p : M — M ®x O¢ such that the conditions 2.23.4 hold.

3. REVIEW OF THE CONVERGENT TOPOS

In this section we review for the convenience of the reader some aspects of the convergent
topos. The references for the convergent topos is [Og2] and in the logarithmic context [Sh2].

3.1. Let k be a perfect field of characteristic p > 0, and let V' be a complete discrete valuation
ring of mixed characteristic with residue field k. Let # € V denote a uniformizer. In what
follows we often view Spec(V') (resp. Spf(V')) as a log scheme (resp. log formal scheme in the
sense of [Shl, Chap.2|) with the trivial log structure (and hence we omit the log structure
from the notation).

If T"— Spf(V) is a morphism of formal schemes, we write 77 C T for the closed formal
subscheme defined by 7Or, and Ty C 17 for the largest reduced formal subscheme of T7. We
write ICr for the sheaf associated to the presheaf of rings on T given by

(3.1.1) U T(U,0p ® Q).
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3.2. Let
(3.2.1) f (X, Mx) — Spec(k)

be a finite type morphism of fine log schemes. A pre-widening is a commutative diagram

(3.2.2) (2, Mz)—— (T, Mr)
(X, Mx)
|
Spec(k)—— Spf(V),
where

(i) z: (Z,Mz) — (X, Mx) is a morphism of fine log schemes over k;
(i) (T, M) — Spf(V) is a morphism essentially of finite type of fine log formal schemes
(but T" does not necessarily have the m-adic topology);
(iii) 7 is an exact closed immersion.

Pre-widenings form a category in the obvious way. We often denote a pre-widening simply
by (T, Mr),(Z, Mz), z), or even just T if no confusion seems likely to arise.

Definition 3.3. Let (T, Mr), (Z, Mz), z) be a pre-widening.
(i) (T, Mr),(Z,My), z) is a widening if i : Z — T is a subscheme of definition.

(i) (T, M), (Z,My), z) is an enlargement if it is a widening, 7'/V is flat, and if Z contains
Th.

Morphisms of widenings or enlargements are morphisms of pre-widenings. We say that a
pre-widening ((T', Mr),(Z, Mz), z) is affine if T (and hence also Z) is an affine formal scheme.

Remark 3.4. This definition differs from [Sh2, 2.1.9] as we require i to be exact. In Shiho’s
terminology the above would be called ‘exact pre-widenings’ and ‘exact widenings.’

Remark 3.5. We have automatically Z C 7Tj since Z is a k-scheme, and therefore the
condition that a widening ((7, Mr), (Z, Mz), z) is an enlargement is equivalent to saying that
T has the m-adic topology.

Remark 3.6. Products exist in the category of widenings. If
(ZiaMZi) — (7—‘7,’ MT—;)) L= 17 27

are two widenings, let (Z, M) denote the fiber product (Z1, Mz, ) X (x,my) (Z2, Mz,) in the
category of fine log schemes. We then have a closed immersion

(3.6.1) (Z,Mz) — (T, Mz,) X (Ty, My,),

where the right side denotes the completion along Z of the product of (71, Mr,) and (15, Mr,)
in the category of formal V-schemes. The product in the category of widenings is then given
by the exactification in the sense of A.18 of 3.6.1.
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3.7. Let Enl((X, Mx)/V) denote the category of enlargements. This category has a topology
in which a family of morphisms

(3'7'1) {g>\ : ((TM MTx)? (Z/\7 MZA)’ Z)\) - ((T> MT)? (Zv MZ)7 Z)}
is a covering if the following conditions hold:
(i) Each morphism (T, My, ) — (T, Mr) is strict;

(ii) The collection of maps {7\ — T'} is an étale covering of the formal scheme T';
(iii) For every A the natural map Z, — Z X7 T) is an isomorphism.

The resulting topos is denoted ((X, Mx)/V )eony (the convergent topos). There is a sheaf of
rings KC(x,my)/v (or sometimes written just K if no confusion seems likely to arise) which to
any object ((T', Mr),(Z, Mz),z) € Enl((X, Mx)/V) associates I'(T, Kr).

If F is a sheaf of K-modules in ((X, Mx)/V )cony and ((T', Mr), (Z, Mz), z) € Enl((X, Mx)/V),
then we denote by E7r the sheaf of p-modules on Ti; defined by

(3.7.2) (U—T)w— E(U,Mr|v),(Z, Mz) X1mp) (U, Mr|u), 2| wm0)0))-
If

(3.7.3) 9: (1", Mr),(Z', Mz),2") — (T, Mr),(Z, Mz), 2)

is a morphism in Enl((X, Mx)/V), then there is a canonical map

(3.7.4) 9 Er =g 'Er ®g-1(c,) (Kpv) — Epv.

The sheaf E is called an isocrystal if the following hold:

(i) For every object ((T', Mr),(Z, Mz),z) € Enl((X, Mx)/V) the sheaf Er is isocoherent
(see [Sh2, p. 8 (2)]).

(ii) For every morphism g as above, the map 3.7.4 is an isomorphism.

3.8. There is a morphism of topoi

(3.8.1) s (36, M)V )eone — Xt

If F e X, then u*F' is the sheaf

(3.8.2) (T, Mr),(Z,Mz),z) — I'(Z,2"F),
and if £ € (X, Mx)/V)conv then

(3.8.3) u E(U) = T(((U, Mx|v)/V )econv, E)-

3.9. Let T'= ((T, Mr),(Z, My), z) be awidening. Then T defines a sheaf hy in (X, Mx)/V)conv
by associating to any 7" € Enl((X, Mx)/V) the set of morphisms of widenings 77 — T'. As
explained in [Sh2, 2.1.22 and 2.1.23|, there is associated to T a canonical inductive system of
widenings {7}, }nen With compatible morphisms of widenings (equivalently, sections of hr)

(3.9.1) T, — T
such that the induced morphism of sheaves
(3.9.2) lim Ay, — hr

is an isomorphism.
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3.10. As explained in [Sh2, p. 51}, if T is affine then each T, is also affine. In fact if
T = Spf(A) and I = (g1,...,9-) C A is the ideal defining Z, and B, = I'(T,,,Or,) Qv K,
then

(3.10.1) B, = K @y (Alty,...,t.]/(7ty — g}, ..., 7t, — g') + (7 — torsion))",
where (—)”" denotes m-adic completion. The transition maps

(3.10.2) Bni1 — By

are given by sending t; to g;t;.

Lemma 3.11. Let j : M — N be an inclusion of w-torsion free V-modules such that N/M
is annthilated by 7. Then the map on w-adic completions 7 : M — N’ is injective.

Proof. Let 4 € M”" be an element with j(%) = 0, and fix an integer . We show that 4 maps
to zero in M /7" *M" = M /7"~ M.

For this choose a sequence of elements v, € M such that v5 and 4 have the same image in
M /7 M, and such that v5 = 7, for s < r. Write v,11 = 75 + 7%, with ¢, € M (and uniquely
determined since M is w-torsion free). Since 4 is in the kernel of 7, there exists for every s
an element by € N such that j(vs) = 7°bs. Since N/M is m-torsion and j is injective, this
implies that v, € 7t M for all s. Since 7, = v, for s < r this implies that v, € "1 M for
all s. Write v, = 77!+ for some 7. Then

(3.11.1) Vo1 = Vo + T ey

for s > r since M is m-torsion free, and therefore the elements {7’} define an element 4’ such
that 7"~14’ = 4. Since r was arbitrary this implies that 4 = 0. U
3.12. Set

(3.12.1) M, = Alty,... t.]/(7ty — g7, ..., 7t — gI') + (7 — torsion).

Then M, is a flat V-module, and M, ®y K = A. In particular, the transition maps 7, :
M, 1 — M, are injective. Also observe that the cokernel of j, is annihilated by 7. By 3.11
this implies that the map on 7-adic completions M, ; — M is injective. Tensoring with K
we obtain the following.

Corollary 3.13. For every n, the transition map B, 1 — B, is injective.

3.14. Associated to the widening 7" is a topos T defined as follows. For n € N write

(3.14.1) T, = (T, Mr,), (Zn, Mz,), 2n)
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so we have a commutative diagram
(3.14.2) (Zn, Mz,) (T,, Mr,)
Tn
(Z,Mz)—— (T, Mr)
(X, Mx)
f
Spec(k)——— Spf(V).

The topos T is the topos associated to the following site:
Objects: pairs (n,U), where n € N and U — T, is étale.

Morphisms: the set Hom((n,U), (m,V)) is the empty set unless n < m in which case it is
the set of commutative diagrams

(3.14.3) U——=V
T, —> Tp.

Coverings: a collection of maps {(ny,U,) — (n,U)} is a covering if ny = n for all A\ and
the set of maps {U, — U} is an étale covering.

There is a sheaf of rings IC; in T" given by

(3.14.4) (n,U) — D(U, Ky).

Giving a sheaf F' in T is equivalent to giving a collection of sheaves {F,, € T, ¢} and
transition morphisms py, : "' F,, — F, for every morphism v : T,, — T,, satisfying the usual
cocycle condition.

If F'is a sheaf of K_-modules, then F is called crystalline (see [Sh2, 2.1.30]) if for every
morphism g : T,, — T}, the transition morphism

(3.14.5) g Fp =g 'Fy ®g1,, K1, — F,
is an isomorphism.

There is a morphism of ringed topoi
(3.14.6) 7 (TK=) — (T, Kr).
The pushforward functor ~, sends a sheaf F' to the sheaf
(3.14.7) Vo' = lim .

where 7, : T,, — T is the projection. The functor v* sends a sheaf H on T} to the collection
of sheaves whose T,,-component is v} H.
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Lemma 3.15. Let F = {F,} be a crystalline sheaf of K;-modules m ? such that each F,, is
a flat wsocoherent sheaf of K1, -modules. Then for all n, the transition map

(3151) '7n+1*Fn+1 - r)/n*Fn
1S injective.
Proof. Note first that since F},,; is isocoherent, we have

(3'15'2) Vn*(g*Fn-&-l) ~ Vny1xFni ®’Yn+l*’CTn+1 ’Yn*ICTm

where g : T),, — T},11 is the transition morphism. Using this, and the isomorphism 3.14.5

(3‘15'3) ’Vn*(g*Fn—&-l) = Vn*(Fn)
we see that the map 3.15.1 can be identified with the map

(3.15.4) Yt 1eF 1 = (Ynt1eFntr) Orpyrakr, ., VKo,

n+1

Now the map v,11.K1,,, — VK7, is injective, as this can be verified locally and the affine
case follows from 3.13. Since F,;; is flat over Kr, ., this implies that 3.15.4 is injective. [J

Lemma 3.16. Let M be a K-vector space (possibly infinite dimensional), and let F' = {F,}

be a sheaf of K?—modules in T such that for every n the transition map 3.15.1 is injective.
Then the natural map

(3.16.1) (% F) @ M — 7.(F @k M)

s an isomorphism.

Proof. To ease notation write (abusively) just F, for 7,.F,. We then need to show that the
natural map

(3.16.2) (lim F,) @ M — lim(F, ®x M)

is an isomorphism. Let {e;};c; be a basis for M, and let G denote @Fn Then we need to
show that the natural map

(3.16.3) @G — ]G
i€l

is an isomorphism, where [[;.; G C [[,; G denotes the subsheaf of local sections v € [],.; G
such that for every n the image of v in [],., F, is contained in @;cF),. This follows from
noting that since G — F,, is injective for all n by assumption, the square

(3.16.4) Dic1G — Dier Fr

| i

Hie[ G — Hie] Fy,

is cartesian for every n. U
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3.17. Let ((X, Mx)/V)conv|r denote the localized topos. Then there is also a functor

(3.17.1) ¢z (X, Mx)/V)eonlr — T
sending a sheaf F' € ((X, Mx)/V )conv|r to the sheaf
(3.17.2) (n,U — T,) s F(U — T, — T).

Recall that (b?* is not part of a morphism of topoi, but still by [Sh2, 2.3.1] the functor (b?*
sends injective sheaves to flasque sheaves. Also if F'is a crystalline sheaf of lC;-modules then
one can define QS%F .

Let
(3173) jT : ((X7 MX)/V)COHV|T - ((X, MX)/V)conv
be the localization morphism. If E is an isocrystal in ((X, Mx)/V)cony We write
(3.17.4) Ep = V*gb?*j;E ~ lim v, By, .

Then there is a commutative diagram of functors

—

(3.17.5) (X, Mx)/V)eony|r ——> 7 —— Ty

le* ~

((X7 MX)/V)conv = Xet = Zet‘

Lemma 3.18. Assume that z : Z — X is quasi-compact. Let E € (X, Mx)/V)econv|T be a
sheaf of K-modules such that for every morphism T' — T of enlargements Er/ is isocoherent
on T'" and such that for every morphism g : T" — T’ of enlargements over T the map
g Er — Epn is an isomorphism. Then for any widening W and K-vector space M the
natural map

(3.18.1) (U E)w ®@x M — (jr«(E @k M))w

s an isomorphism.

Proof. Write W = (W, Mw ), (Y, My),y), and let W,, x T and W x T" denote the products in
the category of widenings (see 3.6). Let

(3.18.2) h:YxxZ—Y
be the projection.

Let
(3.18.3) I (X, Mx)/V)eonvlwxr — (X, Mx)/V)conv|w
be the morphism of topoi obtained from the localization morphism
(3.18.4) (X, Mx)/V)conv|w) lwxr—w — ((X, Mx)/V)conv|w

and the canonical isomorphism of topoi

(3'18'5) (((Xv MX)/V)COHV|W)|W><T—>W = ((X7 MX)/V)COHV|W><T-
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Then there is a commutative diagram of topoi

Iw |

(3.18.6) (X, M) /V Yool 2 (X, My )V )eons
| |
(X, M)V )eonelw = (X, Mox)/V eon-
Furthermore, one verifies immediately that the adjunction map
(3.18.7) G © Jre = Friwe © Givis

is an isomorphism. It follows from the definitions that we also have a commutative diagram
of functors

¢ —
YW X T — W X Tx

(3.18.8) VYV xx D)ot =— 1w x T <— (X, Mx)/V)conv|wxr

hs jT|W*

—

Yop = = (X, Mx)/V )conv|w-

For any sheaf F' € ((X, Mx)/V)conv|r We therefore have

(JrF)w = ’YW*Q%T/*]';V]'T*F (definition)
= Wby Jrlwedwip E (3.18.7)
= hawxrid, . Jiv, P (commutativity of 3.18.8)

- h* liLnF(WXT)na

where we abusively write Fiy «r), for the pushforward of Fiy .y, to (W x T').

Now let E be as in the lemma. Then each of the maps

(3.18.9) Ewxt)nn — Bwxr),

is injective by 3.15 (here we continue with the slightly abusive notation of viewing this as a
map of sheaves on (W x T ). Since h, is left exact, we conclude by the same argument used
in the proof of 3.16 that the natural map

is an isomorphism. On the other hand, since h is quasi-compact we also have
and therefore the natural map

(3.18.12) (yruE)w @ M = (lim h, Egw ), ) @ M — lim ho(Eqyxr), @ M) = jr.(E@x M)w

n n

is an isomorphism. O
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3.19. Suppose given a commutative diagram of fine log schemes

(3.19.1) (X, My)—— (P, Mp)

¥ |

Spec(k)—— Spec(V),

where g is log smooth and ¢ is an exact closed immersion. Let (ﬁ, M3) denote the formal
completion of P along X with Mp defined to be the pullback of Mp. We then have a
commutative diagram

(3.19.2) (X, Mx)—"= (P, Mp) — (P, Mp)

T

Spec(k)——— Spf(V') —— Spec(V),

where (X, My) — (P, M35) is a widening.
Let E be an isocrystal in ((X, Mx)/V )conv, and let E5 be the induced sheaf of K s-modules.
Then as explained in [Sh2, 2.2.9], there is a canonical integrable connection

whose associated de Rham-complex we denote by Ep ® Q'(P Mp) V- This is a complex of
K-vector spaces on ﬁet ~ Xg.
For i > 0, define

(3.19.4) W(E) = jp, (75 E @0y 957 Qb ey vlp):

Then [Sh2, 2.3.3 and 2.3.5] implies that for every s > 0 we have R°u,w’(E) = 0 and the
natural map (induced by the commutativity of 3.19.2)

(3.19.5) Ep @ Qp )y — tusws(E)

is an isomorphism.

In fact, by the same argument proving [Sh2, 2.3.5] there is a canonical structure of a
complex
(E ) L— w

(3.19.6) w5(E) rw

A
P P

such that the natural map F — w%(E) induces a quasi-isomorphism, and such that the

isomorphisms 3.19.5 extend to an isomorphism of complexes

(3.19.7) Ep @ Qparpy v — uswp(E).

In particular, since the wiﬁ(E) are acyclic for u, this gives an isomorphism in the derived
category
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Remark 3.20. By the same argument used in [Og2, 0.3.7], if Pis affine, then each of the
terms Fp ® Q%R Mpyv 18 acyclic for the global section functor. In this case we have an
isomorphism in the derived category

(3.20.1) RU(((X, Mx)/V)eonv: E) ~ (I'(X,Ep) = I'(X, Ep ® Q%RMp)/V) — ).

3.21. Let G/K be an affine group scheme. As in 2.23, we can then consider G-equivariant
sheaves of K-modules F in ((X, Mx)/V)cony- Recall from 2.23 that such a sheaf consists of a
sheaf F in the usual sense, together with morphisms of -modules in ((X, Mx)/V)conv

(3.21.1) p:E— E®kOq
such that the equalities 2.23.4 hold.

If £ is a flat isocrystal, then it follows from 3.16 that for every widening W, the sheaf of
Kw-modules Ey on W, has a natural Og-comodule structure, and hence is a G-equivariant
sheaf in W;. Similarly (using 3.18) each of the sheaves w%(E)W has an induced structure of
a G-equivariant sheaf in W.

3.22. If we furthermore fix a diagram 3.19.1, and E' is a G-equivariant flat isocrystal, then it
follows from 3.18 that each of the sheaves w%(E) has a natural structure of a G-equivariant
sheaf in ((X, Mx)/V)conv, which induces for every widening W a G-equivariant structure on
the sheaf wiﬁ(E)W. Moreover, by functoriality of the construction of the complexes w5(E)

each of the squares

i d i+1
(3.22.1) wﬁ(E) w3 (E)
l coaction \L coaction
w%(E) R OG —d> u)lgl(E) XK OG
commutes, as well as the square
(3.22.2) E wi(E)
l coaction \L coaction

Therefore the complex wﬁ(E) is a complex of G-equivariant sheaves, as is the de Rham
complex Ep @0, Qpar,y v

4. SIMPLICIAL PRESHEAVES ASSOCIATED TO ISOCRYSTALS

Review of simplicial presheaves [Bl, H-S, Ja, Tol].

4.1. If S is a site, we denote by SPr(S) the category of simplicial presheaves on S. That is,
the category of functors (recall that A° denotes the opposite category of A)

(4.1.1) F:A°— S,

where S denotes the category of presheaves on §. We write SPr,(S) for the category of
pointed objects in SPr(S). An object x — F € SPr,(S) is called connected if the sheaf
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associated to the presheaf R +— mo(|F(R)|) is isomorphic to %, where |F(R)| denotes the
geometric realization of the simplicial set F(R). For (F,* — F) € SPr,(S) and i > 0, we
write m;(F, *) for the sheaf on S associated to the presheaf sending U € S to m;(|F(U)], *).
We will view SPr(S) and SPr.(S) as model categories using the model category structure
defined in [Tol, 1.1.1]. Recall that a morphism (F,* — F) — (F',x — F') of connected
objects in SPr.(S) is an equivalence if and only if the induced map

(4.1.2) i (F, %) — m(F', %)

is an equivalence for every ¢ > 0. This implies in particular that one can define 7; for an
object in the homotopy category Ho(SPr.(S)). We refer to the elements of Ho(SPr(S)) (resp.
Ho(SPr.(S))) as stacks (resp. pointed stacks).

In what follows, the site & will usually be the category Affp of affine B-schemes with
the fpqc topology for some Q-algebra B, and we write SPr(B) (resp. SPr.(B)) instead of
SPr(Affg) (resp. SPr.(Affg)).

Remark 4.2. If § has enough points (which will always be the case in this paper), then a
map F' — F’ in SPr(S) is an equivalence if and only if for every point z of the corresponding
topos & the induced map on stalks /' — F’ is an equivalence.

Remark 4.3. Recall (see the discussion in [Tol, 1.1.1]) that there is another model category
structure on SPr(S), called the strong model category structure, in which a morphism F' — F”
is an equivalence (resp. fibration) if for every X € S the map of simplicial sets F'(X) — F'(X)
is an equivalence (resp. fibration). We refer to equivalences, cofibrations, and fibrations
with respect to this model structure as strong equivalences, strong cofibrations, and strong
fibrations.

The model category structure on SPr(S) used in 4.1 (and the rest of the paper) is then char-
acterized by the definition of weak equivalences in [Tol, 1.1.1] and by declaring cofibrations
to be strong cofibrations (and then fibrations are defined using the right lifting property).
The model category structure on SPr,(S) is obtained from the model category structure on
SPr(S) as in [Ho, 1.1.8].

The strong model category structure on SPr(S) is clearly a proper model category structure
in the sense of B.5, as the category of simplicial sets with the usual model category structure
is proper. The model category structure on SPr(S) defined in [Tol, 1.1.1] is therefore also
left proper (as it is a left localization of a proper model category structure [Hi, 4.1.1]). If S
has enough points then this model category is also right proper, as this can be verified on
stalks by 4.2.

Remark 4.4. If U € S is an object of the site S, then we can consider the category SPr(S|y)
of simplicial presheaves on the category of objects over U. The category S|y has a natural
Grothendieck topology induced by that on S. There is a functor r* : SPr(S) — SPr(S|y)
sending F' to (V — U) +— F(V). The functor r* has a left adjoint r sending G € SPr(S|y)
to the presheaf

(4.4.1) nGV)= [ Gw=0).

seHom(V,U)
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In particular, if x — rG(V) is a point mapping to the component corresponding to s : V' — U,
then the sheaf (G, *) on S|y is isomorphic to m1(G|sy_v,*). This implies that r, takes
weak equivalences to weak equivalences.

Note also that the functor 7* takes strong equivalences (resp. strong fibrations) to strong
equivalences (resp. strong fibrations), and therefore r; preserves strong cofibrations (=cofi-
brations). Therefore 7 preserves both cofibrations and trivial cofibrations, which implies that
(ry,7*) is a Quillen adjunction.

In particular there is an induced functor
(4.4.2) Rr* : Ho(SPr(S)) — Ho(SPr(S|v)).

Since r* preserves arbitrary equivalences, the functor r* derives trivially (that is, if F' €
SPr(8) is a not necessary fibrant object representing an object F”* € Ho(SPr(S)) then Rr* F"
is represented by r*F').

Equivariant cosimplicial algebras and pointed stacks.

4.5. Let R be a Q-algebra and G/R an affine flat group scheme. Let G — Algy denote the
category of R-algebras with right G—action. That is, G — Algp, is the category of R-algebras
in the tensor category of right G-representations Repp(G). We denote by G — Alg% the
category of cosimplicial objects in G—Algp. Let G—dgay denote the category of commutative
differential graded algebras in the category of right G-representations. We view G — Alg%
and G — dgap as closed model categories using 2.21. As discussed in 2.21, the Dold-Kan
correspondence induces an equivalence of categories

(4.5.1) Ho(G — dgay) ~ Ho(G — Alg%).

4.6. Denote by G — SPr(R) (resp. G — SPr,(R)) the category of objects in SPr(R) (resp.
SPr.(R)) equipped with a left action of G (viewed as a sheaf via the Yoneda embedding).
As discussed in [KPT, §1.2] there is a model category structure on G — SPr(R) in which a
morphism X — Y is an equivalence (resp. fibration) if the morphism in G —SPr(R) obtained
by forgetting the G-action is an equivalence (resp. fibration). Similarly for G — SPr.(R).

For any A € G — Alg%, define Specy(A) to be the simplicial presheaf sending a R-algebra
D to

(4.6.1) [n] — Hompg(A,, D).

The right action of G on A,, induces a left action of G on Spec,(A) and hence we obtain a
functor

(4.6.2) Spece : G — Algy — G — SPr(R).

If G is the trivial group and A € Algﬁ, we write simply Spec(A) € SPr(R) for the associated
simplicial presheaf.

As explained in [KPT, p. 16], the functor Spec is right Quillen. We denote by
(4.6.3) RSpec,, : Ho(G — Algs)®® — Ho(G — SPr(R))

the resulting derived functor.
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4.7. Let EG denote the simplicicial presheaf which is the nerve of the morphism G — *. So
we have

(4.7.1) (EG),, = G™!

with the face and degeneracy maps given by the projections and diagonals. The group G
acts on E'G through left translation, and we write BG for the quotient. The identity section
of G defines a map * — E(G, which is an equivalence. Therefore EG and BG are naturally
pointed simplicial presheaves.

By [KPT, 1.2.1] there are natural equivalences of categories
(4.7.2) Ho(G — SPr(R)) ~ Ho(SPr(R)|sz), Ho(G — SPr.(R)) ~ Ho(SPr.(R)|5c).

For F' € Ho(G — SPr(R)), we write [F//G| for the corresponding object of Ho(SPr(R)|gq).
The equivalences 4.7.2 are induced by a Quillen adjunction (De, Mo) between SPr(R)|ps and
G — SPr(R). The functor

(4.7.3) De : G — SPr(R) — SPr(R)|sc
sends F' € G — SPr(R) to (EG x F)/G, where G acts diagonally on EG x F. This functor

then induces an equivalence
(4.7.4) LDe : Ho(G — SPr(R)) — Ho(SPr(R)|5q)-

4.8. If A € G — Algy, then any augmentation A — R (not necessarily compatible with the
action of G) gives [RSpecy(A)/G] a natural structure of an object of Ho(SPr,(R)). For this
note that the forgetful functor Rep(G) — Modpg has a right adjoint M +— M ® Og. Hence
giving an augmentation A — R is equivalent to giving an equivariant map A — Og.

As discussed in appendix B, the category G — Algé’ Jo,, of objects over Og has a natural
model category structure induced by the model category structure on G — Algﬁ. A morphism
f:A—=AinG-— Alg% Jo,, 18 an equivalence (resp. cofibration, fibration) of the underlying

morphism A — A" in G — Algﬁ is an equivalence (resp. cofibration, fibration). The functor
Spec(—) induces a functor

(4.8.1) (G = Algg jo,)° — G = SPr(R)\spee(0c)

which we again denote by Specg(—). Here G — SPr(R)|\spec.(0r) denotes the category of
objects of G — SPr(R) under Spec(Og). We have a commutative diagrams

Speca()
(482) (G — Alg%/oc) I)i> G — SPF<R)|\SpecG(Og)
forget l \L forget
A Specg(—)
(G — Algd)e G — SPr(R),
and
(4.8.3) G — SPr(R)\specy (00) —= SPr(R)|pe.\ra

i forget l forget

G — SPr(R) —2—~ SPr(R)|pa,
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where SPr(R)|pa,\ee denotes the category of objects in SPr(R)|pe under EG. As explained
in B.7 diagram 4.8.2 is a commutative diagram of right Quillen functors. Passing to the
associated homotopy categories we therefore obtain a commutative diagram

RSpecq(—)

Ho(G — AlgR /0,,)° Ho(G — SPr(R)|\specg (0c))
(484) forgetJ{ lforget

RSpecg(—)
— 5

Ho(G — AlgR)° Ho(G — SPr(R)).
Lemma 4.9. The G-equivariant presheaf G = Specy(O¢) is cofibrant in G — SPr(R).

Proof. Let H : G — SPr(R) — SPr(R) be the functor forgetting the G-action. Then for any
F € G — SPr(R) we have

(491) HomG_spr(R)(G, F) = Homspr(R)(*, H(F))

Since H takes fibrations (resp. equivalences) to fibrations (resp. equivalences), the statement
that G is cofibrant follows from the fact that = is cofibrant in SPr(R) (since x is obviously
strongly cofibrant). O

By B.9, the diagram 4.8.3 therefore induces a commutative diagram of derived functors

(4.9.2) Ho(G' — SPr(R)\specg,(0)) ~2% Ho(SPr(R)|peapa)
\L forget \L forget

Ho(G — SPr(R)) ——2°~ Ho(SPr(R)|s¢).

By forgetting the map to BG we also obtain a commutative diagram

(493) HO(SPI( )|BG \EG SPI‘(R)\Eg)
m\ ‘%
o(SPr(R

Now by B.5, the point * — EG induces an equivalence

(4.9.4) Ho(SPr(R)\ s) — Ho(SPr,(R))
sending
(4.9.5) (EG— F)— (x— EG — F).

Therefore the diagram

(4.9.6) Ho(SPr(R)\ gc) Ho(SPr.(R))

Ho(SPr(R))
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commutes. Combining 4.8.4, 4.9.2, 4.9.3, and 4.9.6 we obtain a commutative diagram
(4.9.7)
RSpec e
Ho(G — Algh 0,)° ——= Ho(G = SPr(R)\spec(00)) = Ho(SPr(R)|pc\pe) — Ho(SPr.(R))

l forget

Ho(SPr(R)).

i forget

Ho(G — SPr(R))°

[RSpecg(—)/G]

We denote the top horizontal composite again by
(4.9.8) [RSpecq(—)/G] : Ho(G — Algg /0,)° — Ho(SPr.(R)).

4.10. In what follows it will also be useful to be able to replace Og by an equivalent algebra.
ftsedG-— Alg% is any object with an equivalence Og — S, then by B.5 there is a natural
equivalence Ho(G — Algﬁ} 0g) = Ho(G — Algg /s). Composing this equivalence with 4.9.8 we
obtain a functor

(4.10.1) [RSpecq(—)/G] : Ho(G — Algg /5)° — Ho(SPr.(R)).

4.11. Let R — R’ be a flat morphism of Q-algebras. Then the forgetful functor f : Gr —
Algﬁ, — G — Algﬁ has an exact left adjoint A — A ®r R’ and hence f preserves fibrations
and trivial fibrations. Therefore the pair (RgrR’, f) is a Quillen adjunction.

If r* : SPr(R) — SPr(R’) denotes the restriction functor 4.4, then the diagram

Specg

(G — Algs)°P G — SPr(R)
(4.11.1) ®RR¢ l

Specg _,
(G — Algd)P 7, G SPr(R/)
commutes. It follows that if A € G — Alg®, then Rr*RSpec(A) ~ RSpecg,, (A @R R).

Stacks associated to isocrystals.

4.12. Let k be a perfect field, V its ring of Witt vectors, K the field of fractions of V,
and o : K — K the automorphism induced by the canonical lift of Frobenius to V. Let
X/V be a smooth proper scheme, D C X a divisor with normal crossings relative to V', and
x : Spec(V) — X° a section. We view X as a log scheme (X, Mx) in the sense of Fontaine
and Illusie [Ka] with log structure My defined by the divisor D. Denote by (Y, My)/k
the reduction of (X, My), and by Isoc((Y, My)/K) the category of log isocrystals on the
convergent site of (Y, My) (see section 3).

Let Isoc®((Y, My)/K) C Isoc((Y, My)/K) denote the full subcategory of locally free ob-
jects. Since X/V is proper, the category of Isoc"((Y, My)/K) is naturally identified with
a full subcategory of the category MIC((Xk, Mx, )/K) of coherent sheaves on the generic
fiber (Xg, M, ) with integrable logarithmic connection (combine [Sh1, proof of 5.2.9, 5.2.10,
and 3.2.16]). In particular, there is a natural restriction functor
(4.12.1) Isoc"((Y, My)/K) — MIC(X%/K),

where X° := X — D. By [Sa, VI.1.2.2], the category MIC(X /K) is Tannakian and every
object is locally free.
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Remark 4.13. As in the case without log structures, the category Isoc((Y, My )/K) can also
be described as the category of locally free isocrystals on the log crystalline site of (Y, My )/V
[Sh2, 3.1]. If E € Isoc"((Y, My)/K) we can therefore compute the cohomology of E in either
the convergent topos or the crystalline topos. By [Sh2, 3.1.1] these two different cohomology
groups are canonically isomorphic. We will therefore simply write HZ . ((Y, My), E) for these
groups. From this and the comparison between log crystalline and log de Rham cohomology
[Ka, 6.4] it follows that if (£,V) € MIC (X, Mx, /K) denotes the module with integrable

connection corresponding to E, then there is a canonical isomorphism

(4.13.1) HE (Y, My), B) ~ Hy, qr(Xk, Mx, ), (E,V)).

4.14. Let R denote the cokernel of the map Q. — Q%XK,MXK)/K (the sheaf of residues),
and observe that if (£,V) € MIC((Xg, Mx, )/K) then the composite
(4.14.1) s v, E® Upnrxyx — EOR

is Ox, —linear. In particular, for every point y € Xk we obtain a map
(4.14.2) R(y)" — Endy)(E(y)).

We say that (€, V) has unipotent local monodromy if for every y € Xg the image of 4.14.2
consists of nilpotent endomorphisms (see also [K-N] for this notion in the analytic context).

In local coordinates this condition can be described as follows. Etale locally around v,
there exists an étale morphism

(4.14.3) X — Spec(V[Ty,..., T, T=,, ..., TF])

with D given by the equation T} --- T, = 0 and y € {11 = --- = T,, = 0}. The choice of such
a morphism identifies R with the sheaf associated to the module

(4.14.4) ©i_1(0x/(T})) - dlog(T;),

so R(y) has a basis given by dlog(T;) (1 <7 <) and the corresponding endomorphisms D;
of Endy,(€(y)) all commute. Therefore (£, V) has unipotent local monodromy if and only
if the endomorphisms D; are nilpotent. Observe also that it suffices to verify the nilpotence
at closed points y € Xk.

We denote the full subcategory of MIC((Xk, Mx, )/K) of vector bundles with integrable
logarithmic connection with unipotent local monodromy by Vi, (X, Mx, ).

Remark 4.15. Modules with integrable connection of “geometric origin” often have unipo-
tent local monodromy [I11].

Lemma 4.16. If (£,V) and (F,Y) are in Viup (XK, Mx, ), then (€ @ F,V & Y) is also in
Vaip (X, Mx,.). The category Viap( Xk, Mx,.) has internal homs, duals, and is closed under
extensions in MIC((Xg, Mx,)/K).

Proof. Lety € X be apoint, 7 € R(y)* and element and let N (resp. M) be the corresponding
endomorphism of E(y) (resp. F(y)). The endomorphism of E(y) ® F(y) = (€ @ F)(y)
corresponding to the connection V ® T is then N ® 1 + 1 ® M. Since the endomorphisms
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N®1land 1® M of £(y) ® F(y) commute, we have

T

r . .
4.16.1 NR1+1 M) = N'®@ M™*.
( ) (No1+1® M) z:; (l) ®
This implies that (€ @ F,V ® T) € Vuup(Xk, Mx, ). The statement about duals follows

from the fact that the transpose of a nilpotent endomorphism is nilpotent. From this we get
internal homs by the formula

(4.16.2) Hom((€, V), (F,Y)) = (£,V)* & (F,T).

The statement about extensions follows from the observation that if (V, N) is a vector space
with an endomorphism, and if V' admits a N-stable filtration Fil such that the induced
endomorphism of gry; (V') is nilpotent, then N is nilpotent. O

Lemma 4.17. (i) For any (£,V) € Vaup(Xk, Mx,) the natural map on cohomology
(4'17'1) Hlt)g—dR((XK’ MXK)7 (5’ V)) - H:;R(X?(’ (507 vo))

1S an isomorphism.

(ii) The restriction functor

(4.17.2) Vaitp (XK, Mx,.) — MIC (X} /K)

15 fully faithful with essential image closed under the operations of direct sums, tensor prod-
ucts, duals, internal hom, subquotients, and extensions.

(iii) The category Viip(Xk, Mx, ) is Tannakian with fiber functor given by
(4.17.3) Wape © Vaip(Xk, Mx, ) — Vecg, (€,V)— E(x).

Proof. To see (i), it suffices by a standard reduction to consider the case when K = C. Then
(€,V) € Vaip(Xk, Mx, ) is the canonical extension of (£°,V°) in the sense of Deligne [Del,
5.2]. From this and [Del, 3.14 and 5.2 (d)] (i) follows.

All the statements of (ii) except for the statement about subquotients follow immediately
from (i) and the natural isomorphisms

(4174) EXti/ Hp(XK,MXK)((ga V), (}—’ T)) = Hliog-dR((XKv MXK)’ (57 V)* ® (*7:7 T))’

n

(4'17'5) EXtZMIC(X;’(/K)((gO? vo)v (fo> TO)) = HQR(X?O (50’ vo)* ® (:Foa TO))'

To verify that the essential image is closed under subquotients, note that by the uniqueness
of the canonical extension in [Del, 5.2] it suffices to consider the case when K = C in which
case the result follows from (loc. cit.).

Statement (iii) follows from (ii) and the fact that MIC(X§ /K) is Tannakian. O
4.18. Let Ve((Y, My)/K) C Isoc((Y, My)/K) denote the full subcategory of objects whose
image in MIC((Xg, Mx, )/K) lies in Vo, (Xk, My, ). Since the inclusion functor
(4.18.1) Isoc((Y, My)/K) C MIC((Xk, Mx,)/K)

has essential image closed under sub—quotients, direct sums, duals, tensor products, and

extensions (see for example [De2, 11.4]), the category Vis((Y, My)/K) is identified with a
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Tannakian subcategory of Vi, (Xk, My, ). Moreover, the restriction of the functor 4.17.3 to
Vas((Y, My)/K) is naturally identified with the functor

nilp

(4.18.2) ais((Y, My)/K) — Isoc(k/K) ~ Vecg, E+ 2°E.

nilp

Lemma 4.19. For any V € VSP((Y, My)/K), the pullback by Frobenius F*V is again in
VR((Y, My) /).

Proof. Because X/V is proper, the scheme X is covered by maps Spec(R" @y K) — Xk,
where R” is the p-adic completion of an affine étale Spec(R) — X which admits an étale
morphism

(4.19.1) Spec(R) — Spec(V[Ty,...,T,, Ty, ..., T5))
as in 4.14.3. For such an R, there exists a lift of Frobenius
(4.19.2) F:R"— R

sending T; to T7. In this case the pullback of F*V to Spec(R}) is the module V Qpn f R"
with connection F*(V) such that

(4.10.3) (F (V)0 © 1)), Tigp) = V(). i) @11

Hence if the operator <V(—),E%> is nilpotent so is the operator <F*(V)(—),Ti%). This
implies the lemma. Il
Lemma 4.20 ([LS-E, 2.1]). For any V € Isoc((Y, My)/K), the natural map

(420.1) F* o Ho((Y, My), V) — Hi((Y, My), F*V)

s an isomorphism.

Proof. Let (Y’, My+) denote the fiber product (Y, My) ®x prob, k and let Fiyary i : (Y, My) —
(Y, My+) be the natural map induced by Frobenius on (Y, My ). Let V' be the pullback of V
to (Y/, My/).

Note first that
(4.20.2) H (Y, My ), F*V) = H (Y My+), Foy gy i Ey argy 1 V')
and F(Y’MY)/k*F&My)/kV’ ~ (Fiy,my ) /e Oy k) ®0y V' (projection formula).

Sub-Lemma 4.21. The sheaf Fiyny)k«Oy/k is a locally free sheaf of Oy:/x—modules of
finite rank.

Proof. This can be verified locally, so we may assume that there exists an étale morphism
(4.21.1) X — Spec(V[T1,...,T,, Ty, ..., T;))

YT n

as in 4.14.3 and let (X Mz ) denote the p-adic completion of (X, Mx). Let (X', M,) denote

the base change of (X, My) via the map Spec(V') — Spec(V') induced by the lift of Frobenius,

and let F': (X, Mg) — (X', Mg,) be the map induced by T; +— T,. The morphism F is finite
*()1 1 . .

and flat and the natural map F*(2 (R M)V — RV becomes an isomorphism after

tensoring with Q (F' ® Q is log étale). It follows that (F.Og) ®y K has a natural integrable
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connection which defines a locally free crystal A of Oy ) x—algebras. We leave to the
reader the task of verifying that this crystal A is isomorphic to Fiy, ) /kOy/ k- O

It follows that there is a trace map tr : Fiyar, )/kOy/xk — Oyr/i such that the composite
Oy — Fiymy)iOv/x — Oy is multiplication by some non-zero integer. This implies
that the map 4.20.1 is injective.

To see that 4.20.1 is surjective, choose a totally ramified finite extension V' — V with
fraction field extension K — K such that K contains the p—th roots of 1, and note that there
are natural isomorphisms

(4.21.2) Heo (Y, My ), F*V) @5 K = B (Y, My)/ K )eomer FV),

cris

(4213) H¢, ((Yla MY’)a V/) XK [z— = H*<<<Y/> MY’)/E)COHW V/)

cris

It therefore suffices to show that the natural map
(4.21.4) H*(((Y/a MY/)/I})COHW V) — H*(((Y, MY)/I?)COHW Fy)

is an isomorphism.

To see that 4.20.1 is surjective, it suffices to show the stronger statement that the map

(4215) F* otr: RU*V/ — Ru*[(F(Y,MY)/k*Oy/f() ®(9 V]

Y'/K

is an isomorphism, where u, denotes the projection to the étale topos of Y’. This is a local
assertion so it suffices to verify it in the case when there is an étale morphism as in 4.14.3.
In this case, the map X — X' := X ®y, V induced by T; — T} is a lift of Frobenius and the

resulting map X ®y VvV — X' Qv V identifies X’ Ry V with the quotient of X ®y 1% by the
natural action of the group ju; ~ (Z/pZ)" (since V contains the p-th roots of 1). It follows
that the map F* o tr is equal to > 0 Since the reduction of each ¢ is the identity, it
follows that this is simply multiplication by p"™ and so 4.21.5 is a quasi—isomorphism. U

4.22. Let (E,pgr) be an F-isocrystal on (Y, My)/K with E € V&5((Y,My)/K). De-

nilp

note by (E)g C V%5((Y,My)/K) the Tannakian subcategory generated by FE, and let

nilp

C C VES((Y, My)/K) be the smallest Tannakian subcategory closed under extensions, and

containing E. The category C consists of objects V € V.&5((Y, My)/K) which admit a filtra-

nilp
tion 0 =V, C Vo C ---V, =V whose successive quotients are objects of (E)g.

Observe that the restriction functor 4.17.2 identifies (F)g (resp. C) with the Tannakian
subcategory of MIC(XY./K) generated by £ (resp. the smallest Tannakian subcategory
of MIC (XY, /K) closed under extensions and containing £%), where £ denotes the module
with integrable connection on X7, defined by E.

We make the following assumption:

Assumption 4.23. The category (E)g is semi-simple.

This assumption implies in particular that an isocrystal V is in (F)g if and only if V is
isomorphic to a direct summand of E* ® (E*)® for some a,b € N.
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Lemma 4.24. (i) For any V in C (resp. (E)g), the pullback by Frobenius F*V is again in C
(resp. (E)a).

(ii) The induced functors

(4.24.1) F*:C—C, F':(E)y— (E)g

are equivalences.

Proof. Statement (i) is immediate.

For (ii), note first that the essential image of F* : C — C is closed under extensions. For
given any two objects Vi, V, € C and an extension

corresponding to a class e € HL (Y, My), F*(Vi ® V,)), there exists by 4.20 (i) a class
e € HL (Y, My), Vi ®V,) with F*(¢/) = e. The class ¢’ then gives an extension of V, by V;

inducing V. Note also that 4.20 (i)) implies that F™* is fully faithful since for any V;,V, € C
ngis(((}/’ MY)7 Vik ® VQ) - H(?ris«(Y? MY)7 F*(Vik ® V2))

(4.24.3) :T gl
Home (V1, Vs) Home (F*Vy, F*Vy)
is bijective.
Hence it suffices to show that F* : (E)g — (F)g is essentially surjective. For this it suffices
to show that if E' € (F)g is an object obtained from E by performing the operations of tensor
product, direct sum, and dual and if ¥V C F*E’ then there exists a sub-object V' C E’ with

F*Y" = V. Since (F)g is semi-simple, the subcrystal V C F*E’ is obtained by projection
from an idempotent e € H2. ((Y, My),End(F*E")). By 4.20 the map

((K MY)?M<E/)) - HO <<Y7 MY)? F*M(E/))

cris

(4.24.4) F*: H°

cris

is an isomorphism, and since F*End(FE’) ~ End(F*E’) there exists an idempotent ¢ €
H?. (Y, My),End(E")) with F*(¢/) = e. The corresponding direct summand V' C E’ then

pulls back to V. O

4.25. The method of [Ol1] reviewed below associates to C a stack X¢ € Ho(SPr,(K)) (the case
when D = () is treated in (loc. cit.) but the same method works in the present logarithmic
situation). The stack X¢ has the following properties 4.26-4.28.

4.26. There is a canonical isomorphism
(4.26.1) m(Xe) ~ m(C, wy).

4.27. There is a natural isomorphism ¢x, : X¢ — X¢ @k K, where X¢ ® i, K denotes the
object of Ho(SPr,(K')) which to any R € Alg, associates X¢(R® ,—1 ). This isomorphism
induces an isomorphism ¢, : m(X¢) — m(X¢) ® ko K which under the isomorphism 4.26.1
corresponds to the isomorphism induced by Tannaka duality and the equivalence C ® x , K —
C induced by Frobenius pullback.
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4.28. For any representation V' of m(X¢) corresponding to an isocrystal V on (Y, My)/K,
there is a canonical isomorphism

(4.28.1) H*(Xe,V) ~ H

cris

((Yv MY): V),

where H*(X¢, V') denotes cohomology of the simplicial presheaf X¢ as defined in [Tol, 1.3].
If oy : V @k K — V is an isomorphism such that the diagram

1 (Xe) — Aut(V)

(4.28.2) - l l@v
m(Xe) ko K —— Aut(V)

commutes, and if ¢y : F*)Y — V denotes the associated F-isocrystal structure on V), then
the F—isocrystal structure induced by ¢y on H*(Xc, V') agrees under the isomorphism 4.28.1
with the F-isocrystal structure on H:. ((Y, My),V) induced by ¢y.

cris

4.29. The description of the stack X¢ in 4.35 below uses the following basic construction.
Let G/K be an algebraic group, and let L be a differential graded algebra in the category
of ind-isocrystals on (Y, M)/K with G-action. To any such algebra IL we can associate an
algebra RI'.is(L) € Ho(G — dgay) whose cohomology ring is HY (L) with the natural G-
action. If IL is an equivariant algebra in the category of ind—F—isocrystals then there is an
induced semi-linear automorphism RT.;s(L) — RT¢s(L) in Ho(G — dga).

To construct RI'.s(IL) choose an affine étale cover U — Y and an embedding (U, M) —
(Z,My) of (U, My) into an affine log scheme (Z, M) log smooth over V' (with the trivial log
structure). For each n > 0, let t : (Z%, Mz.) — (Z, Mz)"*Y denote the universal object over
(Z, Mz)"*1) defined in A.8.

Recall that the log scheme (Z}, Mz:) has the following universal property. For each i, let
pr; : (Z,Mz)™*Y — (Z, M) be the projection to the i-th factor. Then the natural map
t*pr; Mz — My is an isomorphism and (Z, Mz.) is universal with this property. That is,
if g : (T, Mr) — (Z, Mz)™*Y is a morphism of log schemes such that for each i the map
g*pri My — My is an isomorphism, then g factors uniquely through (2%, M.). In particular,
the diagonal

(4.29.1) (Z, Mz)— (Z, Mz)("*+D

factors canonically through (Z;, My.). Recall also that by the construction of (Z, Mz.) in
the proof of A.8, (Z, Mz:) is an affine log scheme.

Let (Uy,, My, ) denote the n+1-st fold fiber product of (U, My ) over (Y, My ). By the univer-
sal property of (Z7, M. ), the natural embedding (U,, My, ) — (Z, Mz)"+Y factors uniquely
through (Z;, Mz:). Denote by (Z,, Mz,) the completion of (Z;, M ) along (U,, My, ). The
(Zn, Mz,) form in a natural way a simplicial log formal scheme denoted (Z,, M, ).

Let (U., My, ) denote the 0—coskeleton of the map (U, My) — (Y, My) so that there is an
embedding (U, My,) < (Ze, Mz,). Each (U,, My, ) — (Z,, Mz,) is a widening and hence we
can evaluate L on each (Z,,, Mz,) (in the sense of 3.17) to get a module £,, with logarithmic
connection V : L, — L, ®Q%Zm My, )V Forming the de Rham complex of this connection, we

obtain a sheaf of differential graded algebras £, ® QZZ-, Mgy O Ze with action of the group
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scheme (. From this we get a G—equivariant cosimplicial algebra

In what follows we will write DR(LL)y, for this cosimplicial differential graded algebra. We
define Rl .;5(L) (also sometimes written RI'es(IL)y, if we want the dependence on U, to
be clear) to be the object of G — dga, obtained by applying the functor of Thom—Sullivan
cochains to DR(L)y, (note that DR(L)y, and RI'i(IL)y, also depend on (Z,, My, ) but we
omit this from the notation).

4.30. Since we chose the Z, to be affine, the underlying complex of RI.;s(IL) is simply
the usual complex used to compute convergent cohomology by 3.20. This implies that if
(U', Myr) — (Z',Myz) is a second choice of étale cover and lifting and if we are given a
commutative square

U, My1) —— (2", M)
(4.30.1) pl l
<U7MU) _— (ZyMZ)a
where p is a morphism over Y, giving rise to a commutative square
(Us, Myy) —— (Z, Mz;)
(4.30.2) pl l
(Uh MU-) - (ZM MZ-)?

the induced map

(4.30.3) DR(L)y, — DR(L)y;
is an equivalence and the resulting map
(4304) RFCI‘iS(L)U. — chris(L>UL

in Ho(G — dgay) is independent of the choice of the morphism U’ — U. Furthermore, if
we choose a lifting of Frobenius to (Z, Mz) then the F—isocrystal structure on LL induces a
semi—linear equivalence

(4.30.5) DR(L)y, — DR(L)g,-
As explained in [Ol1, 2.23], the induced equivalence
(4306) chris(L) ®K,o‘ K — chris<L)

in Ho(G — dgay) is independent of the choices.

In what follows it will be also be necessary to describe the G—equivariant algebra RI.;s(IL)
in a slightly different manner.

Lemma 4.31. Let I be a differential graded algebra in the category of ind—isocrystals with
G-action on (Y,My)/K. Associated to the lifting (X, Mx)/V of (Y,My) toV is a G-
equivariant differential graded algebra R® with each R® a sheaf on (Y, My)/K which is acyclic
for the projection u, to the étale topos of Y, and a map of G—equivariant algebras L. — R*®
which is a quasi—isomorphism on the underlying complexes of sheaves.
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Remark 4.32. In the case when L is a sheaf (i.e. concentrated in degree 0), the complex R*
was denoted w (L) in 3.19.

Proof. Let (T, M7) denote the object of the convergent site of (Y, My) given by (Y, My) —
(X, Mx). There is then a diagram of topoi

(Y, My)/V )eomslr =" Ve
(4.32.1) jTl

((Y7 MY)/V)conv-
For each integer ¢, there is by [Sh2, 2.3.6] a natural resolution L' — R with R} :=
jT*((b*TQ{ Xy v @ j7L") (see also 3.19). The sheaf R’ is acyclic for the projection w,. Fur-

thermore, the complex R! is functorial so we obtain a double complex R? with an equivalence
L — R;. Let R® be the associated single complex.

By definition R*® = @i-&-j:sz*(Qb;Q{X’MX)/V ® j&L") and the differential d : R® — R*™! is
induced by the maps
(4.32.2) T vy © F7LE = 0p Uy @GP L @ 9300, )y @ gL
sending w ® £ to (6(¢) ® w, (—1)"0(w ® £)), where we have written § for the differentials. We
define an algebra structure on R*® by the formula
(4.32.3) (WROAW L) :=(-1)"wA)® (-1,
where w ® £ € jr. (@5 1y )y ® G5 and W' @ 0 € 5y, @ GFLY O

4.33. Let . — R*® be the resolution corresponding to our lifting (X, Mx)/V. The sheaves
R are not isocrystals, but still the value R*(Z, M) of R on any affine widening (U, My) —
(Z,Mz), with (Z, M) formally smooth over V| has a canonical integrable connection

(4.33.1) R'(Z,Mz) — RY(Z, Mz) ® Qz.u1,)v-

This follows from the construction of R’ (see the proof of [Sh2, 2.3.5] and without log struc-
tures [Og2, 0.5.4]). Moreover, by the proof of the convergent Poincaré lemma [Sh2, 2.3.5 (2)],
the complex R*(Z, My) is a resolution of L(Z, My).

Let (Us, My,) — (Zes, Mz,) be as in 4.29. For each n as in 4.29, let R*(((U,,, My, )/ K)cxis)
denote the G—equivariant differential graded algebra
(4.33.2) C(((Un, My,,) ) K ) cony), R®).

For each i, let R% denote the module with connection on (Z,, Mz,) obtained by evaluating
R’ on (Z,, Mz,), and let R ® Q5. ar,,) denote the corresponding de Rham complex of R

Let DR(R®)(v, .y, ) denote the differential graded algebra with

(4.33.3) DR(R)y, at,) = ®irj=sRi @ Xy ap, -

If 0 denotes the differential of R}, then the differential on DR(R®), a1, ) is defined by the
maps

(4334) RL0Q, \, = RS@QQ, \ OR,QQ

sy TWE S(r)w+ (—=1)'V(rw)
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and as in the proof of 4.31 DR(R®) v, a1, has a differential graded algebra structure given
by

(4.33.5) (row) A @w) = (1" )@ (v
for roweR,@Q, \ andr @w €eRIQQ, .

We then obtain a diagram of G—equivariant algebras
R*((Un, My, )/ K)eris) —— DR(R®)w,,,m,)

(4.33.6) |
DR(L)w, mp,)
with all morphisms equivalences. This construction is functorial so the above constructions

induce cosimplicial differential graded algebras R®(((Us, My, )/K)eis) and DR(R®)y, sitting
in a diagram of equivalences

(4.33.7) R*(((Us, M)/ K )e) —— DR(R®)y. «—— DR(L)p..

Applying the functor of Thom—Sullivan cochains T" we see that the G—equivariant algebra
RTwis(IL) is canonically isomorphic in Ho(G — dgay) to T(R*(((Us, My,)/ K )eis))-

4.34. If x € X°(V) is a point, then we can apply the preceding discussion with X = Spec(V),
and z*L. If U, denotes the simplicial scheme obtained by pulling back U, to x, then we
obtain a commutative diagram

R*(((Us, My,)/ K)eris) ——  DR(R®)y, «——  DR(L)y,

(4.34.1) | | |

L(z) ®k Ou,,  —— L(z) ®x Op,, —— L(z) ® O,
Here the vertical arrows are induced by the functoriality of the formation of the resolution
L — R*®, and the functoriality of the de Rham complex.

If furthermore, we are given an augmentation L(x) — K we see that the algebras in 4.33.7
admit natural augmentations to Op,,. Since the map K — Op,, is an equivalence the
discussion of 4.8 applies, and there is an isomorphism of pointed stacks

(4.34.2) [RSpece(RTwis(IL))/G] =~ [RSpecaT(R* (U, My, )/ K )exis)) /G.

4.35. The stack X¢ is obtained using construction 4.29 as follows. Let G denote the pro—
reductive completion of m(C,w,), and let Og be the coordinate ring of G. Right translation
induces a left action of G on Og which by Tannaka duality corresponds to an ind—isocrystal
L(Og) € VE((Y, My)/K). Left translation induces a right action of G' on Og which com-
mutes with the left action and hence induces an action of G on L(Og). Furthermore the
identity section induces a map z*L(Og) ~ Og — K. By definition

(4.35.1) Xe ~ [RSpecq(RT i (L(O¢)))/G].

The ind-isocrystal L(O¢) has a natural F-isocrystal structure ¢ : F*L(Og) — L(Og)
which induces a Frobenius automorphism on RI'.(IL(Og)) giving the Frobenius structure

Pxe-
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4.36. Let us also remark that by cohomological descent we can carry out the above construc-
tion using any diagram

(U07 MU.) — (ZM MZ.)

(4.36.1) J
(Y, My),

where each (U, My,) — (Z,,Mz,) is a widening of affine formal schemes, (Z,, My,) is
formally smooth over V| and (U,, My,) — (Y, My) is an étale hypercover. In what follows,
we will use the same notation as in the preceding paragraphs in this more general setting as
well. In particular, there are diagram of equivalences

(4.36.2) R*(((Us, M)/ K )o)) —— DR(R®)y, «—— DR(L)p..

as in 4.33.7, and RI[.(L) can be computed by applying the functor of Thom—Sullivan
cochains to any of these algebras.

Remark 4.37. If w : C — Modp is any fiber functor to the category of R—modules, for some
K-algebra R, the preceding constructions can also be carried out with w instead of w,. If
G/ R denotes the group scheme of tensor automorphisms of w, then left and right translation
on Og induce an ind-isocrystal IL,, with structure of an R-module and right G-action. We
can then apply the constructions of 4.29-4.33 to L.

Precisely, for any diagram as in 4.36.1 we obtain a diagram of differential graded R—algebras
with right G—action

(4'37'1) RL(((UMMU.)/K)criS) - DR(R:;)U. A DR(LM)U.

where all morphisms are equivalences. Moreover, this diagram is functorial in the sense that
for any extension R — R’ and fiber functor o’ : C — R’ with an isomorphism o0 : W' ~ w®p R’
there is a natural commutative square of differential graded algebras with right G—action

RS ((Ue, My,)/ K)eris) —— DR(RS)y, «—— DR(L,)u,
(4.37.2) l l l
RS, ((Ue; My,)/ K)exis) —— DR(RE, )y, «—— DR(Lu)u,

If R — R’ is flat the vertical arrows induce equivalences after tensoring the top row with R'.

5. SIMPLICIAL PRESHEAVES ASSOCIATED TO SMOOTH SHEAVES

5.1. Let Y/K be a smooth connected scheme over an algebraically closed field K. Denote
by FEt(Y") the site whose objects are finite étale morphisms U — Y and whose coverings are
surjective morphisms. The inclusion FEt(Y) < Et(Y') induces a morphism of the associated
topoi

(5.1.1) p: Yo — Y.

If y — Y is a geometric point, then the category Y, is equivalent to the category of ind-
objects in the category of sets with continuous (Y, §)—action [SGA4, TV.2.7]. The pullback
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functor p* takes such a set F' to the corresponding sheaf on Y. Recall [Fa2, Chapter 11| that
Y is called a K(m,1) if for any abelian sheaf A € Yf; the natural map

(5.1.2) H*(Yiet, A) — H* (Yot p"A)
is an isomorphism.

Following [Fa2], if Y/K is a smooth scheme over an arbitrary field K, we will also call
Y a K(m,1) if each connected component of the geometric fiber Y% is a K(m,1). By [Fa2,
Chapter 11, 2.1] (see also [O13, 5.4]), any point y € Y admits an open neighborhood U C Y
which is a K(7,1).

5.2. If Y is a connected normal scheme, and 7 : Spec(f2) — Y is a geometric generic point,
there is a natural isomorphism 71 (Y, ) ~ Gal(Q2y /k(Y")), where Qy C Q denotes the maximal
extension of k(Y) in  which is unramified over all of Y. It will be useful to have a base
point free description of the category of continuous Q,representations of m (Y, 7).

Let Gy denote the category whose objects are geometric generic points Spec(Q) — Y
with € a separable closure of k(Y) and whose morphisms are morphisms of schemes over
Y. Consider the category D whose objects are collections ((V5)zeg, , {ts}) where each Vj is
a continuous Q, representation of Gal(k(n)y/k(Y)) and for every morphism s : 7/ — 7 in
Gy we are given an isomorphism of Gal(k(7')y /k(Y))-representations ¢y : s*V; — V. The
isomorphisms ¢, are also required to satisfy the usual cocycle condition for compositions.

Fix an objet ((Vi)iegy,{ts}) € D and 77 € Gy. Let p; : Gal(k(7)y /k(Y)) — Aut(V};) be
the given action. For each element g € Gal(k(7)/k(Y")), the pullback of Vj; via the morphism
in Gy induced by ¢ : k() — k(77) is the representation p? of Gal(k(n)y/k(Y)) given by the
composite

(5.2.1) Cal(k(n)y /K(Y)) 2% Gal(k(m)y /k(Y)) —2— Aut(V).

By definition of 5, we are given an isomorphism ¢, : (Vg, p?) — (V5, p). Denote by D C D
the full subcategory of objects ((Vj)iegy,{ts}) such that for every V; and g as above the
isomorphism ¢, is given by p(g) : Vi — V.

We will refer to the category D as the category of Galois modules on Y. If Y is not
connected we define a Galois module on Y to be the data of a Galois module on each connected
component. This terminology is justified by the following lemma:

Lemma 5.3. For any geometric generic point iy : Spec(2) — Y, the functor ({V;},{ts}) —
Vi, defines an equivalence between the category D and the category of continuous representa-

tions of Gal(Qy /k(Y)).

Proof. Let F' denote the functor ({V;}, {ts}) — V5. For each 7 — Y, choose an isomorphism
op 17 — 7 over Y. Then any morphism f : ({V5}, {ts}) — ({V;}, {}) is determined by the
induced morphism f, : V5, — Vi since the diagram

f’f]o

/
‘/;70 V;?o

(5.3.1) ”’%l lg%

fa
i
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commutes. Therefore F' is faithful. In fact given f5), use 5.3.1 to define f;. Then f; is
independent of the choice of o5 : 7 — 7. For if o, : 7 — ) is a second isomorphism,
there exists a unique element g € Gal(k(7)/k(Y)) such that o} = o7 0 g*. If f denotes the
morphism obtained from o7, the fact that ({V;},{¢s}) is in D implies that f] is equal to the
composite

(5.3.2) v, Ly ey 29y

n

Since f; commutes with the action of Gal(k(7)/k(Y")), it follows that f; = f;. This implies
that the functor F is fully faithful.

To see that F' is essentially surjective, fix a representation Vj;; and choose isomorphisms
oy 1 7 — o as above. For each 7, set V; := o7V}, For any morphism s : 7 — 7, there
exists a unique element g € Gal(k(77')/k(Y")) such that o7 = 05 0 s 0 g*. Define ¢5 to be the
isomorphism

-1
(5.3.3) 52V Pla—) G5 05 Vi,

where p denotes the action of Gal(k(77')/k(Y)). The value of F' on the resulting object
({V5},{ts}) € D is then equal to V. O

Remark 5.4. The category D is Tannakian with fiber functor ({V;}, {ts}) — Vi,.

5.5. Let Y/K be a normal connected scheme of finite type over an algebraically closed field
K, and let L be a differential graded algebra in the ind-category of Galois modules on Y.
We define Galois cohomology of L as follows. Choose a geometric point 7 — Y mapping
to the generic point and write m for the group m(Y,7). In this paragraph we view L as
a representation of 7 and denote it simply by L. For each n > 0, let C"(m, L) denote the
differential graded algebra with

(5.5.1) C"(m, L), := {continuous mequivariant maps 7"t — L,},

where 7 acts on the left of 7" via the diagonal action. If § : [m] — [n] is a morphism in the
simplicial category A, then there is an induced m—equivariant map

(5.5.2) gl Al (ag, ..., an) = (as©)s - - - as(m)),
which induces a morphism of differential graded algebras
(5.5.3) 0 :C"™(m, L) — C"(m, L).

These maps are compatible with composition in A, and hence we obtain a cosimplicial dif-
ferential graded algebra C*(w, L) € dga@p. Applying the functor of Thom—Sullivan cochains
we obtain a differential graded algebra T'(C*(m, L)) € dgag,. This construction is functorial
in L, so in particular if the sheaf L comes equipped with an action of a group scheme G/Q,
then the resulting algebra T'(C*(w, L)) is naturally an object of G — dga@p.

Remark 5.6. In the definition of C™(m, L), above, when L, is infinite dimensional the set of
continuous maps 7"t — L, should be interpreted as the set of continuous maps from 7"*!
to finite dimensional subspaces of L,..
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5.7. For technical reasons, it will be important to have a base point free description of this
Galois cohomology. For this let Y/K be as above and let £ — Y be a finite disjoint union of
geometric points mapping to the generic point of Y. For simplicity in what follows we will
always assume that a geometric generic point Spec(€2) — Y has the property that k(Y) — Q
is a separable closure of k(Y) (i.e. no transcendental part). For a smooth sheaf L on Y we
define a cosimplicial module denoted C*(Y, E, L) as follows.

Note first that the scheme E' is isomorphic to [, Spec(k(p)) where k(p) is a separable
closure of k(Y'). Define ky(p) C k(p) to be the maximal extension of k(Y') in k(p) which
is unramified over Y, and set Ey := [[ . Spec(ky(p)). Let E3- be the O-coskeleton of the
morphism Ey — Y. Note that each Ej is non—canonically isomorphic to a disjoint union of
copies of Spec(ky (p)). In particular, for each point ¢ € E} we can form the stalk L,. Define
C"(Y,E,L) C quEg; L, as follows.

Fix a separable closure §2 of k(Y') and let €y C Q be the maximal subextension unramified
over Y. Choose an isomorphism ¢ : £ ~ [[", Spec(€2). This choice of isomorphism induces
an isomorphism

(5.7.1) By~ [T Spec(@y™),

Fun([n],[m])

where in("“) denotes the (n + 1)-fold tensor product of 2y over k(Y) and Fun([n],[m])
denotes the set of all functions [n] — [m] (not necessarily order preserving). Let 7 denote
the Galois group Gal(2y /k(Y")). There is a natural map

(5.7.2) H Spec(Qy ) — Spec(QP™Y)

7T7l+1

which on the (go, ..., g,)-th component is given by

(5.7.3) Qy Sry) Uy - - Uy Dy Uy (905+-,9n) Oy,
There is an action of 7 on [[_..1 Spec(€y) for which v € 7 sends the (go, . . ., g )-component

to the (vgo, - - .,7gn)-component via the map
(5.7.4) v Qy — Qy.

Note that the diagram

(5.7.5) Q;S;(nJrl)(ng)ng

\ \LW
(7905-+-5Ygn)

Qy

commutes, so we have an action of m on [] _..: Spec(€2y) over Spec(Qg(nH)). Furthermore

the map 5.7.3 induces an isomorphism

(5.7.6) [H Spec(Qy ) /7] ~ Spec(QE™Y).

7-(-'rH-l
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It follows that ¢ induces an isomorphism

(5.7.7) Ey~ [ []] Spec(y)/7.

Fun([n],[m]) =n+1

With these identifications, the set [, pn Lq becomes identified with the set

(578) H Homw—equivariant(ﬂ-n—i_la LQ)7

Fun([n],[m])

and we define C*(Y, E, L) to be the subset
(5.7.9) ] Hom (7" Lg).

T—equivariant
Fun([n],[m])
Lemma 5.8. The subset C"(Y,E,L) C quE? L, defined above is independent of the choice
of t.

Proof. Any other isomorphism ¢/ : E ~ [[I*,Spec(£2) is obtained from ¢ by composing with
an automorphism a of [ [ Spec(2) over k(Y"). It therefore suffices to verify that C"(Y, E, L)
is invariant under automorphisms of ] . pn Lq induced by automorphisms of [T, Spec(€2).

Any such automorphism is the composite of a permutation of [m] with the automorphism
induced by a sequence (hg,...,h,,) € 7™ acting on the i-th component Spec(f2) by h}.
Hence it suffices to consider each of these two kinds of automorphisms in turn.

The action of a permutation 7 of [m] is simply that induced by composing a function
[n] — [m] with 7. Hence the automorphisms obtained in this way preserve C"(Y, E, L).

The action of (hg, ..., h,) € 7! is induced by the action on
(5.8.1) H Spec(§y)
(£:90;----gn) EFun([n],[m]) x7m+1

sending the (f, go, ..., gn)-th component to the (f, gohs(), - - -, gnhfn))-th component. From
this description it follows that C™(Y, E, L) is preserved. O

5.9. Observe that for any morphism E’ — E, there is a natural induced map C*(Y, E, L) —
C*(Y,E',L). We claim that this map is an equivalence. For this it suffices to consider the
case when E' = Spec(Q) is a single geometric generic point and E = ][}, Spec(€2). But in
this case it follows from the construction that

(5.9.1) C(Y,E, L) =C(Y, E', L)F=({nhm)
Thus the result follows from the following lemma:

Lemma 5.10. Let A, be a cosimplicial differential graded Q-algebra and fir m > 0 and a
map h : [0] — [m]. Denote by ASRCID yhe cosimplicial algebra [n] — ARl rhen the
map

(5.10.1) A, o AFm(0) R Funge.m)

induces a quasi—isomorphism on the associated normalized complexes.
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Proof. If the result holds for A, equal to the constant cosimplicial ring Q, then the result
holds in general by tensoring with A,. So it suffices to consider A, = Q. In this case, the
algebra [n] — QFun(inlIm)) {5 simply the cosimplicial algebra computing the cohomology of the
constant sheaf Q on the punctual topos with respect to the 0-coskeleton of the covering

(5.10.2) IT*— =

1€[m)|

U

Remark 5.11. If £ = Spec(Q2) consists just of a single geometric generic point, then it
follows from the construction that the above C*(Y, E, L) is canonically isomorphic to the
cosimplicial module C*(, L) defined in 5.5.

5.12. If Y is not connected and Y =[], Y; is the decomposition into connected components,
we modify the above definition of C*(Y, E, L) as follows. We consider a morphism h : E — Y,
where F is a disjoint union of geometric points mapping to generic points of Y such that
for every e € E the field extension k(h(e)) — k(e) is a separable closure of k(h(e)). Let
E; C E be the subscheme of points mapping to Y; so that £ = [[, E;, and set C*(Y, E, L) :=
©iC* (Y3, Ei, Lly,).

5.13. In order to deal with base points, we also need functoriality of the above construction
with respect to the inclusion of a point y € Y (K) for Y/K connected and normal. For a family
of geometric generic points £ — Y, let Yr — Y be the normalization of Y in Fy (notamon as
in 5.7), and let Vi s be the pullback to y = Spec(K K). There is a natural decomposition Yz =
[ex Yk ), where Yk(p denotes the normalization of Y in Spec(k(p)) — Y, and hence also
a decomposition YE,y Hpe B Yk (m),y- The projection to Spec(K K) therefore factors through

a morphism }A}E,y — [I,.x Spec(K). Define specialization data for E relative to y to be a

section s of this map.

pel

The choice of specialization data s determines for each p € E an isomorphism of stalks
Ly ~ L, for any smooth Q,-sheaf L on Y. For this write L = (lim L,) ® Q for some locally
constant sheaves L, of Z/(p")-modules. To obtain the above isomorphism it suffices to
construct a canonical isomorphism of stalks L, , ~ L, , for each n. Since L, is representable
by a finite étale morphism U,, — Y, this in turn amounts to showing that if U — Y is a finite
étale morphism, then the specialization data s determines a canonical bijection U, ~ U,. For
this note that there is a canonical isomorphism

(5.13.1) U xy ?k(p) o~ H ?k(p)a

teU,

and hence pulling back via the map s : Spec(K) — ?k(p) we obtain an isomorphism
(5.13.2) Uy, ~ H Spec(K) — H Spec(K)
tely teU,
This gives the desired isomorphism of stalks.
Remark 5.14. Note that in order to obtain the isomorphism of stalks L, ~ L, we can

replace Ey in the above by the disjoint union of spectra of subfields €2 C k(p) unramified
over Y such that the action of 7, (Y, p) on L, factors through the Galois group of €.
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5.15. If L is a differential graded algebra (possibly G—equivariant for some pro—algebraic
group scheme @) in the category of ind-smooth Q,—sheaves, and s is a choice of specialization
data for E — Y relative to a point y € Y (K), then the cosimplicial differential graded algebra
C*(Y,E, L) admits a natural augmentation to an algebra equivalent to L,. For this let |E]
denote the underlying set of £ and for any [m] € A let Fun([m], |E|) be the set of functions

[m] — |E|. We construct an augmentation C*(Y, E, L) — Li" )

Let E{ be as in 5.7, so that C*(Y, E, L) is a certain subset of HpeEg; L,. It suffices to
construct a natural map

(5.15.1) mw— II =

PEE} Fun([n]. | 2])

as follows.

For this note that the projection ?E,y — ]_[|E| Spec(K) induces a projection

(5.15.2) i, — JI Spec(®).

Fun([n],| E])

and the specialization data s induces a section s, of this projection. On the other hand,

Yy — Y is a projective limit of finite étale morphisms. From this and [SGALI 1.10.5] it follows
that Y” is isomorphic to the normalization of Y in E. In particular, Y7 is a disjoint union of
connected components indexed by |Ey|. We therefore obtain a map A : Fun([ LIE|) — |EY,

and the discussion in 5.13 furnishes for every p € Fun([n], |E|) an isomorphism Ly, ~ L.
In this way we obtain 5.15.1.

Remark 5.16. Observe that any two choices s and s’ of specialization data relative to
y differ by the choice for each p € E of an automorphism of Spec(k(p)) over X. This
implies in particular that the augmentation of the preceding paragraph is canonical up to the
automorphism of C*(Y, E) obtained from an automorphism of E over Y.

5.17. Let X/K be a smooth quasi-compact scheme over a field K, and let K — K be an
algebraic closure. Let L be a differential graded algebra in the category of ind—smooth sheaves
on X, and let L denotes its restriction to Xz. The above discussion enables us to compute
the étale cohomology of L using group cohomology as follows.

Lemma 5.18. Let U C Et(X) be a full subcategory closed under products and fiber products
of the category of étale X —schemes such that every étale U — X admits a covering by an
object of U. Then for any étale hypercover Uy — X, there exists a hypercover U, — X with
each U € U and a morphism U, — U, over X.

Proof. This is a standard application of the construction of simplicial spaces in [SGA4, Vi,
§5]. O

5.19. Fix a finite set of geometric generic points £ — X7 whose image meets every connected
component of Xz If U — X is an étale scheme there is a natural family of geometric generic
points By — Uz over E — X3 given by

(5.19.1) 1 E-ux
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Moreover, for any morphism U’ — U over X there is a natural commutative diagram

HHomX(E,U’)E - U,f

l |

(5.19.2) HHomX(EU)E — Ug
E — X.

Remark 5.20. Specialization data s for F — X3 induces for each point u € U(K) lying
over x and ¢ € Ey an isomorphism L, ~ L,,.

5.21. By [Fa2, Chapter II, 2.1] (see also [O13, 5.4]) and 5.18, there exists an étale hypercover
Us — X with each U, a K(m,1). For each n, let GC(U, %, F, L) denote the differential
graded algebra obtained from C*(U, %, Ev, L) by applying the functor of Thom-Sullivan
cochains. By functoriality, the algebras GC (U, %, F, L) form in a natural way a cosimplicial
differential graded algebra GC(U, %, E, L)

(5.21.1) n] — GCU, % E,L).
Denote by GC(L, E)y, € Ho(dgag,) the algebra obtained from GC(U, %, E, L) by applying

the functor of Thom—Sullivan cochains. If L is a G—equivariant algebra for some affine group
scheme G/Q, then GC(L, E)y, is naturally an object of Ho(G — dgag, ).

If furthermore x € X (K) is a point and L, — Q, is a map in dgag, then the construction

of 5.15 and the observation 5.20 gives a map of objects of dga@pXA
(5.21.2) (In] —C*(U, %, E, L)) = ([n] — H L [Bo, D)y
u€Up o

For each n and v € U,, , the map L, — Ly n(&1Eonl) 4g an equivalence by 5.10, and hence the
right hand side of 5.21.2) is equivalent to the algebra [n] — [] L. This algebra is in turn

UEUn &
equivalent to the algebra [n]| — LLU"’xl which since U, , — « is a hypercovering is equivalent
to the constant algebra L,. By the reasoning of 4.34 the augmentation L, — Q, therefore
gives GC(L, E)y, the structure of an object in the homotopy category Ho(G' — dgag, ,0,,) of
algebras over Og.

5.22. If 0 : U, — U, is a morphism of hypercovers of X with each U,, and U} a K(m,1), then
there is a natural induced map

(5221) o GC(L, E)U. — GO(L, E)U‘

Since the cohomology groups of both sides are equal to the étale cohomology of L, it follows
that this morphism is an equivalence. In particular, for any two choices of hypercovers U,

and U, we obtain a canonical isomorphism GC(L, E)y, ~ GC(L, E)y; in Ho(dgag,) from the
diagram of equivalences

(5.22.2) GC(L,E)y, P GC(L, E)y.xyu; o GC(L, E)y,.

If there exists a morphism of hypercovers o : U, — U,, then the morphism (pr})~! o pr?
in Ho(dgag) is equal to o*. For this consider the diagonal I'y : U, — U, xx U, so that
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o* =T% o pr}. Since pryo ', = id, it follows that I'; = (pry)~' and hence o* = T’ o pr} =
(pr3)~" o pry.

Since GC(L, E)yp, is up to canonical isomorphism independent of the choice of U,, in what

follows we will usually simply write GC(L, E) for GC(L, E)y,

5.23. The algebra GC(L, F) is also functorial in E. For any morphism E’ — E of geometric
generic points over X there is an induced equivalence

(5.23.1) GO(L, E) — GO(L, E').

This implies that GC(L, F) and GC(L, E') are canonically isomorphic by the isomorphism
in Ho(dgag,) (or Ho(G — dgag, )) obtained from

(5.23.2) GC(L,E) —— GO(L,E xx_ E') «—— GC(L,E').

Here we abuse notation as ' x x__ £’ is an infinite disjoint union of geometric generic points.
To deal with this write E x Xoe £ = @Ez with each F; a finite set collection of geometric

generic points and define GC(L, E' X x_ E') to be the direct limit of the GC(L, E;) (note that
by the construction everything here can be represented by actual complexes).

By the same reasoning as in 5.22, when there exists a morphism E' — E over X7, then
the morphism 5.23.1 is equal to the morphism obtained from 5.23.2 in Ho(dgag, ) (or Ho(G —
dgag, ) if L is a G-equivariant sheaf).

5.24. If 0 : E — FE is an automorphism over X4, then the induced morphism

(5.24.1) c*:GC(L,F) — GC(L,E)

in Ho(dgag,) (or Ho(G — dgag, ) if L is a G-equivariant algebra) is the identity. To see this,
choose a quasi—compact subscheme E' C E X x E containing the diagonal A C E Xy E and
the graph I', of 0. We then have maps

(5.24.2) AT,:E—FE, pr,prp:E —FE

such that pr, o A =id, pr, o', =1id, and pry o I'; = 0. Since the induced maps

(5.24.3) A*T::GC(L,E") —» GC(L,E), prj,prs: GC(L,E) — GC(L,E")

are equivalences and pr; o A = id for ¢ = 1,2 it follows that the maps pr} induce the same
map in Ho(dgag, ) (namely the inverse of A*). From this we deduce that

(5.24.4) o" =17 opr; =17 opr] =id".

5.25. The same reasoning combined with 5.16 shows that when X has a point z € X (K)
and L, has an augmentation L, — @Q,, then the structure on GC(L, E) of an object in
Ho(G — dgag, /0,,) constructed in 5.21 is independent of all the choices.

5.26. If E = Spec(Q2) consists of just a single point (so in particular X is geometrically
connected), then the preceding discussion implies that there is a natural action of Gal(K /K)
on GC(L, E). For this observe that since X is geometrically connected, the structure mor-
phism X — Spec(K) induces a surjection Aut(Spec(2)/X) — Gal(K/K) whose kernel is
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Aut(Spec(Q)/X%). Any o € Aut(Spec(2)/X) with image & € Gal(K /K) induces a commu-
tative square

Spec(Q2) —2— Spec(Q2)

(5.26.1) J l

Xf L> X?,
and hence an automorphism o* : GC(L, E) — GC(L, E) in Ho(dgag, ). This gives an action
of Aut(Spec(Q)/X) on GC(L, E) which by 5.24 factors through Gal(K/K).

Remark 5.27. In the above we have written Aut(Spec(€2)/X) instead of Gal(2/k(X)) so
that the preceding discussion also applies to Deligne-Mumford stacks.

5.28. We can use this construction to associate a pointed stack to a smooth sheaf L on a
smooth geometrically connected pointed scheme (X, 2 € X (K)) over a field K (see also [Tol,

3.5.3]). Let (L/}/>® denote the smallest Tannakian subcategory of the category of smooth
sheaves on X3 which is closed under extensions and contains L.

The point z defines a point Z = Spec(K) — X7 which defines a fiber functor H — H,

for the category (Lz)y. Let (Li)e denotes the Tannakian subcategory of the category of
smooth sheaves on X3 generated by Ly.

Assumption 5.29. Assume that the group G := m({Lz)g, T) is reductive.

Remark 5.30. One can often reduce to the case when G is reductive as follows. Let U C
m((L#%)s,Z) be the unipotent radical. The action of & induces a canonical filtration Fil' on
Lz such that for every i the group 7 ({grk,(L#))e, ) is reductive. The point Spec(K) — X
induces a section of 71(X, 7) — Gal(K/K) which identifies 7, (Xx, Z) with the semi-direct
product m (X%, 7) x Gal(K/K). By the uniqueness of the unipotent radical, the action of
Gal(K/K) preserves U and hence the filtration descends to a filtration on L. Let L’ denote

—_~

the associated graded of this filtration. Then L' satisfies 5.29 and (Lz), = <L’?>®.

5.31. Right translation induces a left action of 71({L%), Z) on the coordinate ring Og which
by Tannaka duality corresponds to a differential graded algebra V(Og) in the category of ind—
smooth sheaves on X7. Furthermore, left translation induces a right action of G'on O which
commutes with the left action and hence induces a right action of G on V(Og).

Applying the construction of 5.17, we obtain a G—equivariant differential graded algebra
RT(V(Og)) € G —dgag,. Since V(Og)z ~ Og has a natural map to Q,, R'«(V(Og)) is
naturally an object in Ho(G — dgag, j0,,). We define

(5.31.1) X</L}/>® := [RSpec(RI(V(O¢)))/G| € Ho(SPr.(Q,)).

Because L is defined over K and not K, the functoriality of the above construction induces

a natural Gal(K /K )-action on X ~ .
(Ix)g

Another way to view this action is to note that the sheaf V(O¢) is naturally an algebra

in the category of ind-objects of smooth sheaves on Xx. For this observe that the section
x : Spec(K) — X induces a section of the natural projection m (Xg,z) — Gal(K/K). It
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follows that there is an isomorphism 7 (X, z) ~ m (X3, T) X Gal(K/K), where Gal(K /K)
acts on m (X%, Z) by the natural action on Xz. For any o € Gal(K/K), there is a natural
commutative square

Spec(K) SAN Spec(K)
(5.31.2) ;Ll lgc
XK o‘_*) Xf

Since ¢* Ly ~ Ly, pullback by ¢ induces an auto-equivalence o* : (Ly)y — (Lz)e and
hence also an automorphism ¢* : G — G such that the diagram

a 2. G

(5.31.3) l l

Aut(Lz) —2— Aut(L;)
commutes, where 7, denotes conjugation by the action of o on L.

Let A be the action of m (X, 7) ~ 7 (X7, Z) x Gal(K /K) on Aut(Lz) in which an element
(g,0) sends A € Aut(Lz) to 7,-1(Ap(g)). Then it follows from the above that A induces a
right action of m (X g, Z) on G, and hence also on O, whose restriction to m (X, Z) is that
induced by right translation. This action then induces a model for V(O¢) over X e

More explicitly, let 8¢ denote the m;(Xg, z)-module (Sym®Lz ® L%)get, where m (X, T)
acts on Lz via the natural identification of smooth sheaves on Xy with 7 (X, Z)-modules
and on Lf by viewing Lz as the stalk of the smooth sheaf 2*L on Spec(K) and using the
surjection 7 (Xg,7) — Gal(K/K). It follows from the above discussion that the kernel of
the surjection 8¢ — Og induced by the inclusion G C Aut(Lz) is stable under the action of
(XK, Z) and hence we obtain an induced action of m (X g, Z) on Og. If V(O¢)" denotes the
model for V(Og) on X e constructed above, then there is a surjection of sheaves on X

(5.31.4) (Sym*L ® L})aet — V(Oq)',

where L, denotes the pullback of L to Spec(K’). This shows in particular that V(Og)' is a
direct limit of smooth sheaves on Xx.

Theorem 5.32. (i) There is a natural isomorphism

—~

(5.32.1) (L), T) =~ m(X@%)

compatible with the Gal(K /K)-actions.

(ii) For any representation M of m (X corresponding via 5.32.1 to a smooth sheaf M

)
on X3, there is a natural isomorphism

(5.32.2) HY (X o M) = H' (X5 o1, M)

The proof of 5.32 will be in several steps 5.33-5.37 following the outline of [Ol1] in the
crystalline case.
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—_—~—

5.33. Let G denote T ((L%), T). By repeating the constructions of 5.31 replacing G by G,
we obtain an ind-smooth sheaf V(Og) of algebras with right G-action on X7 and a pointed
stack
(5.33.1) X := [RSpecsRT(V(Og))/G] € Ho(SPr,(Q,)).
There is a natural commutative diagram

X — ., BG
(5.33.2) i |

< K>®

Lemma 5.34. The map 7, : m(X) — m(BG) ~ G is an isomorphism.

Proof. By the same reasoning as in [KPT, 1.3.10] the homotopy fiber of 7 is isomorphic to
F := RSpec(RI¢(V(Og))) and by the long exact sequence of homotopy groups associated
to 7 it suffices to show that m(F) = 0. By [Tol, 2.4.5] the homotopy groups of F' are all
pro—unipotent group schemes, so it suffices to show that Hom(m (F'), G,) is 0. By [Tol, 2.2.6]
this group is isomorphic to

(5.34.1) Hl(RFet(V(O@))) = Hl(X?? V(O@))

Since first étale cohomology agrees with group cohomology of (X7, ), there is a natural
isomorphism

(5.34.2) H'(X%,V(0z)) ~ H'(Rep(m (X%, 7)), Og).

On the other hand, since (L), is closed under extensions in the category of all smooth

sheaves, there are natural isomorphisms

(5.34.3) ~
H'(Rep(m (X%, 1)), 0g) ~ Ext}rl(xyj)((@p, Og) ~ Extlé((@p, Oz) ~ H'(Rep(G), Og).

By [Ol1, 2.18 (i)] Og is injective in Rep(G) and hence these groups are zero. O

Lemma 5.35. (i) For any left representation V ofé’ corresponding to a smooth sheaf V on
X5 there is a natural isomorphism

(5.35.1) H* (X%, V) — H*(X,V).

(ii) For any representation V' of G corresponding to a smooth sheafV on X there is a natural
1somorphism

(5.35.2) H* (X%, V) - H' (X~ ,V).

<L?>®

Proof. We prove (i) leaving to the reader the task of rewriting the proof with G instead of G
to get (ii).

By [Ol1, 2.33] the right hand side of 5.35.1 is isomorphic to

(5.35.3) H™(Rep(G), V@ Rl(V(Og))),
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where V¢ denotes the contragredient representation. On the other hand, by [Ol1, 2.18 (ii)],
there is a natural isomorphism of ind-smooth sheaves with right G-action V¢ ® V(Oz) ~
V ® V(Og), where G acts trivially on V. The natural map ¥V — V ® V(Og) induces the
desired map 5.35.1.

To prove that 5.35.1 is an isomorphism proceed as follows. Note first that there is a
commutative diagram of categories

Rep(G)2 =, Vec@p
(5.35.4) Totl lm
Rep(G) —— Vecg,,

where s and s* take G-invariants. For each [n] € A there is a natural restriction functor

Jn : Rep(G)® — Rep(G) sending V* € Rep(G)” to V™ which has an exact left adjoint j,
given by the formula

(5.35.5) JuF i A= Rep(G), [k~ S F.

In particular, the functor j, takes injectives to injectives. It follows that if I € Rep(G)* is an

injective object, then Tot(/) is a complex of injectives in Rep(G). From this we deduce that
if Uy — X is a hypercover with each U,, a K(m,1) then to prove that the morphism 5.35.1 is
an isomorphism it suffices to show for each n that the natural map

(5.35.6) GC(U, ., E,V) = Rs"GC(U, 1, E,V ® V(Og))

n

is an isomorphism (here the notation as as in 5.19). Furthermore, it suffices to prove this for
each connected component W of U, z. Choose a geometric generic point Spec(Q2) — W and
let 7 denote m1(V, Q). By 5.9, it suffices to show that the natural map

(5.35.7) GC(W,Spec(2),V) — RsGC(W, Spec(€2),V @ V(Og))

is an isomorphism. By the description of group cohomology in [SGA3, 1.5.3.1]
(5.35.8) RsGC (W, Spec(€2),V @ V(Og))

is isomorphic to the simple complex associated to the double complex E with
(5.35.9) EP4 = Hom™(n*!, (V @ V(Og))a ®q, OF7),

where Op is viewed as a trivial 7-module, GC(W, Spec(§2), V) is isomorphic to the complex
with p—th term Hom®(wP*! Vq) and the map 5.35.1 is the one induced by the map Vo —

Vo ® V(Oé)g

This double complex can also be viewed as the double complex computing the continuous
cohomology of the complex of m—representations

(5.35.10) (V@V(O@))g@(’)g* R (V®V((9@))Q®(’)§q — (V@V(O@))g@@?“ —

where the differential is as in [SGA3, 1.5.3]. Thus it suffices to show that _the natural map
Y — (V®V(O@))Q®Og_ is a quasi—isomorphism. Since V is a trivial right G-representation,
to prove this it suffices to show that the right G-module V(Og)q is injective in the category of
right G-modules and that the G-invariants of V(Og)q are equal to Q,. By [SGAIL, V.5.7] any
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two stalks of a smooth sheaf are isomorphic, and hence V(Og)q is non—canonically isomorphic
to V(Og)z ~ Og. Thus the result follows from [Ol1, 2.18 O

J
Corollary 5.36. For any representation V' of m (XN ), the pullback map

(5.36.1) FoH (X V) — H(X, f*V)

(L

s an 1somorphism.

Proof. Since (X = )) has pro—reductive completion equal to G, every representation V'
K

admits a filtration whose graded pieces are obtained from representations of GG. Using the
long exact sequence of cohomology, this reduces the problem to the case when V is obtained
from a representation of GG. In this case, the corollary follows from 5.35 which identifies both
sides with étale cohomology. U

5.37 (Proof of 5.32). By 5.34, m ((Lg)

that the map f. : m(X) — 7r1(X<7.::> )
K

duality to show that the pullback fun(?tor

o T) =T (X) so to prove 5.32 (i) it suffices to show
is an isomorphism. For this it suffices by Tannaka

(5.37.1) J7 + Rep(m (X ) — Rep(mi (X))

is an equivalence. Since the kernel of G — G is pro—unipotent, every object of Rep(m (X))
admits a filtration whose graded pieces are obtained from representation of G and hence are
in the essential image of f*. Thus to prove that 5.37.1 is an equivalence it suffices to show
that for two objects Vi, Vi € Rep(m (X -— T, )) the pullback functor

(5.37.2) EXtZRepm(X(fL;> (Vi V) = Bxty oz PV F12)

is an isomorphism for ¢ = 0, 1. Setting M = V;* ® V5 this is equivalent to the map

(5.37.3) H' (Rep(m (X 7= )). M) — H'(Rep(m (X)), f*M)

being an isomorphism for ¢ = 0, 1. By definition of cohomology there are natural isomorphisms

(5.37.4) H'(Rep(m(X 7= ), M) ~ H'(X7= , M),
K/® K/®

(5.37.5) Hi(Rep(m (X)), f*M) ~ H'(X, f*M)

for i = 0,1. Thus 5.32 (i)) follows from 5.35.

Statement 5.32 (ii)) also follows from 5.35 and the identification in 5.34. This completes
the proof of 5.32. O

Remark 5.38. By the same argument used in [KPT, 1.3.11] the pointed stack Xz Isa
K@
schematic homotopy type in the sense of [Tol].

Remark 5.39. By [Tol, 3.3.2] the proof of 5.32 shows that the map X — X@\; is an
K'g

isomorphism of pointed stacks.
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5.40. There is a variant of the above constructions which will be used below. Let V be
a complete discrete valuation ring of mixed characteristic (0,p), field of fractions K, and
let V' — R be a smooth V-algebra with Spec(R/pR) connected. Assume given a divisor
D C Spec(R) with normal crossings relative to V', and let Spec(R°) C Spec(R) be the
complement of D. Denote by R” the p-adic completion of R and set R := R" ®g R°. Since
Spec(R/pR) is connected the scheme Spec(R") is also connected. Let E — Spec(Ry) be a
finite set of geometric generic points meeting every connected component of Spec(Ry), and

let E — Spec(RZ:) denote the generic points obtained by completing the fields k(p) (p € E)

with respect to the p-adic topology induced by that on R (if Spec(R") is empty define E to
be the empty set). For a smooth sheaf L on Spec(R2-) with pullback L" to Spec(R7?) we can
then apply the construction of 5.7 to Spec(R%’) to obtain a cosimplicial differential graded
algebra

(5.40.1) [n] — C"(RA, E, L"),

If Spec(R") is empty we define C"(R7?, E, L") to be zero. There is a natural map
(5.40.2) C*(R%, B, L) — C*(RM,E, L"),

Furthermore, for any morphism £’ — E there is a natural commutative diagram

C*(Ry,E,L) —— C*(RM,E,L")

(5.40.3) l l

C*(Ry, E',L) —— C*(RN,E', L"),
and the cosimplicial algebra C*(R%?, E, L) is functorial in R.
If Spec(R) is a disjoint union [ [, Spec(R;) with each Spec(R;/pR;) connected, we set
(5.40.4) C*(Ry2, B, L") := &,C* (R, E;, L"),

where Ej; denotes the subscheme of E whose image lies in Spec(R;). If U = Spec(R) we also
sometimes write C*(Uz?, I, L") for C*(Rz2, E, L").

We denote by GC(U~?, E, L") or GO(RZ, E, L") the differential graded algebra obtained

by applying the functor of Thom-Sullivan cochains to C*(Uz?, E, L"). By construction there
is a natural map

(5.40.5) GC(U2, L, E) — GC(UL, E, L"),

5.41. Let X/V be a smooth scheme and D C X a divisor with normal crossings relative
to V. Denote by X° the complement of D, and fix a collection of geometric generic points
E — X7 meeting every connected component. Let L be a differential graded algebra in the
category of ind-objects of smooth QQ,—sheaves on X7,.

Choose a hypercover U, — X with each U, a disjoint union of K (m, 1)’s, and let GC"(E, L)y,
(or simply GC"(E, L) if the reference to U, is clear) be the differential graded algebra ob-
tained by applying the functor of Thom-Sullivan cochains to the cosimplicial differential
graded algebra

(5.41.1) n] — GC(U%, B, L").
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The maps 5.40.5 induce a morphism GC(L, E) — GC"(L, E) in Ho(dgag,). If L is a sheaf

of G-equivariant differential graded algebras for some affine group scheme G/Q, then we get
GCMNL, E) and GC(L, E) — GC"(L, E) in Ho(G — dgag, ).

Remark 5.42. As in 4.37, the above can also be carried out with any fiber functor w :

</L}/> » — Modg taking values in the category of R-modules for some Q,-algebra R. If
G/R denotes the group scheme of tensor automorphisms of w then the (G, G)-bimodule
Og corresponds to an ind-smooth sheaf V,, on X% . with R-module structure and right
G—action.

In particular, if (X, D)/V is as in 5.41 and U, — X is a hypercover with each U, a disjoint
union of K(m,1)’s, then we obtain a morphism of differential graded R-algebras with right
G—action

(5.42.1) GOV, E)y, — GCNV.,, E)p..

Furthermore, if R — R’ is a morphism of Q,-algebras and W' : (Lz), — Modg is a fiber
functor with an isomorphism w’ ~ w ®pi R’ then there is a natural commutative diagram

GOV, E)y, —— GC"(Vy, E)u,

(5.42.2) l l
GC(VWI,E)U. — GCA(VWI,E)U..

If R — R’ is flat then the vertical arrows become equivalences after tensoring the top row
with R’

6. THE COMPARISON THEOREM

6.1. Let k£ be a perfect field of characteristic p > 0, V the ring of Witt vectors of k, and
K the field of fractions of V. Let X/V be a smooth proper scheme with Xy geometrically
connected, D C X a divisor with normal crossings relative to V', and X° = X — D. We write
Mx be for the log structure on X defined by D.

Following [Fal], we call an étale U = Spec(R) C X small if Spec(R/pR) is connected and
there exists an étale map

(6.1.1) Spec(R) — Spec(V[T1, ..., Ts, Ty, ..., T))
for some r and s such that My is defined by the divisor 77 = --- =T, = 0. We call U very
small if U is small and Spec(Rz)° := Spec(R) xx X% is a K(m,1). By [Fa2, Chapter II,

2.1] (see also [O13, 5.4]), any étale map U — X admits a covering by a disjoint union of very
small étale X—schemes.

The ring Beis(R") [Fal, Fol, Fo2, Fo3, Fo4, Tsl].

6.2. For any small étale Spec(R) — X and choice of an algebraic closure Frac(R) — €,
Fontaine’s theory gives a ring Bes(R") as follows. Let R" denote the p-adic completion of
R and let Q denote the completion of €2 with respect to the topology defined by the p—adic
topology on R. There is a natural extension of the inclusion R < 2 to an inclusion R" — Q.
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Let L C Q denote the maximal field extension of Frac(R") such that the normalization R
of R in L is unramified over Spec(R") x x X%. Set

(6.2.1) S:=1lmR"/pR",

where the projective limit is taken with respect to Frobenius. Since S is perfect, the ring
of Witt vectors W (S) has a canonical lift of Frobenius. An element x € W(S) can be
represented by a vector (zg,1,xs,...) where each x; = (x;0,;1,...) is an infinite vector

with Tij € EA/pEA
Let B denote the p-adic completion of R". There is a natural map
(6.2.2) 0:W(S) — R

defined by sending x as above to

(6.2.3) 0(c) = Um(3h, +pTh, -+ P " Fn),

m

where z;; € R s any lift of x;;. The assumption that R is small ensures that the map 0 is
surjective [Tsl, Al.1].

We set J = Ker(6) and define Agis(R") to be the p-adic completion of the divided power
envelope D (W (S)). We thus obtain a diagram

Spec(RT) —— Spec(Auis(R"))
(6.2.4) l
Spec(R).
Choose elements ¢, € R with € = 1, eﬁﬁl = €n, and ¢ # 1. Let € € S denote the

element obtained from the reductions of the ¢;, and let [¢] € W(S) be the Teichmuller lift of
€. Set m.:=[e] — 1 € W(S) and

(6.2.5) t=1log([e]) = > (=)™ "(m — 1)lxl" € As(R").

m>1
The ring Beis(R") is defined by
1
(6.2.6) Beis(RY) := Acris(R/\)[g].
By [Ts1, A3.2], we have tP~! € pA.i(R"), and therefore p is invertible in Bes(R").

6.3. The ring Auis(R") has a lift of Frobenius ¢, (rr) induced by the canonical lift of
Frobenius to W (S). This lifting of Frobenius induces a semi-linear automorphism ¢g_, (rn)
of Buis(R"). In particular, the enlargement

Spec(ﬁ/\ /pﬁ/\) — Spec(Aeis(R"))
(6.3.1) |
Spec(R/pR)

obtained from 6.2.4 comes equipped with a lift of Frobenius.
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Remark 6.4. The fact that 6.3.1 is an enlargement, and not just a widening, follows from

the fact that the kernel of the map Ag.(R") — R is the p-adic completion of a divided
power ideal. This implies that any element of

(6.4.1) Ker(Aeis(R") /pAais(RY) — R /pR")

is nilpotent.

6.5. Define a filtration Il on A.(R") by

(6.5.1) I = {2 € Auis(RY)|¢" (2) € Fil" Agis(R) for all n > 0},

where Fil"A.;s(R") denotes the filtration obtained as the p-adic completion of the filtration
on D;(W(S)) defined by the PD-ideals JI'. The element ¢t € Aus(R") lies in Fil' A (RY)
so we obtain a filtration Filg_ (gr) on Beis(R") by declaring that 1/t has degree —1. The
automorphism ¢p_, (rr) preserves this filtration.

6.6. The natural action of Gal(ﬁ/\ /R") on S induces an action of Gal(ﬁ/\ JR") on Auis(R")
which in turn induces an action pp_, (rr) of Galois on Bes(R"). This action is continuous

and compatible with the filtration. Furthermore the induced action on the enlargement 6.3.1
commutes with the lift of Frobenius.

If s : Spec(€') — Spec(f?) is a morphism of geometric generic points of Spec(R), then there
is a natural isomorphism

(6.6.1) Ls : 8" Bais(R") — Beis(R"),

where Beis(R")" denotes the Gral(}_%/A /R")-module obtained by replacing © with Q" in the
above construction. It follows that the association Q +— Bes(R") defines a Galois module in
the sense of 5.2 on Spec(R") x x X% equipped with a semi-linear Frobenius automorphism
and filtration.

6.7. There is a natural log structure M, gr) on Spec(Aeis(R")) defined as follows. Choose
an étale map as in 6.1.1, and write t1,...,t; € R for the images of the T; (i = 1,...,s). For
each i and [, the extension R[X]/(X? —t;) is étale over R[1/(pt;---t,)]. Tt follows that for
each 7, we can choose a sequence 7, , of elements in R such that TF, = Tin—1 and 7,0 = t;.
Let 7; € S denote the corresponding element. We then get a map ’

(6.7.1) BN = W(S), e [n],

where [7;] denotes the Teichmuller lift of 7;. This defines a log structure on W (S) and hence
in turn also a log structure on A.s(R"). Note that the log structure on R induced by this
map [ composed with € is simply the log structure induced by the pulling back Mg via the
map Spec(R") — Spec(R).

We show that the above log structure on A.;s(R") is independent of the choices as follows.
Consider a second map as in 6.1.1 giving elements ¢}, ...,t, € R defining the log structure,
and let 7/, be a choice of roots of the ¢{. Then there exists a unique sequence u;, € R such
that ufz » = UWin—1 and such that 7;,, = umTl’n Letting u; denote the corresponding element
of S, we see that [r;] = [w;] - [7]] in Aeis(R"), and hence we get a canonical isomorphism
between the associated log structures.
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It follows from the above discussion that the enlargement 6.3.1 has a natural structure of
a logarithmic enlargement

(Spec(R"/pR"), M|z ) —— (Spec(Aais(R")), M (r))
(6.7.2) l
(Spec(R/p), MR p).

Note also that the action of Gal(}_%/\ /R") extends naturally to an action on the log scheme
(SpeC(Acris<R/\))7 MAcris(R/\))'

6.8. We will apply Faltings’ theory of “almost mathematics” (see for example [O13, §2])
to modules over Bgs(V). Let A C Q denote the subring Z[1/p], and let Ay = A N Qxy.
Following [O13, §11], for every a € A, we define a principal ideal meis o C Beis(V) as follows.
Fix a sequence (7,)m>0 of elements of V with 7o = p and 72| = 7, for all m > 0. We define
T to be 0 if m < 0. For any n € Z, define Ay /,» € Sy to be the element (a,)m>o with

(6.8.1) U = Tt

and let d1/,» € W(Sy) be the Teichmuller lifting of A ,». For any o = s/p™ € A, we then
define

(6.8.2) So 1= (B /pn)* € W(Sy).

Let Meisa € Beis(V) be the ideal generated by d,. As explained in [Ol13, §11], the ideals
Meris,o Satisfy the necessary conditions enabling us to apply the almost theory.

In what follows we denote by Beis(V) the ring Beis(V) [0, aea, -

The category MFY (®).

6.9. Let (X, Mx)/V be as in 6.1 and let (Xo, Mx,)/k be the reduction.

We define the category MFY(®) as in [Fal, Ts2]. If E is an isocrystal on (Xg, Mx,)/V,
let (£, V¢) denote the module with logarithmic connection on (Xg, Mx, ) obtained by eval-
uating F on the enlargement (Xo, Mx,) — (X", Mx~), where (X, Mxn) denotes the p-adic
completion of (X, Mx)/V. The category MFY(®) is defined to be the category of triples
(E, ¢, Filg), where (E,¢g) is an F-isocrystal on (Xo, Mx,)/V and Filg is a decreasing
filtration on & satisfying Griffith’s transversality

(6.9.1) Ve(File) € File " © Qfx,ary

6.10. If (E, Filg, op) € MFY(®) and Spec(R) — X is étale and small, we can evaluate
E on the enlargement 6.7.2 to get a Acis(R") ® Q-module E((Spec(Acis(R")), Ma,..(r)))-
Inverting ¢ € Aeis(R"), we get a Beis(R")—module which we denote simply by E(Beis(R")).
The F-isocrystal structure ¢p induces a semi-linear automorphism of the Be;s(R")-module
E(Beis(R"Y)).

The Beis(R")-module E(Bgis(R")) also has a natural filtration Filgp,,, (rr)) defined as
follows. Since (X, Mx)/V is smooth, we can choose a morphism

(6.10.1) r: (Spec(Aeis(R")), Ma(rr) — (Spec(R), Mspee(r))
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such that the diagram
(Spec(R"), Mpr)  —— (Spec(Aeis(R")), May ()

(6.10.2) l l

(SpeC(R), MSpec(R)) L (SpeC(R)7 MSpeC(R))

commutes. The choice of such an r gives an isomorphism
(6.10.3) 0, E(Beais(R")) ~ E(Spec(R)) @p Beis(R"),

and we define Filgp
FH]B

—is(R)) to be the tensor product filtration of Filg(spec(r)) and the filtration
(rr) On Beis(R").

cris

Lemma 6.11. The filtration Filgp,,, (r)) is independent of the choice of r.

Proof. Let " : Spec(Aens(R")) — Spec(R) be a second retraction, and let 7 : E(Spec(R))®r.,
Beis(R") — E(Spec(R)) @g Beis(R") be the composite
(6.11.1)

E(Spec(R)) ®p.» Bais(R") ~Z— E(Ba(R")) - E(Spec(R)) @y Bes(R").

Choose an étale morphism as in 6.1.1 and let V; : E(Spec(R)) — E(Spec(R)) denote the
induced operator V. 2 (the dual of dlog(7})). Then 7 is given by the formula

6112)  rleon =3 ([Je@ @ - eI T (-

neNd —  i=1 1<i<d 0<j<n;

In particular, if e € Filgz(Spec(R)), then
(6.11.3) rle@1) € Y Fily™ o @ Fily 20

E(Spec(
neNd
Ul

6.12. The module E(Bes(R")) also comes equipped with a continuous action of Gal(R / R™)
which commutes with the Frobenius automorphlsm induced by the F—isocrystal structure as
well as the filtration. As in 6.6, this Gal(R"/R")-module E(Beus(R")) is functorial for
morphisms s : Spec({)) — Spec(Q) of geometric generic points of Spec(R), and hence
E(Bais(R")) is naturally viewed as a Galois module in the sense of 5.2 with semi-linear
automorphism. In what follows it is necessary to avoid choosing a geometric generic point so
we will usually view E(Bes(R")) as a Galois module in this sense. Note in particular that
E(Beis(R")) when viewed in this way is functorial in R. We hope the ambiguous notation
does not cause too much confusion.

If U = Spec(R) — X is a disjoint union of small and étale X—schemes and (F, Filg, pg) €
MFY(®), we write E(Beis(U")) (or E(Beis(R"))) for the filtered Galois module with semi—
linear automorphisms on Up° := Spec(R") X x X% obtained from the construction 6.10 on
each connected component.

Associated sheaves and comparison.
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6.13. If L is a smooth Q,-sheaf on X% and U — X is small and étale, the pullback of L to
Ug? is a Galois module on Ug® which we denote by Lypo. Define an association ¢« between
(E,Filg, ¢r) € MFY(®) and a smooth Q,sheaf L on X¢ to be a collection of isomorphisms
of Galois modules, one for each small étale U — X,

(6.13.1) w : E(Bes(U)) ~ Lype ® Beis(U")

compatible with the semi-linear Frobenius automorphisms, and the filtrations. Furthermore,
we require that the isomorphisms ¢y be compatible with morphisms over X. In what follows
it will also be important to consider differential graded algebras with an action of an algebraic
group. Let Gar/K and G /Q, be algebraic groups and assume given an isomorphism Ggr ® i
Bais(V) >~ Gt ®q, Bais(V). If (B, Filg, ¢g) is a Gqr—equivariant differential graded algebra
in MEY(®) and L is a Ge—equivariant differential graded algebra in the category of smooth
Q, sheaves on X then an association ¢ between (E,Filg, ) and L is also required to be
compatible with the algebra structures and Gar ®k Beris(V) = Get ®q, Beris(V)-actions. We
hope that the context makes clear what we mean by “association” in what follows.

Let us also recall that a smooth sheaf L on Xy is called crystalline if it is associated to
some object in MFY (®).

Remark 6.14. In order to make sense of pullback of associations, it is convenient to restrict
attention to certain subcategories of the category of disjoint unions of small étale morphisms
U— X. IfU C Et(X) is a full subcategory with each U € U a disjoint union of small and
étale morphisms and such that every small and étale V' — X admits a covering by an object
of U, then the topos corresponding to U is equal to X. Define a U-association between
(E,Filg, ) and L to be the data of compatible isomorphisms 6.13.1 over each U € Y. In
the comparison between cohomologies below, it suffices to consider U—associations. We leave
it to the reader to make the necessary modifications.

6.15. Fix a geometric generic point £ = Spec(Q2) — XZ-. Note that the projection E —
Spec(K) determines an inclusion K < 2.

Let Gar/K and G /Q, be algebraic groups and assume given an isomorphism Gar ®x
Beais(V) >~ Get®q, Beris (V). To ease notation we write simply G g, (v) for Gar ® g Beris (V) and
Get ®q, Beris(V) identified by the given isomorphism. Let (E, Fil, pg) be a Gqr-equivariant
differential graded algebra in M FY (®) associated by ¢ to a Gei—equivariant differential graded
algebra L in the category of smooth Q,—sheaves on X7.. We construct a natural equivalence

(6151) RFCriS(-E) QK Ecris(v) = GO<L7 E) ®Qp éCriS(‘/)

in Ho(G'5 . ) —dgag_, ) compatible with the Frobenius automorphisms and Gal(K/K)-
actions.

Remark 6.16. In the above the notation Be;s(V) indicates the ring obtained by the con-
struction in 6.2 using the specified embedding K — K.
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6.17. Let E — R*® be as in 4.31. For any étale U — X which is a disjoint union of very small
X—schemes we have a diagram of differential graded algebras
(6.17.1)

GO(U%, By, L) —— GO (UL, By, L") —— GO(UL, By, L" ®g, Bais(U"))
-
GC(U, By, R*(Beis(U"))) «——  GC(UR?, Eyp, E(Beris(U")).
Let \y : GC(Us, By, L) — GC(U?, Eyr, R*(Buis(U™))) denote the composite. Observe that
the inclusion K — € induces a natural map Ey — Spec(K). It follows that
(6.17.2) GC(U2, By, E(Beis(U)))  and  GO(UL?, Ey, R*(Bens(U™)))
are naturally Bes(V)-modules.

The natural map

(6.17.3) R*((U", Myn)/K)eris) — R*(Bewis(U™))
induces a map
(6.17.4) R*((U", Myn)/ K )exss) — GC(UL?, By, R*(Bewis (U)))

since R*(((U", Myn)/ K )ais) is a complex of trivial Galois modules. As in 4.33.6, we thus
obtain a diagram of Gp_, (v)-equivariant differential graded algebras

>\U ®Bcris (V)
_—

GO(U%, Ey, L) ®qg, Beis(V) GO(UL?, By, R*(Buris(U)))

}

(6175) R‘(((UA,MUA)/K)criS) ®K Bcris(v>

DR(E)(UN Myr) ®k Bais(V)  ——  DR(R*)(U", My») ® Bexis(V).
This diagram is functorial in U. In particular, if Uy — X is a hypercover with each U, a

disjoint union of very small X—schemes, we obtain a diagram of simplicial differential graded
algebras

AUe ®Beris (V)
- 5

GC(U?, Bu,, L) @g, Bes(V) GC (UL, Bv,, R*(Bais(UL)))

[

(6176) R.(((U.A, MU,A)/K)cris) ®K Bcris<v>

DR(E)(U), Mys) @k Bais(V)  — —— DR(R*)(U}, Myp) @k Bexis(V).

By the proof of [Fal, 5.6] (see also [O13, 12.5 and 13.21]), the morphisms Ay, ® Beis(V') and
€s induce equivalences on the differential graded algebras obtained by applying the functor
of Thom—Sullivan cochains after inverting the elements 0, € Beis(V) (o € AL). Thus we
obtain the desired equivalence 6.15.1 by applying the functor of Thom—Sullivan cochains to
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the diagram 6.17.6. The naturality of the construction implies that the equivalence 6.15.1 is
compatible with the actions of Gal(K/K) as well as the Frobenius automorphisms.

Pullback of associations.

6.18. One can define pullback of associations as follows. Let f : W — X be a morphism of
smooth proper V—schemes, and assume that the inverse image of D in W is a divisor with
normal crossings on W. Denote by My, the associated log structure on W so that (W, My,)

is a log smooth log scheme over V. The morphism f extends in uniquely to a morphism of
log schemes f : (W, My) — (X, Mx).

An object (E,Filg,pp) € MFY(®) can be pulled back to an object f*(E,Filg, pg) €
M Fy,(®) with F-isocrystal the usual pull-back of (E, ¢) and filtration the one obtained by
pullback from Filg. Also, if L is a smooth Q,—sheaf on X7, it can be pulled back to a smooth
Q,—sheat f*L on WF.

Let U C Et(W) denote the full subcategory of étale morphisms U — W which are disjoint
unions of small and étale W-schemes such that there exists a commutative diagram

U —V

(6.18.1) l l

W —— X

with V' — X a disjoint union of small and étale morphisms. The category U satisfies the
assumptions of 6.14.

Proposition 6.19. An association ¢ between (E,Filg,pg) and L induces a natural U-
association f*(v) between f*(E,Filg, ¢g) and f*L.

Proof. Let U = Spec(P) be in U and choose a diagram

Spec(P) —— Spec(R)

(6.19.1) l l

w _ X

with Spec(R) — X small and étale. Let u : R — P” be the induced map on p-adic
completions. Choose algebraic closures Frac(P) — € and Frac(R) — € and define R
and P as in 6.2. By the same argument as in [Tsl, 1.4.3], the map u extends to a map
_RA — FA, and any two such extensions differ by composing with a unlque element of
Gal( / R"). Choose one such extension #. By associating to o € Gal(P / P") the unique
element A € Gal(R R’ /R") such that 0 o4 = o \, we get a continuous homomorphism

(6.19.2) A: Gal(P"/P") — Gal(R"/R").

If p: Gal(R / R") — Aut(L) is a continuous representation corresponding to a smooth Q,—
sheaf, then the pullback sheaf is the sheaf corresponding to the representation p o A. The
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choice of u also induces a commutative diagram

Spec(?A) —— Spec(Auis(P"))

(6.19.3) | |
Spec(R") —— Spec(Aeis(R"))

which is compatible with the Galois actions, Frobenius automorphisms, filtrations, and log
structures. Furthermore, this diagram identifies f*(E, Filg, og)(Beis(P")) with

(6.19.4) E(Buis(R")) ®p,.(rr) Beris(P")

with filtration induced by that on E(Beis(R")). We now define f*(¢) to be the isomorphism
making the diagram

*E(Bais(P")) FAOR
(6.19.5) zl l:

E(Bcris(R/\>> ®Bcris(R/\) Bcris(P/\) L ®Qp Bcris(P/\)

commute. We leave it to the reader to verify that this isomorphism is independent of the
choice of the diagram 6.18.1 and the extension u and therefore defines an association. U

f*L ®Qp Bcris<P/\)

L®Beris (P/\)
_—

6.20. In particular, if x € X°(V') is a point then we can pull back associations to x = Spec(V).
Let Gar, Get, (E,Filg, pp) € MFY(®) and L be as in 6.15, and assume in addition we are
given augmentations eqr : £*E — K and eq : Lz — Q, such that the induced diagram

' E ®K Bcris(v) L(L)) Li‘ ®Qp Bcris(v)

(6.20.1) %Rl l%t
Beis(V) — Beis(V')

comimutes.

By 4.34, 5.21, and 5.25 the algebras RI'.;s(F) and RI's (L) are naturally viewed as objects
of Ho(Gar — dgay o0 GdR) and Ho(Ge — dgag, /o Get) respectively. Chasing through the above
constructions one sees that the equivalence 6.15.1 extends naturally to an equivalence in
Ho(G B (V) — 9825, (V) /00 - ). We leave the details of this verification to the reader.

Beris(V)

7. PROOFS OF 1.7-1.13

7.1. Let (X, Mx)/V be as in 6.1 and = : Spec(V) — X° a section. Let (F,Filg, pg) €
MFY(®) be associated to L on X% and assume E € VE((Y, My)/K), where (Y, My)
denotes the reduction of (X, Mx). Denote by Cqr the smallest Tannakian subcategory of
VES((Y, My)/K) closed under extensions and containing E, and by Ce the smallest Tan-
nakian subcategory of the category of smooth @Q,-sheaves on X7 closed under extensions

and containing the restriction of L to X2-.

For the remainder of this section we make the following assumption:
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Assumption 7.2. The categories (E)g C VES((Y, My)/K) and {(Lz)s are semi-simple.

nilp
Equivalently, the groups Gar = m1((E)g,w.) and G := m((L)g,wz) are reductive.

Tannakian considerations.

7.3. Let D be a semi-simple Tannakian category over a field T of characteristic 0 and assume
E € D is an object such that (E)g = D. The category D can then be described as follows.

Let N[T%] C Z[T*] be the subset of elements Y a,T° with a; € N for every i. For any

(7.3.1) P =Y T eN[T*],

let P(E) denote @;(V®)®% ¢ D, where if i is negative V® denotes the dual of V&9,
Consider the category D’ defined as follows. The objects of D’ are pairs (P, e) where P €
N[T#] and e € Endp(P(E)) is an idempotent. A morphism (P,e) — (P’,¢') is defined to be
an equivalence class of elements A € Homp(P(E), P'(E)) such that the diagram

P(E) —— P/(E)
(7.3.2) e l

P(E) —— P/(E)

commutes. Here A ~ N if Aoe = XN oe (or equivalently ¢ o A\ = ¢’ o \'). Note that the
condition that 7.3.2 commutes is equivalent to saying that X is in the equalizer of the two
maps

(7.3.3) ?oe,e'o?: Homp(P(E), P'(E)) — Homp(P(E), P'(E)),
and A ~ X if they map to the same element under 7 o e.

There is a natural functor

(7.3.4) D —D

which sends (P, e) to Im(e : P(FE) — P(FE)). It follows from the fact that D is semi-simple
and the definition of D’ that 7.3.4 is an equivalence.

Let Dgr (resp. D) denote the category (E)g (resp. (L)g).
Proposition 7.4. There is a unique equivalence of Tannakian categories
(7.4.1) 0 : Dar @k Beris(V) = Det ®q, Beris(V)
such that (P(E)) = P(L) for every P € N[T*|, and for any other P’ € N[T*] the diagram

Homp, e posv) (P(E), P(E))  ——  Homp,ep..)(P'(L), P(L))
(7.4.2) :l lg
Hu(P(E) ® P/(E)*) ® Beis(V) —— HY(P(L) ® P'(L)*) ®q, Beris(V)

commutes, where v is the comparison isomorphism. Here uniqueness means that if 6 is
another such functor then there exists a unique isomorphism X : 0 — 0" such that for every
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P € N[T#] the diagram

(7.4.3) :l l:

commutes.

Proof. By [Sa, 11.1.5.3.1], to give a functor € as in 7.4.1 is equivalent to giving a K-linear
functor

(744) DdR B— Det ®(@p Bcris<v)-

Let Dy be as in 7.3. Identifying Dyr with D)y as in 7.3.4, we see that giving 6 is equivalent
to giving a functor

(7.4.5) 0 : Dig — Det ®q, Beris(V).
We define  to be the functor which sends (P, e) to the image of
(7.4.6) v(€) : P(L) ® Bexis(V) — P(L) @ Bexis(V),
where ((e) denotes the image of e under the map given by ¢
Homp,, (P(E), P(E)) HOMp, @ Beyso (v) (P(L) ® Bexis(V), P(L) ® Baris(V'))
(7.4.7) =| B
Hip(P(E)® P(E)) —— HO(P(L) ® P(L)*) ®g, Beris(V)-
Similarly there is a functor
(7.4.8) 7 : D, — Dyr @k Bais(V)
sending (Q, () € D., to the image of
(7.4.9) 71(0)  QE) © BuslV) — Q(E) ® Bur(V).

We leave it to the reader to verify that the resulting functors
(7410) 0 . DdR ®K Bcris(v) — Det ®Qp Bcris<v)7 n: Det ®Qp Bcris(v) - Det ®K Bcris(v>

are inverses and that # has the required properties. The uniqueness statement follows from
the equivalence Dyr ~ D)y and [Sa, I1.1.5.3.1]. O

The association between L(Og,,,) and V(Og,,).

7.5. Let L(Og,,) be the ind-isocrystal defined in 4.35 and V(Og,,) the ind-smooth sheaf on
X7~ defined in 5.28.

Because pullback by Frobenius induces an auto—equivalence of (F)g, the ind-isocrystal
L(O¢,p) has a natural F-isocrystal structure OG- This F-isocrystal structure P0G, CaN
be described as follows. By [Sa, 11.2.3.2.1], the isocrystal L(Og,,, ) represents the functor on
(E)g which to any E' € (E)g associates w,(FE’)*. Since pullback by Frobenius induces an
auto—equivalence on (F)g, there exists for any E' € (E)g a pair (E”,s), where E” € (E)g
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and s : F*E" ~ F’ is an isomorphism. Moreover, by the full faithfulness of F** the pair (E”, s)
is unique up to unique isomorphism. Hence we have canonical isomorphisms

(7.5.1) Hom(E', F*L(Og,)) ~ F*Hom(E",L(Og,p)) ~ Frw,(E")" ~ w,(E")".

Therefore L(Og,,,) and F*L(Og,,) represent the same functor and hence are canonically
isomorphic. This canonical isomorphism is P0G, -

7.6. Let r be the rank of F and L, and let Myg (resp. M) be the dual of A" E (resp. A" L).
Set

(7.6.1) Agqr = Sym*(F ® E(x)*) @ Sym®(Mgr ® Mgr(z)"),

(7.6.2) Act == Sym*(L ® L}) ® Sym® (M @ M, ).

The sheaf Agr (resp. Ae) has a natural action of Ggr (resp. Ge) induced by the Gggr-
action (resp. Gei—action) on E(z)* and Mggr(v)* (resp. L} and M ). The determinant
map det : End(E(z)) — End(Mgr(z)*) (resp. det : End(Lz) — End(M{ ;)) sends Gar
(resp. Get) to Aut(Mar(x)*) (resp. Aut(M ;). Composing with the natural isomorphism
Aut(Mgr(2)*) — Aut(Myr(z)*) (resp. Aut(M; ;) — Aut(M; ;) sending an automorphism
to its inverse (note that these group schemes are abelian) we obtain homomorphisms tqg :
Gar — Aut(Mar(2)*) (resp. tep @ Gy — Aut(My ;). Asin 7.9, the maps tqr and t induce
maps

(763) MdR ® MdR(.l’)* — L(OGdR), Met ® Met,x — V(OGet>'
which in turn induce surjections
(7.6.4) Adr = L(Ogy), Ae — V(Og,,).

Note that since L and M, are crystalline sheaves associated to E and Mgr (with their
natural filtered F—isocrystal structures), the sheaf A is an ind—crystalline sheaf associated
to Agqr. In particular there is a natural filtration on Aggr and we define FﬂL(OGdR) to be the
image of this filtration under 7.6.4.

Proposition 7.7. The sheaf V(Og.,,) is associated to (L(Og,y), FilLog,, ), PL0g,,))-
Remark 7.8. We are abusing language in the statement of 7.7 as
(7.8.1) V(OG“) and (L(OGdR)7 FilL(OGdR)v @L(@GdR))

are only ind-objects in the categories of smooth Q,—sheaves and M FY (®) respectively. An as-
sociation between such ind—sheaves should be interpreted as saying that we can write V(Og,,)
as an inductive limit lim L; of crystalline sheaves such that if (£, Filp,, ¢, ) is the correspond-

ing inductive system in M FY (®) then
(7.82) (L(Ocur), FilLog,,)» PLOG)) = Im(E;, Filg,, ¢p,).
The proof of 7.7 will be in several steps 7.9-7.14.

7.9. Let D be a Tannakaian category over some field T of characteristic 0. Assume D = (E)g
for some E € D and that

(7.9.1) w,w' : D — Modp
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are two fiber functors, where R is a T—algebra. Let Dg denote the base change D @y R [Sa,
I1.1.5.2]. Recall that Dg is the category of pairs (V,p), where V' is an ind-object in D and
p: R — Endp(L) is a T—algebra homomorphism. Any fiber functor n : D — Modg induces
a unique functor (which we denote by the same letter ) n : Dr — Modg sending (V) p) to
(V) @reyr R, where the second factor of R ®y R acts on n(V') via p and the tensor product
is taken via the diagonal map R ®y R — R [Sa, 11.1.5.3.2].

Let H = m(D,w) and let Oy be its coordinate ring. The module Oy has a structure of
a (H, H)-module induced by left and right translation. There is a natural inclusion H C
GL(w(F)) inducing a surjection
(7.9.2) Sym*(w(E) @g w(E) )aet — On
compatible with the left and right H—actions. The left action of H corresponds by Tannaka
duality to a morphism
(7.9.3) Sym*(E @1 w(E)")ae — L(On)
of objects of Dr with right H-action. Applying w’ we obtain a surjection of algebras with
right H—action
(7.9.4) Sym* (W' (F) @g w(E) )get — w'(L(O)).

The left hand side of 7.9.4 with its right H-action is the coordinate ring of the R-scheme
Isom(w'(F),w(FE)) with its natural left H—action coming from the action on w(E). The
algebra w'(IL(Op)) thus is obtained from an H-invariant closed subscheme

(7.9.5) T C Isom(W'(E),w(E)).
Lemma 7.10. The subscheme T' C Isom(w'(E),w(E)) is equal to
(7.10.1) Isom® (W', w) C Isom(w'(E),w(E)).

Proof. By [Sa, 11.2.3.2.1], the functor Homp,, (-, L(Og)) with its right H-action is the functor
(7.10.2) Dr — (right H-modules)

sending V' to Hompg(w(V'), R). It follows that for any V' € D and W € Dy there is a natural
isomorphism of right H—modules

(7103) HOIHDR(W, V* R ]L(OH)) ~ W(W)* ®R w(V)* ~ HOIIlDR(VV, L(OH) ®R w(V)*)

By Yoneda’s lemma, this isomorphism is obtained from an isomorphism V* @y L(Op) =~
L(On) ®r w(V)* of objects in Dg with right H-action.

Thus we find that for any V' € D there is a natural isomorphism
(7.10.4)
Hompz(w'(V),w' (L(Og))) ~ ' (V*@yL(Of)) ~ W' (L(Og)@pw(V)*) =~ ' (L(Oy))@rw(V)*.

In other words, for every V € D there is a natural isomorphism

(7.10.5) W' (V) |spectwrwomm)) = W(V) specter (Lom)):-
This defines a map
(7.10.6) Spec(w'(L(Og))) — Isom® (W', w)

over R. By construction this map is compatible with the H—actions and the inclusions into
Isom(w'(F),w(FE)), and since both are H-torsors it is an isomorphism. O
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7.11. Let U = Spec(R) — X be a small étale morphism and fix a geometric generic point
Spec(€2) — Spec(Rg). Define

(7.11.1) wigt wny : Dar — Modp_ ), F i F(Beuis(U")),
and
(7112) wgcris(UA) . Det — MOdBcris(UA)

to be the functor sending A € D, to the Q,—vector space which is the stalk of A at Spec(Q2) —
Spec(Ry) tensored with Be,is(U”) (here we write Beis(U”) for the ring obtained by applying
the construction of 6.2 using the chosen geometric generic point of U). Here Dgr and D, are
as in 7.4.

Lemma 7.12. The two tensor functors

(7121) Wy QK Bcris(v)a (wf ®Qp Bcris(v)) of: DdR KK Bcris(v) — MOdBcris(V)
are naturally isomorphic. Similarly the two functors
(7122) w%iis(U/\)’ w%tcris(UA) of: DdR QK Bcris<V) — MOdBcris(U/\)

are naturally isomorphic.

Proof. Observe first that the functor w, ®x Beis(V) is isomorphic to the functor which to
any F' € Dgr associates 2" F(Bgis(V')). Let D)y be as in 7.3. For any (P, e) € D)y, the image
under w, Rk Beuis(V) of (P, e) is equal to the image of the map

(7123) e . x*P(E)(BCI‘IS(V)) B 'x*P(E)(BCUS(V))
induced by e. The value of (wz; ®q, Bauis(V)) 0§ on (P, e) is equal to the image of the map
(7.12.4) f(e) : P(L)z ®q, Beis(V) — P(L)z ®q, Beis(V)

induced by e under the isomorphism H (P(L)®P(L)*)®q, Bais(V) ~ Hyg (P(E)QP(E)*)®K
Beis(V) obtained from the association ¢. From the construction of pullback of associations
6.19, it follows that ¢ induces an isomorphism A : 2*P(E)(Beuis(V)) ~ P(L)z ®q, Beis(V)
such that the diagram

2*P(E)(Basis(V)) —— P(L)z @g, Beis(V)

(7.12.5) el l@(e)

2*P(E)(Buis(V)) —— P(L); ®q, Beris(V)

commutes. This gives the isomorphism between the functors in 7.12.1. A similar argument

left to the reader defines an isomorphism between the functors in 7.12.2. U

7.13. Let ¢« denote the association between A and Agqg. We claim that there is a unique
association ¢ between (L(Ogyy ), Filiog,,), ¥L(0g,,)) and V(Og,,) such that for every very
small U — X the induced diagram of Galois modules

Adr(Beais(U)) —— IL’(OGdR)(BCTiS(U/\))

(7.13.1) l lz

Aet X Bcris(U/\) - V(OGet) ® BCriS(UA)



68 Martin C. Olsson
commutes. Observe that any such z is automatically compatible with Frobenius, the Galois
action, and the filtrations.

To prove the existence of 7, note that by 7.10 to give the map ¢ is equivalent to giving an
isomorphism ¢* such that the diagram

®(w%§d (U/\)awm ®K Bcris(U/\)) B m(w%iis(UA)(E>7wx(E) ®K Bcris<U/\))

S

(7.13.2) ﬂ«l l

Isom® (w%tcris(m), wz ®q, Beis(U")) —— Isom(w%fcris(UA)(L), wz(L) ®q, Beris(U"))

Isom

commutes. By construction, the isomorphism ¢* is that induced by the isomorphisms in 7.12
together with the identifications

(7.13.3) Wy @ Beris(U") 2~ wy @ Beris(V) @ (v) Beris(U"),

(7134) Wz ®Qp Bcris(U/\) Wz ®Qp Bcris<v) ®Bcris(V) Bcris(U/\)'
The existence of ¢* therefore follows from 7.12.

Corollary 7.14. The sheaf V(Og,,) is an ind—crystalline sheaf on X¢,.

Proof. With notation as in 7.6, let F, C L(Og,,) be the sub-isocrystal which is the image
of @iy j<sSym'(E @ E(x)*) ® Sym’ (Mg ® Mar(z)*), and let L, C V(Og,,) be the image of
@HjSSSymi(L ® L) ®@ Sym? (Mg ® Me ). Then by construction the association between
V(Og,,) and L(Og,;,) induces an association between L, and Fy. Since V(Og,,) is equal to

lim L the corollary follows. Il
—
This completes the proof of 7.7. [l

Corollary 7.15. There is a natural isomorphism Gar @k Beis(V) ~ Get ®q, Bais(V) and
the association of 7.7 is compatible with the Gar and G actions.

Proof. This follows from 7.12 and the construction. U
Corollary 7.16. There is a natural isomorphism
(7.16.1) RTeyis (L(Ocir ) @ Beris(V) = GC(L) ®q, Beis(V)

n HO(GEmS(V) — dgagcris(v)j/o% ), where Géms(v) denotes Gyr Qx écriS(V) ~ G ®q,

cris(V)

Bcris(v)-
Proof. This follows from 6.13-6.20. U

Theorem 1.7 follows from this corollary, the construction of X¢,, and X¢,,, and 4.11. [

Remark 7.17. The assumption that the groups Ggqr and G are reductive could be elimi-
nated if we knew that any smooth subsheaf of a crystalline sheaf is again crystalline. For then
using the filtration defined by the unipotent radical as in 5.30, one can reduce to the case when
Gar and G are reductive. Recent work of Tsuji in this direction (private communication)
may enable one to remove this assumption.
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Proof of 1.8.

The isomorphism X¢,, ®@x EcriS(V) ~ Xc,, ®q, Ecris(V) induces an isomorphism
(7.17.1)
Ut (CdR7 :C)®KBcris(V) >~ (XCdR®KBcris(v)) ~m (XCCt ®Qchris(v>> ~m (Ceta :E)@Qchris(V)-
Equivalently we obtain an isomorphism of Hopf algebras
(7172) Oﬂl(CdR,x) QK ECI‘iS(‘/) = Oﬂ'l(Cet,a’:) ®Qp Ecris(v)

compatible with Frobenius and the Galois actions. By D.3 this isomorphism is obtained from
an isomorphism of Hopf algebras

(7173) O7r1(CdR,x) ®K BCriS<V) =~ Oﬂj(CetJZ) ®Qp BCI‘iS(V)
compatible with Frobenius and Galois. This implies 1.8.
Proof of 1.9.

Since m;(Xe ) and m;(Xe,,) are pro—algebraic group schemes and m;(Xe¢,, ) ®x Beris(V) =~
7i(Xe,,) ®q, Beris(V), Theorem 1.9 follows from the following lemma:

Lemma 7.18. Let G/Q, be a pro-algebraic group scheme with action of Gal(K/K) and
assume Gar /K is another pro—algebraic group scheme with an isomorphism

(7181) L get ®Qp Bcris(v> >~ ng ®K Bcris(v)

compatible with the actions of Gal(K/K). Then Lie(Get) can be written as a projective limit
lim L; of finite dimensional Q,—Lie algebras with Gal(K /K)-action such that each L; is a
crystalline representation.

Proof. Let Se (resp. Sqr) denote Io/IZ% (resp. Iar/I3g), where I (resp. Iqgr) denotes the
ideal of the identity in Og,, (resp. Og,y,). Then Lie(Ge) (resp. Lie(Gar)) is equal to the dual
of S (resp. Sqr)-

The isomorphism ¢ induces an isomorphism
(7182) o Set ®Qp Bcris(v) ~ SdR KRK BcriS<V)

compatible with the Gal(K /K )-actions. Write Sqr = lim M; where each M; is a finite-
dimensional K—vector space, and set
(7183) ‘/J = Set N (Mj ®K Bcris<V)> C Set ®Qp Bcris(v)~

Then V; C S is Galois stable and finite-dimensional since V; ®q, Beris(V) injects into
M; ® Beis(V) and hence has finite rank (since Bs(V) is an integral domain for example
by [Ts1, A3.3]). Furthermore Se; = lim V.

The Lie algebra structure on Lie(Ge;) is given by the dual of a map
(7184) P Set — Set & Set-

Furthermore, to give a quotient Lie(Ge) — L of Lie algebras is equivalent to giving a subspace
L* C Se such that p(L*) is contained in L* ® L*. Since G is pro—algebraic, we can write
Set = lim S* where each S* C S is a finite-dimensional subspace and p(S’) C S' ® S".
Let gz’ be the intersection of all sub-Galois representations of Se; containing S%. Since S* C
p~(S'®5"), we have p(S') € §'® S5". Also, since Se; = lim V; and S is finite dimensional
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we must have S, and hence also gi, contained in some V. This implies that S is finite
dimensional. Dualizing we obtain the first part of the lemma. The second statement follows

from the following which shows that each of the " is a crystalline representation. O

Sub-Lemma 7.19. Let W' C W be an inclusion of Gal(K /K)-representations which are
direct limits of finite dimensional Galois representations. Then the diagram

D(W’) ®K Bcris(v) m— D(W) ®K Bcris(v)

(7.19.1) afl la
WI ®Qp Bcris(v) —_— W ®Qp Bcris(V)

is cartesian. In particular, if o is an isomorphism and W' is finite dimensional, then W' is
crystalline.

Proof. Let W" =W /W' and consider the diagram
(7.19.2)

0 — D<W/) QK BcriS(V) - D(W) K BcriS(V) — D(WN) QK Bcris(v)

0 E— W/ ®Qp Bcris(v) — W ®Qp Bcris(v) — W” ®Qp Bcris(v) — 0

By [Fol, 5.1.2 (ii)] all the vertical maps are injective. From this and a diagram chase the
result follows. O

Proof of 1.12.

Let M (resp. S) be a representation of m(Xc,,,) ® Beis(V) (resp. m1(Xe,,) ® Beis(V)) over
Bcris(v)-

Lemma 7.20. There is a natural isomorphism
(7.20.1)

H*(XCdR QK ECYiS(‘/)? M) = H*(XCdR7 Mf) (T@Sp. H*<Xcet ®Qp ECriS(v)7 S) = H*(Xcem Sf))a

where M7 (resp. S7) denotes the representation of m(Xe,,) (resp. w1 (Xec,)) obtained by
viewing M as a K —vector space (resp. Q,—vector space).

Proof. We give the proof for Cgr, leaving the proof for Ce to the reader (using the same
argument).

Write 7 for m1(Xc,,) and 75 for the base change to Beis(V). The projection Xe,, —
T<1 X, > Bm gives X¢,,, the structure of an object of Ho(SPr,(K)|p,). Let Aff}, denote
the site whose objects are affine K—schemes and for which a morphism 77 — T in Aff} is
a pair (f,g € n(1")), where f : T" — T is a K—morphism and g € 7(7”) is an element. If
(s,h € m(T")) is a morphism 7" — T" for some third object 7" € Aff, then the composite
(s,h)o(f,g) is the morphism (so f,h-s*(g)). We view Aff}; as a site by declaring a morphism
(f,g) to be a covering if f is faithfully flat and quasi-compact. The category of presheaves
on Affy is naturally equivalent to the category of presheaves on Affx with action of the sheaf
7, and by [KPT, 1.2.1] there is a natural equivalence

(7.20.2) Ho(SPr,(K)|p,) ~ Ho(SPr, (AffT)).
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Let Fyr € Ho(SPr,(Aff};)) be the object corresponding to Xc,,.

Replacing K by Beis(V) in the above we obtain a site AFFZ C“z‘(/v)) and an equivalence

) = Ho(SPr, (Aff Zers)Y),

(7.20.3) Ho(SPr.(Beris (V)| 5, B (V)

cris(V)

There is a morphism of sites Affy. — Aﬂé C”E V) sending T' — Spec(K) to T' ®xk Ecris(V). We

therefore have adjoint functors

(7.20.4) f*: SPr, (Aff,) — SPr*(AfL PesV)y - f SPr*(AfL m;ﬁ”) — SPr, (Aff},).

CI‘IS V CI‘lS

For any F' € SPr,(Aff},) the pullback f*F is the simplicial presheaf
(7.20.5) (W — Spec(Bais(V))) — F(W — Spec(Beis(V)) — Spec(K)).

In particular, f* preserves cofibrations and equivalences so the pair (f*, f.) is a Quillen
adjunction and f* derives trivially.

It follows from the construction of the equivalence 7.20.3 that f*Fyg corresponds under the
equivalence 7.20.3 to X¢,, ® Bgis(V). The representation M of 7 corresponds to a sheaf M

on Aff;éc_“z‘(/v)) and the induced representation M/ of 7 corresponds to the sheaf f,M. Fix an

integer m and let K(M,m) € Ho(SPm(Aff%%“Eé/‘?)) (resp. K(fuM,m) € Ho(SPr.(Aff})))

be the corresponding classifying stack [Tol, 1.3]. By definition of cohomology [Tol, 1.3] there
are isomorphisms

(7206) H (XCdR ® Bcris(v)7 M) = [f FdRa K(M7 m)] (SPr*(AH~Ci?(S\(/‘)/)))
(7.20.7) H™(Xeyp, MT) = [Far, K (fo M, m)]bo(spr. (s -

Since

(7.20.8) [f* Fars K (M, m)] =~ [Far, R (M, m)|Ho(spr. (Afig,))

1%
Ho(SPr. (Aff (é) )

to prove the lemma it suffices to exhibit a natural isomorphism R f, K (M, m) ~ K(f.M,m).

C[’lS(V)
Crlb(v)
For any T' € Aff}, the complex f.I(T) computes the cohomology of M restricted to the site
Tchrls )
B (V) 1 TBer(V)’
with the fpqc topology and the restriction of M to this site is quasi—coherent, all higher

cohomology groups are zero. Thus the complex f,I® is exact.

Let M — I°® be an injective resolution in the category of abelian sheaves on AfF

Since this site is equivalent to the site of affine schemes over T’ ®§CriS(V)

Let Z be the complex 7<,,I°[m]| and note that there is a natural quasi-isomorphism
M[m] — Z. Applying the denormalization functor [G-J, II1.2.3], we obtain an equivalence
of simplicial presheaves D(M[m]) — D(Z). Since m;(M[m]) ~ H;(M[m]) for every i [G-J,
I11.2.7], the simplicial presheaf D(M), and hence also D(Z), is a representative for K (M, m).

The simplicial presheaf D(Z) is also fibrant in SPr, (Aff ~ CE‘(/V))) To see this note that since
D(Z) is a simplicial presheaf of abelian groups, for any object W € Aff~

cris )
Beris(V)

set D(Z)(W) is fibrant in the category of simplicial sets [G-J, 1.3.4]. By [Tol, 1.1.2] to prove

the simplicial
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that D(Z) is fibrant it suffices to show that for every hypercover U, — W of an object W the
natural map

(7.20.9) D(Z)(W) — holima D(Z)(U,)

is an equivalence. This is done in [DHI, 7.9].

Since D(Z) is fibrant R f, K (M, m) is isomorphic to f.D(Z) ~ D(f.Z). On the other hand,
since f,M — f,I® is a quasi-isomorphism, the natural map f,M[m] — f.Z is also a quasi—
isomorphism, and hence D(f.Z) ~ D(f.M]|m]). It follows that Rf.K(M,m) ~ K(f.M,m)
as desired. g

To prove 1.12, note that by 4.28 and 5.32.2, we have
(7.20.10) Hip(M) ~ H*(X¢,,, M7), H(S)~ H*(Xc,,S).
Hence to prove 1.12 it suffices to exhibit a natural isomorphism
(7.20.11) H*(Xey @5 Beris(V), M) = H*(Xe,, ®q, Beris(V), ).
Such an isomorphism is provided by 1.7. U
Formality and proof of 1.13.

7.21. Assume £k is a finite field, D = (), and fix an embedding ¢ : K — C. Let (E, Filg, pg)
and L be as in 7.1, and assume in addition that (E, ¢g) is t-—pure in the sense of [Ke|. Denote
by H} . .(L(Oa dR)) (resp. HX(V(Og,,)) the crystalline cohomology (resp. étale cohomology)
of L(O¢,) (resp. V(Og,)). Cup-product gives H} (L(Oq,y)) (resp. H:L(V(Og.,))) the

structure of a Gagr—equivariant (resp. Ge—equivariant) differential graded algebra. In [Ol1,
proof of 4.25], it is shown that there is an isomorphism

(7211) chriS(L(OGdR>> — cr1s( (OGdR))

in Ho(Ggr — dgag). On the other hand, Faltings’ cohomological comparison isomorphism
gives an isomorphism

(7.21.2) His(L(Ocyr)) @k Beris(V) 2 Hy (V(Oe,)) ®q, Beis(V)
V) for GdR KK Bcris(v) ~ Get ®Qp Bcris(v)-

cris(

in Ho(Gp,,.,(v) — dgag,,.(v)), where we write Gp

Theorem 7.22. There exists an isomorphism in Ho(G 3
the Gal(K /K)-actions

(7‘22-1) GC(V(OGet)) ®Qp EeriS(V) = H:t(V(OGet)) ®Qp EcriS(V)‘

vy — dgag . ) compatible with

cris(

Proof. There are isomorphisms in Ho(Gg ) —dgag,_ ) compatible with the Gal(K/K)-
actions
(7.22.2)

GC(V(Oa,.)) ®g, Beris(V) = Rl ario((Ociyy)) ©c Beris(V) = Hio (L(Otr,)) @1 Beris (V)
and by 7.21.2

(7.22.3) Hii (L(Ocur)) @k Bexis(V) =~ HE (V(Oc.,)) @, Baris(V)-
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To obtain 1.13 from this, note that the isomorphism
(7.22.4) 71 (Cets ) ®q, Berio(V) 2 m([RSpecg,, (H* (V(Oq,.)))/Get]) @g, Bers(V)

defined by 7.22 fits into a commutative diagram of isomorphisms

(7.225)  71(Cet, T) @, Beris(V) — m([RSpece,, (H*(V(Oq,,)))/Get]) @g, Beris(V)

| |

7T1 (XCdR) ®K écris(v) - ﬂ-l([RSpeCGdR( CI"IS( (OGdR)))/GdR]) ®K écris(‘/).
By D.3 this diagram is induced by a commutative diagram of isomorphisms over Bs(V)

(7.22.6)  m1(Cet, T) ®q, Beris(V) —— m([RSpece,, (H*(V(Oc..)))/Get]) @, Beris(V)

| |

T1(Xegr) @k Beris(V) — mi([RSpecg, (Hi(L(Ocur)))/ Gar]) @k Beris(V).
We therefore get an isomorphism of Galois representations
(7.22.7) Lie(m1(Cet, 7)) ®q, Beris(V) = Lie(m ([RSpece,, (H*(V(Oq.,)))/Get])) @q, Beris(V).
In particular, Lie(r(Cet, 7)) ®q, Beais(V') is determined by H(V(Og,,)). We also have a
Galois invariant isomorphism
(7.22.8) Lie(m ([RSpecg,, (H*(V(Oq,,)))/Get])) @0, Beais(V) ~ Lie(m1(Xeyr)) @k Beris(V),
and by [Ol1, 4.2]
(7.22.9) Lie(m(Xc,)) ~ LH (L(Og,p )/ (quadratic relations),
where H;(L(Og,y)) denotes the dual of H., (L(Og,,)). Base changing to Beis(V) and using

cris

the isomorphism HZ; (L(Ocyy)) @k Beis(V) =~ H (V(Og..)) ®q, Beis(V) we find that
(7.22.10) Lie(m(Cet, T)) ®q, Beris(V) = LH(V(Oq,,)) ®q, Beris(V')/(quadratic relations).

8. A BASE POINT FREE VERSION

In this section we describe a base point free version of 1.7 and some consequences.

Review of twisted theory [Ol1, 3.7-3.28]

8.1. Recall that a gerbe over a site C'is a stack G over C' such that the following two conditions
hold:

(i) For every object U € C' there exists a covering {U; — U }e; of U such that G(U;) is
nonempty for all ¢ € I.

(ii) For any U € C and two objects a, 5 € G(U), there exists a covering {U; — U}ier
such that the restrictions of o and 3 to each U; are isomorphic.

8.2. If C' is a site and G is a gerbe on C, the G—twisted site, denoted Cg, is the site whose
objects are pairs (U,w), where U € C' is an object and w € G(U) is an object. A morphism
(U',w'") — (U,w) is a pair (f, f°), where f : U’ — U is a morphism in U and f°: f*(w) — w’
is an isomorphism in G(U’). A collection of maps {(U/,w}) — (U,w)} is a covering family if
the underlying family {U; — U} of maps in C' is a covering family.
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Note that for any object (U,w) € Cg the site Cg|w,.,) is naturally equivalent to C|y.

Assume that for any object U € C and w € G(U), the sheaf Aut(w) on C|y which to any
f U — U associates Aut(f*w) is cofibrant viewed as a constant object in SPr(C'|y). This
holds for example if Aut(w) is representable.

Let BG € SPr(C) be the simplicial presheaf which to any U associates the nerve of the
category G(U).
The following generalization of [KPT, 1.2.1] is shown in [Ol1, 3.12]:

Lemma 8.3. There is a natural equivalence of homotopy categories
(8.3.1) Ho(SPr(Clg)) ~ Ho(SPr(C)|gg)-

8.4. Let R be a (Q—algebra, and consider the site Affg of affine R-schemes with the fpqc
topology. Following [Sa, 111.2.2.2], we say that a gerbe G over Affg is Tannakian if fpqc
locally on Spec(R) the gerbe G is isomorphic to BG for an affine and flat group scheme
G. The condition that a gerbe G over Affg is Tannakian is equivalent to the following two
conditions:

(i) The diagonal
(8.4.1) A:G—-GxG

is representable and affine.
(ii) There exists an fpqc covering Spec(R’) — G for some flat R-algebra R'.

8.5. For a Tannakian gerbe over Affy, denote by Affr g be the resulting G-twisted site. Define
a sheaf F on Affgg to be quasi—coherent if for any object (S,w) € Affrg the restriction of
F to Affrg|(sw) ~ Affg is a quasi-coherent sheaf. Denote by G — dgap (resp. G — Alg%)
the category of differential graded algebras (resp. cosimplicial algebras) in the category of
quasi—coherent sheaves on Affr g. There are natural model category structures on G — dgap
and G — Algé just as in 2.21, and the Dold-Kan correspondence induces an equivalence of
categories

(8.5.1) Ho(G — dgay) ~ Ho(G — AlgR).

There is also a functor
(8.5.2) Specg : (G — AlgR)® — SPr(Affrg)
sending A to the simplicial presheaf
(8.5.3) (Spec(S),w) — ([n] — Homg(A(Spec(S),w)n, 5)).
Here the transition maps are defined as follows. If
(8.5.4) (Spec(S’),w’) — (Spec(S),w)
is a morphism in Affp g, then since A is quasi-coherent the natural map
(8.5.5) S" ®g A(Spec(S),w) — A(Spec(S”),w")

is an isomorphism. For any [n] € A we there obtain a map
(8.5.6)
Homg(A(Spec(S), w)n, S) — Homg (S @5 A(Spec(S),w),, S") ~ Homg (A(Spec(S”),w'), S").
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As in [KPT, p. 16] the functor 8.5.2 is right Quillen and we denote by

(8.5.7) RSpecg : Ho(G — Algy)°® — Ho(SPr(Affrg))
the resulting derived functor. We denote by
(8.5.8) [RSpecg(—)/G] : Ho(G — Algg)°® — Ho(SPr(R)|sg)

the composite of this functor with the equivalence 8.3.1.

Remark 8.6. The site Affy g is equivalent to the big fpqc site of G, and the above notion of
quasi—coherent sheaf agrees with that of [LM-B, 13.2.2].

Gerbes and 1-truncated stacks

8.7. Fix a base ring R. A simplicial presheaf ' € SPr(R) is 1-truncated if the map F' — 7<1 F'
is an equivalence, where 7<1 F' is the simplicial presheaf sending U € C to 7<1 F'(U) (see [G-J,
VI1.3.4]) for the definition of 7<,). Equivalently, F' is 1-truncated if for any object U € Affg
and point * — F(U) the sheaves 7;(F|y, ) on Affy; are zero for i > 1. In particular, if ¥ — F”
is an equivalence then F' is 1-truncated if and only if F’ is 1-truncated. Thus it makes sense
to say that a stack ' € Ho(SPr(R)) is 1-truncated. Let Ho(SPr='(R)) C Ho(SPr(R)) denote
the full subcategory of connected 1-truncated stacks.

If G is a gerbe over R we obtain a l-truncated stack BG by associating to any U/R the
nerve of the groupoid G(U). Let Gerbey denote the category whose objects are gerbes over
R and whose morphisms are equivalences classes of morphisms, where f,g : G — G are
equivalent if there exists an isomorphism of functors o : f — g.

The following proposition is well-known though we were unable to find a proof in the
literature.

Proposition 8.8. The functor G — BG defines an equivalence Gerbey, ~ Ho(SPr='(R)).

Proof. For a simplicial presheaf F' € SPr(R) such that for every U € Affy the simplicial set
F(U) is fibrant (this holds for example if F' is fibrant in SPr(R) by the definition [Tol, 1.1.1])
define 7P*(F') to be prestack which to any U € Affg associates the fundamental groupoid [G-J,
1.8] of F(U), and let 7w(F') be the associated stack. If FF — F” is an equivalence of fibrant
objects in SPr(R) then the induced morphism of stacks 7(F') — 7(F") is an equivalence, and
hence 7 induces a functor

(8.8.1) 7 : Ho(SPr=!(R)) — Gerbep,.

It follows from the construction that for F' an object of Ho(SPr=!(R)) there is a natural
equivalence F' — Bn(F). Also if G is a gerbe then by [G-J, 1.3.5] for any U € Affy the
simplicial set BG(U) is fibrant, and it follows from the definitions that there is a natural

equivalence G ~ mBG. In particular the functor G — BG induces an equivalence of categories.
O

Equivariant algebras

8.9. Let G/R be a Tannakian gerbe. Denote by ;AvffR’g the small fpqc site of G, as defined in
C.1.
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Let G — dgap (resp. G — Algg) denote the category of differential graded algebras (resp.
cosimplicial algebras) in the category of sheaves of O-modules on Affy g whose cohomology
sheaves are quasi—coherent, where O denotes the structure sheaf (see C.4 for the notion of a
quasi-coherent sheaf in this context). The model category structure provided by 2.21 on the
category of cosimplicial algebras (resp. differential graded algebras) in the category of sheaves

of O-modules on Affg ¢ induces a model category structure on G — dgap (resp. G — Algg) in
which a morphism f : A — B is a fibration if the morphism on underlying complexes (resp.
normalized complexes) is a level-wise surjection with injective kernel. A morphism f is an
equivalence if the underlying morphism of complexes of sheaves (resp. normalized complexes)
is a quasi-isomorphism.

N —A
There are natural inclusions jag, : G —dgap — G—dgap (resp. jag Q—Alg}% — G—Alg,).

Lemma 8.10. The inclusions jag. and jaig have right adjoints ugg, and wai,.

Proof. Recall from C.6 that the inclusion

(8.10.1) J : (quasi-coherent sheaves on Affpg) C (sheaves of O-modules on A\FfR’g)
has a right adjoint

(8.10.2) u : (sheaves of O—modules on ﬂfR’g) — (quasi—coherent sheaves on Affpg).
The functor u is constructed as follows.

Since G is a Tannakian there exists a flat surjection Spec(R’) — G corresponding to an
object (R,w') € Affpg. Let R” be the coordinate ring of Spec(R’) xg Spec(R’) and let
pr; : R — R" (i = 1,2) be the maps induced by the two projections. Denote by w' :
Spec(R') — G and w” : Spec(R") — G the projections. For any sheaf of O—modules F on
Affp g the quasi-coherent sheaf uF is defined to be the equalizer of the two maps

(8.10.3) W F (R, WY = O F(R W'Y

Observe that for two sheaves of O-modules F and F’ there is a natural map uF @ uF’ —
u(FRF'). It follows that the functor u extends in a natural way to the category of cosimplicial
O-modules (resp. differential graded O—modules), and if A is a sheaf of cosimplicial algebras
(resp. differential graded algebras) then uA also has a natural structure of a cosimplicial
algebra (resp. differential graded algebra). It then follows from the fact that u is right adjoint
to j that the resulting functors uqg, and uay, are right adjoint to jag, and jaje respectively. [

The functor jgg, (resp. jaig) clearly preserves cofibrations and trivial cofibrations so the
pair (Jdga, Udga) (resp. (Jaig, Ualg)) is a Quillen adjunction.

Proposition 8.11. The adjunctions (jaga, Udga) (T€5p- (jalg, Ualg)) are Quillen equivalences.

Proof. Tt is clear that a morphism f : A — B in G — dgay (resp. G — Alg®) is an equivalence
if and only if jaga(f) (resp. jaig(f)) is an equivalence, so by [Ho, 1.3.16] it suffices to show

that if Y € G — dgap (resp. G — Alg:) is fibrant then the natural map jagatagaY — Y (resp.
JalglalY — Y)is an equivalence. For this it suffices to show that if /* is a complex of injective
O-modules with quasi-coherent cohomology sheaves then the natural map jul® — I°® is an
equivalence, where j and u are as in the proof of 8.10. This follows from C.9. U
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Corollary 8.12. The functors jaga and jais induce equivalences

. —A
(8.12.1) Ho(G — dgay) ~ Ho(G — dgay), Ho(G — Algs) ~ Ho(G — Alg).
In particular, the functors 8.5.7 and 8.5.8 induce functors
—A
(8.12.2) RSpecg : Ho(G — Algy)°® — Ho(SPr(Affrg)),
—A
(8.12.3) [RSpecg(—)/G] : Ho(G — Algp)°® — Ho(SPr(R)|pg).

8.13. Let (X, My)/V, (E,Filg, ¢g) and L be as in 7.1 and assume that 7.2 holds. We do
not, however, choose a point x. Let Dyr (resp. De) denote (E)g (resp. (Lz)s) and let
Gar/K (resp. Get/Qp) be the gerbe of fiber functors for Dyr (resp. Det). By 7.4, there is a
natural equivalence 6 : Dar ® g Beris(V) =~ Dot @q, Beris(V') which induces an equivalence of
gerbes Gar @i Beris(V) ~ Get ®q, Bais(V) compatible with Frobenius structures and Galois
actions (note that the proof of 7.4 does not require the existence of the point x).

We now construct stacks Ygr € Ho(SPr(K)|pg,,) and Yo € Ho(SPr(Q,)|sg.,) and an
equivalence 6 : Yqr @x Beris(V) = Yot ®q, Beris(V) in Ho(SPr(Bcris(V))\Bchris(w), where we
have written chris(V) for ng KK Bcris(v) = get ®Qp Bcris(v>‘

The stacks Ygr, Yet, and the isomorphism 6 have the following property. If we choose a
point z as in 7.1, then the stacks Yyr and Y, are canonically isomorphic to the stacks obtained

from Xc ., and X, by forgetting the base points. Furthermore, 6 is equal to the isomorphism
obtained from 1.7.

8.14. If ng (resp. éet) denotes the stack of fiber functors for Cqr (resp. Ce) then there is
a natural isomorphism in Gerbe, (resp. Gerbeg ) between Gar (resp. Ge) and the gerbe
associated by 8.8 to 7<1Ygr (resp. 7<iYet).

For this recall (see [Sa, II1.2.3.2.2]) that for any K-algebra R (resp. Q,-algebra R) the

Tannakian category Cqr ®x R (resp. Cey ®q, R) can be recovered as the tensor category of
morphisms of stacks over R

(8.14.1) Gar ®x R — Vecy,  (resp. Go ®q, R — Vecp),

where Vecy, denotes the stack over R which to any R — R’ associates the groupoid of coherent
sheaves on Spec(R’).

Let Tany denote the category whose objects are Tannakian categories over R, and whose
morphisms A — B are equivalence classes of tensor A — B, where w ~ ' if there exists
an isomorphism of functors w ~ w’. Then there is a fully faithful functor Tan}} — Gerbey
sending a Tannakian category C to its gerbe of fiber functors.

In particular, 0 and the identifications T<1Ydr =~ BédR and 7<1Ye ~ Bget induce an
equivalence Cqr @k Beis(V) =~ Cot ®q, Beris(V) in Tan Buw(v)- Lhis equivalence agrees with
the one in 1.8 obtained after choosing a base point.

Construction of Yar.
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8.15. Fix a hypercover U, — X with each U, a disjoint union of very small étale X-schemes.
This hypercover defines a diagram of formal log schemes

(U, My,) © Z)(p) —— (UJ, Myy)

(8.15.1) l
(Y, My)
as in 4.36.1.

Consider the presheaf AP* of differential graded algebras on Affy g . which to any (R,w)
associates DR(L, )z, (see 4.37 for the notation), and let A denotes the associated sheaf of
differential graded algebras on Affx g, .

Lemma 8.16. The algebra A is in Gqr — EQ;EK.

Proof. We have to show that the sheaf associated to the presheaf (R, w) — H'(AP*(R,w)) is
quasi—coherent. As mentioned in 4.37 for any flat morphism R — R’ the map

(8.16.1) H{(A»(R,w)) ®r R — H(A™(R',w|p))

is an isomorphism. We need to show that this also holds for arbitrary morphisms h: R — R’
fitting into a commutative diagram

(8.16.2) Spec(R') i Spec(R)

7

where w and ' are flat.

To verify that the morphism 8.16.1 is an isomorphism, it suffices to verify that it becomes
an isomorphism after a faithfully flat base change R — R. For such a faithfully flat map
there is a commutative square

Hi(A™(R,w)) @ (R ®p R) ——  H(A™(R,wlp)) ©r R

(8.16.3) J l
H{(A®(R,w|p) @r B —— H(A™R ®p R,w|py 7))

where the vertical maps are isomorphisms. Hence to prove that 8.16.1 is an isomorphism
we may replace R by R and R ®r R'. Since any two fiber functors for Gqr are fpqc—locally
isomorphic we may therefore assume that there exists a fiber functor wg : Ggqg — Vecg: for
some field K" and a morphism K’ — R such that w = wp|g. In this case we have a diagram

(8.16.4)  HI(AP(K' wo)) @ B —— HI(A™(R,w)) @5 R —— H(AP(R,w|p))

and « and 3 o o are isomorphisms. It follows that ( is also an isomorphism. U
8.17. The stack Yy is defined to be the image of A under
(8.17.1)

2.21.2 and 8.12.1 [RSpecg, . (—)/Garl
_

Ho(Gar — dga) Ho(Gar — AlgR)

Ho(SPr(K)|pgyy )-
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8.18. To construct the 1somorphlsm between 7<;Yjr and the gerbe of fiber functors for Cyg,
consider the site Aff . Let (R,w) € Afngd be an object and let G, denote the group
scheme Aut®(w). The left and right translation actions of G, on Og_ induce an ind-isocrystal
L, with R-module structure and right G,—action on X/K and can form DR(iw)g' as in
4.37. Let AP be the presheaf of differential graded algebras on Evang which to any (R, w)
associates DR(L,)y, and let A be the associated sheaf of differential graded algebras. By

the same argument as in the proof of 8.16 the algebra A'is in Gap — @K.

8.19. There is a morphism of topoi

(8.19.1) e (gﬁch J (Affx g T

defined as follows. The functor r* sends a sheaf F' € (AffK gar) to the sheaf sending (R w) €
Aﬁ"K’ng to F(R,w|p,,). Note that the projection Gar — Gar is flat so if (R,w) € AffK’ng
then (R,w|p,;) € Affy s .
For a flat morphism w : Spec(R ) ng, let Qw denote the fiber product Spec(R) X g, ng.

Then the projection morphism Go — Gar is flat, and the functor r, sends a sheaf G on
Affy 5 to the sheaf

(8.19.2) (R,w) = T(Aff, 5, G).

For any A € Gar — dgag (resp. A € Gar — dgaK) the pullback r* A is an object of Gqr — dga,

(resp. ng — dgaK) The functor r* clearly also preserves arbitrary equivalences and hence
induces a functor

(8.19.3) r* - Ho(Gar — dgay) — Ho(Gar — dga).
Similarly there is a natural functor
(8.19.4) * : Ho(Gar — Alg?) — Ho(Gar — Alg2).

As in 2.22 the functors 8.19.3 and 8.19.4 are part of a Quillen adjunction.

8.20. If f : Bng — BGar denotes the morphism of simplicial presheaves induced by the
natural morphism of gerbes Gqr — Gar sending w to w|p,,, then there are adjoint functors

(8.20.1)  fi:SPr(K)|pz,. — SPr(K)|pgs, (F — BGar) — (F — BGar — BGar),

(8.20.2)  f*: SPr(K)|pgy — SPr(K)|pg, . (F — BGar) = (F X pgy BGar — BGar).

By [Ho, 1.1.11], the functor f* preserves fibrations and trivial fibrations and hence the pair
(fi, f*) is a Quillen adjunction. It follows from the various constructions that the following
diagram commutes:

[RSpecg ... (—)/Gar]
Ho(Gar — dgag)® —22% Ho(Gar — Algs)® Ho(SPr(K)| 3o )

(8.20.3) - - %

~ ~ [RSpecs  (—)/Gar]
Ho(Gar — dgag)® 222 Ho(Gur — Algd)er T Ho(SPr(K)| g, )-
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Let Yap € Ho(SPr(K)pg,.) denote the stack obtained from the bottom row of 8.20.3 applied

to A (where A is defined as in 8.18). The natural map r* A — A and the commutativity of
8.20.3 implies that there is a natural commutative diagram

Yan —— BGar
(8.20.4) fl l

Yo —— BGar
in Ho(SPr(K)).

Proposition 8.21. The map [ is an equivalence and the map T induces an equwalence
7'<1YdR BQdR In particular, there is a natural isomorphism 7<1Yyr =~ BQdR m Ho(SPr (K))

Proof. 1t suffices to prove the proposition after replacing K by a field extension. In particular,
let & C k' be a separable field extension (where k is the residue field of V') such that X°®y k
has a k'—valued point, and let V' be the ring of Witt vectors of k’. Then the base change
X ®y V' satisfies the assumptions of 8.13 and in addition there is a point x € X°(V’).
Replacing V' by V' and X by X ®y V' we may therefore assume that (,de is trivial with
trivialization defined by a point z € X°(K). In this case the proposition follows from the
proof of [Ol1, 2.27]. O

Construction of Y.

8.22. The construction of Y, follows the same outline as the construction of Yyg.

Fix a hypercover U, — X with each U, a disjoint union of very small étale X—schemes,
and let £ — X4 be a fixed choice of geometric generic points.

Consider the presheaf B of differential graded algebras on Affg, g, which to any (R,w)
associates GC(V,, E) (see 5.42 for the notation), and let B be the associated sheaf of differ-
ential graded algebras. By the same reasoning as in the proof of 8.16 B lies in G, — dgag, -

The stack Yy is defined to be the image of B under the composite
(8.22.1)

— [RSpecg,, (~)/Get]
Ho(Ger — dgag,) 2

2.21.2 and 8.12.1
————— Ho(Ge

— Algy ) Ho(SPr(Q,)|5g..)-

By the same reasoning as in the proof of 8.21, there is a natural isomorphism 7<; Yy Bget

in Ho(SPr='(Q,)).

The comparison isomorphism 0.
8.23. Let ggms(v) denote the gerbe Gqr @ Ecris(V) ~ Ger Qq, écriS(V).

To construct the desired equivalence 0, it suffices in the notation of 8.15 and 8.22 to

construct an equivalence of sheaves of differential graded algebras between A| A5 (v)05
erist T Bris (V)

and B’Aﬂ‘~

Crlq<v> gBCTlS (V)
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Lemma 8.24. For any object (R,w) € Aff3

Beria(V).05 and very small étale U — X there

)

cris

s a natural isomorphism
(8241) LW(BCI'iS(U/\)) ®Bcris(v)®KBcris(v)yA Bcris(v) = waU% ®Bcris(v) BcriS<U/\)

of Galois modules on U%. This isomorphism is functorial in U.

Proof. Choose a geometric generic point Spec(2) — Uz and view Beis(U”) (resp. VW,U%) as a
representation of 71 (U2, Spec(Q?)). Let wi ay and wg  a) beasin 7.11. By 7.12 there is a

natural isomorphism between these two fiber functors for Dar @ g Beyis(V') =~ Det @, Beris (V).
Define schemes

(8.24.2) Iag = Isom® (Wit (rn) @) (Baris(U") @i v) R), w @R (R0 (v) Beris(U™))),

(8243) Iet = m®(wgcris((]/\) ®Bcris(U/\) (BcriS(U/\) ®Bcris(v) R)’ w ®R (R ®Bcris(v) BcriS<U/\)))‘

The isomorphism in 7.12 induces an isomorphism Iqg =~ I, of affine schemes over R. To
prove the lemma it suffices to show that the coordinate ring of Iqg (resp. o) is canonically
isomorphic to the left hand side (resp. right hand side) of 8.24.1.

By 7.10, the coordinate ring of Iyr is isomorphic to
(8'24'4) (w%]jils(U/\) ®Bcrls(U/\) (Bcrls(U/\) ®BCI‘IS(V) R))(LW ®R (R ®BCI‘15(V) Bcrls(U/\)))

which equals
(8.24.5)
(LW(BcriS<U/\)) ®Bcris(v) (R ®Bcris(v) Bcer(U/\))) ®((R®Bcris(v)Bcris(U/\))®27A (R ®Bcris(v) BcriS(U/\>>'

We leave to the reader the task of showing that this expression is canonically isomorphic to
Lw(BcriS<U/\)) ®Bcris(v)®Bcris(V) Bcris(v) as deSIIGd

Similarly, the coordinate ring of I.; is isomorphic to
(8246) (VW,Q ®Bms(v) (Bcris(U/\) ®BcriS(V) R)) ®(R®Bcris(V)Bcris(U/\))®2 (R ®Bcris(v) BCIiS(U/\))
which is canonically isomorphic to V., 0 ®p,,.(v) Beris(U"). O

8.25. Let AY° (resp. AY°) denote the presheaf of differential graded algebras on Affx g,
which to any (R,w) associates the differential graded R-algebra (notation as in 4.37)

(8.25.1) DR(R ),  (vesp. RE(((Us, My, )/ K )exis)),

and let Ay (resp. A3) denote the associated sheaves of differential graded algebras. The
formation of the diagram 4.37.1 is functorial in (R, w) so there is a natural diagram of sheaves
of differential graded algebras

(8.25.2) As As A.

Finally define Q™ to be the presheaf of differential graded algebras on Affp , (v)g; o,

which to any (R,w) associates the differential graded algebra obtained by applying the functor
of Thom—Sullivan cochains to the cosimplicial differential graded algebra

(8253) [n] = GC(UTQ%7 EUﬂ R;(BcriS(UA») ®Bcris(v)®Bcris(V)1A Bcris(v>7
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and let Q be the associated sheaf of differential graded algebras. By 8.24 and the argu-
ment of 6.17 there is a natural diagram of presheaves of differential graded algebras on

AﬁBcris (V) ’chris(V)

(8.25.4) B Qs AP® AP AP,

and hence also a diagram of sheaves of differential graded algebras on Affp . v)g6; v,

d

(8.25.5) B "5 Q<" A, — A A.

Lemma 8.26. The morphisms a, b, ¢, and d restrict to equivalences on Efg . In

CriS(V)7g§CriS(V)
particular, there is natural isomorphism

(8.26.1) B| ~ Al =
Affz Aff5
Bcris(V),ggcris(V) Bcris(V)vgﬁcris(V)

in Ho(G,, vy — d8ag,, )-

Proof. First observe that if & — £’ is a finite extension of fields, where k is the residue field
V, and if V' is the ring of Witt vectors of k£’ then we obtain the same sheaves of algebras

on Affz NG5 ) when we apply the above construction to X ®y V’'. We may therefore
Cris k) BCriS V

assume that there exists a point z € X°(V) as in 7.1.

Let w, € Gp,,..(v)(Bais(V)) be the fiber functor defined by the point  and the isomorphism
in 7.12. Any object (R,w) fpqc-locally admits a flat morphism to (Bes(V),w,). Now it
follows from the construction of the algebras that if B.is(V) — R is a flat morphism then
the horizontal arrows in the following diagram

Bps(Bcris(V)7wx) ®Bcris(V) R —— Bps(R’ wr’R)

st(Bcris(V)awx) XB (V) R —— QpS<R7wx’R)

cris

(8.26.2) AP (Beis (V) wp) ®p,ry) B —— AP (R, w,|p)

cris

ASS<Bcris(V)7 Wx) ®B V) R —— ASS(R, wle)

cris

AP (Beis(V), we) @po(vy B ——— A”(R,w,|r)
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are equivalences. Thus it suffices to show that the maps in the diagram

Bps(Bcris(V)7wac) - QPS(BCTiS(V)’WJC)

T

(8.26.3) AL (Beris(V), we)

|

Aps(Bcris(V)vwm) — Ags(Bcris(V)awz)

induces equivalences after tensoring with Ecris(V). This follows from the observation that this
diagram is equal to the diagram obtained by applying the functor of Thom—Sullivan cochains
to the diagram 6.17.6. O

This completes the construction of .
P—-adic Hodge theory for spaces of paths

In the following 8.27-8.32 we prove 1.11.

dR  dR
e Wy, and

8.27. Let z,y € X°(K) be two points as in 7.1 giving rise to fiber functors w
ws', wyt and define

(8.27.1) P& = Tsom® (wy™, wi™),  Pet = Isom® (WS, wit).
The scheme Pgy (resp. Pg')) is a torsor under 71 (Car, wy) (resp. m1(Cet, wy)) and the natural

action of Gal(K/K) on w¢ and w¢' induces an action of Gal(K/K) on P compatible with
the action on 7 (Cet, ). Similarly, there is a natural semi-linear Frobenius automorphism

©par of P;{}; compatible with the Frobenius automorphism on 7 (Cqr, w ).

8.28. For a site C' let SPr,1.(C) denote the category of simplicial presheaves F' with a map
«[[* — F. By the same argument as in [Ho, 1.1.8] the model category structure on SPr(C')
induces a natural model category structure on SPr,y1.(C). For F' € SPr,1.(C) we denote
by g : % — F (resp. yp : * — F') the point obtained from the first (resp. second) inclusion

Define P, ., to be the sheaf associated to the presheaf which to any U € C associates the
set of homotopy classes of paths in |F(U)| between zp and yp. If mo(F) = {*}, then the sheaf
P,y is naturally a torsor under m(F,zp). In particular, if /' — F’ is an equivalence in
SPr,11.(C) then the induced map P, . — P, ., is an isomorphism. Thus the association
F — P, ., passes to the homotopy category Ho(SPr,1.(C)). Note also that P,, . depends
only on 7« F.

If G is a gerbe on C and z,y € G are two global objects, then BG is naturally an object of

SPr,11+(C), and there is a natural isomorphism
(8.28.1) Py ne = Isomg(x, ).

8.29. The points z,y € X°(K) give Yyr (resp. Ye¢) the structure of an object of Ho(SPr, 1. (kK))
(resp. Ho(SPr,17.(Q,))) as follows.

Let G (resp. G°%) denote the pro-reductive completion of 7;(Cqr, ) (resp. m(Cet,T)),
and let L(Ogar) (resp. V(Oget)) be the ind—F—isocrystal (resp. ind—smooth sheaf) obtained
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from z as in 4.35 (resp. 5.31). Denote by P (resp. Z_Di,t’y) the scheme

.,y
(8.29.1) Isom®(ng|DdR,w2R|DdR), (resp. Isom®(ws'|p,,, wy'|De.))-
As in 7.10, there is a natural isomorphism

(8.29.2) w;R(L(Ong>> ~ Ofipé (resp. w (V(OGet)) O—ec )

z,y

compatible with the action of GI® (resp. G°).

It follows that RI'wis(L(Og)) (resp. RI'w(V(O¢))) has the map to K (resp. Q,) in-
duced by x and also an equivariant map to (’)—dR (resp. Oet ) Applying the functor
[RSpecqar (—) /G (resp. [RSpecge (—)/G) and - notlng that [RSpechR(Oﬂm) /G| (resp.
[RSpeCGet(Oﬂt )/G*"]) is isomorphic to * we see that Ygr (resp. Yi) is naturally an object
of Ho(SPr,11. (K)) (resp. Ho(SPr,11+(Qp))).

Note also that the F—isocrystal structure on Yyr extends naturally to an F—isocrystal

structure in the category Ho(SPr,q1.(K)). Similarly, there is a natural action of Gal(K/K)
on Yy in Ho(SPr,1.(Qy)).

Proposition 8.30. There is a natural isomorphism

d e
(8.30.1) TV YYar Px;{ (resp. Pry v ™ Px,ty)

compatible with the action of Frobenius (resp. Gal(K/K)).

Proof. We give the proof of the isomorphism Poy vy ™
isomorphism to the reader (using the same argument)

~ PM% leaving the proof of the other

Let EN/dR be as in 8.18. The same argument as in 8.29 gives XN/dR the structure of an
object of Ho(SPr,q1.(K)) such that the equivalence f : Yar — Yar of 8.21 is an equiva-
lence in Ho(SPr,q7.(kK)). Furthermore, TSlS;dR is by 8.21 isomorphic in Ho(SPr,11.(K)) to
Bmi(Car, x) with the second point given by the quotient map

(8.30.2) [deyfy{/ﬂ'l (CdR, .Z')] — B7T1 (CdR, x)
This is exactly the point defined by y. The proposition follows from this and the discussion
in 8.28. 0

8.31. The equivalence 7.4.1 together with the isomorphisms in 7.12 induces a natural iso-
morphism

(8311) Piz ®K écris(v> = F(:y ®Qp Ecris<v)

compatible with the Frobenius and Galois actions. We leave to the reader the verification that
—d
the comparison isomorphism 7.16 is compatible with this second point defined by P, t , and

P,E,y (this essentially amounts to verifying that the comparison isomorphism is functorlal).
We thus obtain an isomorphism Yig ® g Beais(V) =~ Yo ®q, Bais(V) in Ho(SPr, 14 (Beis(V)))
compatible with the action of Frobenius and Galois. Combining this with 8.30 we obtain an
isomorphism

(8.31.2) P @ Buio(V) ~ P @q, Bens(V)
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compatible with the action of Frobenius and Galois. By [O13, 15.2] applied to the coordinate

rings of P¢ and Pg' this isomorphism is induced by an isomorphism

(8313) Pgl;{ ®K Bcris(v) ~ P;t ®Qp BcriS(V)

Y

compatible with Frobenius and Galois actions. The following lemma 8.32 combined with 7.19
now proves 1.11. [l

Lemma 8.32. The Galois representation Ope: is a direct limit of finite~dimensional sub—
Galois representations.

Proof. Write OPng{ as a direct limit lii>nj W; of finite dimensional subspaces, and let V; :=

(Wj ®K Beris(V)) N Ope: . Then as in the proof of 7.18, V; is finite dimensional, Galois stable,
and Op;ty = lii>nj V. O

9. TANGENTIAL BASE POINTS

In this section we explain how the point x € X°(V') used in the constructions of this paper
can be replaced by a tangential base point [De2, §15]. We assume the reader is familiar with
the basics of the Kummer étale topology (an excellent summary is [112]).

9.1. Let X/V and D C X be as in 1.1, and fix a point b € D(V). We write M, for the
log structure on b = Spec(V') obtained from the log structure My on X by pullback. Let
(bi, My, ) denote the reduction of (b, M,) modulo p (so by = Spec(k)).

Throughout this section we make the following assumption.
Assumption 9.2. The sheaf M, on the étale site of b is trivial.

Remark 9.3. In general, this assumption holds after making a finite étale extension V' — V".
For if b — b is a geometric point, then the action of (b, b) on Mb’g ~ N" must preserve the
irreducible elements. It follows that the action of 71(b,b) on M, factors through a finite
quotient which gives the desired extension V' — V.

De Rham tangential base point.

9.4. The closed immersion (b, My, ) — (b, M;) defines an object of the convergent site of
(bi, My, )/V and hence for any isocrystal E on (by, M, )/ K we obtain a module with integrable
connection (&, N) on the generic fiber (Spec(K), My)/K of (b, My) (note that since (b, M) is
not smooth over V' the association E — (&, N) does not define an equivalence of categ)ries).
The natural map dlog : M, — Q%b, My)/V defines a canonical isomorphism Q%@ Myyv =M zp ®z
V', and the differential d : V' — Q@ My)/V is zero. Thus the connection N is simply a K-linear
map & — & Rz Mﬁ” and the integrablity condition on N amounts to the condition that for
any two elements p, o’ € Hom(M;' ,Z) the induced endomorphisms

(941) Np, Npl . gb — Sb

commute. We say that F is unipotent if the endomorphisms N, are nilpotent for all p €
Hom(M)",7Z) (see 9.8 below for a different interpretation of this condition).
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Let Vaip ((bx s My, )/ K) denote the category of pairs (€, N) consisting of a K—vector space
£ with a linear map £ — £ ®y M?’ such that the endormorphisms N, defined above are all
nilpotent and commute.

Proposition 9.5. The functor sending E to (&, N) induces an equivalence between the cat-
egory of unipotent isocrystals on (by, My, )/ K and the category Viap((bx, M, )/ K)

Proof. Choose an isomorphism M, ~ V* @ N". Let T, denote the completion at the origin of
the affine space Spec(Sym* Q%@ M) /Spec(V)) and let My, be the log structure on 7}, obtained

from the map N” — Oy, sending the i-th standard generator e; to dlog(e;) € Q%b My)/Spec(V)?
so that there is a closed immersion (b, M) — (Tp, Mr,).

Since (Ty, My,) is formally log smooth over V', evaluation on the widening (bg, M;,) —
(Ty, Mr,) induces a functor from the category of unipotent isocrystals on (bg, M;, )/ K to the
category of modules with integrable connection (€, V) on (Ty x, My, ;). We call a module with
integrable connection (£, V) on (T}, i, M1, ;) unipotent if for any 1 < i < r the endomorphism

defined by the dual of dlog(e;) induces a nilpotent endomorphism of £ ® k(b ).

For any unipotent isocrystal £ on (bg, Ms, )/ K with associated module with integrable con-
nection (&€, V) on (T} i, M1, ;. ), the comparison between crystalline and de Rham cohomology
gives an isomorphism

(9.5.2) H

cris

((bkv Mbk)/K7 E) = H:ikR((Tb,Kv MTb,K)’ (87 V))

Looking at H® and H', it follows that the functor E +— (&, V) is fully faithful with essential
image closed under extensions. In particular, we obtain an equivalence of categories between
the category of unipotent isocrystals on (b, M;)/K and the category of unipotent modules
with integrable connection on (7} x, M1, ;).

A pair (€, N) as in the proposition defines a module with connection (€ ® Or, .., V) by
taking V to be the trivial vector bundle £ @k Or, .. and V the connection defined by

(9.5.3) V(e®1l)=N(e)®@1e&®z My @507, ~ €Ok, k-
Here we use the isomorphism QlTb oK Or, . ®2z M‘Zp provided by the map dlog.

Lemma 9.6. The functor (£, N) + (€ @ Or, ., V) is fully faithful.

Proof. Since the functor is compatible with tensor products and duals it suffices to show that
for (€, N) € Vaup((bk, My, )/ K) the natural reduction map

(9.6.1) H3u(€ © Op, ., Vi) — Ker(N)

is an isomorphism.
If e € Ker(NV) then V(e® 1) =0, so 9.6.1 is clearly surjective.

To see that 9.6.1 is injective proceed as follows. Since the operators N, commute and are
nilpotent, there exists a basis eq, ..., e, for € such that for each i we have N (e;) = Zj<i W;j€j
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for some w;; € Q%bK’ My, )K" If )", ge; is a horizontal vector, then we find that

(9.6.2) 0= V(Z gie:) = Y _(dgie; + g ¥ wije;).

7 7<t

Using descending induction in j one sees from this formula that dg; lies in K ®z Mfi C

Q%Tb,Ky M, /K for every 7. On the other hand, if I C Op, . denotes the ideal of the origin,

then the image of d : O, ,, — Q%Tb,K,MTb’K)/K is contained in I - Q%Tb,KvMTbyK)/K' This implies

that all the functions g; are constant, and hence the map 9.6.1 is injective. U

Let (£,V) be a module with integrable connection on (73, My, , )/K with nilpotent
residue, and fix a basis ey,...,e, for & such that for every i € [1,n] we have N(e;) =
ZKi wjje; for some w;; € K ®y Mgp.

Lemma 9.7. There exists a unique basis {€;} for £ reducing to the basis {e;} for & such
- - —gp .

that V(€;) = >, ;wij€j € € ®xz M ~E® Q%Tb,K7MTb7K)/K for every i € [1,n].

Proof. Let I C Or, . be the ideal defining bx and observe that the differential sends I to

I® Q%Tb o Mr /K- It follows that the connection V induces for all m > 0 a map, which we
(i b,K

denote by the same letter
(9.7.1) V:E/NME — (E/IME)® Q%Tb,KvMTb’K)/K'

To prove the existence of the desired basis {¢;} it suffices to show that if a basis {é;} exists
with the desired properties modulo I™ then after adding suitable elements of I"™E to this
basis we obtain a basis that works also modulo I™"!. For then passing to the limit in m
yields the desired basis for £.

So assume given a basis {é;} with the desired properties modulo 1. We show by induction
oni=1,...,n that we can modify é; so that V(é;) is congruent to >, _; w;;€; modulo I"™*!E.

For the case i@ = 1, note that since e; € Ker(N) we can write V(&) = >, \je; with
i € IO . Since V is integrable, we have
(Tb,KyMThK)/K

(9.7.2) 0=V2(&1) =Y (dN\éi + M A wiéy)).

% 1<t

The coefficient of €; in this expression is equal to

(9.7.3) A+ Y N Aw.
i>7

In particular if A\; = 0 for ¢ > j, then d\j, = 0. In this case, \j, defines a closed form in
QF /i (without log poles) which is exact by the usual Poincare lemma [B-O, proof of 6.12].
Let 7, € Or, . be a function with dn;, = Aj,. Note that since the differential d preserves
the ideal I we can choose nj;, € I"™. Set & := &, — n;,€;,. Then if V(&}) = Nj&| + > .., &
we have A\, = 0 for i > j, — 1. Proceeding by descending induction on j, we obtain the case
1= 1.
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Next we modify é; assuming that V(&) =Y .__ ws;€é; for s < i. Write

j<s
J<i J
with \; € I mQ%Tb,IO Mz, )/K- Then by induction and using the fact that the operators N,

commute, we have V(_._; w;;€;) = 0, so again we find that

i>j
Repeating the inductive argument used in the case ¢ = 1, we obtain the desired modification
of éz
Finally we prove the uniqueness of the basis {€;}. For this assume {€,} is another basis

with the same properties. Then é — €] is closed and in I€. Write & — €&} = >, g;é; with
gi € I. Then

i j<i
If not all g; = 0, then there exists a largest integer 7o for which g;, # 0. The above formula
then implies that dg;, = 0, which is impossible since d is injective on I. Consequently all

g;=0and é = €.
Looking at the module with integrable connection £/(¢é;) and using induction on the rank,

it follows that for each ¢ > 2 there exists g; € I so that é; = €, + g;é;. By induction on k we
then show that é; = é).. If the result holds for k < ko, then we have

(9.7.7) V(Er) = > wroiéj = V(&)

Jj<ko
and hence V(gy,€1) = dgy,€1 = 0. Again since d is injective on [ it follows that gy, = 0 and
hence €, = €, . This completes the proof of the uniqueness and the lemma. Il

Combining 9.6 and 9.7 we obtain 9.5. U

Corollary 9.8. If E is a unipotent isocrystal on (b, My, )/ K, then there ezists a canonical
filtration Fil on E by sub—isocrystals such that the associated graded gregE is a direct sum of
trivial isocrystals.

Proof. 1f (£, N) is the object in Vi, ((br, My, )/ K) associated to E, then since the operators
N, commute and are nilpotent there exists a canonical filtration Filg on £ defined inductively
by setting Filg := Ker(N) and Fil; equal to the inverse image of Fil} Jppi—1- This filtration on
& combined with 9.5 induces a canonical filtration on E with the desired properties. U

Corollary 9.9. The category of unipotent isocrystals on (by, My, )/ K is Tannakian with fiber
functor given by sending an isocrystal E to its value on (b, My). The fundamental group of
this Tannakian category is canonically isomorphic to the vector group scheme Ggr over K
sending a K —algebra R to R ®z Hom(M, ,Z).
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Proof. The first statement follows from 9.5 since the category Vuip((bx, Ms, )/ K) is clearly
Tannakian.

To calculate the fundamental group 7, choose a basis eq, ..., e, for sz and let p1,..., pr
be the corresponding dual basis. The category Viup((br, My, )/K) is then identified with
the category of K—vector spaces & with commuting nilpotent operators N, ,..., N, . Expo-
nentiating these operators we see that the category Vi, ((bx, Ms, )/K) is equivalent to the
category of vector spaces & with commuting unipotent automorphisms U,,,...,U, . This
category is in turn equivalent to the category of representations of G, ~ Ggr. We leave to
the reader the verification that this isomorphism m ~ Gggr is independent of the choice of

basis for M. U
9.10. Multiplication by p on M, induces a lift of Frobenius F : (b, M) — (b, M,). If E is
an isocrystal on (bg, My, )/K with corresponding object (£, N) € Viup((bg, My, )/K), then
F*E corresponds to the pair (€ ®k, K,pN). In particular, pullback by Frobenius induces
an auto—equivalence of the category of unipotent isocrystals on (bg, My, )/ K. If Gar ~ K ®z
Hom(ﬁgp, Z) denotes the fundamental group of this category, then it follows from the proof
of 9.9 that the isomorphism Fg , : Gaqr — Gar ®k, K induced by Frobenius is equal to

the map induced by multiplication by p on Hom(M,",Z), or equivalently the semi-linear
automorphism po on K.

Denote by K (1) the F-isocrystal with underlying vector space K and semi-linear auto-
morphism po. Then the above discussion implies that Gggr is isomorphic as a vector group
scheme with semi-linear automorphism to K (1) ®z Hom(M Zi, 7).

Corollary 9.11. The functor
(9.11.1) Wi Vi (X, My, ) — Vecy

sending a module with integrable log connection (£,V) to £(b) is a fiber functor.

Proof. It suffices to verify that the functor is faithful and exact. Let X}, be the completion
of Xk along b. The functor sending (€, V) to the pullback (£*, V*) of (£, V) to Xj; is exact
and faithful, and the residue of V* is nilpotent. The result therefore follows from 9.7. O

9.12. For a Tannakian subcategory C C Vyu,(Xk, Mx, ), we write m;(C,b) for the Tannaka
dual of C with respect to the fiber functor 9.11.1.

If (F, ) is an F—isocrystal, and Cqg is as in 7.1, we can by 4.37 construct a natural pointed
stack Xe¢,, € Ho(SPr,(K)) with semi-linear Frobenius automorphism using the fiber functor
9.11.1. Moreover, the fundamental group of X, . is naturally isomorphic to m (Car,b) and
the cohomology of local systems on X¢,,, is isomorphic to crystalline cohomology (this follows
from the same reasoning used in [Ol1].

Etale tangential base point.

9.13. Let (bg, M,_) be the base change of (b, M,) to Spec(K).

Choose an isomorphism M,, ~ K* @ M,, corresponding to a section of the projection
My, — My, (note that here we are using 9.2), and define a log geometric point (b, M) —
(bg, M) in the sense of [12, 4.1] as follows. The scheme b is equal to Spec(K). Let
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P C M‘Z; ®z Q be the submonoid of elements m € M‘Z; ® Q for which there exists an integer

n so that n-m is in M, , and let M; be the monoid K @ P with map to K s%ding all
nonzero elements of P to 0. The map to (bg, M,_) is induced by the natural map M, _ — P
and the above splitting of M,,.

Note that since the splitting M,, ~ K* @ M,, is defined over K and not K, for any
o € Gal(K/K) there is a natural commutative diagram

(b, M) —T— (b, M)

(9.13.1) l l

(bfv be) - (bfv be)a
where the map o is the natural action on (bz, M,,_). In particular, the group Gal(K /K) acts

K

on the log étale fundamental group m((bg, M), (b, Mp)) [112, §4].
Lemma 9.14. There is a canonical isomorphism between m ((bz, M,_), (b, M) and

(9.14.1) Hom (M, ,7) @y Z(1) == (lim Hom(M,,., pn(K))),

n

compatible with the action of Gal(?_/K), where Gal(K/K) acts on the right hand side of
9.14.1 via the natural action on ,(K).

Proof. This is discussed in [I12, 4.7]. 0

9.15. For an integer n > 1 let LCz;(m) (b, M) denote the category of locally constant
sheaves of Z/(n)-modules of finite type on the Kummer étale site of (bz, Mp_), and define
the category of smooth Q,—sheaves on (bg, M,_) to be the category

(9.15.1) Sma, (b, My.) == (im LC7 ) (b, My.)) ®z, Q.

Taking the stalk at (b, Mj;) identifies the category Smq, (bz, M) with the category of con-
tinuous Q,-representations of m((bz, M;_), (b, M;_)).

Let Smg:p(b?, My,_) be the category of smooth Q,-sheaves L which admit an exhaus-
tive filtration F'* such that the successive quotients F'/F*™! are trivial sheaves. The cate-
gory Smg:p(b?, M) is equivalent to the category of unipotent representations of the group
™ ((bg, My_), (b, Mp)). Tt follows from this that Sm&ip(b?, M) is Tannakian with fiber func-
tor sending a sheaf L to L y). Furthermore, the Tannaka dual G is canonically isomorphic

to the vector group scheme over Q, defined by the QQ,~vector space Hom(M‘Zﬁ, Z) ® Qp(1).

For any ¢ € Gal(K/K), pullback by o : (bw, My_) — (bg, My_) induces an auto-
equivalence of Smg " (b, M) compatible with the fiber functor defined by (b, M;). Under
the isomorphism Gg =~ Hom(MgZ,Z) ® Q,(1) the induced action of Gal(K/K) on G is
simply the action of Gal(K/K) on Hom(Mj, ,Z) ® Q,(1) described in 9.14.

Corollary 9.16. There is a natural isomorphism ig : Gar @k Beris(V) ~ Ger ®qg, Beris(V)
compatible with the action of Galois and Frobenius.
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Proof. By the discussion in 9.10 and 9.15 it suffices to exhibit a natural association between
K(1) and Q,(1). This can be done as follows. Let 5 : Q,(1) — Bes(V) be the map defined
in [Fo4, 2.3.4]. Then the Galois invariants of Q,(1) ®q, Bais(V') are equal to Q,(1) ®q, K -
B(Qp(1)) C Qu(1) ®q, Beis(V) with Frobenius action given by { ® n+— £ @ pn. If £ € Q,(1)
is a generator, we therefor obtain an isomorphism

(9.16.1) (@(1) @, Bas(V)“F/) = @, (1) @, K - B(Qy(1)) = K(1)
by sending £ ® 3(£7!) to 1 € K. Moreover, this isomorphism is independent of the choice of
the generator &. O

9.17. By [l12, 4.7 (c)], restriction induces an equivalence of categories between the category
of finite Kummer étale log schemes over (Xz, M X?) and the category of finite étale schemes
over X% By passing to the limit it follows that the category of smooth Q,-sheaves (defined
as in 9.15) on the log étale site of (Xz, My_) is equivalent via the restriction functor to the
category of smooth @Q,—sheaves on X7.. In particular, for a Tannakian category C of smooth
Q,—sheaves on X7, there is a natural fiber functor obtained from the composite

L’_)L(E,Mg)

(9.17.1) wi® : (smooth Q,-sheaves on X%) ~ Smgq, (X%, Mx,.) ———— Vecg,.
We denote the corresponding group scheme by 7(C, b).

9.18. We can also modify the construction of the stack X¢,, in 5.31 to the situation of the
fiber functor 9.17.1 instead of that defined by a point in X°.

For this let £ — X7 be a finite collection of geometric generic points whose image meets
every connected component of Xz. For each point e € E, let X ¢ — X3 be the normalization
of Xz in the maximal subfield of k(E) unramified over X%. The scheme X° is naturally
a projective limit of finite étale X7—schemes, and hence by the equivalence [I12, 4.7 (c)] is
obtained from a projective system (X,, M %.) of Kummer étale coverings of (X7, Mx_). In

particular, the pullback of ()N(e, Mz ) to (b, Mj) is a disjoint union of log schemes isomorphic
to (b, My). Define specialization data for E relative to b to be a collection of sections of the
maps

(9181) (jze? M)?e) X(vaMX?) (b7 ME) - <b7 MB)7

one for each e € E.

Note that by [I12, 4.6], any two choices of specialization data differ by the action of an

m1(X%, e) on the log schemes {(X., Mg )}

Using the same method discussed in 5.31, we then obtain a pointed stack X¢,, € Ho(SPr,(Q,))
which is independent of the choice of specialization data, whose fundamental group is 1 (Ces, b),
and whose cohomology groups compute étale cohomology.

element in [[,.x

Pullback of associations and comparison.
9.19. Let
(9.19.1) (Spec(K), Mz) — (b, My,.)
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be a log geometric point, and define My to be the log structure on Spec(V') given by
(9.19.2) My = {m € Myg|nm € V" @y~ M, for some positive n € Z}.

Here we view M, C My, as a submonoid of M. If we choose an isomorphism My >~ F*@ng
for some r, where Q> C Q denotes the submonoid of nonnegative rational numbers, then it

follows from the definition that My ~ V" @ Q% with the map to V obtained by sending all
nonzero elements of Q% to 0.

Denote by (Spec(V /pV), My spv) the reduction modulo p. For each positive integer n define
1
(9193) EMV/Z)V = {m S MV/pV|p"m € MV/pV};

where we view My, as a submonoid of M V- Denote by N the inverse limit

1
(9.19.4) N :=lim EMV/pVa

where the inverse limit is taken with respect to the multiplication by p maps #MV/W —
I%Mv/pv. The maps

1 -
(9.19.5) —My)py — V/pV

pTL

induced by the map My — V define a map of monoids
(9.19.6) N — 8 :=1lmV/pV,

where the maps V /pV — V /pV on the right hand side are the Frobenius maps. Let M. Aerio(V)
be the log structure on Spec(Aqis(V)) associated to the prelog structure

(9197) N S ! W(S> I Acris(v)7
where ¢t denotes the Teichmuller lifting. It follows from the construction that the diagram

d
MAcris(V) — Mb

(9.19.8) J l

Aais(V) =25 7V

commutes, where d is the map induced by the projection of N onto M,.
9.20. If we choose an isomorphism M5 ~ Ve Q%y, then N is isomorphic to
(9.20.1) (lim(V/pV)*) & N".

From this it follows that the log structure My
morphism of log schemes

(vy admits a chart by N" and that the

cris

(9.20.2) (Spec(V), Myly) — (Spec(Aeis(V)), Maiv))

induced by 9.19.8 is a log closed immersion.
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9.21. The construction of the log structure Mu_, () is functorial in (Spec(K), Mz). This

implies that for any g € m ((bx, My, ), (Spec(K), Mz)) there is a natural commutative dia-
gram

(Spec(V), Mylr) —— (Spec(Aais(V)), Ma(v))

(9.21.1) gl L"
(Spec(V), Mylyr) —— (Spec(Acis(V)), M),

where the action of g on the rings Aqis(V) and V is given by the action of the image of g in
Gal(K/K). The usual action of Frobenius on Ag;s(V) also extends to an action on the log
scheme (Spec(Aqis(V)), Ma,,..(v)) by considering the multiplication by p map on N.

It follows that for any log geometric point (b, M) — (b, My, ) we obtain an enlargement
(9.21.2) (Spec(V /pV), Myl ) = (Spec(Aes(V)), Ma,v))

with action of the group 7 ((bx, My, ), (b, M;)) and a Frobenius automorphism. In particular,
for any F—isocrystal E on the convergent topos of (bg, My, )/ K we can evaluate E on this en-
largement to obtain a Bes(V)-module with continuous action of 71 ((bg, My, ), (b, Mz)) and a
semi-linear Frobenius automorphism. We will denote this data simply by E(Beis(V), Mp.,..(v))-

Definition 9.22. Let (E, ¢) be an F-isocrystal on (bg, M,, )/ K, and let L be a smooth log—
étale sheaf on (bg, My, ). An association between (E, ) and L is the data of an isomorphism
(9221) [’(E,ME) : E(Bcris<v) MBCUS( )) = L ®Qp Bcer(V)

of 71 ((br, My, ), (b, M3))-modules compatible with the action of Frobenius for every log geo-

metric point (b, M;). These isomorphisms are furthermore required to be compatible with
morphisms of log geometric points over (bg, M, ) as in 6.13.

Remark 9.23. Note that as in 5.3 the data of an association is equivalent to the data of
the isomorphism 9.22.1 for the choice of a single log geometric point. However, the above
definition makes the notion independent of the choice of such a point.

9.24. If we fix a log geometric point (b, M) — (b, My, ) and isomorphisms Mj ~ K o Q%,
and M, ~ V* @& N" such that the map M, — Mj sends N to Q%, then we can describe
everything explicitly as follows.

These choices induce an isomorphism
(9.24.1) T ((bi, My, ), (b, Mz)) ~ Z(1)" x Gal(K /K),

where the semi-direct product is taken with respect to the natural action of Gal(K/K) on
Z(1), as well as an isomorphism

(9.24.2) Q%be)/V ~ @; V- dlog(e;),
where e; denotes the i—th standard generator of N”.

For a unipotent F-isocrystal (E, ) on (bg, My, )/ K with associated object (£, N) € Viup (b, May ),
define endomorphisms N; : £ — £ by the formula

(9.24.3) ZN )dlog(e;),
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and for an element o € 71 ((bg, My_) let 0; € Z(1) be the i~th component of . Denote by &
the image of 0; in Z,(1).

There is a map
(9244) (SpeC(AcriS(V>)7 MAcris(V)) - <b7 Mb)

obtained from the map N" — My_. () which sends the :~th standard basis element e; € N
to the Teichmuller lift of the element

1 1
(9245) {E S QTZO} S liLHEMv/an = N.

This retraction and the fact that E is an isocrystal gives an isomorphism
(9246) E(Bcris(v)a MBcris(V)) ~ & K BCriS<V)'

With this identification, the action of m ((br, My ), (b, M) ~ Z(1) x Gal(K /K) on £ ®x
Beis(V) is as follows: The group Gal(K/K) acts via the action on the second factor Bes(V)
and an element o; of the i—th component Z(1) C Z(1)" acts by the formula
(9.24.7) m®@ 1Y N (m)® 3(5;)°,

s>0

where 3 : Z,(1) — Bes(V) is the map defined in [Ts1, p. 396]. The validity of this formula
follows from the same reasoning used in [Fal, top of p. 37].

9.25. If (E,,Filg) € MFY(®) is associated via ¢ to a smooth sheaf L on X, which we
view as a smooth sheaf on the log étale site of (Xk, My, ), then the pullbacks b*(E, ) and
b* L are naturally associated. This can be seen as follows.

Assume first that there exists a morphism (b, M) — U = Spec(R) over X where U is a
very small étale X—scheme. Let (b, M;) — (b, M) be a log geometric point. Let R/R denote
the normalization of R in the maximal extension of Frac(R) unramified over Ug,.

Let (T, M7) be the completion of U along b, with My the pullback of the log structure
M. Let S be the coordinate ring of T', and let S be the normalization of S in the maximal
extension of Frac(S) which is unramified over S[1/pt; - - - t,].

Also choose specialization data as in 9.18. That is, a morphism s filling in the following
diagram

(9.25.1) (b, Mz) —— (Spec(S ® K), Mgy )
(b7 Mb) (Ta MT)

Here the log structure on Spec(S ® K) is defined as in 9.18.

Note that s also defines a commutative diagram

(9.25.2) (b, M) —— (Spec(R ® K), Mgy

| |

(b7 Mb) (U7 MU);
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and hence by [112, 4.6], the specialization data s defines an isomorphism
(9.25.3) Gal(R/R) ~ 7 ((Ux, My,.), (b, Mj)).

The specialization data s includes a map S — V, which in turn defines a morphism
Aeis(S) — Aais(V). This map can be extended to a morphism of enlargements

(Spec(V/pV), My |y /7) —— (Spec(Aeis(V)), M)
(9.25.4) l l
(Spec(S/pS), Mslgys) — (Spec(Aeis(S)), Manu(s))

as follows. The log structure M4, (s) defined in 6.7 admits the following alternate description
in this case. Define

1 _
(9.25.5) EF(& Mg) :=={m e I'(S, Mg)|p"m € I'(S, Msg)},
and define
o1
(9256) NS = h;nﬁF(S, Ms),

n

where the inverse limit is taken with respect to the multiplication by p maps. There is then
a natural map

(9.25.7) Ng — lim(S/pS)

which when composed with the Teichmuller map defines a monoid map Ng — Agis(S). The
log structure My, (s) is canonically isomorphic to the log structure associated to this prelog
structure.

This alternate description of M, (s) shows in particular that the natural map Aes(S) —
Aeis(V) extends to a morphism of logarithmic enlargements as in 9.25.4, where the map on
log structures is induced by the natural map Ng — N (where N is as in 9.19.4).

9.26. The choice of the specialization map s induces an action of 7 ((bg, My, ), (b, M3)) on
E(Beuis(5)). It follows from the construction that the morphism of enlargements 9.25.4 is
compatible with this action, and in addition is compatible with the Frobenius automorphisms.
It follows that there is a canonical map

(9.26.1) E(Beis(5)) = E(Beris(V), Mp, ()

compatible with the action of 7 ((bx, My, ), (b, M3)) and Frobenius. In other words, there is
a canonical isomorphism

(9‘26-2) E<BcriS(V>a MBcris(V)> = E<BcriS(S>) ®Bcris(s) BcriS(V>

compatible with the actions (note that a priori the action of m((bx, My, ), (b, M)) need not
descend to this quotient but the above shows that in fact it does descend).

On the other hand, the given association ¢ between (FE, ¢, Filg) and L defines an isomor-
phism

(9.26.3) E(Beis(S)) =~ L ®q, Beris(S).



96 Martin C. Olsson

Tensoring with Beis(V) we obtain an isomorphism of m((bx, My, ), (b, M))-modules
(9264) b*E(BcriS(V), MBmS(V)) ~ b*L ®Qp Bcris(V)

compatible with Frobenius. This is the desired pullback of the association . We leave to the
reader the verification that it is independent of the choices in the above construction.

Remark 9.27. In the above we assume that there was a very small étale X-scheme U
and a morphism (b, M,) — (U, My) over (X, Mx). By [Fa2, 11.2.1], such a neighborhood
always exists when X is a scheme. To deal with the situation of X an algebraic space or
Deligne—-Mumford stack, one can proceed as follows. First note that after making a finite
étale extension V' — V'’ we do have such a morphism p, and hence we obtain an isomorphism

(9271) E(Bcris(v)a MBcris(V)) ~ L ®Qp Bcris(v)
compatible with Frobenius and the action of the subgroup
(9.27.2) 1 ((bxr, My, ), (b, My)) C m1((bre, My,.), (b, M)),

where K’ denotes the field of fractions of V’. To define the pullback of ¢ it is therefore enough
to prove that the isomorphism 9.27.1) is also compatible with the action of Gal(K'/K). If
g € Gal(K’/K), then the conjugate g09.27.10¢~! is the isomorphism obtained from the map
(9.27.3) (bgr, My,,,) —>— (bgr, My,,) —— (U, My),

and hence the desired extension of the action to 7 ((bx, My, ), (b, Mj)) follows from the inde-
pendence of 9.27.1 on the choice of the map p.

Comparison theorem.

Let Cqr and C¢ be as in 7.1.
Theorem 9.28. With notation as in 9.12 and 9.18, there is a natural isomorphism

(9281) XCdR ®K Ecris(v) ~ Xcet ®Qp Ecris(v)

in Ho(SPr.(Beis(V))) compatible with the actions of Frobenius and Galois.

Proof. Let )A(:CdR denotes the pointed stack obtained from carrying out the construction of
4.35 (see also 4.37) using the fiber functor

(9.28.2) (:) . CdR e MOdECriS(V)7

sending an isocrystal to its value on the enlargement 9.21.2. Then the proof of 1.7 carries
over to give an isomorphism

(9.28.3) XCdR x~ Xcet ®@p Ecris(v)

compatible with the Galois action. In fact, there is even a natural action of 7, ((bx, Mj,. ), (b, Mj))
on both sides of 9.28.3 induced by the action on the enlargement 9.21.2 and the natural action
on the fiber functor defined by (b, Mj). Chasing through the proof of 1.7 one sees that the
isomorphism 9.28.3 is compatible with this action. On the other hand, the argument of 5.24
shows that the action of 7 ((bx, My, ), (b, M3)) on X, factors through Gal(K/K).

To prove the theorem, it therefore suffices to define an isomorphism X¢,, ®x Ems(V) ~
Xc,, compatible with Frobenius and Gal(K /K )-action.
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For this choose an isomorphism M, ~ V*@®N" for some r and for each ¢ = 1,...,r choose a
sequence of elements m’, € Mj with p"-m! = e;, where e; denotes the i—th standard generator
of N". The choice of the m! defines a map M, — N, where N is as in 9.24.5, and hence we
obtain a morphism of log schemes

(9.28.4) 1 (Spec(Aeis(V)), Ma,..(vy) — (b, My).

Note that the choice of the m! define an isomorphism Mj ~ K & Q%y. Furthermore, the

description in 9.14 of the group m((bx, My, ), (b, M3)) shows that there is a unique isomor-
phism

(9.28.5) T ((bie, My, ), (b, My)) ~ Z(1)" x Gal(K /K)
such that the elements m;, are invariant under the action of Gal(K/K). Tt follows that the
retraction r is Gal(K /K )—equivariant. We therefore obtain an isomorphism of fiber functors

(9.28.6) Wy @ Beris (V) ~ @

compatible with Frobenius and the action of Gal(K/K). This isomorphism then induces an

isomorphism of stacks X¢,, ®x Beris(V) >~ Xe,,, over Bes(V) compatible with the action of
Gal(K/K) and Frobenius.

To complete the proof of 9.28 it remains only to see that the isomorphism X¢,, ®k

Beis(V) ~ )?c 18 independent of the ehoice of r above. For this observe that a second
choice of elements {m!} differs from {m/,} by the action of an element o in

(9.28.7) I := Ker(m((bg, My, ), (b, My)) — Gal(K/K)).

It follows that the isomorphism X, ®x Beis(V) ~ Xe,,, obtained from the collection {mi’}
differs from the one obtained from {m} by the action on Xc,, of an element in I. But as
we have already shown that the action of I on X . 1s trivial it follows that the isomorphism
Xegw Ok Bais(V) ~ X, ®q, Beis(V) constructed above is independent of the choices. [

Corollary 9.29. There is a natural isomorphism
(9291) T (CdR, b) ®K Bcris(v) >~ (Cet; 6) ®Qp Bcris<v)

compatible with Frobenius and Galois actions.

Proof. This follows from the same argument proving 1.8. g

The log scheme (b, M) is a K(m,1).

Proposition 9.30. If E is a unipotent isocrystal on (b, My,)/K, then there is a natural
1somorphism

(9.30.1) H

cris

((bx, My, )/ K, E) ~ H*(Ggr, £),

where the right hand side denotes group cohomology of the representation £ obtained from E
by applying the functor in 9.5.
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Proof. Choose an embedding (b, M) — (1}, Mr,) as in the proof of 9.7. We first construct
the isomorphism 9.30.1 using this choice, and then prove that it is independent of the choice.

The crystalline cohomology of (by, M,,)/K is computed by the de Rham complex of the
module with connection E ) on (Tb7K,MTb7K) over K. On the other hand, the de

Rham complex of (£, N) on (bx, My, ) over K is naturally isomorphic to the Hochschild com-
plex of the representation £ of Lie(Ggr) corresponding to (£, N) [K-T, 4.27]. The restriction
map from the de Rham cohomology of Er, . uy, ) to the de Rham cohomology of (€, N)

Ty, i Mry 1

therefore defines a map

(9.30.2) H

cris

((bk, Mbk)/K, E) — H*(GdR,E).

Filtering E by sub-isocrystals such that the successive quotients are trivial isocrystals and
consideration of the associated long exact sequences shows that to prove that the restriction
map 9.30.2 is an isomorphism it suffices to consider the case when FE is the trivial isocrystal.

Let K{{t1,...,t.}} denote the value of ’C(bImek)/K on the widening
(9'30'3) (bk’ Mbk) - (Spf(VHtl, e at?‘“)a MV[[ﬁ ,,,,, tr]])>

where the log structure My, .4 is induced by the natural map N" — V{[t;,... ¢,]].

7777

Then the de Rham complex of K, My, )/ K is given by the de Rham complex of

where (log) denotes the free K-vector space with basis dlog(¢;) (i = 1,...,7). The de Rham
complex of (€, N) is the complex with zero differential and i—th term

(9.30.5) Q' (log) := /\ Q(log).
Let J C K{{t1,...,t.}} be the ideal defined by (t1,...,t,) so that setting J to zero defines
a map of complexes
(9.30.6) K{{t1,...,t,}} @ 2 (log) — Q' (log).
We claim that this reduction map is a quasi-isomorphism.
For this let €2 denote the free K-vector space of rank r and basis {dt;}. Then the kernel of
9.30.6 is the complex
(9.30.7) J— K{t1,... . t,}} 0k Q— K{{t1,... . t,}} Q¥ — -

which agrees with the usual de Rham complex computing the convergent cohomology of the
point Spec(k) (with no log structure) except in degree 0. Since Spec(k) has trivial cohomology,
the map

(9.30.8) K — (K{{t1,...,t,}} = K{{t1,.. .. t,}} @k Q@ — K{{t1,..., t,}} @ Q* — --+)
is a quasi-isomorphism, which implies that 9.30.7 is acyclic so 9.30.6 is a quasi-isomorphism.

It remains only to see that the functor 9.30.2 is independent of the choices. For this note
that the functor which to any representation V' of Ggr associates the corresponding isocrystal
V defines a functor

(9.30.9) J : Rep(Ggr) — (sheaves on convergent site of (bg, My, )/ K).
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Furthermore, there is a natural isomorphism of functors

(9.30.10) (V= V&) LT y07.

By the universality of the d-functor H*(Ggr, —) we therefore obtain a map of é—functors
(9.30.11) H (b, My, )/ K, §(=)) = H* (Gar, —).-

This gives a canonical description of the map 9.30.2 and hence completes the proof of the
Proposition. Il

Corollary 9.31. Let L(Og,,) denote the ind-isocrystal on (by, My,)/K obtained from the
coordinate ring Og,, with its natural action of Gar coming from right translation. Then
Héris((bka Mbk)/K7 L<OGdR)) =0 fori>0 and ngis«bk: Mbk)/K7 L<OGdR)) =K.

Proof. This follows from [Ol1, 2.18 (i)] and the above which shows that Og,, is injective in
Rep(Ggr) and has Ggr—invariants equal to K. O

9.32. Let E be a unipotent isocrystal on (bg, M, )/ K. We can also compute cohomology of
E using a resolution as in 4.31. Choose an inclusion i : (b, My) < (T}, Mr,) as in the proof of

9.5. By the same construction used in the proof of 4.31, we obtain a complex R® of sheaves
on (by, My, )/ K with a morphism £ — R°.

Recall that R? is constructed as follows. Let

(9.32.1) 3+ (b, My, )V ) convl (ty.n0,) = ((bk; My, )/ V) con
be the localization morphism. Let
(9322) ¢*7* : Tb,et - ((bka Mbk)/v)COHV|(Tb7MTb)

be the functor defined in 3.17. If QéTb Mgy i denotes the sheaf of logarithmic differentials of
AT,
(Ty, Mr,) tensored with K then by definition we have

(9.32.3) R = o™y Qe vy, /-

The inclusion i : (b, M) — (T}, M7,) induces a morphism of topoi
(9.32.4) €t ((bk, My, ) /V )convlo,n1,) = ((Ors M)/ V' )conv | (13,017,

which sits in a commutative diagram

(9325) ((bk; Mbk>/v)conv <]; ((bk? Mbk)/v)COHV’(byMb)
((bx, Mbk)/V>C0nV‘(Tb’MTb)'

Observe that there is also a commutative diagram of functors

57"

(9.32.6) Thet ((blw Mbk)/v)conv‘(TmMTb)

li* ie*
[

(Spec(V))et —— ((bk7 Mbk)/V)COHV|(b7Mb)‘
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9.33. Let
(9.33.1) T = ((br, My) — (Spf(A), M), T' = ((be, M) — (Spf(B), Mp))

be two widenings. Let

(b, My) — (IT,T’a MT,T')
denote the product in the category of widenings of 7" and 7”. By definition this object
represents the functor

(9.33.2) (widenings (bg, My) — (Spf(C), M¢))°® — Set
sending (bg, My) < (Spf(C), M) to the set of pairs (f,g), where
(9.33.3) f o ((bk, M) — (Spf(C), M) — T

and

(9.33.4) 9+ ((br, My) — (Spf(C), Mc)) — T’

are morphisms of widenings.

Remark 9.34. Note that I7 7 comes equipped with two morphisms of widenings
(9.34.1) pry : Irg — T, pry: Ipp — T

Remark 9.35. Since (by, My, ) is hollow, if (bg, M) — (Spf(C), M¢) is a widening then the
nonunits of M¢c map to topologically nilpotent elements of C'. The images of the nonunits in
M therefore define an ideal. We let Cjy denote the quotient of C' by this ideal, and let T
denote the resulting widening

(9.35.1) (bi,, My,) — (Spt(Co), Mcy,)-
Observe that if 7" is hollow then the natural map
(9352) IT(),T’ — IT,T’

is an isomorphism.

9.36. By definition of the localized topos, for any F' € ((by, Mbk)/V)ConV](Tb,MTb) the sheaf
j«F associates to any enlargement 7' : (by, My, ) — (Spf(A), Ma) the set F (L1, vy, 7). T
is hollow, then by 9.35 this is equal to F'({,a,),1)-

9.37. Let @fn denote the formal completion of Gy, |, along the closed immersion Spec(k) —
Gy, defined by the identity section. Then there is a canonical isomorphism

(9371) I(b,Mb),(b,Mb) ~ G;l

with the log structure on @Tm given by the map N” — Og, sending all nonzero elements to
0. If uy, ..., u, are the standard coordinates on GJ, then the two projections

(9372) pry, pry : (Grm>M@:n) - (bv Mb)

are induced by the two maps
(9.37.3) m, 72 N — O, N,

where 71(¢;) = (1, ¢;) and m(e;) = (u;, €;).
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This implies that for any morphism of widenings 7" — (b, M,) there is a canonical isomor-
phism
(9.37.4) Iy = TXGY,
where the right side denotes the product in the category of formal V-schemes.

By a similar argument one sees that if Z — (13, My;) is a morphism of widenings, then
(9.37.5) Izt 0y =~ ZXG,.

Lemma 9.38. Let Réb,Mb) denote the value of R' on the enlargement (by, My, ) — (b, My).
Let V denote the connection on RZ('b,Mb) and let DR(R%b’Mb)) denote the associated de Rham
complex. Then the natural map

(9.38.1) (Ripan))” — DR(R{a)

1S a quasi-isomorphism.

Proof. Note first that it follows from the construction of the complex R® that if
(9.38.2) 0—-FE —-F—FE,—0

is an exact sequence of isocrystals on (by, M, )/ K then there is a natural exact sequence of
complexes

(9.38.3) 0—-R}—R*—R)—0
where R} denotes the complex obtained from F;. By consideration of a filtration of £ and

the corresponding long exact sequences of cohomology groups, it therefore suffices to prove
the lemma when F is the trivial isocrystal .

In this case, we can compute Réb’ M, With its connection as follows. Let (log) denote
i*Q%Tb My /K By the discussion in 9.36, and using the isomorphism 9.37.1, we see that
’ b

(9.38.4) Riyan) = K{{u1 —1,... u, — 1}} @k ' (log),

where Q(log) = A* Q(log) and K{{u; —1,...,u, —1}} is defined to be the value of K on the
widening

(9.38.5) (b, My,) — (G, Mg, ).

Moreover, it follows from the construction of the connection that

(9.38.6) V((uj — DF@w) = (k(u; — )" + (u; — 1)) @ w)dlog(t;),

where we write dlog(t;) for the image of the j-th standard generator of N” under the map

dlog

(9.38.7) Nr —— My — Qfy ) v

Note that it follows from 9.38.6 that it further suffices to prove the lemma in the case when

¢ = 0, which we assume henceforth.
Let Qéwv denote the free K{{u; —1,...,u, — 1}} module on generators du;/u; (i =

1,...,7r). If we identify K{{u; — 1,...,u, — 1}} ® Q%be)/V with Q(%};,L/V via the map
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sending dlog(t;) to du;/u;, then the connection 9.38.6 becomes identified with the standard
connection

(9.38.8) d: K{{u; —1,...,u, —1}} - K{{uy — 1,...,u, — 1}} ® Ql:n/v.

Now the de Rham complex of this connection computes the convergent cohomology of Spec(k)
over K (with no log structures), and hence the de Rham complex is acyclic. U

Lemma 9.39. The map E — R® in 9.32 is a quasi-isomorphism.

Proof. Tt suffices to show that the map
(9.39.1) J'E — j*R*®

is a quasi-isomorphism in ((bg, My, ) /V)conv|(Tb,MTb)- For any enlargment Z : (bg, My) —
(Z,Mz) with a morphism Z — (T, Mz,) the value of j*R’ on Z is by the isomorphism
9.37.5 equal to

(9-39.2) OZ{{Ul - 1, “e ,’LLT - 1}} ®OTb Q%Tb,MTb)/V,
where Oz{{u1,...,u, — 1}} denotes the value of X on the widening

(9.39.3) (b, My, ) — ZXG".

It follows from the construction of the map D*: R? — R*! that it restricts over Z to the
unique Oz-linear map sending ([];(u; —1)%) @ w to

(9.39.4) (Z ajui(u; —1)" - (u; — 1)aj—1 (= 1)) ® dlog(t;) Aw,

where {dlog(t})} denotes the basis for Qf;, M)V defined by the chart N* — Myp,. Observe
that D'(u;)/u; = dlog(t}).

Let R® denote the resolution of K in (Spec(k)/V )eonv given by the embedding Spec(k) —
G, If
(9.39.5) o : (Spec(k)/V)eonvlg: — (Spec(k)/V)conv

is the localization morphism, then

(9.39.6) R' = 0.5, 7', -

Now from the explicit formula 9.39.4 and the observation that D*(u;)/u; = dlog(t}), we see
that under the canonical isomorphism of topoi (where the right side is the convergent topos
with no log structures)

(9397) ((bk7 Mbk)/v)convl(Tb,MTb) ~ (Spec(k)/Tb)conv

the complex j*R® becomes identified with the restriction of R® to (Spec(k)/Th)eony- Since R®
is a resolution of K by [Og2, 0.5.4] this implies the lemma. O
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Corollary 9.40. Let E, uy,) denote value of E on the enlargement (by, My, ) — (b, My). Then
the natural map Eg ) — sz,Mb) 1S a quasi-isomorphism. In particular, by 9.38 we have a
diagram of quasi-isomorphisms

oV
(9.40.1) RS

|

DR(E ) —= DR(RY, yy,)-

Lemma 9.41. The reduction map

1S a quasi-isomorphism.

Proof. As in the proof of 9.38 it suffices to consider the case when E is the trivial isocrystal.
Since I — R* is a quasi-isomorphism, it suffices to show that the reduction map

(9412) DR(IC(Tb,MTb)) — DR(’C(b,Mb)>
is a quasi-isomorphism. This follows from the same argument used in the proof of 9.30. [J

Summary 9.42. The map E — R® is a quasi—isomorphism, and the maps
. . oV .
(9.42.1) DR( (Tb,MTb)) — DR(RG, ar)y R g,y = DRIRY, 01,)

are quasi—isomorphisms, where Re7, ) (resp. R{, Mb)) is the restriction of R* to (T,, Mr,)
b b b

(resp. (b, My)) with the natural connection defined by the isocrystal structure, and DR(—)
denotes the de Rham complex of (—). In particular, the de Rham complex of E(Tb,MTb) 18

naturally isomorphic in the derived category to ]RZ;}VM).

There is also an étale version of 9.30.

Proposition 9.43. For any unipotent Q,—sheaf L on (bg, My_), there is a natural isomor-
phism

(9.43.1) H*((bge, My), L) = H(Get, Lgay) )

where the right hand side denotes group cohomology.

Proof. Since any Kummer étale map V' — (bg, M) is a Kummer covering [I12, 3.11],
the cohomology H*((bz, M,_), L) is isomorphic to the continuous group cohomology of the
m1((bg, M), (b, My))—module L p,y. The functor which sends a representation L of Ge; to
H*((bge, My_), L) defines a cohomological d—functor on the category Rep(Ge), and hence the
natural isomorphism H°(Ge, —) ~ H°((bg, My_), —) induces a natural morphism of coho-
mological é—functors

(9.43.2) H* (G, —) — H (b, My_), ).

To prove that this map is an isomorphism, choose an isomorphism M, ~ K* & N" defining
isomorphisms

(9.43.3) m1((bges My ), (b, M) = Z(1)", Gy = Z(1)" @3 G
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The exact sequence

(9.43.4) 0 —— Z(1)y" 22 70y —— Z(1) —— 0

induces for every representation L of G spectral sequences [Se, 1.2.6]

(9.43.5) EY = HP(Z(1), HY(Z(1)""", L)) = HP*Y(Z(1)", L)

(9.43.6) EY = HP(Z(1) @5 Go, HY((Z(1) ©7,G,)" ', L)) = H"*%(Gy, L).

These spectral sequences are compatible with the morphisms of d—functors 9.43.2. This
reduces the problem to the case when r = 1.

~

When r = 1, the groups H(Z(1), L) are zero for i > 1 by [Se, p. I-19, exemple 1]. Also
the groups H(Ge, L) are zero for 7 > 1 (this can be seen for example by noting that the
Hochschild complex computing this cohomology has no terms in degrees > 2). Thus in this
special case it suffices to consider i = 0 and ¢ = 1 in which case the result is clear (for i = 0
both the groups compute invariants, and for ¢ = 1 they compute extensions of Q, by L). O

Corollary 9.44. Let V(Og,,) denote the ind-sheaf corresponding to the coordinate ring Og,,
with Ge—action induced by right translation. Then H*((bg, My_),V(Og,,)) = 0 fori > 0 and

HZ(@?? be)7V<OGet)) = @p'

Proof. As in 9.31, this follows from [Ol1, 2.18 (i)] which shows that Og,, is injective in the
category Rep(Ge) and has Ge—invariants equal to Q. O
Compatibility with tg.
9.45. Let Cyqr and C. be as in 7.1. The functors 9.11.1 and 9.17.1
(9.45.1) W™ : Cyr — Viip(b, M), Wi : Coy — (unipotent smooth sheaves on (b, My_))
induce by Tannaka duality morphisms of group schemes
(9452) ng : GdR — T (CdRa b)7 fet : Get — T (Ceta b)
Theorem 9.46. The diagram

Gar ®k Beris(V) LN (Car,b) @k Bais(V)

(9.46.1) L‘G’l lbc

Get ®Qp Bcris(v) L) T (Ceta b) ®Qp Bcris(v)

commutes.

The proof is in several steps 9.47-9.58.

9.47. Let Og,p, (resp. Og,,) denote the coordinate ring of Gagr (resp. Get) which we view as
a Ggr—bimodule (resp. G¢—bimodule) with the action coming from left and right translation.
Denote by L(Og,,) (resp. V(Og,,)) the unipotent isocrystal on (by, M, )/K (resp. smooth
log-étale sheaf on (b, My_)) with right Gqr—action (resp. Gei—action) induced by Tannaka
duality and the left action.

Let £(Og,y,) denote the ind-object in Vi, (b, My, ) obtained from L(Og,, ), and denote
by RI'4r(£(Og,y)) its de Rham complex. The ring structure on Og,,, gives this the structure
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of a differential graded algebra and the right action of G4g makes it an object of Ggr — dgay-.
Denote by Ygr the stack obtained from this equivariant differential graded algebra:

(9.47.1) Yar := [RSpecg, . (RIT4r (£(Ocuy)))/Gar)-

Similarly, let RT'¢(V(Og,,)) denote the group cohomology of the representation V(Og.,).
The cohomology RI'¢t(V(Og,,)) is a Ge—equivariant differential graded algebra, and we define

(9.47.2) Yo = [RSpecg, (RTet (V(Og.,)))/Ger)-

Asin 4.34 and 5.21, the identity elements of Ggr and G give Ygr and Y natural structures
of pointed stacks.

Lemma 9.48. The projections Yaqr — BGgr and Yoy — BGe are isomorphisms in Ho(SPr,(K))
and Ho(SPr,(Q,)) respectively.

Proof. As in [KPT, 1.3.10], the homotopy fiber of Yqr — BGgr (resp. Yo — BGey) is
isomorphic to RSpec(RI'4r(L(Og,y))) (resp. RSpec(RIe(V(Og,,)))). The result therefore
follows from 9.31 and 9.44. 0

9.49. More generally, if U, — b is an étale hypercover, we can define RI'4r(L£(Og,p))u.
to be the Ggr—equivariant differential graded algebra obtained by applying the functor of
Thom—Sullivan cochains to the Gar—equivariant cosimplicial algebra which associates to [n] €
A the de Rham complex of £(Og,,) restricted to (U,, My|y,). There is a natural map
RI'4r(£(Og,p)) — RL4r(L(Og,y ))u. which cohomological descent implies is an isomorphism.

Let Uy — X be an étale hypercover with each U, an affine scheme, and let U,, be the
pullback to b. Denote by RI'4r(L(Og¢,y,))v. the Gar—equivariant differential graded algebra
obtained from the cosimplicial differential graded algebra which to [n] € A associates the
de Rham complex of the module with connection L(Og,,, ) restricted to (U,, My, ). There is
a natural map Ggr — Gqr Which induces a morphism L(Ogq,)|v, . — £(Og,) of modules
with integrable connection on (Us,e, Mp|y,,). We therefore obtain a map of differential graded
algebras

(9‘49' 1) RFdR(L(OGdR))Uo - RFdR(ﬁ(OGdR))Ub,o :

If we view RI'4r(L(Og,))u. as a Gar—equivariant algebra via the map Gqr — Gagr, then
this map is even Ggr—equivariant. Here Gggr denotes the Tannaka dual of the category
Dyr := (E)g with respect to the fiber functor defined by (b, M;).

Applying the functor RSpecg ., we obtain a diagram of pointed stacks
(9.49.2) Yar — [RSpecg,, (RTar (L(Oc4n))v.)/Gar] — Xeun-
Lemma 9.50. The induced map
(9.50.1) Gar ~ m(Yar) — m(Xey,) =~ m1(Car, b)

1s the map lgR.

Proof. Let X be as in 5.33. Recall that if G := 7 (Car, wy®), then X is given by
(9.50.2) X = [RSpecgRIw(V(0g))/G.
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The same construction used to define the map 9.49.2 gives a map Ygg — X lifting the map
to X¢,, such that the diagram

Yar —— BGuar

(9.50.3) l Ede

X -~ BG
commutes, where m and 7 denote the natural projections. Applying the functor 7 the Lemma
follows. O

9.51. There is a similar description of the map /.

If (b;, M;,) — (b, My, ) (i = 1,2) are two geometric points, define their product
(9.51.1) (b1, M) X (b 1,y (b2, M, )
as in the following lemma (note that a log geometric point is naturally a pro—log scheme):

Lemma 9.52. Let f : (X, Mx) — (Y, My) and (Z,Mz) — (Y, My) be morphisms of fine
log algebraic spaces, and let (P,Mp) = (X, Mx) Xy (Z,Mz) be the fiber product in
the category of integral log schemes. Consider the category C whose objects are morphisms
t . (T,Mr) — (P,Mp) of log algebraic spaces such that the maps t*priMyx — Mp and
t*pryMy — My are both isomorphisms. Then the category C has a final object which we
denote by

(9.52.1) (X, Mx)X (vmp)(Z, My).
If (X, Mx) = lim(X;, Mx,) and (Z,Mz) = lim(Z;, Mz;) are pro-objects in the category of
fine log schemes over (Y, My) then we also define

(9.52.2) (X, Mx)g(ijY)(Z, Mz) = liﬂ(XZ, MXZ')%(Y7My)(Zja MZJ-)-

1,J
Proof. This follows from A.3. U
Remark 9.53. For a log geometric point (b, M;) — (bx, My, ), the fiber product
(9.53.1) (b, M5) X (b aay ) (D, M)
is isomorphic to
(9.53.2) [1®. 25),
geT
where 7 denotes the group 7 ((bx, My, ), (b, Mj)). Indeed there is a natural map
(9.53.3) [T, M5) — (0, M) % e, (0, M)
gem

which on the g—th component is 1 X g. That this map is an isomorphism can be seen by noting
that the universal property of (b, M) X 1y, MbK)(b, M;) implies that this scheme represents the

functor over K which to any K -scheme T associates the set of pairs (p, a), where p : T — bis a
morphism over K and a : Mz|r — p*Mj is an isomorphism over M, |r. Choose isomorphisms
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M, ~V* @ N and M ~ K @ Q% such that the map M, — Mj sends N" to Q%,. As in
9.14, these choices induce an isomorphism

(9.53.4) 7~ 7Z(1) % Gal(K/K),
where an element g € Gal(K/K) acts on the log structure Mj by the map

(9.53.5) K oQl,—K @Q, (uq) +— (g(u),q)

Now by Galois theory, if (p, ) is a pair as above, then p is obtained from the structure
morphism 7" — b by composing with an element g € Gal(K/K). The isomorphism « is
then induced by a map of monoids Q%, — O7 sending all elements of N" to 1. Such a map
of monoids is precisely given by an element of 2(1) From this it follows that 9.53.3 is an
isomorphism.

9.54. We can now carry out the construction of 5.21 replacing products of geometric points
by x defined above. For any étale hypercover Uy, — bz and choice of log geometric points
E — (bg, My_), we obtain a Ge—equivariant differential graded algebra GC(V(Og,,))uv,.
canonically isomorphic in Ho(Ge, — dgag,) to the algebra Rl (V(Og,,)) obtained from the

choice of a single log geometric point (b, M) — (bg, My, ). Moreover if Uy, is obtained by
base change from a hypercover of by, then there is a natural action in the homotopy category
of Gal(K/K) on this algebra.

9.55. Let U, — X be an étale hypercover, with each U, a finite disjoint union of very
small affine X-schemes. Denote by U, . the base change to b. Let W, denote the simplicial

formal scheme obtained by completing U, along the ideal defined by b, and let U, denote the
simplicial affine scheme obtained by taking the spectrum in each degree of the cosimplicial
algebra

(9.55.1) [n] — T'(W,, Ow,,).

Observe that for any morphism [n] — [m] in A the corresponding map U,, — U, is finite and
étale. Moreover, there is a natural diagram of simplicial log schemes

(9.55.2) (Use: My,.) —— (Ua, M) —— (Us, My,).
where the log structures are all obtained by pullback from M.

9.56. Let £ — X3 be a family of geometric generic points, and for each e € E choose a
commutative diagram

(9.56.1)

—

Spec(@xb?) — Spec(Oxp_),

where 6va? denotes the completion of the strict henselization Oxy_ and € — Spec(@ Xbe)

is a geometric generic point. Denote by E — Spec(@Xb?) the resulting family of geometric
generic points.



108 Martin C. Olsson

Observe that for each [n] € A, there is a natural commutative diagram

HHomSpec((aXyb?) (Evﬁn,f) E HHomX (E’Un,?) E
(9.56.2) l l

This follows from observing that any lifting ¢ — U, of the composite ¢ — e — X necessarily
factors through e.

It follows that if G is an algebraic group and L an ind—smooth sheaf of G—equivariant
differential graded algebras on the log étale site of (X, M X?), then there is a natural map
of cosimplicial G—equivariant differential graded algebras

(9.56.3) ([n] = GC(U, %, B, L)) — ([n] = GC(U, %, E, L|5,))-

n, n

Here the notation is as in 5.21. Let GC(L|3,, E) € Ho(G — dgag,) denote the G-equivariant
differential graded algebra obtained by applying the functor of Thom—Sullivan cochains to
the cosimplicial algebra ([n] — GC(U, ., E, Llg,)). Asin 5.24, the object GC(L|5,, E) in the

n,
homotopy category is up to canonical 1sornorphlsm independent of the choices. Furthermore,

the map 9.56.3 induces a canonical morphism in the homotopy category
(9.56.4) GO(L,E) — GO(L|g,, E).

9.57. In particular, if Ge; denotes m((L|x, )e,w;') and V(Og,,) denotes the ind-smooth
sheaf with right G¢—action corresponding to the coordinate ring Og,,, then there is a natural
map

(9.57.1) GC(V(0Og,,), E) — GC(V(O¢.)lp.. E)
in Ho(Get — dga@p).

There is also a natural map
(9.57.2) GC(V(Og,,)
in Ho(Gey — dgag,) defined as follows.

0., E) — RU(V(Og,,))

First view V(Og,,) as a Ge—equivariant sheaf using the natural map Ge — G, and let
(X, Mg, ) denote Spec((’)x b-) With log structure that obtained by pullback from Mx.

Choose for each e € E a section s, of the map ()?( ) — (b, Mj), where

~ Mo
b,Mz)’ X(E,MB)EN

(X Gy M X(RMﬁw) — (X7, M )??) denotes the universal covering space (a pro-log scheme)

obtained from the geometric point e (see [I12, 4.6] for the definition of the universal covering
space).

Now note that each connected component of U maps 1somorphlcally to X It follows

that for each lifting p : e — U, of the geometric point e — Xz 7, the section s, induces a
section of the map

(9.57.3) (U*~. Mg ) X @, atg yp (0, Ms) = (b, M),

n,K’
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Hence for any n there is a canonical bijection of sets
(9.57.4) B: (liftings é of e to U, ) — (liftings of (b, M) — (X, My ) to (U, x, Mg )-
Furthermore, for each lifting é there is a canonical isomorphism
(9.57.5) m(Unze: Mg, ):8) = (U3, Mg, ), B(@)),
and for any smooth sheaf L on ()?F, M )??) and lifting é there is a natural isomorphism
Ls ~ Lpe fompatible with the identification 9.57.5. On the other hand, for each lifting p of
(b, M) to U, %, the natural map
(9.57.6) w1 (b, My ). p) = m((Un Mg, ). )
is an isomorphism. From this it follows that there is a natural isomorphism in Ho(Ge —dgag, )
(9.57.7) GO(V(O6,)p,s B) = REa(V (O ign, )
The map G — G induces a natural map
(9.57.8) V(Oc.)lgan) — V(Og,,)
compatible with the right G.—action. We therefore obtain a map
(9.57.9) R (V(O6,)l bty ) — RLa(V(Og,.))
in Ho(Gey — dgan). This map combined with 9.57.7 induces the map 9.57.2.
Applying the RSpecht(—)ffunctor we then obtain a diagram of pointed stacks
(9.57.10) Yer — [RSpecg,, (RT'et(V(Oc.,)))/Get] = Xegp-
From this we obtain a morphism
(9.57.11) Get ~ m1 (Yer) — m(Xey,) =~ m1(Cet, D).
By an argument similar to the one used in 9.50 this map is equal to f.

9.58. The comparison isomorphism ¢g can be described as follows. Let L(Og,,,) — R*® be the
resolution discussed in 9.42, and let W, — bx be an étale hypercover. Choose also a family
of log geometric points £ — (bg, Mj_).

Observe that by 9.16 and the discussion in 9.24, the sheaf V(Og_,) is naturally associated
to L(Og,,) by an association compatible with the right action of Ge; ®q, Beis(V) ~ Gar @k
Beis(V). Then as in 6.17.6 we obtain a commutative diagram

GC(V(OGet) W-7E) ®Qp Bcris(v) e GC(R.( CFIS(W')’ Beris(We b ) )

g

)V QK BcrIS( )

I

(9.58.1) R*(We, My|w.

d

DR((L(Ogyp)lwa, N)) @k Beris(V) —— DR(Rlw,) ®x Beis(V).
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The map a is the composite

GC(V(OGct> We > E) ®Qp Bcris(v> - GC(V(OGct> ®@p BcriS<V)

(9.58.2) Ll
GC(R.<BCYiS(WO)7 MBcris(W-))7 E) A GC<L(OGdR)(BCYiS(W°)7 MBCris(W.))7 E)?

Wa? E)

where ¢ denotes the association. Hence a becomes an equivalence after tensoring with EcriS(V).
The map c is an equivalence by 9.42, and the map d is an equivalence since R*® is a resolution

of L(OGdR).

Finally note that by 9.44 there is a natural quasi-isomorphism Bes(V) — GC(V(Og,,)|w., E)®q,
Beis(V), and similarly by 9.31 there is a natural quasi—isomorphism

(9.58.3) Buis(V) = DR((L(Ogyp)|wes N)) @k Bais(V).

Furthermore, since all the morphisms in 9.58.1 are morphisms of differential graded Beis(V)—
algebras, the two induced maps Bes(V) — DR(R|w,) @k Beis(V') are equal. It follows that
the map b is also an equivalence.

From the diagram 9.58.1 we therefore obtain an isomorphism
(9.58.4) by Yar @k Beis(V) — Yoy ®q, Beris(V)

such that the diagram of isomorphisms

YdR ®K Ecris(v) L et ®(Q)p Bcris(v>
(9.58.5) l l
BGdR ®K Ecris(‘/) L;G) BGet ®Qp écris(v)

commutes. To complete the proof of 9.46, it now only remains to observe that there is a
natural morphism of diagrams from 6.17.6 to 9.58.1, and hence the induced diagram

}/:iR ®K Ecris(‘/) 6d_R> XCdR ®K Ecris(‘/)
(9.58.6) Lyl lw

~ Set ~

Y;at ®Qp Bcris(v) B Xcet ®Qp Bcris(V)

commutes. Applying the m—functor we obtain that 9.46 commutes after tensoring with
Beis(V). But then by [O13, 15.2] the diagram 9.46 commutes already over Bes(V). O

10. A GENERALIZATION

In this section we formulate a conjecture which we learned from some communications with
Toen (though of course any mistakes are entirely due to the present author).

10.1. Let X, V, and K be as in 6.1, and assume for simplicity that the residue field k is
separably closed.

Asin 8.2, if T is any field and G is a gerbe over the category of affine T—schemes with the
fpqc topology, one can associate to G a simplicial presheaf BG € SPr(Y) such that for any
Y-algebra R the simplicial set BG(R) is the nerve of the groupoid G(R).
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10.2. Let Geis denote the gerbe of fiber functors for the category of crystalline representations
of Gal(K/K) and consider the category Ho(SPr,(Q,)|pg.,.)- Denote by

(10.2.1) wer € G(Qy)

the fiber functor which associates to a crystalline representation the underlying Q,—vector
space. If H.;s denotes the gerbe of fiber functors for the category of F—isocrystals on k/K
then there is also a natural functor

(1022) Wwp Hcris E— gcris

which to a fiber functor n for Flsoc(k/K) associates the fiber functor for the category of crys-
talline representations sending V' to n(D(V')). Finally there is a fiber functor wqr € Heis(K)
which sends an F-isocrystal to its underlying K—vector space. Moreover, by definition of
crystalline representation there is a natural isomorphism

(10.2.3) Wet @@, Beris(V) =~ (war © wp) @k Beris(V).
We thus obtain a commutative diagram of simplicial presheaves
Spec(Beuis(V)) —— Spec(Qy)
(10.2.4) wdR®BCriS<v>l lwet
BHyis ——  BGeis.

In particular, if FF € Ho(SPr(K)|pg,,.) then by pulling back we obtain a stack D(F) €
Ho(SPr.(K)|pn.,.) and Fy € Ho(SPr,.(Q,)) together with an isomorphism

(1025) Fet ®Qp Bcris(V) =~ LUdR<D(F)) ®K BCriS(V)‘

There is a natural action of Gal(K/K) on we which induces an action of Gal(K/K) on
F. Similarly there is a semi-linear Frobenius automorphism of wqr which induces a semi—
linear automorphism ¢ : wgr(D(F))? — wgr(D(F)). Because the isomorphism of fiber
functors 10.2.3 is compatible with these structures it follows that the isomorphism 10.2.5 is
compatible with the Frobenius structures and Galois actions.

10.3. Now let (E, Filg, pg) and L be associates sheaves as in 7.1. Let Cqr and Ce be as in
1.5 giving rise to stacks X¢,, € Ho(SPr,(K)) and X¢, € Ho(SPr.(Q,)). By 1.7 there is a
natural isomorphism

(10.3.1) L1 Xegy O Beis(V) = Xe,, ®g, Beris(V).
Finally we note that it is shown in [Ol1, 3.62] that there is a natural stack
(10.3.2) Fe,. € Ho(SPr.(Q,)|Bn....)
giving rise to X¢,, with its F'-isocrystal structure.
The following conjecture would be a natural extension of the results of this paper.

Conjecture 10.4. There exists a stack Fe € Ho(SPr.(Q,)|sg....) and isomorphisms D(F¢) ~
Feys wet(F) ~ Xe,, identifying the isomorphism v with the natural isomorphism (war ©

D)(FC> @ Bcris(v> = Wet<FC) ®Qp Bcris(v)-
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APPENDIX A. EXACTIFICATION

A.1. Let f: (X, Mx)— (S, Ms) be a morphism of fine log schemes, let (D, Mp) denote the
fiber product

(All) (X,Mx) X(S7Ms) (X,Mx)
in the category of fine log schemes, and let
(A.1.2) A:(X,Mx)— (D, Mp)

denote the diagonal morphism. Write p; : (D, Mp) — (X, Mx) (i = 1,2) for the two
projections.

A.2. Let € denote the category whose objects are morphisms of fine log algebraic spaces
over (S, My)

(A2.1) (9.9") - (T, Mr) — (D, Mp)
such that the two composite maps

(A.2.2) (T, My) —2= (D, Mp) -~ (X, M)
are strict. Morphisms in ¢ are (D, Mp)-morphisms.
Proposition A.3. The category € has a final object

(A.3.1) 7 (D, Mz) — (D, Mp).
Proof. Let €' denote the category whose objects are pairs
(A.3.2) (g:T — X xg X,1),

where g is a morphism of S-spaces, and ¢ : g*piMx — ¢*p5Mx is an isomorphism of log
structures on 7T such that the diagram

(A.3.3) /t*MS\
7 r

g piMx ' g ps Mx

commutes, where ¢t : T' — S is the structure morphism. A morphism
(A.3.4) (g:T—>XxgX,1) = (¢:T — X xg X,)
is an X X g X-morphism h : T — T" such that the induced diagram

(A.3.5) h*g"™pi Mx AN h*g"™psMx
g PiMx —— g*psMx
commutes. Let

(A.3.6) F:%—¢
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be the functor sending (g,¢°) : (T, My) — (D, Mp) to the underlying algebraic space T
(which is a X x g X-space via the natural projection D — X Xxg X) and the isomorphism

(p19)® (p2g)*~!

(A.3.7) (p19)"Mx My (p2g)" Mx.

Lemma A.4. The functor A.3.6 is an equivalence of categories.
Proof. For an object (g : T — X xg X,1) € €', let g; : T — X (i = 1,2) be the composite
p; o g. We then obtain a commutative diagram of fine log algebraic spaces

* ( Qvid)
(A4.1) (T, g5Mx) > (X, Mx)

l(ghb) J{f

(X, My) —L (5, M),

and therefore also an object

(A4.2) (T, gsMy) — (D, Mp)) € €.

This construction defines a functor

(A.4.3) G:¢ —%.

It follows immediately from the construction that there are natural isomorphisms F'G ~ id¢

and GF ~ idy. O
It follows that in order to prove A.3, it suffices to show that the category %" has a final

object. Let

(A.4.4) I : (Algebraic spaces/X xg X)? — Set

be the functor sending g : 7' — X xg¢ X to the set of isomorphisms ¢ : g*piMx — ¢*psMx
such that the diagram A.3.3 commutes. Then by the very definition of ¥’ to show that &’
has a final object it suffices to show that [ is an algebraic space.

This follows from the general theory in [O12]. Let Log(s ) denote the stack defined in
[O12]. By [O12, 1.1] the stack Log(s ) is an algebraic stack, and in particular the diagonal
morphism

(A.4.5) A Logisms) — Logs,ng) Xs Log(s,ug)

is representable. This implies that I is representable, as [ is isomorphic to the fiber product
of the diagram

J{PTMX xpsMx

£OQ(S,MS) N £OQ(S,MS) Xs LOQ(S,MS)-
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A.5. The diagonal map A : (X, Mx) — (D, Mp) is in particular an object of ¢, and therefore
we obtain a factorization of A

A

T

(A.5.1) (X, Mx) —2> (D, M5) —— (D, Mp),

where A is strict. The underlying morphism of algebraic spaces of A is an immersion since
this is the case for A. The morphism A is therefore an exact immersion of log schemes. We
call A the ezactification of A.

Example A.6. Let S = Spec(R) for some ring R, and let Mg be the trivial log structure on
S. Let X = A% with log structure My induced by the map

(A.6.1) N? — R[z,y], (n,m)— z"y™.

Let 8 denote the stack theoretic quotient of A% by the action of G2, given on scheme-valued
points by

(A.6.2) (ug,uz) * (a,b) := (uya, usd).
Then the map
(A63) MX X — Log(spg)

factors through S as

(A.6.4) X = § 2= Log(s.op),

S

where B is étale by [O12, 5.25] and A is the natural projection. Let J denote the fiber product
of the diagram

(A.6.5) X

lAXA

§—2-8xg8.

.

XD,

Then there is a commutative diagram

(A.6.6)

where 7 is étale since B is étale. On the other hand, there is a natural isomorphism (see for
example the discussion in [O12, 3.11 and 5.14])

(A.6.7) J = Spec(R[z, y, ui, u3]),
with the first (resp. second) projection J — X is given by the map
(A.6.8) x—x, y—y (resp. T— wz, Y uy),

and the diagonal map j is defined by u; = uy = 1.
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A.7. More generally, for any finite set K, let (DX, Mp«) denote the fiber product of the
diagram

(A.7.1) erK(X, My)
\LHkGKf
(S, Ms) = TTer (S. M),

where Ak denotes the diagonal, and define € to be the category with objects (S, Mg)-
morphisms

(A.7.2) g: (T, Mp) — (D¥, Mpx)

such that for every k € K the composite morphism

(A.7.3) (T, My) —2> (DX, Mpx) —> (X, M)

is strict, where py, : (DX, Mpx) — (X, My) denotes the projection to the k-th factor. Mor-
phisms in €% are (DX, Mpx)-morphisms.

Proposition A.8. The category €k has a final object

(A.8.1) 7wk (DX, Mzy) — (D, Mpr).

Proof. Fix an isomorphism K = {0,...,n} for n+1 = |K|. We may without loss of generality
assume that n > 2, as the case n = 1 is A.3. Then
(A.8.2) (DX, Mpr) ~ (D, Mp) Xy (01501 (D Mp) X -+ X (x 03)m (D, Mp).

From this and the definition of % it then follows that an initial object is given by

(A.8.3) £D7 Mﬁ) X pa,(X,Mx),p1 (D, Mﬁ) X Xpo (X, Mx),p1 (D, Mf)l
with the projection to (DX, Mpx) induced by the maps 7 : (D, Mz) — (D, Mp). O
A.9. As before, the multidiagonal
(A.9.1) Ak : (X, Mx) — (D¥ Mpx)
factors as
A ~ ™
(A.9.2) (X, Mx) — (DX Mpy) —= (D¥, Mpx).

A.10. Finally note that if A~ : K — K’ is a morphism of finite sets, then h induces a
commutative diagram

(A.10.1) (DK, M) "> (DX, M)

g |

A ~ T
(X, Mx) —"= (DX, M3, ) —— (DX, Mpx).
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A.11. In the category of fine log formal schemes there is a more general notion of exactification
generalizing the charted exactification discussed in [Sh2, 2.1.14]. We explain this notion of
exactification after some preliminaries.

Lemma A.12. Let (X, Mx) be a fine log scheme, and let 7 : Mx — N be a surjection of
constructible sheaves of monoids such that if 1 — X is a generization [SGA4, VIIL.7.2] of a
geometric point s — X then the diagram

s

Mxs—= Ns

L

MX,ﬁ S Nﬁ
1s cocartesian, where the vertical arrows are the specialization maps. Let
I:(Sch/X)°® — Set

be the functor which to any X-scheme f : T — X associales the set of morphisms of log
sctructures f*Mx — My onT' such that the induced map f~*Mx — My factors through an
isomorphism fYN — My. Then I is an algebraic space.

Proof. Note first that since m : M x — N is surjective if p : f*Mx — My is an element of
I(T) then the map p is surjective. In particular, there are no nontrivial automorphisms of
My compatible with p. Therefore I is naturally a substack of Log(x ary), and to prove the
lemma it suffices to show that [ is algebraic.

In fact, I is an open substack of Logx ). This is equivalent to saying that if f :
(T, Mr) — (X, Mx) is a morphism of fine log schemes, then the condition that the map
f~*My — My factors through an isomorphism f~'N — My is representable by an open
subset of T'.

Let U C T be the set of points s € T' for which the map MX, f5) — MT,g factors through
an isomorphism Ny — Mrs. We claim that U is open. Since f'Mx, f~'N, and My are
constructible sheaves on T', the set U is constructible. Therefore it suffices to show that U
is closed under generization. For this let n € T' be a generization of s € U and consider the
diagram

(A.12.1) My js) —= Nys) —= My

b

MX,f(ﬁ) > Nf(ﬁ) - MT,ﬁ-

Since the map Wx,f(g) — Mg is surjmﬂ?éﬁz7
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is cocartesian. Since the left square in A.12.1 is also cocartesian by assumption, this implies
that the dotted arrow in A.12.1 exists an is an isomorphisms.

This completes the proof that U is open, and it follows that the condition that f~*M y —
M factors through an isomorphism f~'N — My is represented by (U, Mrz|y). O

A.13. Let (Z, My) — (T, M) be a closed immersion of fine log formal schemes, where Z C T
is a subscheme of definition. Let C denote the category of commutative squares of fine log
formal schemes

(A.13.1) (U, My)— (W, My)
(Z7 MZ)C—> (T7 MT)7

where U C W is a subscheme of definition. Also let Cy C C denote the full subcategory of
squares for which the morphism a is strict.

Proposition A.14. The category C has a final object, and this final object is in Cy.

Proof. Let J C Or denote the ideal defining Z, and let (7,,, Mr,) denote the reduction of
(T, M) modulo J"™'. Since J is an ideal of definition by assumption (T,,, Mz, ) is fine log
scheme, and there is a closed immersion (Z, M) — (T, Mz,) defined by a nilpotent ideal.
In particular, the étale sites of T}, and Z are canonically isomorphic. We therefore obtain
a surjection m, : M T, — M 5 of constructible sheaves of monoids on 7, net- Moreover, this

surjection satisfies the assumptions of A.12. Let (TN7MTn) denote the log algebraic space

representing the functor in A.12 applied to 7, : My, — M, so we have a commutative
diagram

(Tna an)

e

(Z7 MZ)C—> (Tn7 MTn)
Lemma A.15. The algebraic space fn is affine over T,,. In particular, fn 1s a scheme.

Proof. We may clearly work étale locally on T,,. Let Z — T,, be a geometric point, and choose
a finitely generated group G and a homomorphism

(A.15.1) G— M.
such that the induced map G — M%)hg is surjective. Then the composite map
G — M%,z - Mgzr,)z

is also surjective. Let P C G (resp. ) C G) denote the inverse image of My, > (resp. Myz)
under A.15.1 (resp. the composite map G — Mz’ . — M3",). We then have a commutative
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diagram

P———Q

L

MT z —> MZ72.

n,

Observe that @ is the localization of P by a face F' € P. By [Ka, 2.10], after possible replacing
T, by an étale neighborhood of Z, we can extend this commutative diagram to a commutative
diagram of fine log schemes

(Z7 MZ) (TmMTn)

| |

Spec(Q — Z[Q]) — Spec(P — Z[P]),

where the vertical arrows are charts. Here for a fine monoid M we write Spec(M — Z[M])
for the log scheme with underlying scheme Spec(Z[M]) and log structure induced by the map

M — Z[M]. In this situation, the scheme T, can be described explicitly as

Ty, = Spec(Z[Q]) Xspec(z(p)) Tn-

Observe that by definition there is an isomorphism
(Tn, Mz ) X (1, mz,) (T, M, ).

In particular, all the underlying topological spaces of the T, are canonically identified with
the topological space |Ty| of Tp. Let U5 denote the sheaf on |Ty| given by

ﬁ:,r = h&n@;ﬂ

n

Also define Mz on T, 0.t to be the sheaf of monoids

MT = @an

n

We then have a commutative diagram of ringed spaces with log structures

(f’ MT)

|

(Z7 Mz)c—> (T, MT)

Lemma A.16. (T, M3) is a fine formal log scheme.
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Proof. The assertion is étale local on T. We may therefore assume that 7' = Spf(A) for some
ring A, and as in the proof of A.15 that there exists a commutative diagram

(Z,Mz) (T, M)

| |

Spec(Q — Z[Q]) — Spec(P — Z[P]),

where the vertical arrows are charts and the map P — (@ is injective and induces an isomor-
phism P& — P, In this case, T is equal to the formal spectrum of the J-adic completion
of A ®z(p Z[Q)], and the log structure My is induced by the natural map @ — Z[Q)]. O

Let T denote the completion of T along the closed subscheme 7, and let Mrex denote the
pullback of Mz to T*. Then

(Z, Mz)—— (T, Mrpex)
| l
(Z, My)—— (T, Mr)
is an object of Cy. We claim that this is the final object of C.
Lemma A.17. The inclusion Cy has a left adjoint L : C — Cy.

Proof. Consider an object A.13.1 of C. On W ~ U, we then have a diagram of log structures
My
(I*MZ I MU.

Let Mj,, denote the fiber product of this diagram. Then Mj;, is a log structure with map to
Ow given by the composite

Moreover, the projection My, — a*My induces an isomorphism i*M{, ~ a*My over U.
Moreover, one sees easily that Mj;, is fine, and that the diagram of fine log formal schemes

(U, My )— (W, Myy)
(U, a* M) —= (W, Miy).

is cocartesian. In particular, there is a natural map (W, M) — (T, My) (this also follows
from the construction of M, ). We define L by sending A.13.1 to the diagram

(U,a*Mz) — (W, M}y)

| i

(Za MZ) - (Tv MT)‘



120 Martin C. Olsson

Since the inclusion Cy C C has a left adjoint, to prove that (7%, Mre) is a final object in
C it suffices to show that (T, Mzex) is a final object in Cy. So consider an object A.13.1
with a strict. Let I C Oy be the ideal of U in W, and for n > 0 let W,, C W denote the
closed subscheme defined by I"*! (note that by assumption U is a subscheme of definition of
W). Then to construct the desired arrow (W, My) — (T, Mrex) it suffices to construct a
morphism (W,,, My, ) — (T, Myex) for every n. We may therefore in addition assume that
W is a scheme and that i : U — W is defined by a nilpotent ideal. In this case we get by the
universal property of (T, Mz ) a commutative diagram

(U, My)—— (W, M)

| |

Composing with the map (7, Mz ) — (T, M) we obtain a commutative diagram
<U> MU)(—) <W7 MW)

| |

(27 MZ)(H (Tv, Mf)
Since the ideal of U in W is nilpotent the morphism (W, My) — (T, M) factors uniquely
through (7, Mrex) and so we finally obtain a commutative diagram
(U, My)——— (W, M)

| l

(Z, M) (T, Myes).

The uniqueness of this diagram also follows from the universal property of (ﬁ Mz). This
completes the proof of A.14. Il

Remark A.18. We call the final object (Z, Mz) < (T, Mrex) in A.14 the ezactification of
(Z, Mz) — (T, MT)

APPENDIX B. REMARKS ON LOCALIZATION IN MODEL CATEGORIES

B.1. Let C be a model category. For any object S € C the localized category C|g of objects
over S has, by a similar argument to the one used in [Ho, 1.1.8], a model category structure
in which a morphism

(B.1.1) x—>1 .y

S
is a cofibration (resp. fibration, weak equivalence) if the underlying morphism f: X — Y is
a cofibration (resp. fibration, weak equivalence) in C'
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B.2. Let h: S — R be a morphism in C'. Let

(B.2.1) F:Cls — C|g
be the functor sending X — S to the composite
(B.2.2) X —-5—R.
The functor F' has a right adjoint

(B.2.3) U:Clr—Cls
which sends Y — R to

(B.2.4) pry Y xg S — S.

Let ¢ : FU — id¢ be the adjunction map. Then since F' clearly preserves cofibrations and
trivial cofibrations the triple (F,U, ¢) is a Quillen adjunction [Ho, 1.3.1].

B.3. Recall [Hi, 13.1.1] that a model category C' is called right proper if for every cartesian
diagram in C

2o x

I

A—B

(B.3.1)

with ¢g a fibration and h a weak equivalence, the map p : P — X is a weak equivalence.

Proposition B.4. Suppose C is right proper, and that h : S — R 1s a weak equivalence in
C. Then the Quillen adjunction

(B.4.1) (F,U,¢): Cls = Clr

15 a Quillen equivalence.

Proof. By the definition of a Quillen equivalence [Ho, 1.3.12], it suffices to show that given a
commutative diagram in C'

(B.4.2) X -toy

k g
S —~R
with £ a cofibration and ¢ a fibration, the map f is a weak equivalence if and only if the
induced map

(B.4.3) [ X =S xgpY

is a weak equivalence. This follows from the 2-out-of-3 property for weak equivalences applied
to the diagram

(B.4.4) XL g xpy 22y,

and the fact that the map pr, : S xgY — Y is a weak equivalence since C' is right proper. [
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Remark B.5. Similarly a model category is called left proper if for every pushout diagram

(B.5.1) B4
P
X—P
with g a cofibration and h a weak equivalence, the map X — P is a weak equivalence.

If C is a left proper model category and h : S — R is a weak equivalence in C, then by
applying B.4 to the opposite category C° (with the natural model category structure) one
obtains that the functor

(B.5.2) Chr — Chs

between the model categories of objects under R and S respectively is a Quillen equivalence.

A model category which is both left and right proper is called proper.

B.6. Quillen adjunctions extend naturally to localized model categories. To explain this, let
C and D be model categories, and let

(B.6.1) F:C—D, U:D—C, ¢:FU —id¢g

be a Quillen adjunction (so F' is left adjoint to U).

Fix an object X € D. We then get model categories D\x and C\y(x) of object under X
and U(X) respectively. As noted in B.1 (applied to D° and C°) there are natural model
category structures on D\ x and C\y(x).

The functor U induces a functor
(B.6.2) Ux : Dix = Cux), (X =Y) = (UX)—=U®Y)).
This functor has a left adjoint
(B.6.3) Rx : C\ux)y — D\x
sending U(X) — Z to the pushout of the diagram

(B.6.4) FU(X) — F(Z)
X.

The functor U\x preserves fibrations and trivial fibrations, as this is true of U. The pair
x, U\ x) is therefore a Quillen adjunction by [Ho, 1.3.4].
F\x,U\x) is theref Quillen adj ion by [Ho, 1.3.4

B.7. The forgetful functor
(B.7.1) fxs :D\x — D, (X—=Y)—Y

has a left adjoint f§ sending Z € D to Z [ X with the natural map X — Z ][] X. The pair
(f%, fx«) is a Quillen adjunction since fx. clearly preserves fibrations and trivial fibrations.
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We therefore obtain a commutative diagram of right Quillen functors

U\X
(B.7.2) Dyx — C\u(x)
fX*l \LfU(X)*
D C.

Passing to the associated homotopy categories we obtain a commutative diagram of derived
functors

U

RU\ x
(B.7.3) Ho(D\ x) —> Ho(C\y(x))

Ho(D) —Y+ Ho(C).

Observe that since fx, preserves arbitrary equivalences we have R fx, >~ fx..

B.8. Dually, let Y € C be an object. We can then consider the localized categories C\y and
D\F(y). Let

(B.8.1) F\Y': C\y = Dypyy)

be the functor sending Y — Z to F(Y) — F(Z). This functor has a right adjoint U\
sending F(Y) — X to the composite

(B.8.2) y MU URY) —— F(X).

Since F' takes cofibrations to cofibrations and trivial cofibrations to trivial cofibrations, the
same is true of F\Y. Therefore (F\Y,U\) is a Quillen adjunction.

We have a commutative diagram of functors

F\Y

(B.8.3) Cly — D\r(v)
e e
c—"—=D.
As above, this implies that there is a natural transformation
(B.8.4) n:LF oRfy. — Rfpary. o LFVY.

Proposition B.9. If Y is a cofibrant object in C, then B.8.4 is an equivalence, so we have
a commutative diagram

\
(B.9.1) Ho(C\y) "> Ho(D\p(y))
lfy* ifF(Y)*

F

Ho(C)

Ho(D).

Proof. If Y — Z is a cofibration, then we have
(B.9.2) RfpayLEVY (Y — Z) = F(Z).
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On the other hand,

(B.9.3) LF(Rfy.(Y — Z) = F(Z'),
where Z' — Z is a cofibrant replacement. Now if Y is cofibrant then Z is also cofibrant, so
the map F(Z') — F(Z) is an equivalence. O

APPENDIX C. THE COHERATOR FOR ALGEBRAIC STACKS

In this section we discuss a version of the coherator for an algebraic stacks (see [T-T| for
the case of schemes and [Jo, 10.1] for a result in the lisse-étale topology).

C.1. Let S be a scheme, and let 2" be a stack over the category of affine S-schemes Affg
with the fpqc topology. Assume that the diagonal

(C.1.1) AN - xX

is representable and affine, and that there exists an fpqc surjection w : Spec(R) — 2.
Define Ztyqc to be the topos associated to the small fpqc site of 2 :
Objects: flat S-morphisms ¢ : T — 2, where T € Affs.

Morphisms: 2-commutative triangles over S

(C.1.2) T T
%

Coverings: A collection of morphisms {T; — T };c; is a covering if the underlying collection
of maps in Affg is an fpqge covering in the usual sense (see for example [Vi, page 30]).

The topos Zipqc is ringed with structure sheaf given by
(C.1.3) Oy (T — X)) =1(T, Or).

Remark C.2. If f: Z — % is a morphism of stacks satisfying the conditions of C.1, then
just as in the case of the lisse-étale site [LM-B, 12.2] there is a functor

(C.2.1) fet Zipge = Phipac
sending F' € Zgpqc to the sheaf
(C.2.2) (T - %) —T((T xg Z)tpqe; F).

This functor has a left adjoint f* but this functor is not in general exact. If f is flat, however,
then f* is exact (it is just the restriction functor) and f induces a morphism of topoi

(023) %pqc — fpqc-
Remark C.3. Recall that if T" is a scheme, then there is a natural morphism of ringed topoi
(C.3.1) € Tipqe = Tar-

A sheaf of 07, -modules E is called quasi-coherent if E' is isomorphic to €*F' for some quasi-
coherent sheaf (in the usual sense) on T7,,. Furthermore, the pullback functor ¢* induces an
equivalence of categories between quasi-coherent sheaves on Ty, and quasi-coherent sheaves
of Or,,  -modules (this follows from descent theory [Vi, 4.23]).
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C.4. By standard considerations, the category of &y -modules in Zj,qc is equivalent to the
category of collections of data {(E(ry), )} consisting of a sheaf &p-modules E(7y) in Tipqe for
every flat morphism ¢ : 7' — 27, and for every morphism f : (7",t') — (7', t) a morphism of
Or-modules

(C.4.1) ¢ [ Eay = Eq ).

These morphisms are further required to satisfy a natural cocycle condition for compositions.

A sheaf of 0y -modules E is called quasi-coherent if each Epy) is quasi-coherent and if
the transition morphisms C.4.1 are all isomorphisms. Let Qcoh(Z") denote the category of
quasi-coherent sheaves on 2", and let Mod(.2") denote the category of all &'y-modules. Then
there is a natural inclusion

(C.4.2) J : Qeoh(Z7) — Mod(Z").
The following lemma is the main reason we consider the small fpqc site as opposed to the
big site.

Lemma C.5. The essential image of 7 is closed under kernels, cokernels, and extensions.

Proof. Tt is immediate that the essential image of j is closed under cokernels and extensions.
For the statement about kernels, let f : E — F be a morphism of quasi-coherent sheaves,
and let K denote the kernel in Mod(Z"). Then for any flat morphism ¢t : T — 2~ with
T € Affg, the restriction Ky gz, of K to Tz, is simply the kernel of the map of Zariski sheaves
Erzac — Frza induced by f. It therefore suffices to show that if h : (77,¢') — (T,t) is a
morphism in the small fpqc site of 2" then the induced map

(051) h*KT,Zar - KT/,Zar

is an isomorphism. Since ¢t and ¢’ are flat, there exists a flat surjection p : P — T" and a
commutative diagram

(C.5.2) pP—>71
\Lp \Lt
Tl L. 3?//‘

with ¢ also flat. To verify that C.5.1 is an isomorphism, it suffices to show that it becomes
an isomorphism after applying p*. It therefore suffices to show that the analogues of C.5.1
for the morphism P — T’ and the morphism ¢ are isomorphisms. This follows from the
observation that C.5.1 is clearly an isomorphism if A is flat. U

Lemma C.6. The functor j has a right adjoint
(C.6.1) u: Mod(Z") — Qcoh(XZ).
Moreover, the adjunction map id — uj is an isomorphism.

Remark C.7. The functor v of C.6 is called the coherator.
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Proof. Let w: Uy — 2 be an fpqc surjection with U affine, and let U; denote Uy X o9 Uy so
we have a diagram

"
(C.7.1) U U —~2%.

For F' € Mod(Z"), define

(C.7.2) u(F) = Ker(w,I'(Uy, F} = nI'(Uy, F)),

where I'(Uy, F'J (resp. I'(Uy, F')) denotes the quasi-coherent sheaf on Uy (resp. U;) associated
to I'(Up, F') (resp. T'(Uy, F')). Since F' is a sheaf for the fpqc topology the sequence

(C.7.3) 0—F —wWwF =nnF
is exact. From the commutative diagram
(C.7.4) 0 F Wy F N F
T | !
0—> u(lF) ——w.I(Uo, FY___nI (U, Fy

we then obtain a map ju(F') — F. From this definition of u(F') it is clear that the adjunction
map uj(G) — G is an isomorphism if G € Qcoh(Z").

If G is a quasi-coherent sheaf, and ¢ : G — F' is a morphism of sheaves where F' € Mod(Z")
then the induced maps w*G' — w*F and n*G — n*F factor uniquely through T'(Up, F'} and
I'(Uy, F) respectively. It follows that ¢ also factors through a unique map G — u(F'). This
implies that u is a right adjoint to j. O

C.8. Since j is exact, the functor u takes injectives to injectives, and for any F' € D™ (Mod(Z"))
there is a canonical map

(C.8.1) jRu(F) — F.

Theorem C.9. The functor j induces an equivalence of categories
(C.9.1) j: DT(Qcoh(Z)) — DI _ (Mod(2)),
where D,

qcoh
qeon(Mod(27)) € DT (Mod(Z")) denotes the full subcategory of complezes with quasi-
coherent cohomology sheaves. A quasi-inverse to j is given by

(C.9.2) Ru: D (Mod(Z')) — D*(Qcoh(2)).

qcoh
Proof. For a flat morphism U — 2 with U an affine scheme, let .7, denote the following
site:

Objects: Morphisms of affine schemes V' — U such that the composite morphism V —
U— Z is flat.

Morphisms: Morphisms of U-schemes.

Coverings: A collection of maps {V; — V}ie; in A is a covering if it is an fpqc covering
in the usual sense.
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Then Zipqc|v is equivalent to the topos associated to ;. As in C.4 the category of
sheaves of 04 ,-modules (where €4, is the restriction of &) is equivalent to the category
of collections of data {Ey_y,y} consisting of a sheaf of Oy, -modules on Vi,q for every
(V = U) € S, and a transition morphism

(093) @ f*EV—»U - EV/—»Ua

for every morphism (V' — U) — (V' — U) in Sy. These transition morphisms are further
required to satisfy a natural cocycle condition. A sheaf E of &4 ,-modules is called quasi-
coherent if each )y _y; is quasi-coherent, and if the transition maps C.9.3 are all isomorphisms.

Lemma C.10. Let U — Z be a flat morphism with U an affine scheme, and let F' be a
quasi-coherent sheaf on Zipqelu-

(i) We have H( Zipqc|v, F) = 0 for i > 0.

(i) If w : Zipgely — Zipqe s the projection, then we have R'w,F =0 for i > 0.

Proof. Note first that (ii) follows immediately from (i) as R'w,F is equal to the sheaf asso-
ciated to the presheaf which to any flat morphism W — 2" associates H'( Zipqc|vx 4w F),
where W is an affine scheme (and note that U x o W is affine since 2" has affine diagonal).

Statement (i) can be seen as follows (this is essentially the same as in the usual case of the
big fpqc site). For any fpqc covering P : V' — U with V an affine scheme, let V. denote the
0-coskeleton of P (see for example [LM-B, 12.4]). We then have a spectral sequence [De4,
1.4.5]

(C.10.1) EY! = HY Zipqelv,, F') == H""( Zipqelv, F).

The ¢ = 0 line in this spectral sequence is the complex

(C.10.2) F(Vo) = F(W1) = F(Va) — -+,

which is exact by the usual flat descent theory (see for example [Mi, 1.2.18]).

This in turn implies that the natural map
(ClOS) Hl(f%pqc|U7F) - H1<%PQC|V7F)

is injective. Since any cohomology class & € H'( Zipqc|v, F') maps to zero in H'( Zipqelv, F)
for some fpqc covering V' — U this implies that H'( Zfpqc|v, F)) = 0. This proves (i) for i = 1.

For general i, we proceed by induction on ¢ > 1. So fix an integer ¢ and assume that for
any flat morphism W — 2" with W an affine scheme, and quasi-coherent sheaf G on Ziyqc|w
we have H/(Zipqelw,G) = 0 for 1 < j < i — 1. Then the spectral sequence C.10.1 and the
exactness of C.10.2 shows that for any fpqc covering V' — U the pullback map

(C.10.4) Hi(%pchaF) - Hi(%pch,F)
is injective. Since for any class & € H'( Zipqelr, F) there exists an fpqc covering V' — U such

that o maps to zero in H( Zipee|v, F), it follows that H(Zipqec|v, F) = 0. O

Let w: Uy — 4 be an fpqc covering with U, affine, and let A : U. — 2 be the associated
simplicial space.
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Lemma C.11. Let I € Mod(Z") be an injective sheaf, and let I be the sheaf in the localized
topos Zipqelu. whose restriction to each Zipqgc|u, 15 equal to the quasi-coherent sheaf associated

to D'(U,,I). Then R'A,(I) =0 for i > 0, where

(Clll) A: %pqc‘U - <Qj}pqc

15 the projection.

Proof. Since the natural map I — w,w*I is injective and hence a direct summand, it suffices
to consider the case when I = w,J for an injective sheaf J in 27|y,.

Let P. denote U. X - Uy and consider the commutative diagram of topoi

(0112) %pqchz’. i> %qu|U()

Lol —2= 2
fpqc|U. — = Adpqce-

Let J. denote the sheaf in Zipqe|p. whose restriction to Zipqc|p, 1S the quasi-coherent sheaf
associated to I'( Zipqc|p,, J). Then we have I. = n,J..

For any natural number n and ¢ > 0, the restriction of Rin*j to Zipqc|u,, 1s equal to Ehe
sheaf associated to the presheaf on .77, which to any V' — U, associates H i(%qu|VXUn Py Jn)-
By C.10 it follows that R'n.J. =0 for ¢ > 0. To prove C.11 it therefore suffices to show that
(C.11.3) R(A, on,)(J) = Ri(w, 0 B,)(J) =0
for i > 0.

Let J_; denote the quasi-coherent sheaf on Zipqelu, associated ['( Zipqelvy, J). We show
that the natural map

(C.11.4) J_1 — RB.J.
is an isomorphism. This will complete the proof C.11 for then we have
(C.11.5) Ri(w, 0 B)(J) ~ Rw,J_,

and the right side is zero by C.10 (ii).
To see that C.11.4 is an isomorphism, consider the spectral sequence [De4, 1.4.5]
(C.11.6) E' = RIB,,J, = RPTB,J,
where B, : Ztpqelp, = Zipqelu, is the projection. As in the proof of C.10 (ii), it follows from

C.10 (i) that RIB,.J, = 0 for ¢ > 0. Therefore RB.J. is represented by the complex

(C.11.7) C": BooJy — BiuJy — -
which is the normalized complex of the cosimplical module
(C.11.8) Z.: [n] — By

Let p: j,l — Z. be the natural map. The identity map Uy — U, over 2" induces a section
of the projection P. — Uy. This section in turn induces for every n a map

(C.11.9) Gn = P — Py
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given by the map

P,=PFy xy, Poy--- Xy, P, Py xy, Py xy, P, =P,
(C.11.10) Lo XU 0 Uo —>\o Uy 170 Uo I'n +2

vV v
n+1 n+2

which on scheme-valued points is given by

(C.11.11) (g, ... ) — (sBo(ap), g, - . ., ).
The map g,, defines a morphism of topoi

(C.11.12) In * Zipael P, — f%qu|Pn+1v

and therefore also a map

(C.11.13) 9% Bustedni1 — Buwdn.

Exactly as in the case of faithfully flat descent [Mi, I, proof of 2.18] these maps give a
homotopy between the identity map on C" and the zero map. From this it follows that

(C.11.14) Jq—C

is a quasi-isomorphism. O
Lemma C.12. Let F' be a quasi-coherent sheaf on 2 . Then the adjunction map

(C.12.1) F — RAA'F

1 an isomorphism.

Proof. Again by [De4, 1.4.5] there is a spectral sequence
(C.12.2) BV = RIA, A'F —s RVIAAF.

By C.10 (ii) we have R?A,. A7 F = 0 for ¢ > 0, which implies that RA,A*F" is represented by
the complex

(C.12.3) Ap AL — AL ATE — Ay ASF — - -
By classical fpqc descent [Mi, 1.2.18] the adjunction map F — Ay ASE induces a quasi-
isomorphism between F' and C.12.3. U

Lemma C.13. Let F' be a quasi-coherent sheaf on Z . Then the adjunction map
(C.13.1) JRu(j(F)) — j(F)
1S an isomorphism.

Proof. Choose an injective resolution F' — I in the category Mod(Z"). Let I be the complex
on Zipqely. whose j-th term is I7. For any n > 0, the complex

(C.13.2) D(Zipaelvns 1°) = T(Zipaelvs I') = T(Zipgelu,, I2) — -+
computes RI'( Zpqclv,, F). By C.10 (i) it follows that the natural map
(C.13.3) A ALF — AT,

is a quasi-isomorphism. By C.12 we therefore obtain an isomorphism in the derived category

(C.13.4) F ~ RAA*F ~ Tot((p, q) — ApI9),
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where the right side denotes the total complex of the indicated complex. On the other hand,
by C.11 the natural map

(C.13.5) jul') = (A0 — AT = --2) = Tot((p, q) — Ap?)

is a quasi-isomorphism. Since jRu(F) = ju(I") we conclude that the adjunction map
(C.13.6) JRu(j(F)) — j(F)

is an isomorphism. O

We can now complete the proof of C.9. We need to show that the adjunction maps
(C.13.7) jRu —id, and id — (Ru)oj
are isomorphisms.

Note first that if ¢ : F' — G is a morphism in D*(Qcoh(Z")), then ¢ is an isomorphism if
and only if j(¢) : j(F) — j(G) is an isomorphism in D*(Mod(.2")). Therefore to verify that
the adjunction map

(C.13.8) id — (Ru) o j
is an isomorphism it suffices to show that the adjunction map
(C.13.9) j—jo(Ru)oj

is an isomorphism. For this in turn it suffices to show that the adjunction map jRu — id is
an isomorphism.

For this note that if ¥ € D, (Mod(Z")) then there is a spectral sequence (the spectral

sequence of a filtered complex [De3, 1.4.6])

(C.13.10) EY = jRW(P(F)) = jRPTu(F).

Since each S#P(F') is quasi-coherent this implies that the natural map

(C.13.11) JR"W(F) — just™(F) = A" (F)

is an isomorphism. O

Remark C.14. In the case of an algebraic stack in the usual sense [LM-B], one could replace
the small fpqc topology in the above with the lisse-étale topology [LM-B, §12].

APPENDIX D. Bgs(V)-ADMISSIBLE IMPLIES CRYSTALLINE.

D.1. Let V' be a complete discrete valuation ring of mixed characteristic (0, p), field of frac-
tions K, and perfect residue field k. Let W be the ring of Witt vectors of k, and let Ko C K
be the field of fractions of W. Let K — K be an algebraic closure, and let Aes(V), Beis(V),

and Beis(V) be the rings defined in 6.2,

Let us recall the construction of these rings. Let V C K denote the integral closure of V,
and let Sy denote the ring of sequences (ay,),>0, where a, € V/pV and d” L1 = ay, for all
n > 0. Then Sy is a perfect ring and we can form the ring of Witt vectors W (Sy). As in
6.2.2 there is a surjection

N

(D.1.1) 0:W(Sy)—V",
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where V"' denotes the p-adic completion of V. If J denotes the kernel of 6 then Auis(V) is
defined to be the p-adic completion of the divided power envelope D ;(W (Sy)).

Fix elements €,, € V with ¢, = 1, eﬁﬁl = €n, and €; # 1. Let € € Sy be the element
defined by the reductions of the €,,, and let [¢] € W(Sy) be its Teichmuller lifting. Define
7. := ] — 1 € W(Sy). Then one verifies (see for example 6.2.5) that the series

(D.1.2) > (=) (m = 1)l
m>1
converges to an element ¢t € Agis(V). We define B.,is(V') to be the localization Aes(V)[1/t].
Fix a sequence of elements 7,, (m > 0) with 7o = p and 7}, | = 7. As in 6.8 let Ay /pn
denote the element given by the sequence (@, )m>0 With @, = T, and let &; /= A1 /pn].
We define Beis(V) to be the ring obtained from Bgis(V) by inverting the elements &;/pn
(n > 0). Note that 5{’;}7,1 = 01 so we also have Bes(V) = Beis(V)[1/01].

The action of G on V induces an action of G on Sy, W (Sy ), and Aeis(V) by functoriality.
Let x : Gk — Z, denote the cyclotomic character. Then it follows from the construction
that G acts on t by

(D.1.3) gt =x(g)t.

In particular, the action of Gk on Auis(V') induces an action on Bes(V). Also the choice of
the elements 7, defines a homomorphism

(D.1.4) p: G — Zy(1) = lim fin.

n

If g € Gk then the image p(g) = ((u)n>0 in Zy(1) is characterized by the equality

(D.1.5) p(7n) = CuTn.
There is also a map
(D.1.6) a:Zy(1) = Aqis(V)*

sending a sequence ((,),>0 to the Teichmuller lifting [¢] of the element { € Sy defined by
the reductions of the (,,. One verifies immediately from the construction that for g € G we
have

(D.1.7) g*x 01 =al(p(g)) - 01.
In particular, the Gg-action on Bes(V) induces an action of G on écriS(V).

Definition D.2. Let A/Q, be a (possibly infinite dimensional) vector space with action of

the group G (not necessarily continuous). We say that A is Beis(V')-admissible if there
exists a Ky-vector space M, and an isomorphism

(D21) A ®Qp Ecris(v) ~ MO ®K0 Ecris(v)
compatible with the Galois actions, where G acts on the left through the action on each
factor and on the right with trivial action on My and the natural action on Bes(V).

We say that A is crystalline if A = U;A;, where each A; C A is a finite dimensional
subrepresentation, the action on each A; is continuous (where A; is given the usual p-adic
topology), and A; is crystalline (in the usual sense [Fol, 5.1.4]).
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The main result of this appendix is the following:
Theorem D.3. Let A/Q, be a Ecris(V)—admissible representation. Then A is crystalline.

D.4. We begin the proof by recalling some facts about the ring Bj; and its field of fractions
Bgr. Let (B, J,,[]) be the divided power ring which is the reduction of Ag;s(V') modulo p™.
Then we set

(D.4.1) By == 1im(Q ® lim B, /JI").

There is a natural map A.is(V) ® Q — Bji, and one can show (see for example [Fo4, 1.5.2])
that BGTR is a complete discrete valuation ring and that the image of t € Ags(V) in B:{R is a
uniformizer. The field Byr is defined to be the field of fractions of B;R. There is a natural
inclusion Beis(V) < Bar. Note that the action of Gx on Aqis(V) induces an action of G
on BIR and BdR-

Proposition D.5. Let d be an integer, and let A C (Bgr)® be a finite dimensional Q,-
subspace that is stable under Ggi. Then the restriction of the Gi-action to A defines a
continuous action on A (where A is given the usual p-adic topology).

Proof. First note that the action of Gx on A is continuous if and only if for some i the
action of G on A(7) is continuous, since A ~ A(i) ® Q,(—i) and the tensor product of two
continuous representations is again continuous. After possible replacing A by ¢ - A ~ A(7)
we may therefore assume that A C (Bjz)?.

Since A is finite dimensional we get in this case an injection

(D.5.1) A— (Q®lim B,/ J)

for some r. By [Tsl, A2.10] each Bn/JT[LT} is flat over Z/(p™) and the natural map
(D.5.2) Bui1/ )b @ Z/(p") = Bu/ )
is an isomorphism for all n. This also implies that liinn B,/ JI s flat over L.

To ease notation we write C,, (resp. C) for the ring B, /JI (resp. lim B,/ JIY in what
follows. We view C' as a topological ring with the p-adic topology (so each C,, is given the
discrete topology). The topology on C' also defines a topology on Q ® C'.

Lemma D.6. The map p: Gxg X A — A is continuous if and only for every v € A the map
(D.6.1) po: G — A, g g(v)

18 continuous.

Proof. The ‘only if” direction is immediate as for every v € A there is a commutative diagram

(D.6.2) Gk x {v}

Pv

G x A—L+5 A,

and the inclusion {v} < A is the inclusion of a closed point.
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For the ‘if’ direction choose a lattice

(D.6.3) N=2Zye1+ - Zpe, C A,

and for : = 1,...,r define

(D.6.4) U; :=p.'(A) C Gk.

By assumption each U; is open in Gk, and therefore

(D.6.5) U:=UNn---NU.={g€Ggklg(A) C A}

is an open subgroup of G. Since G is compact it follows that there exists ¢q,...,9s € Gk
such that

(D.6.6) Gk =U_U-g.

Let t be an integer such that

(D.6.7) G(A) ]%A

for i =1,...,s. Then we find that g(p'A) C A for all g € G.

Now consider an open subset v + p*A C A for some v € A, and let (g,7) € p~ (v + p*A).
Denote by H the intersection U N p; (v + p*A) which is an open subset of Gx. Then for any
y € p"*'A and u € H we have

(D.6.8) pupg( +y) = pu(v +p*A) € v+ pFA,
where A € A. We conclude that
(D.6.9) H-gx{z+p"TA} C p (v +pA).

g

Lemma D.7. The p-adic topology on A agrees with the topology induced by the topology on
Q®C.

Proof. Let A C A be a lattice whose image in Q ® C' is contained in C'. For every n let
U, C C, be the image of A. Let K, denote the kernel of the projection A/p"A — W, so we
have an exact sequence

(D.7.1) 0— K, —A/p"A - ¥, — 0.

Passing to the limit (and using the fact that the kernels {K,} satisfy the Mittag-Leffler
condition since A/p™A is an artinian module) we get an exact sequence

(D.7.2) 0—limK, - A —lim¥, — 0.
— —
Moreover the composite map
(D.7.3) A—limV¥, - C=1lmdC,
— —
is injective, which implies that lim K,, = 0 and that A >~ lim U,,.
— —

For every n let U,, C A denote the kernel of the map A — W,,. Then the {U,} form a basis
of open subsets around 0 € A for the induced topology. Note also that we have p"A C U,.

To prove that the p-adic topology agrees with the induced topology, it therefore suffices to
show that for any integer n there exists an integer k£ such that U,,, C p"A. For this note
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that since @Kn = 0 there exists an integer k£ such that the image of K, in K, is zero.
This implies that there exists a dotted arrow filling in the following diagram

(D.7.4) A

|

A/pn+k/\ >> \I[n—I—k:
|,
A/pA,
and hence U, C p"A. O

Since A has the induced topology, to prove that for any v € A the map
(D.7.5) po: G — A, g—g-v

is continuous, it suffices to show that the composite map

(D.7.6) G 2> A= Q®C
is continuous. In particular, this will follow if we show that for every x € Q ® C' the map
(D.7.7) pr Gk = Q®C, g—g-x

is continuous. For this in turn it suffices to show that for every x € C and integer n the
subgroup

(D.7.8) Gy(k) :={g9 € Gklgr —z € p"C} C Gk

is open. For this in turn it suffices to show that for any integer n and =z € B,/ JI the
subgroup

(D.7.9) H,:={g € Gklg(r) =z}

is open. Let f: W,(Sy) — Bn/JT[f] denote the natural map, and let J, C W, (Sy) denote

the image of Ker(#). Then any element = € B,,/ JI can be written as a finite sum of terms
of the form f(y) (y € W,(Sy)) and f(y)l! (y € J,, 0 < i < r). It therefore suffices to show
that for x = f(y) the subgroup H, C G is open. This can be seen as follows. Write

(D?lO) Yy = (a07 C. ,an_l) S Wn(S\/)

with a; = (ai,) € Sy (so we have a;, € V/pV). Define ai/”i € Sy to be the element
(bm) € Sy with

(D?ll) bm = Qj m+4i-
We have a commutative diagram
(D.7.12) B,
e
9
O — , —
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where ¢, denotes the reduction of the map 6. Choose for © = 0,...,n — 1 a lifting g; of
Hn([al/pz]). Then one shows as in [Tsl, A1.5] that we have

(]

(D.7.13) Fy)=>"pg" "
=0

It therefore suffices to show that for any e = (e,,) € Sy and u := 0,(e]) € V/p"V the
subgroup

(D.7.14) K, :={g9 € Gklg(u) = u}
is open in Gi. For this note that by definition of the map 6 we have
(D.7.15) 0, ([e]) = &

for any lifting €, € V /p"V of e,. This therefore reduces the proof to showing that for any
element z € V' /p"V the subgroup

(D.7.16) {9 € Gklg(z) = 2z} C Gk
is open which is immediate. This completes the proof of D.5. U

Returning to the proof of D.3, let A be a Ecris(V)—admissible representation, and fix a
Ky-space M, with a G'g-equivariant isomorphism

(D.7.17) A®g, Beris(V) 2 My @5 Beris(V).

Write My = U;N; where N; C M, is a finite dimensional subspace, and set (intersection inside
A ®g, Beis(V))

(D.7.18) Ay = AN (N @k, Bowis(V)).

Then A; C A is a subrepresentation of Gx. We have a commutative diagram

a

/’\

(D719) Az ®Qp Bcris(v> - Nz ®Ko Bais(‘/)c—> A ®Qp Bcris(v>7

where the map a is an inclusion. It follows that the natural map

(D.7.20) A; ®q, Bais(V) = Ni @k Beis(V)

is an inclusion. Since NV; is finite dimensional, this implies that A; is also finite dimensional.
We conclude that A = U;A;, where A; C A is a finite dimensional subrepresentation. The
composite map

(D.7.21) Aj = N; Ok, EcriS(V) — N; ®F, Bar ~ ngn(Ni)
identifies A; with a finite dimensional QQ,-subspace of BgiRm (N9 which is G x-stable. It follows

from this and D.5 that the action of G on A; is continuous. Since A = U;A; we have proven
the following:

Corollary D.8. Let A be a écris(V)—admissible G -representation. Then A = U;A;, where
each A; C A is a continuous subrepresentation of finite dimension.
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For a Q,-representation A (possibly infinite dimensional) define

(D.8.1) D—(A) == (A®g, Buis(V))°x.

cris

Then Dafs( A) is a K-vector space.
Recall from [O13, 15.4 and 15.5] that the functor D has the following properties:

(i) For any finite dimensional continuous Gk-representation A the natural map

(D.8.2) D:(A) ®ky Bais(V) — A ®q, Beis(V)
is injective.
(ii) For any finite dimensional continuous G'k-representation A the Ko-space D (A) is
finite dimensional and

(D.8.3) dimg, A > dimg, D (A).

cris

If A is an infinite dimensional G g-representation which can be written as a union A = U; A; of
finite dimensional continuous subrepresentations, then it follows from (i) and the isomorphism

that the natural map
(D.8.5) D(A) @y Bexis(V) — A ®q, Bens(V)

is injective.
Lemma D.9. Let A be a Ecris(V)—admissible G -representation. Then any subrepresentation
and quotient representation of A is also Beis(V')-admissible.

Proof. Consider an exact sequence of G g-representations
(D.9.1) 0-A—>A—-A">0

with A a EcriS(V)—admissible representation. It follows from D.8 that both A’ and A” are
equal to the unions of their finite dimensional continuous subrepresentations. This implies

that we have a commutative diagram
(D.9.2)

00— DN(A,) QKo Bcris(v) - DN(A) Ky Bcris(v> - D~(A”) @, Bcris(v)

cris cris cris

| 5 ]

A ®Qp Bcris(v) A ®Qp Bcris(v) A" ®Qp Bcris(v)

where all the vertical arrows are inclusions and the middle arrow is an isomorphism. A
diagram chase then shows that all the vertical arrows in fact are isomorphisms. U

0 0,

This now completes the proof of D.3. For if A is a Ecris(V)—admissible representation, we
can by D.8 and D.9 write A = UiAl- where each A; C A is a continuous finite dimensional
subrepresentation which is also Bg;s(V)-admissible. The theorem now follows from [O13,

15.5] which shows that any finite dimensional continuous Bes(V)-admissible representation
is crystalline. O
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Remark D.10. If A is a (possibly infinite dimensional) crystalline representation of G, and
of My is a Ky-vector space with a G g-equivariant isomorphism

(D].Ol) A ®Q Ecris(‘/) =~ MO ®K0 ECYiS(v)7
then by [O13, 15.3 and 15.7] we have D~ (A) = M, the natural map Dys(A) — D—=(A) is

Cr1s Cris

an isomorphism, and the isomorphism D.10.1 is induced by the isomorphism

(D102) A ®Qp Bcris(v) >~ DCriS(A) ®K0 BCI‘iS(v) ~ MO ®K0 Bcris(v)'
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