MATH 253: PROBLEM SET 1, DUE FRIDAY FEB 4

MARTIN OLSSON

(1). (An example of an additive category which is not abelian) Let k be a field. A filtration F^{\cdot} on a k-vector space V is a decreasing sequence of subspaces (indexed by the integers)

$$\cdots \subset F^i \subset F^{i-1} \subset \cdots V.$$

A morphism of filtered vector spaces

$$\varphi: (V, F^{\cdot}) \to (W, G^{\cdot})$$

is a map of vector spaces $\varphi: V \to W$ such that $\varphi(F^i) \subset G^i$ for all *i*. Let \mathscr{A} be the category of finite dimensional filtered k-vector spaces (V, F^i) . Show that \mathscr{A} is additive but not abelian.

(2). Consider the complex of abelian groups

$$\cdots \mathbb{Z}/(4) \xrightarrow{\cdot 2} \mathbb{Z}/(4) \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \cdots$$

Show that this complex is acyclic but that there does not exist a homotopy between the zero map and the identity.

(3). Let \mathscr{A} be an abelian category. Show that the category $C(\mathscr{A})$ of complexes in \mathscr{A} is an abelian category. How about the category $C^{\geq 0}(\mathscr{A})$ of complexes K^{\cdot} with $K^{i} = 0$ for i < 0?

(4). Let \mathscr{C} be any small category, and let \mathscr{A} be an abelian category. Show that the category $\mathscr{C}^{\mathscr{A}}$ of functors

$$F:\mathscr{C}\to\mathscr{A}$$

is also an abelian category.