MATH 253: PROBLEM SET 2, DUE FRIDAY FEB 11

MARTIN OLSSON

(1). Let \mathscr{A} be an abelian category and let $K(\mathscr{A})$ be as in class. Verify the octahedral axiom for $K(\mathscr{A})$ and complete the proof that $K(\mathscr{A})$ is a triangulated category.

- (2). Give an example of an abelian category \mathscr{A} for which $K(\mathscr{A})$ is not abelian.
- (3). Let \mathscr{A} be an abelian category, and let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be a short exact sequence in $C(\mathscr{A})$. Recall from class that then we obtain a commutative diagram of complexes

where h induces an isomorphism

$$H^{i}(h): H^{i}(\operatorname{Cone}(f)) \to H^{i}(C)$$

for every i. Show that the diagram

$$\begin{array}{c} H^{i}(\operatorname{Cone}(f)) \xrightarrow{H^{i}(t)} H^{i+1}(A) \\ \downarrow^{H^{i}(h)} & \partial \\ H^{i}(C) \end{array}$$

commutes, where ∂ is the boundary map constructed in class using the snake lemma.