MATH 254 A: PROBLEM SET 8

MARTIN OLSSON

Due Fri Nov 21
(1) Let $K=\mathbb{Q}(\sqrt{d})$ with d a positive square free integer, and assume d is not congruent to $1 \bmod 4$. View K as a subfield of \mathbb{R} by the standard embedding $K \subset \mathbb{R}$.
(a) Show that the group $\mathcal{O}_{K}^{*} \cap \mathbb{R}_{>0}$ is isomorphic to \mathbb{Z}. Show that this group has one generator >1 and one generator <1. The generator >1 is called the fundamental unit.
(b) If $u \in \mathcal{O}_{K}^{*}$, show that $u>1$ if and only if $u=a+b \sqrt{d}$ with $a>0$ and $b>0$.
(c) Let u be the fundamental unit, and write $c=a+b \sqrt{d}$. Also for $n \geq 1$ write $u^{n}=$ $a_{n}+b_{n} \sqrt{d}$. Show that the sequence of integers b_{n} is strictly increasing. Deduce that, for computing the fundamental unit, it is enough to compute $d b^{2}$ for $b=1,2,3, \ldots$ and test if it is 1 plus a square: The first b that meets the test is the b of the fundamental unit.
(d) Using (c) compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d=2,3,6,7$.
(2) Find the smallest integral solution $y>0$ to Pell's equation $x^{2}-61 y^{2}=1$.
(3) Show that the three cubic fields that are obtained by adjoining to \mathbb{Q} a root of one of the equations

$$
X^{3}-18 X-6, \quad X^{3}-36 X-78, \quad X^{3}-54 X-150
$$

all have the same discriminant, but no two of them are isomorphic.
Compare this with Theorem 5 in Chapter V. $\S 4$ of Lang's book.

