## MATH 253: PROBLEM SET 2, DUE FRIDAY FEB 11

MARTIN OLSSON

(1). Let $\mathscr{A}$ be an abelian category and let $K(\mathscr{A})$ be as in class. Verify the octahedral axiom for $K(\mathscr{A})$ and complete the proof that $K(\mathscr{A})$ is a triangulated category.
(2). Give an example of an abelian category $\mathscr{A}$ for which $K(\mathscr{A})$ is not abelian.
(3). Let $\mathscr{A}$ be an abelian category, and let

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

be a short exact sequence in $C(\mathscr{A})$. Recall from class that then we obtain a commutative diagram of complexes

where $h$ induces an isomorphism

$$
H^{i}(h): H^{i}(\operatorname{Cone}(f)) \rightarrow H^{i}(C)
$$

for every $i$. Show that the diagram

commutes, where $\partial$ is the boundary map constructed in class using the snake lemma.

