
TANGENT SPACES AND OBSTRUCTION THEORIES

MARTIN OLSSON

These are notes from my series of 8 lectures on tangent spaces and obstruction theories,
which were part of a MSRI summer workshop on Deformation Theory and Moduli in Algebraic
Geometry (July 23 – August 3, 2007). Nothing in these notes is original. For a list of references
where this material (and much more!) can be found see the end of the notes.

These are the (slightly cleaned up) notes prepared in advance of the lectures. The actual
content of the lectures may differ slightly (and in particular several of the examples included
here were left out of the lectures due to time constraints).

Lecture 1. The ring of dual numbers.

1.1. Motivation. Let X be a scheme over a field k, and let x ∈ X(k) be a point. The
tangent space TX(x) of X at x is the dual of the k-vector space m/m2, where m ⊂ OX,x is
the maximal ideal. If X represents some functor

F : (schemes)op → Set,

then the point x ∈ X(k) corresponds to an element of F (Spec(k)), and elements of the
tangent space should correspond to infinitesimal deformations of x. At first approximation,
the purpose of my lecture series is to understand from a functorial point of view this tangent
space as well as the obstruction spaces that arise if X is singular at x.

1.2. Dual numbers. For a ring R, and an R-module I we define the ring of dual numbers
R[I] as follows. This ring is an R-algebra whose underlying R-module is R⊕ I. The algebra
structure is given by the following rule:

(r, i) · (r′, i′) = (rr′, ri′ + r′i), r, r′ ∈ R, i, i′ ∈ I.

There is a natural projection π : R[I] → R sending R to itself by the identity map, and I to
zero. We therefore have a commutative diagram

R[I]
π // // R

R.

aaDDDDDDDD
id

OO

Note that R[I] is functorial in the pair (R, I). Namely, if R → R′ is a morphism of rings,
and I → I ′ is a morphism (of R-modules) from I to an R′-module I ′, then there is an induced
morphism

R[I] → R′[I ′].
1
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Remark 1.3. We will often consider the special case when I = R. In this case R[I] will often
be denoted R[ε] (it really should be R[ε]/(ε2)], but the ideal (ε2) is usually omitted from the
notation).

Remark 1.4. Note that the preceding discussion also makes sense for sheaves on a topological
space. If X is a topological space, O a sheaf of rings on X, and I a sheaf of O-modules on
X then we obtain a sheaf of O-algebras O[I] together with a surjection O[I] → O.

In particular, if X = (|X|,OX) is a scheme and I is a quasi-coherent OX-module, then we
can consider the ringed space X[I] := (|X|,OX [I]).

Exercise 1.5. Show that X[I] is a scheme.

Relationship with derivations.

Let A → R be a ring homomorphism, and let M be an R-module. Recall that an A-
derivation from R to M is a homomorphism of A-modules

∂ : R → M

such that for any x, y ∈ R we have

∂(xy) = x∂(y) + y∂(x).

Let DerA(R,M) denote the R-module of A-derivations from R to M .

Let A−Alg/R denote the category of pairs (C, f), where C is an A-algebra and f : C → R
is a morphism of A-algebras. A morphism (C, f) → (C ′, f ′) in A − Alg/R is an A-algebra
homomorphism g : C → C ′ such that the diagram

C
g //

f

��@
@@

@@
@@

C ′

f ′~~}}
}}

}}
}

R

commutes. Note in particular that for an R-module I, the projection π : R[I] → R defines
an object (R[I], π) ∈ A− Alg/R.

Remark 1.6. If A = Z we sometimes write simply Alg/R for Z− Alg/R.

Proposition 1.7. For any A-derivation ∂ : R → I the induced map

R → R[I], x 7→ x + ∂(x)

is a morphism in A− Alg/R, and the induced map

DerA(R, I) → HomA−Alg/R(R,R[I])

is an R-module isomorphism.

Note that in general, if f : C → R is an object of A − Alg/R, and the kernel I of f
is a square-zero ideal in C, then any section s : R → C of f identifies f : C → R with
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π : R[I] → R. Indeed, given the section s, define a map σ : R[I] → C by σ(x + i) = s(x) + i
(x ∈ R and i ∈ I). The commutativity of the diagram

0 // I // R[I]

σ

��

π // R // 0

0 // I // C
f // R // 0

shows that σ in fact is an isomorphism.

An important special case is when C = R⊗A R/J2, where J ⊂ R⊗A R is the kernel of the
diagonal R ⊗A R → R. Let I ⊂ C denote the ideal J/J2. Then I is equal to the R-module
of Kahler differentials Ω1

R/A. Let s : R → C be the section defined by the map R → R⊗A R
sending x ∈ R to x⊗ 1. This section gives an identification

R⊗A R/J2 ' R[Ω1
R/A]

and therefore by 1.7 also identifies sections of the diagonal map R ⊗A R/J2 → R with
DerA(R, Ω1

R/A).

Exercise 1.8. Show that under this identification, the universal derivation d : R → Ω1
R/A

with the section of R⊗R/J2 → R given by sending x to 1⊗ x.

1.9. The tangent space of a functor. Let ModR denote the category of finitely generated
R-modules. If

H : ModR → Set

is a functor which commutes with finite products, then there is a canonical factorization

ModR

H $$J
JJJJJJJJ

H // Set

ModR

forget

;;wwwwwwwww

of H through a functor H : ModR → ModR. Indeed, if I ∈ ModR then the additive structure
on H(I) is given by the composite map

H(I)×H(I) ' H(I ⊕ I)
+ // H(I).

For f ∈ R multiplication by f in H(I) is given by the map

H(I)
H(×f)

// H(I).

Exercise 1.10. Show that these maps define an R-module structure on H(I).

Let A → R be a ring homomorphism. The category A − Alg/R has finite products. If
f : C → R and f ′ : C ′ → R are two objects, then the product in A− Alg/R is given by the
fiber product C ×R C ′ with the natural projection to R.

Lemma 1.11. The functor

ModR → A− Alg/R, I 7→ R[I]

commutes with finite products.
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Proof. This amounts to the claim that for I, J ∈ ModR the natural map

R[I ⊕ J ] → R[I]×R R[J ]

is an isomorphism, which is immediate. �

Corollary 1.12. Suppose F : A − Alg/R → Set is a functor such that for I, J ∈ ModR the
canonical map

F (R[I]×R R[J ]) → F (R[I])× F (R[J ])

is an isomorphism. Then for any I ∈ ModR, the set F (R[I]) has a canonical R-module
structure.

Definition 1.13. Let F : A − Alg/R → Set be a functor such that for I, J ∈ ModR the
canonical map

F (R[I]×R R[J ]) → F (R[I])× F (R[J ])

is an isomorphism. The tangent space of F , denoted TF , is the R-module F (R[ε]).

Remark 1.14. In the above we do not need that F is defined on the full category A−Alg/R.
If C ⊂ A−Alg/R is a full subcategory closed under products containing the objects R[I] for
R-modules I, and if F : C → Set is a functor such that for all I, J the map

F (R[I]×R R[J ]) → F (R[I])× F (R[J ])

is a bijection, then we can talk about the tangent space of F .

This will often be applied when R is a field k, and A is a complete noetherian local ring
with residue field k. In this case we will frequently consider the category CA of artinian local
A-algebras with residue field k.

Exercise 1.15. Let k be a field, X/k a scheme, and x ∈ X a point. Let k → R be the
composite homomorphism k → OX,x → k(x). Define

F : k − Alg/k(x) → Set

to the functor sending a diagram k → C → k(x) to the set of dotted arrows over Spec(k)
filling in the following diagram:

Spec(k(x))

x

��

// Spec(C)

wwp p p p p p

X.

Show that the hypotheses of 1.13 are satisfied, and that the resulting k-vector space TF is
canonically isomorphic to the tangent space of X at x.

Lecture 2. Computation of tangent spaces, examples

2.1. Deformations of smooth schemes. Let R be a ring, and let g : X → Spec(R) be a
smooth separated morphism of schemes (the separatedness assumption is not necessary but
included for expository reasons).

Let
DefX : Alg/R → Set
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be the functor which to any (C, f : C → R) ∈ Alg/R associates the set of cartesian diagrams

(2.1.1) X //

g

��

X ′

g′

��
Spec(R)

f // Spec(C),

where g′ is smooth. We consider a second diagram

(2.1.2) X //

g

��

X ′′

g′′

��
Spec(R)

f // Spec(C),

equal to 2.1.1 if there exists a dotted arrow h filling in the following diagram

(2.1.3) X ′′

hyyt
t

t
t

t

g′′

����
��

��
��

��
��

��
��

X //

g

��

44hhhhhhhhhhhhhhhhhhhhhhhhh
X ′

g′

��
Spec(R)

f // Spec(C).

Proposition 2.2. The functor DefX satisfies the assumptions in 1.13.

Proof. Done in Brian Osserman’s lecture. �

We can compute the tangent space TDefX as follows.

In the case when X is affine, then we have the following facts. Let f : C → R be a
surjection with nilpotent kernel J .

(i) DefX(C, f) consists of one element.

(ii) Given two diagrams 2.1.1 and 2.1.2 the set of arrows h filling in 2.1.3 is a torsor under
H0(X, TX ⊗ J), where TX denotes the relative tangent bundle of X → Spec(R).

The following exercise should also be noted somewhere:

Exercise 2.3. Let j : X0 ↪→ X be a closed immersion of schemes defined by a nilpotent
ideal. If X0 is affine, then X is also affine.

We can use the affine case to study the general case as follows. Let I be an R-module, and
let IX denote I ⊗R OX .

Lemma 2.4. The morphism f : X[IX ] → Spec(R[I]) is smooth.

Proof. This is clear as it is obtained by base change from X along the projection Spec(R[I]) →
Spec(R). �

Now suppose given a diagram 2.1.1 with C = R[I]. Note that the topological spaces |X|
and |X ′| are equal, so if U = {Ui} is a covering of X by affine open subsets, then we also
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obtain a covering X ′ = ∪iU
′
i of X ′ by affine open subsets. Note also that U ′

i ∩U ′
j is the unique

lifting to an open subset of X ′ of Ui ∩ Uj.

By the affine case, there exists for each i an isomorphism

σi : U ′
i → Ui[IUi

]

reducing to the identity modulo I. Fix a collection {σi} of such isomorphisms. On the
intersections Ui ∩ Uj we therefore get two maps

σi|Uij
, σj|Uij

: U ′
ij → Uij[IUij

].

The difference σi|Uij
− σj|Uij

of these two maps is by (ii) above given by an element xij ∈
H0(Uij, TX ⊗ I).

Lemma 2.5. For i, j, k ∈ I, we have

xik = xij + xjk

in H0(Uijk, TX ⊗ I).

Proof. Consider the diagram

Uijk[I]

xjk

%%σ−1
k //

xik

44
U ′

ijk

σj // Uijk[I]

xij

%%σ−1
j // U ′

ijk
σi // Uijk[I].

�

It follows that {xij} define a Cech cocycle in Z1(U , TX ⊗ I). Let c(X ′) ∈ H1(X,TX ⊗ I)
denote the corresponding cohomology class.

Proposition 2.6. Assume that X is separated so that the intersections Uij are affine. Then
the association

X ′ 7→ c(X ′) ∈ H1(X, TX ⊗ I)

defines a bijection
DefX(R[I]) → H1(X, TX ⊗ I).

Exercise 2.7. Show that 2.6 still holds without the assumption that X is separated.

Exercise 2.8. Prove that the R-module structure on TDefX defined in 1.13 agrees with the
standard R-module structure on H1(X, TX) under the identification in 2.6.

2.9. Deformations of nodes. Let k be a field and let A = k[[x, y]]/(xy) be the completion
of the ring k[x, y]/(xy) at the maximal ideal (x, y). Let

F : k − Alg/k → Set

be the functor which associates to k → C → k the set of isomorphism classes of pairs (AC , ι),
where AC is a flat C-algebra and ι : AC ⊗C k → A is an isomorphism of rings.

Then as above the conditions in 1.13 are met, so F has a tangent space TF . We can
calculate TF as follows.
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First note that there are some obvious deformations of A to k[ε]. Namely, for any element
a ∈ k we can consider the deformation

Aa := k[ε][[x, y]]/(xy − aε).

Lemma 2.10. Let
k[ε]

��

// A′

ι

��
k // A

be an element of F (k[ε]). Then there exists an element a ∈ k such that A′ ' Aa (as a
deformation of A). Moreover, the element a is unique.

Proof. Note that since A′ is flat over k[ε], the kernel of ι is canonically isomorphic to A · ε.
Let x̃, ỹ ∈ A′ be liftings of x and y respectively. Then we have

x̃ · ỹ = (a +
∑
i≥1

αix
i +

∑
j≥1

βjy
j) · ε.

Let ỹ′ denote ỹ + (
∑

i≥1 αix
i−1)ε and x̃′ denote x̃ + (

∑
j≥1 βjy

j−1)ε. Then

ỹ′ · x̃′ = aε.

We therefore obtain a map
Aa → A′

over A, which must be an isomorphism since both are flat over k[ε].

To see that a is unique, suppose f : Aa → Aa′ is an isomorphism over A. Write

f(x) = x + αε, f(y) = y + βε, α, β ∈ A.

Then we find that

aε = f(x) · f(y) = (x + αε) · (y + βε) = a′ + (xβ + yα) · ε,
which implies that a = a′. �

We therefore have a bijection
k → TF , a 7→ Aa.

Let us verify that this is compatible with the vector space structure.

For the additive structure, note that the sum of Aa and Ab in TF is given by the image of
(Aa, Ab) under the map

F (k[ε])× F (k[ε])
' // F (k[ε1, ε2])

εi 7→ε // F (k[ε]).

This image is given by the algebra

(Aa + Ab) := (Aa ×A Ab)⊗k[ε]×kk[ε],∆ k[ε].

The two elements (x, x), (y, y) ∈ Aa ×A Ab satisfy

(x, x) · (y, y) = (aε, bε),

and therefore define a map Aa+b → (Aa + Ab) over A. Again by flatness this map must be
an isomorphism.
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The statement about the module structure follows from noting that if f ∈ k then the map

F (×f) : F (k[ε]) → F (k[ε])

sends Aa to

Aa ⊗k[ε],ε7→fε k[ε] ' Aaf .

Remark 2.11. This example is generalized in one of the exercises where it is shown that the
line k[[a]] defines a hull for the functor of deformations of the node.

Lecture 3. Obstruction theories

Before stating the general setup, let us start with an example.

Let π : A′ → A be a surjection of rings with kernel J a square-zero ideal. Let f : X →
Spec(A) be a smooth separated morphism.

Problem 3.1. Find a smooth lifting f ′ : X ′ → Spec(A′) of f .

Fix a covering U = {Ui}i∈I of X by affines. For each i ∈ I choose a smooth lifting
U ′

i → Spec(A′) of Ui. Choose for each i, j ∈ I an isomorphism

ϕji : U ′
i |Uij

→ U ′
j|Uij

.

We would like these to give gluing data for a lifting X ′ of X. For this we need the morphisms
on the overlaps

ϕki, ϕjk ◦ ϕji : U ′
i |Uijk

→ U ′
k|Uijk

to be equal. Let ∂ijk denote the automorphism of U ′
i |Uijk

given by

ϕ−1
ki ◦ (ϕjk ◦ ϕji).

This automorphism reduces to the identity on Uijk and therefore corresponds to an element
of TX/A ⊗ J , which we again denote by ∂ijk.

Lemma 3.2. (i) {∂ijk} ∈ Z2(U , TX/A ⊗ J).

(ii) If ϕ′ji is a second choice of isomorphisms with corresponding {∂′ijk} ∈ Z2(U , TX/A⊗J)

then {∂ijk} − {∂′ijk} ∈ B2(U , TX/A ⊗ J).

Proof. Exercise. �

Let o(f) ∈ H2(X,TX/A ⊗ J) denote the corresponding cohomology class.

Proposition 3.3. There exists a lifting X ′ → Spec(A′) of X if and only if o(f) = 0.

Proof. The class o(f) = 0 if and only if there exists infinitesimal automorphisms σij of U ′
i |Uij

such that if we replace ϕji by ϕji ◦ σij then ∂ijk = 0. �

Exercise 3.4. Show that o(f) ∈ H2(X, TX/A ⊗ J) is independent of the choice of U .
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Summary 3.5. (i) There is a canonical obstruction o(f) ∈ H2(X,TX/A ⊗ J) such that
o(f) = 0 if and only if there exists a lifting of X to A′.

(ii) If o(f) = 0, then the set of isomorphism classes of liftings of X to A′ is a torsor under
H1(X, TX/A ⊗ J).

(iii) For any lifting X ′/A′ of X to A, the group of automorphisms of X ′ reducing to the
identity over A is canonically isomorphic to H0(X, TX/A ⊗ J).

This is the general pattern, as we will see when we discuss the cotangent complex.

Let Λ be a ring, and consider a functor

F : Λ− Alg −→ Set.

We will often consider the following data which we will refer to as a deformation situation:

(i) A diagram in Λ− Alg

A′ p // A
q // A0,

where A0 is reduced, p and q are surjections with nilpotent kernels, and the kernel J of p is
annihilated by Ker(A′ → A0 (so in particular J2 = 0 and J can be viewed as an A0-module).
We will also assume that J is a finite type A0-module.

(ii) An element a ∈ F (A). We denote the image of a in F (A0) by a0.

Definition 3.6. An obstruction theory for F consists of the following data:

(i) For every morphism A → A0 of Λ-algebras with kernel a nilpotent ideal and A0 reduced,
and element a ∈ F (A) a functor

Oa : (finite type A0-modules) → (finite type A0-modules).

(ii) For every deformation situation A′ → A → A0 and a ∈ F (A) an element o(a) ∈
Oa(Ker(A′ → A)) which is zero if and only if a lifts to F (A′).

This data is further required to be functorial in the following sense. For a commutative
diagram of rings

A
f //

p

��

B

q

��
A0

f0 // B0,

where A0 and B0 are reduced, p and q are surjective, and Ker(p) and Ker(q) are nilpotent,
and a ∈ F (A) a morphism of functors from the category of finite type A0-modules to finite
type B0-modules

α : (−⊗A0 B0) ◦ Oa(−) → Of∗(a)(−) ◦ (−⊗A0 B0).

This morphism of functors is required to be compatible with composition and for a morphism
of deformation situations

A′ σ //

f ′

��

A

f

��

// A0

f0

��
B′ τ // B // B0
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with J = Ker(σ) and I = Ker(τ) square-zero ideals, and for a ∈ F (A) we have

α(oa(A
′)) = of∗(a)(B

′).

Remark 3.7. In most examples the functor Oa(−) depends only on a0 and not the particular
lifting a.

Remark 3.8. Often one considers certain subcategories of Λ−Alg (for example the category
of finite type Λ-algebras). One sometimes may consider obstruction theories defined on such
smaller categories.

Example 3.9. Let X ↪→ X ′ be a closed immersion defined by a square-zero ideal J . Let L
be a line bundle on X. We then wish to understand the deformations of L to X ′.

For this consider the exponential sequence

0 → 1 + J → O∗
X′ → O∗

X → 0,

and the associated long exact sequence of cohomology groups

0 → H0(J) → H0(O∗
X′) → H0(O∗

X) → H1(J) → Pic(X ′) → Pic(X) → H2(J).

Proposition 3.10. Assume that the map H0(X ′, OX′) → H0(X, OX) is surjective. Then the
following hold:

(i) There is a canonical obstruction o(L) ∈ H2(X, J) whose vanishing is necessary and
sufficient for there to exists a lifting of L to X ′.

(ii) If o(L) = 0, then the set of isomorphism classes of liftings of L is a torsor under
H1(X, J).

(iii) The group of automorphisms of any lifting L′ is canonically isomorphic to H0(X, J).

Example 3.11. Let S = Spec(k) be the spectrum of a field, and let (A, e)/k be an abelian
variety. Consider the functor

(Sch/S)op → Set

assigning to any scheme T → S the set of isomorphism classes of pairs (L, ι), where L is a
line bundle on AT and ι : e∗L → OT is an isomorphism of line bundles. This functor factors
through the category of abelian groups, with the group structure given by tensor product.
One can show that this functor is representable by an abelian variety At/S called the dual
abelian variety. The above discussion shows that there is a canonical isomorphism

H1(A, OA) ' tt,

where tt denotes the tangent space of At at the origin.

Example 3.12. The above discussion of line bundles (= Gm-torsors) can be generalized as
follows. Let X ↪→ X ′ be as above, and let G′ → X ′ be a smooth group scheme with reduction
G → X. Let P → X be a G-torsor. We then wish to understand the deformations of P to
X ′.

For this let GP denote the group scheme of automorphisms of P , and let Lie(GP ) denote
the Lie algebra of GP . For example, if G = GLn then P corresponds to a vector bundle E of
rank n and Lie(GP ) = E nd(E).
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Étale locally on X there exists a lifting of P to X ′ and any two such liftings are locally
isomorphic. We can then apply the same argument we used for deformations of smooth
schemes, and one finds the following:

Proposition 3.13. (i) There is a canonical obstruction o(P ) ∈ H2(X, Lie(GP ) ⊗ J) whose
vanishing is necessary and sufficient for there to exists a lifting of P to X ′.

(ii) If o(P ) = 0, then the set of isomorphism classes of liftings of P is a torsor under
H1(X, Lie(GP )⊗ J).

(iii) The group of automorphisms of any lifting P ′ is canonically isomorphic to H0(X, Lie(GP )⊗
J).

Lecture 4. More examples

Let A′ → A be a surjection of rings with kernel J a square-zero ideal. Let P ′ → Spec(A′) be
a smooth morphism with reduction P → Spec(A), and let j : X ↪→ P be a closed immersion
with X → Spec(A) smooth.

Problem 4.1. Find j′ : X ′ ↪→ P ′ lifting j with X ′ → Spec(A′) smooth.

To solve this problem, let L denote the presheaf of sets on the topological space |X| which
to any open subset U ⊂ X associates the set of diagrams

(4.1.1) U ′
� _

j′

��

U_?oo
� _

j

��
P ′

��

P_?oo

��
Spec(A′) Spec(A)_?

oo

with j′ an immersion and U ′ → Spec(A′) smooth.

Lemma 4.2. L is a sheaf.

Let N denote the normal bundle of X in P . By definition N = IX/I2
X , where IX denotes

the ideal sheaf of X in P . From the exact sequence

0 // IX/I2
X

d // j∗Ω1
P/A

// Ω1
X/A

// 0,

we get an exact sequence

0 → TX/A → j∗TP/A → N → 0.
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There is an action of j∗TP/A ⊗ J on L defined as follows. Given a commutative diagram
4.1.1 and a section ∂ ∈ j∗TP/A ⊗ J(U) we obtain a new element of L(U)

U ′
� _

∂∗j′
��

U_?oo
� _

j

��
P ′

��

P_?oo

��
Spec(A′) Spec(A)_?

oo

where ∂ ∗ j′ denotes the map obtained from the fact that the set of dotted arrows filling in
the diagram

U ′

���
�
� U_?oo

� _

j

��
P ′

��

P_?oo

��
Spec(A′) Spec(A)_?

oo

are a torsor under j∗TP/A ⊗ J(U).

Lemma 4.3. The action of j∗TP/A ⊗ J on L descends to a torsorial action of N ⊗ J on L.

Proof. It suffices to consider the case when U is affine in which case U ′ is unique and the only
issue is the choice of j′. �

Summary 4.4. (i) There exists a canonical obstruction o(j) ∈ H1(X,N ⊗A J) with o(j) = 0
if and only if there exists a lifting j′ of j.

(ii) If o(j) = 0 then the set of liftings of j form a torsor under H0(X,N ⊗A J).

Remark 4.5. The sequence

0 → TX/A → j∗TP/A → N → 0

induces a long exact sequence

H0(X,N ⊗ J) // H1(X, TX/A ⊗ J) // H1(X, j∗TP/A ⊗ J)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H1(X,N ⊗ J)
δ // H2(X,TX/A ⊗ J).

Exercise 4.6. Show that δ(o(j)) is equal to the obstruction to finding a smooth lifting of X,
and of o(j) = 0 then the map

H0(X,N ⊗ J) → H1(X,TX/A ⊗ J)

is identified with the map

[j′ : X ′ ↪→ P ′] 7→ [X ′].
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Example 4.7. Let P be a surface over a field k, and let X ⊂ P be a smooth rational curve
with X.X = −1. Then by [Hartshorne, V.1.4.1] we have degN = −1. Therefore

H1(X,N ⊗ J) = 0, and H0(X,N ⊗ J) = 0.

It follows that X can be uniquely deformed.

Example 4.8. Let (A′ → A, J) be as above, and assume in addition that A is artinian local
with residue field k, and that J is a k-vector space. Let (X, e)/Spec(A) be an abelian scheme
with reduction (X0, e) to k.. Assume further that 2 ∈ A∗ (this assumption is not necessary
as you show in an exercise). I claim that there exists a lifting (X ′, e′) of (X, e) to an abelian
scheme over A′.

For this note that this is equivalent to the existence of a lifting of X to Spec(A′), and
therefore we need to show that the obstruction o(X) ∈ H2(X0, TX0 ⊗ J) is zero.

Let ι : X → X be the map x 7→ −x (scheme-valued points). Since the formation of the
obstruction o(X) is invariant under automorphisms of X we have that

ι∗o(X) = o(X).

On the other hand, the following lemma shows that ι∗o(X) = −o(X), and therefore o(X) = 0
(since 2 ∈ A∗).

Proposition 4.9. The map ι∗ : H2(X0, TX0⊗J) → H2(X0, TX0⊗J) is equal to multiplication
by −1.

Proof. This follows from the following observations:

(a) Since X0 is a group scheme, there is a canonical isomorphism OX0 ⊗ t, where t denotes
the tangent space of X0 at the origin.

(b) There is a canonical isomorphism tt ' H1(X0, OX0), where tt denotes the tangent
space at the origin of the dual abelian variety X t

0. This follows from our earlier discussion of
deformations of line bundles.

(c) The canonical map H1(X0, OX0) ∧ H1(X0, OX0) → H2(X0, OX0) is an isomorphism.
This is a fact from the theory of abelian varieties.

Therefore

H2(X0, TX0 ⊗ J) ' (tt ∧ tt)⊗ t⊗ J.

From the above observations one finds that ι∗ acts by multiplication by −1 on the first three
terms in the above expression. �

Lecture 5. Picard stacks

A Picard category is a groupoid P with the following extra structure:

(a) A functor + : P × P → P .
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(b) A natural transformation of functors σ

P × P × P
+×1

wwppppppppppp
1×+

''NNNNNNNNNNN

P × P

+
&&NNNNNNNNNNNN

σ
=⇒ P × P

+

xxpppppppppppp

P,

which we write as

σx,y,z : (x + y) + z → x + (y + z).

(c) A natural transformation of functors τ

P × P
flip //

+

��:
::

::
::

::
::

::
::

P × P

+

����
��

��
��

��
��

��
�

τ
=⇒

P

which we write as

τx,y : x + y → y + x.

This data is required to satisfy the following:

(0) For every x ∈ P the functor P → P sending y to x + y is an equivalence.

(i) (Pentagon Axiom) For objects x, y, z, w ∈ P the diagram

(x + y) + (z + w)

σx,y,z+wuujjjjjjjjjjjjjjj
σx+y,z,w

))TTTTTTTTTTTTTTT

x + (y + (z + w))

σy,z,w

��

((x + y) + z) + w

σx,y,z

��
x + ((y + z) + w)

σx,y+z,w // (x + (y + z)) + w

commutes.

(ii) τx,x = id for every x ∈ P .

(iii) For x, y ∈ P we have τx,y ◦ τy,x = idy+x.
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(iv) (Hexagon Axiom) The diagram

x + (y + z)
τ //

σ

��

x + (y + z)

σ

��
(x + y) + z

τ

��

(x + z) + y

τ

��
z + (x + y)

σ // (z + x) + y.

Example 5.1. Let X be a scheme, and let Pic(X) denote the category of line bundles on
X. Then Pic(X) is a Picard category with + given by ⊗.

Example 5.2. Let f : X → Y be a morphism of schemes, and let I be a quasi-coherent
OX-module. An I-extension of X over Y is a commutative diagram

X
� � j //

f
��

X ′

f ′~~}}
}}

}}
}}

Y,

with j a square-zero closed immersion, together with an isomorphism

σ : I → Ker(OX′ → OX).

Let ExalY (X, I) denote the category of I-extensions of X over Y .

It is sometimes useful to view the category ExalY (X, I) as the category of diagrams of
sheaves of rings on |X|

OX′
π // OX

OY ,

OO <<yyyyyyyy

where π is a surjection morphism with square zero-kernel, together with an isomorphism
J ' Ker(π). Note that this description in particular implies that if U ⊂ X is an open subset
then there is a restriction functor

ExalY (X, I) → ExalY (U, I).

Let u : I → J be a morphism of OX-modules, and let

OX′
π // OX

OY ,

OO <<yyyyyyyy

be an object of ExalY (X, I). Then

OX′
u

:= OX′ ⊕I J = (OX′ ⊕ J)/{(i,−i)|i ∈ I}
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is an OX′-algebra giving

X ′
u

��
X

. �

J
>>}}}}}}}}

� � I // X.

In this way we get a functor

u∗ : ExalY (X, I) → ExalY (X, J).

Lemma 5.3. If I and J are two quasi-coherent OX-modules, then

(pr1∗, pr2∗) : ExalY (X, I ⊕ J) → ExalY (X, I)× ExalY (X, J)

is an equivalence of categories.

Proof. Exercise. �

Let Σ : I ⊕ I → I be the summation map. The composite

ExalY (X, I)× ExalY (X, I)

'
��

ExalY (X, I)

Σ∗
��

ExalY (X, I)

then gives ExalY (X, I) the structure of a Picard stack.

Example 5.4. Let f : A → B be a homomorphism of abelian groups. Define Pf to be the
category whose objects are elements of B, and for which a morphism x → y is given by a
section h ∈ A such that f(h) = y − x. Then Pf is a Picard category.

Let T be a topological space (or site). A Picard (pre)-stack over T is a (pre)-stack in
groupoids P with a functor

+ : P ×P → P

and isomorphisms of functors σ and τ such that for every U ⊂ T the category P(U) with
the restrictions of the functors is a Picard category.

Remark 5.5. Examples 5.1 and 5.2 give Picard stacks, and 5.4 gives a Picard prestack.

Let T be a topological space. For Picard stacks P1, P2 over T a morphism of Picard stacks
P1 → P2 is a morphism of stacks F : P1 → P2 together with an isomorphism of functors

ι : F (x + y) → F (x) + F (y)

such that the following two diagrams commute:

F (x + y)

F (τ)

��

ι // F (x) + F (y)

F (y + x)
ι // F (y) + F (x),
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and

F ((x + y) + z)
ι //

F (σ)
��

F (x + y) + F (z)
ι // (F (x) + F (y)) + F (z)

σ

��
F (x + (y + z))

ι // F (x) + F (y + z)
ι // F (x) + (F (y) + F (z)).

If F1, F2 : P1 → P2 are two morphisms of Picard stacks then a morphism of functors
u : F1 → F2 is a natural transformation of functors (necessarily an isomorphism) such that
the diagram

F1(x + y)
u //

ι1
��

F2(x + y)

ι2
��

F1(x) + F1(y)
ux+uy// F2(x) + F2(y).

In this way the collection of Picard stacks over T form a 2-category (though the details of
the theory of 2-categories will not be worked out here). The main point is that we have a
category

HOM(P1, P2)

instead of a set of morphisms.

Exercise 5.6. Let HOM(P1, P2) denote the stack over T defined as follows: For U ⊂ T the
fiber HOM(P1, P2)(U) is the groupoid of morphisms of Picard stacks P1,U → P2,U (where
Pi,U denotes the restriction of Pi to U). Define a sum functor

+ : HOM(P1, P2)× HOM(P1, P2) → HOM(P1, P2)

by the formula

(F1 + F2)(x) = F1(x) + F2(x).

The structural isomorphism ι : (F1 + F2)(x) → F1(x) + F2(x) is defined to be the unique
isomorphism making the following diagram commute:

(F1 + F2)(x + y)
ι // (F1 + F2)(x) + (F1 + F2)(y)

F1(x + y) + F2(x + y)
ι1+ι2

++WWWWWWWWWWWWWWWWWWWWW
(F1(x) + F2(x)) + (F1(y) + F2(y))

τrrffffffffffffffffffffffff

(F1(x) + F1(y)) + (F2(x) + F2(y)).

Define appropriate isomorphisms of functors σ and τ for HOM(P1, P2) such that HOM(P1, P2)
becomes a Picard stack.

Exercise 5.7. (Sheafification). Let P be a Picard prestack over a topological space T . Then
there exists a morphism π : P → Pa from P to a Picard stack Pa which is universal in
the sense that for any Picard stack Q over T the canonical functor (composition with π)

HOM(Pa, Q) → HOM(P, Q)

is an equivalence of categories.
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Exercise 5.8. (Identity element) Let P be a Picard stack over a topological space T . An
identity element for P is a pair (e, ϕ), where e ∈ P(T ) and ϕ : e + e → e is an isomorphism
in P(T ).

(a) Show that an identity element (e, ϕ) exists and is unique up to unique isomorphism.

(b) If (e, ϕ) is an identity element there exists a unique isomorphism of functors α from

e + (−) : P → P

to the identity functor, such that the diagram of functors

e + (e + (−))
σ //

id+α

''OOOOOOOOOOO
(e + e) + (−)

ϕwwooooooooooo

e + (−)

commutes.

Exercise 5.9. (Kernels) Let F : P1 → P2 be a morphism of Picard stacks over a topological
space T . Define the kernel of F , denoted Ker(F ), to be the stack over T which to any U ⊂ T
associated the groupoid of pairs (p, ι), where p ∈ P1(U) and ι : 02 → F (p) is an isomorphism
in P2(U). There is an additive structure on Ker(F ) for which the sum of (p, ι) and (p′, ι′) is
given by p + p′ with the isomorphism

02
ι+ι′ // F (p) + F (p′)

' // F (p + p′).

Show that with these definitions the stack Ker(F ) is a Picard stack.

Lecture 6. Structure theorem for Picard stacks

For a two-term complex of abelian groups K · ∈ C [−1,0](T ) let pch(K ·) denote the Picard
prestack defined in the last lecture, and let ch(K ·) denote the associated Picard stack 5.7.

Note that if f : K ·
1 → K ·

2 is a morphism of complexes then f inducese a morphism of
Picard prestacks F : pch(K1) → pch(K2), and hence also a morphism of Picard stacks
F : ch(K1) → ch(K2). Moreover, if f1, f2 : K ·

1 → K ·
2 is a morphism of complexes with

associated morphisms of stacks F1 and F2, then a homotopy h : f1 → f2 then h induces an
isomorphism of morphisms ch(h) : F1 → F2.

Lemma 6.1. If K−1 is flasque, then pch(K ·) is a Picard stack.

Proof. It suffices to show that the projection π : pch(K ·) → ch(K ·) is an equivalence.

Let U ⊂ T be an open subset and let x ∈ ch(K ·) be an object. Consider the sheaf L on U
which to any open V ⊂ U associates the set of pairs (l, z), where l ∈ K0(V ) and z : π(l) → x|V
is an isomorphism in ch(K ·). Then L is a torsor under K−1|U , and since H1(U,K−1) = 0
since K−1 is flasque it follows that the functor pch(K ·) → ch(K ·) is essentially surjective and
therefore an equivalence. �

For a complex K · ∈ C [−1,0](T ), we have the following:
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(a) The sheaf associated to the presheaf sending U ⊂ T to the set of isomorphism classes
of objects in ch(K)(U) is canonically isomorphic to H 0(K).

(b) For any object of ch(K)(U) the sheaf of automorphisms is canonically isomorphic to
H −1(K)|U .

Corollary 6.2. A morphism of complexes f : K1 → K2 induces an equivalence ch(K1) →
ch(K2) if and only if f is a quasi-isomorphism.

Let C̃ [−1,0](T ) ⊂ C [−1,0](T ) denote the full subcategory of two-term complexes K · with K−1

injective.

Theorem 6.3. The 2-functor ch induces an equivalence of 2-categories

ch : C̃ [−1,0](T ) → (Picard stacks over T ).

In particular, ch induces an (ordinary) equivalence of categories between D[−1,0](T ) and the
category whose objects are Picard stacks over T and whose morphisms are isomorphism classes
of morphisms of Picard stacks.

Lemma 6.4. Let P be a Picard stack over T , and let {Ui}i∈I be a collection of open subsets
of T . Suppose given for each i ∈ I an object ki ∈ P(Ui) and set K := ⊕i∈IZUi

. Then there
exists a morphism of Picard stacks

F : ch(0 → K) → P

and isomorphisms σi : F (1 ∈ ZUi
(Ui)) ' ki. Moreover, the data (F, σi) is unique up to unique

isomorphism.

Proof. Left as exercise. �

Lemma 6.5. Let P be a Picard stack over T . Then there exists a complex K · ∈ C [−1,0](T )
and an isomorphism ch(K ·) → P.

Proof. Choose data

(a) A collection of open subsets {Ui ⊂ T}i∈I .

(b) For each i ∈ I an object ki ∈ P(Ui).

in such a way that for every open V ⊂ T and object k ∈ P(V ) there exists a covering
V = ∪jVj such that for every j there exists an i ∈ I with Vj ⊂ Ui and k|Vj

isomorphic to
ki|Vj

.

Define K0 := ⊕i∈IZUi
. By 6.4 there exists a unique morphism of Picard stacks

F : pch(0 → K0) = ch(0 → K0) → P.

Now define K−1 to be the sheaf which to any open subset V ⊂ T associates the set of pairs
(x, l) where x ∈ K0(V ) and l : F (0) → F (x) is an isomorphism in P(V ), and let K−1 → K0

be the map sending (x, l) to x.

We define an abelian group structure on K−1 as follows. Given (x, l), (x′, l′) ∈ K−1 define
their sum to be the element x + x′ ∈ K0 together with the isomorphism

F (0)
' // F (0) + F (0)

l+l′ // x + x′.
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One verifies then that this defines an abelian group structure on K−1 and there is a natural
morphism

pch(K ·) → P

and therefore we get a morphism of Picard stacks

ch(K ·) → P.

We claim that this map is an equivalence. This is clear, because the map pch(K ·) → P is
clearly fully faithful and every object is locally in the image. �

Lemma 6.6. Let K, L ∈ C [−1,0](T ) be two complexes and let F : ch(K) → ch(L) be a
morphism of Picard stacks. Then there exists a quasi-isomorphism k : K ′ → K and a

morphism l : K ′ → L such that F is isomorphic ch(l)ch(k)−1. In particular, if K ∈ C̃ [−1,0](T )
then any morphism of Picard stacks F : ch(K) → ch(L) is isomorphic to a morphism of the
form ch(f) for a morphism of complexes f : K → L.

Proof. Choose a collection of data {(Ui, ki, li, σi)}i∈I such that:

(a) Ui ⊂ T is an open subset;

(b) ki ∈ K0(Ui) and li ∈ L0(Ui) and σ : F (ki) → li is an isomorphism in ch(L)(Ui);

(c) The map K ′0 := ⊕i∈IZUi
→ K0 is surjective.

Now define K ′−1 to be the fiber product K−1 ×K0 K ′0, and let

k : K ′ → K

be the natural quasi-isomorphism. We also have a map

l : K ′ → L

to be the map which in degree 0 sends (Ui, ki, li, σi) to li and which sends (v, (Ui, ki, li, σi)) ∈
K−1 to the unique element t ∈ L−1 such that the diagram

F (0)

'
��

F (v)
// F (ki)

σi

��
0

t // li

commutes. The maps σi define an isomorphism of functors F ' ch(l)ch(k)−1.

The last statement follows from noting that if K ∈ C̃ [−1,0](T ) then there exists a morphism
s : K → K ′ such that the composite K → K ′ → K is homotopic to the identity. �

Lemma 6.7. Let K1, K2 ∈ C̃ [−1,0](T ). For two morphisms of complexes f1, f2 : K1 → K2

with associated morphisms of Picard stacks F1, F2 : ch(K1) → ch(K2), and any isomorphism
H : F1 → F2 there exists a unique homotopy h : K0

1 → K−1
2 such that u = ch(h).

Proof. The morphism h is defined by sending a local section k ∈ K0
1 to the unique section

v ∈ K−1
2 such that dv = f1(k)− f2(k), and v is the morphism corresponding to H. �
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Lecture 7. The truncated cotangent complex

Definition 7.1. Let f : X → S be a morphism of schemes. Define the truncated tangent
complex τ≤1TX/S ∈ D[0,1](X) to be the complex defined by

ch(τ≤1TX/S[1]) = ExalS(X, OX).

This is only a preliminary definition for two reasons:

(a) This is only the truncated complex. The full cotangent complex will be discussed in
the next lecture.

(b) This definition does not include the OX-module structure on ExalS(X, OX). It would
be very interesting to have a notion of OX-linear Picard stack and generalize the structure
theorem of last lecture to get an equivalence of categories between D[−1,0](OX) and a suitable
category of OX-linear Picard stacks.

Both problems will be taken care of by Illusie’s cotangent complex. However, in the mean-
time we can understand τ≤1TX/S in some special cases.

Proposition 7.2. Let j : X → S be a closed immersion. Then τ≤1TX/S is isomorphic to
NX/S[−1], where NX/S := H om(j∗I,OX), where I is the ideal of X in S.

Proof. The category ExalS(X, OX) classifies diagrams

OX OX′
π

oooo OX · ε? _oo

j−1OS/I2

ddJJJJJJJJJ

OO

j∗I.? _oo

∂

OO

This implies that OX′ = j−1OS/I2 ⊕j∗I,∂ OX . �

Proposition 7.3. Let f : X → S be a smooth morphism. Then τ≤1TX/S ' TX/S.

Proof. Let K ∈ C̃ [−1,0](|X|) be the complex with ch(K) ' ExalS(X, OX). Since any two
objects are locally isomorphic, we have H 1(K) = 0 so K is quasi-isomorphic to H0(K). But
H0(K) is equal to the sheaf of automorphisms of X[ε] over S reducing to the identity on X.
This is we have already encountered as TX/S. �

Proposition 7.4. Suppose given a diagram

X
� � j //

f
��

P

g����
��

��
�

S,

where g is smooth and j is an immersion. Then there is a canonical isomorphism

τ≤1TX/S ' (j∗TP/S → NX/S),

where j∗TX/S → NX/S is the dual of the map d : j∗I → j∗Ω1
P/S.
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Proof. Given a section z : j∗I → OX of NX/S, we obtain an object of ExalS(X, OX) by setting
OX′ equal to the pushout of the diagram

j∗I
z //

� _

��

OX · ε

j−1OP /I2

with the natural map to OX . Let X ↪→ Xz denote this OX-extension of X over S.

Consider two sections z, z′ ∈ NX/S defining a diagram of solid arrows over S

Xz′

h
���
�
�

f ′

��

X
� � i //
. �

i′
>>||||||||

� p

j

!!B
BB

BB
BB

B Xz

f

��
P.

Since f is a closed immersion, the morphism h is determined by the composite f ◦h, and this
composite is in turn specified by a section ∂ ∈ j∗TP/S. One verifies that the condition that
f ◦ h factors through Xz is precisely the condition that the image of ∂ in NX/S is equal to
z − z′.

We therefore obtain a morphism of Picard prestacks

pch(j∗TP/S → NX/S) → ExalS(X, OX),

and hence a morphism of Picard stacks

ch(j∗TP/S → NX/S) → ExalS(X, OX).

This morphism of Picard stacks is an equivalence as it is fully faithful and locally essentially
surjective. �

Definition 7.5. The truncated cotangent complex τ≥−1LX/S is the complex j∗I → j∗Ω1
P/S so

we have
ExalS(X, OX) ' ch(τ≤1RH om(τ≥−1LX/S, OX)[1]).

In fact the above arguments show more. For any OX-module I we obtain a canonical
isomorphism of Picard stacks

ch(τ≤1RH om(τ≥−1LX/S, I)[1]) → ExalS(X, I)

functorial in I. This can even be extended to 2-term complexes as follows. For a morphism
of OX-modules F → J with F injective we get a complex C ·

H om(j∗Ω1
P/S, F ) → H om(j∗Ω1

P/S, J)×H om(j∗I,J) H om(j∗I, F ).

The complex C · represents

τ≤1RH om(j∗I → j∗Ω1
P/S, F → J)[1].

Let ExalS(X, F → J) denote the kernel of the natural map

ExalS(X, F ) → ExalS(X, J).
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Then we obtain from the above and your exercise that

ExalS(X, F → J) ' ch(τ≤1RH om(j∗I → j∗Ω1
P/S, F → J)[1]).

The complex j∗I → j∗Ω1
P/S is independent of the choice of j : X ↪→ P in the following

sense. Suppose given a commutative diagram

P ′

h
��

g′

��

X
. �

j′
>>}}}}}}}}

� � j //

  A
AA

AA
AA

A P

g

��
S,

where g and g′ are smooth. Then there is an induced morphism of complexes

ϕ : (j∗I → j∗Ω1
P/S) → (j′∗I ′ → j∗Ω1

P ′/S)

which we claim is a quasi-isomorphism. Let C · (resp. C ′·) denote the complex (j∗I → j∗Ω1
P/S)

(resp. (j′∗I ′ → j∗Ω1
P ′/S)). We then obtain a natural transformation of functors ϕ : h′C → hC ,

where hC is the composite

D[−1,0](OX)
τ≤1RH om(C,−)[1]
−−−−−−−−−−−→ D[−1,0](OX)

H1

−−−→ (Groups)

and hC′ is defined similarly. By the above this map ϕ is an isomorphism of functors, and
therefore by Yoneda’s lemma the map C · → C ′· is a quasi-isomorphism.

Of course for a general morphism f : X → S there need not exist a factorization through
a smooth morphism. This can be remedied as follows. For a sheaf of sets F on |X|, let
OX{F} denote the free algebra on the sheaf F . The functor F 7→ OX{F} is left adjoint to
the forgetful functor

(OX − algebras) → (sheaves of sets).

As a substitute for the existence of an embedding into a smooth scheme, we can choose
any map from a sheaf of sets F to OX such that the resulting map

f−1OS{F} → OX

is surjective (for example we can take F = OX). We can then define a complex

(7.5.1) I/I2 → Ω1
f−1OS{F}/f−1OS

,

where I is the kernel of f−1OS → OX .

Then one shows as above that this is independent of the choices.

Definition 7.6 (Good definition). The truncated cotangent complex of f : X → S, denoted
τ≥−1LX/S, is the complex 7.5.1 obtained by taking F = OX .

Remark 7.7. Note that for a commutative square

X ′

��

h // X

��
S ′ // S



24 MARTIN OLSSON

there is a natural map h∗τ≥−1LX/S → τ≥−1LX′/S′ .

Remark 7.8. Note that the cohomology sheaves of τ≥−1LX/S are quasi-coherent and coherent
if f is of finite type and S is locally noetherian.

Exercise 7.9. Let S be a scheme and f : X → Y an étale morphism of S-schemes. Show
that f ∗τ≥−1LY/S → τ≥−1LX/S is a quasi-isomorphism.

Lecture 8. The cotangent complex, an overview

In this lecture I summarize some of the basic features of Illusie’s cotangent complex and
its applications to deformation theory. It should be emphasized, however, that the theory of
cotangent complex is not just important in the study of deformation theory but is a basic
structure associated to any morphism of schemes.

Illusie’s construction gives the following:

(i) For every morphism of schemes f : X → Y a complex LX/Y ∈ C≤0(OX) of flat OX-
modules with quasi-coherent cohomology sheaves. If Y is locally noetherian and f is locally
of finite type then the cohomology sheaves of LX/Y are coherent. Note that LX/Y is a complex
and not just an object of the derived category.

(ii) For a commutative diagram

(8.0.1) X ′ u //

f ′

��

X

f

��
Y ′ v // Y

there is a base change morphism

u∗LX/Y → LX′/Y ′ .

If 8.0.1 is cartesian and either f or v is flat (or more generally the square is tor-independent)
then the base change morphism is a quasi-isomorphism. Moreover, in this case the sum map

f ′∗LY ′/Y ⊕ u∗LX/Y → LX′/Y

is a quasi-isomorphism.

(iii) For a composite

X
f // Y

g // Z

there is a distinguished triangle in D−
qcoh(OX)

f ∗LY/Z → LX/Z → LX/Y → f ∗LY/Z [1],

which is functorial in the natural sense.

(iv) The truncation τ≥1LX/Y is equal to our earlier defined truncated cotangent complex.
In particular H0(LX/Y ) = Ω1

X/Y .

Remark 8.1. In a few special cases one can compute the cotangent complex:

(a) There is always a canonical isomorphism H0(LX/Y ) ' Ω1
X/Y .

(b) If X → Y is smooth then LX/Y = Ω1
X/Y .
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(c) If X ↪→ Y is a closed immersion which is a local complete intersection then LX/Y =
I/I2[1], where I is the ideal of X in Y .

Theorem 8.2 (Illusie). For any quasi-coherent sheaf I on X there is a canonical isomorphism
of Picard stacks

ch(τ≥−1(RH om(LX/Y , I)[1])) ' ExalY (X, I).

Combining this with the above properties we can use the cotangent complex to study
almost every deformation theory problem.

Problem 8.3. Suppose given the diagram of schemes indicated by the solid arrows

X0

f0

��

� � i //___ X

f

���
�
�

Y0

��

� � j // Y

~~}}
}}

}}
}}

S,

where j is a closed immersion defined by a square zero ideal J . Fill in the diagram as indicated
with i a square-zero closed immersion such that the induced map

f ∗0 J → Ker(OX → OX0)

is an isomorphism.

We need to find an element of ExalY (X, f∗0 I) whose image in HomOX0
(f ∗0 J, f∗0 J) is the

identity. Consider the distinguished triangle

f ∗0 LY0/Y → LX0/Y → LX0/Y0 → f ∗0 LY0/Y [1].

From this we get a long exact sequence

0 // Ext0(LX0/Y0 , f
∗
0 J) // Ext0(LX0/Y , f∗0 J) // Ext0(f ∗0 LY0/Y , f∗0 J) // Ext1(LX0/Y0 , f

∗
0 J)

qqcccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Ext1(LX0/Y , f∗0 J) // Ext1(f ∗0 LY0/Y , f∗0 J)
∂ // Ext2(LX0/Y0 , f

∗
0 J)

which can also be written as

0 // Ext0(LX0/Y0 , f
∗
0 J) // Ext0(LX0/Y , f∗0 J) // 0 // Ext1(LX0/Y0 , f

∗
0 J)

qqcccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ExalY (X0, f
∗
0 J) // Hom(f ∗0 J, f∗0 J)

∂ // Ext2(LX0/Y0 , f
∗
0 J).

We conclude

Theorem 8.4. (i) There exists an obstruction

o(f0) := ∂(id) ∈ Ext2(LX0/Y0 , f
∗
0 J)

whose vanishing is necessary and sufficient for a solution to the problem.
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(ii) If o(f0) = 0, then the set of isomorphism classes of solutions is a torsor under
Ext1(LX0/Y0 , f

∗
0 J).

(iii) For any solution, the group of automorphisms is canonically isomorphic to Ext0(LX0/Y0 , f
∗
0 J).

Problem 8.5. Suppose given a commutative diagram of solid arrows

X0

h0

��

� � i0 //

f0

��

X

f

���
�
�

h

��

Y0
� � j //

g0

��

Y

g

��
Z0

� � k // Z,

where i (resp. j, k) is a closed immersion defined by a square-zero ideal I (resp. J , K).

Find an arrow f filling in the diagram.

Theorem 8.6. There is a canonical class o ∈ Ext1(f ∗0 LY0/Z0 , I) whose vanishing is necessary
and sufficient for the existence of a morphism f : X → Y filling in the diagram. If o = 0
then the set of such maps f is a torsor under the group Ext0(f ∗0 LY0/Z0 , I).

Proof. Consider the classes

e(X) ∈ Ext1
X0

(LX0/Z , I), e(Y ) ∈ Ext1
Y0

(LY0/Z , J)

defined by the extensions. Consider the images zX and zY of these classes under the maps

Ext1
X0

(LX0/Z , I) → Ext1
X0

(f ∗0 LY0/Z , I),

and

Ext1
Y0

(LY0/Z , J) → Ext1
X0

(f ∗0 LY0/Z , J) → Ext1
X0

(f ∗0 LY0/Z , I).

Then one sees that there exists a morphism if and only if zX = zY .

Now consider the distinguished triangle

h∗0LZ0/Z → f ∗0 LY0/Z → f ∗0 LY0/Z0 → h∗0LZ0/Z [1].

This induces an exact sequence

Ext0(h∗0LZ0/Z , I) // Ext1(f ∗0 LY0/Z0 , I) // Ext1(f ∗0 LY0/Z , I) // Ext1(h∗0LZ0/Z , I)

0 Hom(h∗0K, I).

It follows from the construction that zX −zY maps to zero in Hom(h∗0K, I), and therefore the
class zX − zY gives an element o ∈ Ext1(f ∗0 LY0/Z0 , I).

The second statement follows from the isomorphism H0(LY0/Z0) ' Ω1
Y0/Z0

. �

Remark 8.7. The above results can often be used to show that the tangent space of moduli
functors is finite-dimensional.
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Remark 8.8. There is also a theory of cotangent complexes for morphisms of algebraic
stacks. Using this and appropriate generalizations of the above results (in particular 8.4) one
sees that Artin’s theorem is in fact an “if and only if”.

References

[1] M. Artin, Algebraization of formal moduli. I., in Global Analysis (Papers in Honor of K. Kodaira), Tokyo
Press, Tokyo (1969), 21–71.

[2] , Algebraic approximation of structures of complete local rings, Inst. Hautes Études Sci. Publ.
Math. 36 (1969), 23–58.

[3] , Versal deformations and algebraic stacks, Inv. Math. 27 (1974), 165–189.
[4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas.,
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