
FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES

MARTIN OLSSON

1. Statements of results

The subject of this paper is a generalization to stacks of Fujiwara’s theorem [10, 5.4.5]
(formerly known as Deligne’s conjecture) on the traces of a correspondence acting on the
compactly supported cohomology of a variety over a finite field.

Before discussing the stack-theoretic version, let us begin by reviewing Fujiwara’s theorem.

Let q be a power of a prime p, and let k = Fq be an algebraic closure of Fq. For objects over
Fq we use a subscript 0, and unadorned letters denote the base change to k. For example, X0

denotes a scheme (or stack) over Fq and X denotes the fiber product X0 ×Spec(Fq) Spec(k).

Let X0 be a separated finite type Fq-scheme. A correspondence on X0 is a diagram of
separated finite type Fq-schemes

C0

c1

~~||
||

||
|| c2

!!C
CC

CC
CC

C

X0 X0,

or equivalently a morphism c = (c1, c2) : C0 → X0 ×X0.

For n ≥ 0 we write

c(n) = (c
(n)
1 , c2) : C

(n)
0 → X0 ×X0

for the correspondence

C0
c
(n)
1

��

c1

~~||
||

||
|| c2

!!C
CC

CC
CC

C

X0
Fn

X0

~~||
||

||
||

X0,

X0

where FX0 : X0 → X0 denotes the q-th power Frobenius morphism.

We write Fix(C) (or sometimes Fix(c) if we want to emphasize the reference to the mor-
phism c) for the fiber product of the diagram (over k)

C

c
��

X
∆ // X ×Spec(k) X.
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If F ∈ Db
c(X,Q`) we define a C-structure on F to be a map u : c2!c

∗
1F → F in Db

c(X,Q`)
(or equivalently a map c∗1F → c!2F in Db

c(C,Q`)).

A Weil complex on X is a pair (F , ϕ), where F ∈ Db
c(X,Q`) and ϕ : F ∗

XF → F is an
isomorphism.

If (F , ϕ, u) is a Weil complex with C-structure and n ≥ 0, then (F , ϕ) has a C(n)-structure
given by the map

u(n) : c2!c
(n)∗
1 F = c2!c

∗
1F

n∗
X F

ϕn

// c2!c
∗
1F

u // F .

Assume now that c1 is proper and that c2 is quasi-finite.

For a fixed point x ∈ Fix(C)(k) we get for any Weil complex with C-structure (F , ϕ, u) an
endomorphism

ux : Fc2(x) → Fc2(x)

defined as follows.

Since c2 : C → X is quasi-finite, we have

(c2!c
∗
1F)c2(x) = ⊕yFc1(y),

where the sum is taken over the set of points y ∈ C(k) with c2(y) = c2(x). The map ux is
defined to be the composite

Fc2(x) = Fc1(x)
� � x // ⊕yFc1(y) (c2!c

∗
1F)c2(x)

u // Fc2(x).

Deligne’s conjecture, proven by Fujiwara, is then the following:

Theorem 1.1 (Fujiwara [10, 5.4.5]). There exists an integer n0, independent of (F , ϕ, u),
such that for any integer n ≥ n0 all the fixed points of c(n) are isolated, and

(1.1.1) tr(c(n)|RΓc(X,F)) =
∑

x∈Fix(C(n)(k))

tr(u(n)
x |Fc2(x)).

Remark 1.2. Note that the right side of 1.1.1 is a finite sum.

With the recent work on cohomology with compact supports for Artin stacks [13, 14], it
is natural to ask for a generalization of 1.1 to Artin stacks. In this paper we propose a
conjectural generalization for arbitrary stacks, and we prove this conjecture in a number of
cases (in particular for equivariant correspondences).

Fujiwara’s theorem is most naturally viewed in two parts. The first part is a geometric
statement that the fixed points of c(n) are isolated and that the sum of the “naive local terms”∑

x∈Fix(C(n)(k)) tr(u
(n)
x |Fc2(x)) is equal to the sum of the “true local terms” as defined in [3, III

§4]. The second part is a reduction to the Lefschetz trace formula [3, III.4.7], which holds
when X is proper.

Similarly our work on stacks breaks up naturally as a study of the geometry of the stack
of fixed points, and then a study of the global trace formula. Following this breakdown of
the problem we now discuss our results.
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1.3. Statement of local theorem.

1.4. As above, let q denote a power of a prime p, and let k = Fq be an algebraic closure of
Fq. Let X0/Fq be an algebraic stack of finite type (but not necessarily separated). As in the
case of schemes, a correspondence on X0 is a diagram of finite type algebraic stacks over Fq

C0

c1

~~||
||

||
|| c2

!!C
CC

CC
CC

C

X0 X0,

or equivalently a morphism c = (c1, c2) : C0 →X0 ×X0, and for an integer n ≥ 0 we write

c(n) = (c
(n)
1 , c2) : C (n)

0 →X0 ×X0

for the correspondence

C0
c
(n)
1

��

c1

~~||
||

||
|| c2

!!C
CC

CC
CC

C

X0
Fn

X0

}}{{
{{

{{
{{

X0,

X0

where FX0 : X0 → X0 denotes the q-th power Frobenius morphism. We denote by Fix(C )
(or sometimes Fix(c)) the fiber product of the diagram (over k)

C

c
��

X
∆ // X ×Spec(k) X .

Note that often the diagonal ∆ is not quasi-finite, and therefore Fix(C ) is usually not quasi-
finite over C .

1.5. If c : C0 → X0 ×X0 is a correspondence and f : X ′
0 → X0 is a morphism of algebraic

stacks over Fq, we define the pullback c′ : C ′
0 →X ′

0×X ′
0 of c along f to be the correspondence

obtained from the top line of the following fiber product diagram

C ′
0

��

c′ // X ′
0 ×X ′

0

f×f
��

C0
c // X0 ×X0.

For later use it will be convenient to introduce the following non-standard terminology.

Definition 1.6. A morphism f : Z → Y from an algebraic stack Z to a scheme Y is
pseudo-finite if for every algebraically closed field Ω the map

|Z (Ω)| → Y (Ω)

is finite-to-one (where |Z (Ω)| denotes the set of isomorphism classes in Z (Ω)), and for every
x ∈ Z (Ω) the Ω-group scheme Gx of automorphisms of x is finite of k.
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The main local result is then the following:

Theorem 1.7. Let X0/Fq be an algebraic stack of finite type, and let c : C0 → X0 ×X0

be a correspondence with c2 representable and quasi-finite. Then there exists an integer n0

such that for every n ≥ n0 the stack Fix(C (n)) is pseudo-finite over Spec(k), and for every
x ∈ Fix(C (n))(k) the automorphism group scheme AutFix(C (n))(x) is étale over k.

Remark 1.8. The statements that Fix(C (n)) is pseudo-finite over Spec(k) and that the
automorphism group schemes AutFix(C (n))(x) are étale over k, imply that the maximal reduced

closed substack of Fix(C (n)) is isomorphic to a disjoint union of classifying stacks BH of finite
groups H.

1.9. Global results and conjectures.

Before stating the stack-theoretic version of Deligne’s conjecture, we need to introduce
some technical results and definitions developed in the body of the paper.

Action of correspondences.

1.10. Let c = (c1, c2) : C0 → X0 ×X0 be a correspondence of algebraic stacks of finite type
over Fq, with c1 proper with finite diagonal and c2 representable and quasi-finite.

As in the case of schemes (except we now consider possibly unbounded complexes), a
C -structure on F ∈ D−

c (X ,Q`) is a map u : c2!c
∗
1F → F in D−

c (X ,Q`) (or equivalently
c∗1F → c!2F in D−

c (C ,Q`)).

A Weil complex on X is a pair (F , ϕ), where F ∈ D−
c (X ,Q`) and ϕ : F ∗

XF → F is an
isomorphism. We say that a Weil complex (F , ϕ) is bounded if F ∈ Db

c(X ,Q`).

1.11. Let F ∈ D−
c (X ,Q`) be a complex and let u : c2!c

∗
1F → F be a C -structure. In order

to obtain an action of u on RΓc(X ,F) we need an isomorphism

c1∗c
∗
1F ' c1!c

∗
1F .

In the case of schemes this follows from the fact that c1 is proper, and the very definition of
c1!. In the case of stacks, this is far from obvious, and in fact false for torsion coefficients.
However, in section 5 we prove the following:

Theorem 1.12 (Corollary 5.17). Let f : X → Y be a proper morphism with finite diagonal
between algebraic stacks. Then for any F ∈ D−

c (X ,Q`) there is a canonical isomorphism
f!F → f∗F .

Convergent complexes.

1.13. Let D−
c (Q`) denote the bounded above derived category of complexes of Q`-vector

spaces with finite dimensional cohomology groups. Let K ∈ D−
c (Q`) be an object and ϕ :

K → K an endomorphism.

Now fix an embedding ι : Q` ↪→ C, and for i ∈ Z let Egi(ϕ) (or Egiι(ϕ)) denote the set of
eigenvalues of H i(ϕ⊗ι C) acting on H i(K ⊗ι C).

Definition 1.14. The pair (K,ϕ) is ι-convergent (or simply convergent if the reference to ι
is clear) if the sum ∑

p∈Z

∑
λ∈Egp(ϕ)

|λ|
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converges.

1.15. If (K,ϕ) is ι-convergent, then the sum∑
p

(−1)pι(tr(ϕ|Hp(K)))

converges absolutely. We denote the limit by trι(ϕ|K).

Definition of local terms.

1.16. Now consider an algebraic stack X0 of finite type over Fq, and a correspondence c =
(c1, c2) : C0 →X0, with c1 proper and c2 quasi-finite and representable.

If (F , ϕ, u) is a Weil complex with C -structure and n ≥ 0, then (F , ϕ) has a C (n)-structure
given by the map

u(n) : c2!c
(n)∗
1 F = c2!c

∗
1F

n∗
X F

ϕn

// c2!c
∗
1F

u // F .

1.17. For a fixed point (x, λ) ∈ Fix(C )(k), with x ∈ C (k) and λ : c2(x) → c1(x) an
isomorphism in X (k), we get for any F ∈ D−

c (X ,Q`) with a C -structure u : c2!c
∗
1F → F

an endomorphism

u(x,λ) : Fc2(x) → Fc2(x)

defined as follows.

Since c2 : C →X is representable and quasi-finite, we have

(c2!c
∗
1F)c2(x) = ⊕(y,τ)Fc1(y),

where the sum is taken over isomorphism classes of pairs (y, τ) with y ∈ C (k) and τ : c2(y) '
c2(x) an isomorphism in X (k). The map u(x,λ) is defined to be the composite

Fc2(x)
λ // Fc1(x)

� � x // ⊕(y,τ)Fc1(y) (c2!c
∗
1F)c2(x)

u // Fc2(x).

1.18. Let (F , ϕ, u) be a bounded Weil complex with C -structure, and choose (using 1.7) an
integer n0 such that for every n ≥ n0 the stack Fix(C (n)) is pseudo-finite over Spec(k) with
étale stabilizers. In particular, any connected component β of the maximal reduced closed
substack Fix(C (n))red ⊂ Fix(C (n)) is isomorphic to the classifying stack BH of some finite
group H. For such a component β, define the naive local term at β (or just the local term at
β if no confusion seems likely to arise) to be

LTι(β, (F , ϕ, u)) :=
1

|H(x,λ)|
trι(u(x,λ)|Fc2(x)),

where (x, λ) : Spec(k) → β is any k-valued point and H(x,λ) is the automorphism group of
(x, λ). Note that any two k-valued points (x, λ) of β are isomorphic, so this definition is
independent of the choice of (x, λ).

Statement of conjecture and global results.

Conjecture 1.19. Let (F , ϕ, u) be a bounded Weil complex with C -structure on X . Then
there exists an integer n0 (independent of (F , ϕ, u)) such that for every n ≥ n0 we have:
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(i) The complex of Q`-vector spaces RΓc(F) ∈ D−
c (Q`) with the endomorphism RΓc(u

(n))
is ι-convergent.

(ii) Fix(C (n)) is pseudo-finite over Spec(k) with étale stabilizers, and

(1.19.1) trι(RΓc(u
(n))|RΓcF) =

∑
β⊂Fix(C (n))

LTι(β, (F , ϕ, u(n))).

Remark 1.20. If r ≥ 1 is an integer, then to verify 1.19 for (F , ϕ, u) it suffices to verify 1.19
after making the extension Fq → Fqr for the Weil sheaves with Cj-structure (F , ϕr, u ◦ ϕj)
defined over Fqr (for j = 0, . . . , r − 1), where Cj is the correspondence (F j

X ◦ c1, c2) : C →
X ×X .

Remark 1.21. In the case of Frobenius acting on an algebraic stack, the trace formula in full
generality follows from the work of Behrend [4], combined with the definition of cohomology
with compact support in [13, 14].

One might hope for a notion of a convergent complex Weil complex (F , ϕ) with C -structure
on an algebraic stack X generalizing Behrend’s notion for Frobenius in [4], and then a
generalization of 1.19 to a relative statement saying that the pushforward of a convergent
Weil complex is again a convergent Weil complex (see section 6 for how to push forward Weil
complexes with action of a correspondence). However, we have been unable to find a suitable
notion of convergent complex for actions of correspondences.

1.22. Equivariant correspondences. In this paper we will prove 1.19 in the special case
of equivariant correspondences (as well as a few other cases, see sections 11 and 12).

1.23. Let X0/Fq be a separated scheme of finite type, and let G0 be a finite type group
scheme over Fq which acts on X0. Let α : G0 → G0 be a finite homomorphism, and let
c = (c1, c2) : C0 → X0 × X0 be a correspondence such that c1 is proper, c2 is quasi-finite.
Assume that G0 also acts on C0 such that for every scheme-valued point x ∈ C0 and g ∈ G0

we have α(g)∗c1(x) = c1(g∗x) (resp. g∗c2(x) = c2(g∗x)). Let X0 (resp. C0) denote [X0/G0]
(resp. [C0/G0]) so we have a correspondence C0 →X0 ×X0 which we again denote by c.

As we explain in 10.1, the map c1 : C0 →X0 is proper with finite diagonal and c2 : C0 →X0

is representable and quasi-finite.

Theorem 1.24. Conjecture 1.19 holds for any bounded Weil complex with C -structure on
X .

1.25. Organization of the paper. In section 2 we prove a group theory result which plays
a key technical role in a number of the results that follow.

In section 3 we prove theorem 1.7.

In sections 4 and 5 we extend some results on trace morphisms from [2, XVII and XVIII]
to stacks, as well as prove the comparison result 1.12 between f! and f∗ for proper morphisms
with finite diagonal. These results may be of some use elsewhere, so we discuss both torsion
and `-adic coefficients. The main results are 4.1 and 5.1.

In section 6, we make some observations about pushforwards of Weil sheaves with action
of correspondences.
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In sections 7–9 we prove 1.24 in the special case of a classifying stack of a finite type group
scheme and for a correspondence induced by an endomorphism of the group, as well as for
correspondences arising from a diagram of finite groups.

Then in section 10 we prove 1.24 by reducing to the case of the classifying stack of a group.

In sections 11 and 12 we discuss 1.19 for algebraic spaces and Deligne-Mumford stacks.
It is an open question whether there is a version of Nagata’s compactification theorem for
algebraic spaces. Nonetheless, in the case of an automorphism of an algebraic space 1.19 still
holds as we explain in section 11. Furthermore, as we explain in section 12 the validity of 1.19
for a correspondence of Deligne-Mumford stacks is equivalent to the validity for the coarse
moduli spaces (in particular, 1.19 holds when the coarse moduli spaces are schemes, or if the
correspondence arises from an automorphism).

Remark 1.26. Fujiwara and F. Kato have recently announced a proof of Nagata’s theorem
for algebraic spaces. Granting this, one then also has Fujiwara’s theorem for correspondences
on algebraic spaces, and by the discussion in section 12 therefore also for Deligne-Mumford
stacks.

In sections 13 and 14, we illustrate the general theory with examples. The first example
comes from the theory of toric varieties, where in the smooth case the equivariant cohomology
is the so-called Stanley-Reisner ring. The second example is a higher dimensional version of
the formula [4, 6.4.11] of Behrend and Deligne, concerning traces of Hecke operators on
modular forms.

There is also an appendix concerning a technical point about extending Rf∗ to the un-
bounded below derived category.

1.27. Acknowledgements. I am grateful to Luc Illusie and Yuval Flicker for their questions
which helped initiate this work, and Arthur Ogus for several helpful conversations. Shenghao
Sun and Weizhe Zheng sent me several helpful comments on the first draft of the paper.
Finally I am grateful to Yves Laszlo for a number of helpful communications. This paper is
one aspect of our joint work on the six operations for stacks, and the ideas behind the paper
are very much joint with Laszlo.

The author was partially supported by NSF grants DMS-0714086 and DMS-0748718, and
an Alfred P. Sloan Research Fellowship.

1.28. Notation. By an algebraic stack X over a scheme S, we mean a stack over the category
of S-schemes with the étale topology such that the following hold:

(i) The diagonal ∆ : X →X ×S X is representable, quasi-compact, and quasi-separated.

(ii) There exists a smooth surjection X →X with X a scheme.

An algebraic stack X is called Deligne-Mumford if ∆ is finite, and there exists an étale
surjection X →X with X a scheme.

Consider a pair (S,Λ), where S is a scheme and Λ is a ring. We say that (S,Λ) is admissible
if the following hold:

(i) S is an affine excellent scheme of finite Krull dimension.
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(ii) Λ is either Q` or a Gorenstein local ring of dimension 0 with residue characteristic `,
where ` is a prime invertible in S.

(iii) There exists a function F on non-negative integers, such that for any finite type S-
scheme X of dimension d we have cd`(X) < F (d) (see [13, 1.0.1] for more discussion
of this condition).

We remark that (S,Z/(`r)) or (S,Q`) is an admissible pair if S is the spectrum of a finite
or separably closed field, or if S is the spectrum of a complete discrete valuation ring with
residue field either finite or separably closed, and ` invertible in S.

If (S,Λ) is an admissible pair, then for any algebraic stack X /S of finite type the theory
developed in [13, 14] applies. In particular, there exists a dualizing complex ΩX ∈ Db

c(X ,Λ)
on X . We write

DX : Dc(X ,Λ)→ Dc(X ,Λ)

for the resulting dualizing functor.

2. Some group theory in positive characteristic

2.1. Let Fq be a finite field with q = pr elements, and let k be an algebraic closure of Fq.
Let F : Spec(k)→ Spec(k) denote the q-th power Frobenius morphism, and fix the following
data:

(1) An integer n ≥ 1.
(2) Two group schemes G and G′ of finite type over k.
(3) An open and closed subgroup scheme j : H ↪→ G.
(4) A homomorphism α : H → G′.
(5) An isomorphism λ : F n∗G′ → G.

Let F n : G′ → F n∗G′ denote the map induced by the n-th power of the q-power Frobenius
on G′. The morphism F n sends a T -valued point γ : T → G′ (for some k-scheme T ) to the
unique dotted arrow filling in the diagram

T
γ◦Fn

T

��

Fn(γ)

$$H
H

H
H

H

��5
55

55
55

55
55

55
55

5

F n∗G′ //

��

G′

��
Spec(k)

Fn
// Spec(k),

where FT denotes the q-power Frobenius on T . Let

α(n) : H → G

denote the composite map λ ◦ F n ◦ α.

Proposition 2.2. For every element g ∈ G(k) the map of schemes (not necessarily respecting
the group structure)

ρg : H → G, h 7→ α(n)(h)gj(h)−1

is étale.
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Proof. For a local ring R with maximal ideal m ⊂ R and k ≥ 0, let grk(R) denote mk/mk+1

and let gr∗(R) denote ⊕k≥0grk(R).

To prove the proposition, it suffices to show that for every γ ∈ H(k) the map

ρ∗g : gr∗(OG,ρg(h))→ gr∗(OH,h)

is an isomorphism.

Lemma 2.3. For any γ ∈ G′(k) the map

F n∗ : grk(OFn∗G′,Fn∗(γ))→ grk(OG′,γ)

is zero for k ≥ 1.

Proof. It suffices to prove the result in the case k = 1, or equivalently that the map on
tangent spaces is zero. This in turn is equivalent to showing that if γ ∈ G′(k[ε]) is a point
over the ring of dual numbers reducing to the identity in G′(k), then F n(γ) ∈ F n∗G′(k[ε]) is
the identity. This is clear because

F n
k[ε] : Spec(k[ε])→ Spec(k[ε])

factors through the closed immersion Spec(k) ↪→ Spec(k[ε]) since n ≥ 1. �

Lemma 2.4. For any γ ∈ H(k) the map

α(n)∗ : grk(OG,α(n)(γ))→ grk(OH,γ)
is zero for k ≥ 1.

Proof. Note that α(n)∗ factors as

grk(OG,α(n)(γ))
λ∗ // grk(OFn∗G′,Fn(α(γ)))

Fn∗
// grk(OG′,α(γ))

α∗ // grk(OH,γ),

where the middle arrow is the zero map. �

If X and Y are k-schemes of finite type and x ∈ X(k) and y ∈ Y (k) are points, then the
pullback map

pr∗2 : gr∗(OY,y)→ gr∗(OX×Y,x×y)
admits a retraction induced by the morphism

Y → X × Y, z 7→ (x, z).

It follows that there is a canonical decomposition of graded vector spaces

gr∗(OX×Y,x×y) = gr∗(OX×Y,x×y)† ⊕ gr∗(OY,y).
If f : X → X ′ and g : Y → Y ′ are two morphisms then the pullback

(f × g)∗ : gr∗(OX′×Y ′,f(x)×g(y))→ gr∗(OX×Y,x×y)
respects the decompositions. Furthermore there is a commutative diagram

gr∗(OX′,f(x))⊗k gr∗(OY ′,g(y))

����

f∗⊗g∗ // gr∗(OX,x)⊗k gr∗(OY,y)

����
gr∗(OX′×Y ′,f(x)×g(y))

(f×g)∗
// gr∗(OX×Y,x×y),
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where the vertical arrows are surjective. It follows that if f ∗ : grk(OX′,f(x)) → grk(OX,x) is
the zero map for k ≥ 1 then the map (f × g)∗ is of the form(

0 0
0 g∗

)
: gr∗(OX′×Y ′,f(x)×g(y))

† ⊕ gr∗(OY ′,f(y))→ gr∗(OX×Y,x×y)† ⊕ gr∗(OY,y).

We apply this discussion with X ′ = Y ′ = G, X = Y = H, and f (resp. g) equal to the
map α(n) (resp. g · j(−)−1), and the point x = y = γ. We conclude that the map

ρ∗g : gr∗(OG,α(n)(γ)gj(γ)−1)→ gr∗(OH,γ)

factors as

gr∗(OG,α(n)(γ)gj(γ)−1)

m∗

��
gr∗(OG×G,α(n)(γ)×gj(γ)−1)† ⊕ gr∗(OG,gj(γ)−1)„

0 0

0 '

«
��

gr∗(OH×H,γ×γ)† ⊕ gr∗(OH,γ)

∆∗

��
gr∗(OH,γ).

To prove that ρg is étale at γ it therefore suffices to show that the composites

gr∗(OG,α(n)(γ)gj(γ)−1)
m∗
// gr∗(OG×G,α(n)(γ)×gj(γ)−1)† ⊕ gr∗(OG,gj(γ)−1)

(x,y) 7→y
// gr∗(OG,gj(γ)−1)

and

gr∗(OH,γ)
z 7→(0,z)

// gr∗(OH×H,γ×γ)† ⊕ gr∗(OH,γ)
∆∗
// gr∗(OH,γ)

are isomorphisms. This follows from consideration of the commutative diagrams

G

(α(n)(γ),id)
��

α(n)(γ)·(−)

##G
GGGGGGGG

G×G m // G

and

H

id

##
∆ // H ×H

pr2 // H.

�

Remark 2.5. Proposition 2.2 also holds in the case when n = 0 if the homomorphism α is
nowhere étale (which implies that 2.4 holds also for n = 0).
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3. Proof of Theorem 1.7

Let c : C0 →X0 ×X0 be as in 1.7.

Lemma 3.1. Let f : X ′
0 → X0 be a representable and quasi-finite morphism of algebraic

stacks over Fq. Then if c′ : C ′
0 → X ′

0 ×X ′
0 denotes the pullback of c along f (see 1.5), then

the projection c′2 : C ′
0 →X ′

0 is representable and quasi-finite.

Proof. Consider the commutative diagram of algebraic stacks where all squares are cartesian

C ′
0

a

��

c′ //

c′2

��

X ′
0 ×X ′

0

f×1

��
D0

cD //

��

X0 ×X ′
0

1×f
��

pr2 // X ′
0

f

��
C

c //

c2

99X0 ×X0

pr2 // X0.

Since c2 is representable and quasi-finite, the morphism pr2 ◦ cD : D0 → X ′
0 is representable

and quasi-finite, and since f is representable and quasi-finite the morphism a is representable
and quasi-finite. It follows that the composite

c′2 = pr2 ◦ cD ◦ a
is also representable and quasi-finite. �

3.2. We can in particular apply 3.1 to the morphism f : X0,red → X0 from the maximal
reduced closed substack of X0. If C ′

0 → X0,red ×X0,red denotes the pullback of C0, then the
natural map

Fix(C ′(n)
0 )→ Fix(C (n)

0 )

is a closed immersion defined by a nilpotent ideal. Since the notion of a pseudo-finite mor-
phism in 1.6 is insensitive to the infinitesimal structure on Z , it therefore suffices to prove
1.7 under the additional assumption that X0 is reduced.

3.3. If U0 ⊂ X0 is an open substack with complement Z0, and CU ,0 → U0 × U0 (resp.
CZ ,0 → Z0 ×Z0) is the pullback of C0 to U0 (resp. Z0), then the two correspondences

(3.3.1) CU ,0 → U0 ×U0, CZ ,0 → Z0 ×Z0

also satisfy the assumptions of 1.7 by 3.1. Moreover, Fix(C (n)
U ) is an open substack of

Fix(C (n)) with complement Fix(C (n)
Z ). To prove 1.7 for C0 → X0 × X0 it therefore suf-

fices to prove 1.7 for the two correspondences 3.3.1.

3.4. By noetherian induction it therefore suffices to show that 1.7 holds for a nonempty open
substack of our reduced stack X0.

Let I0 →X0 be the inertia stack. Since X0 is reduced there exists a dense open substack
U0 ⊂ X0 such that the restriction IU ,0 → U0 is flat. We can then form the rigidification
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of U0 with respect to IU ,0 as for example in [17, §1.5] to get an algebraic space U0 with a
morphism π : U0 → U0 which is universal for morphisms to algebraic spaces. Replacing X0

by U0, we may assume that the inertia stack I0 →X0 is flat over X0. Let π : X0 → X0 be
the rigidification. Then X0 is an algebraic space with quasi-compact diagonal, and therefore
by [12, II.6.7] X0 contains a dense open affine subscheme. Replacing X0 by the inverse image
of this open subscheme, we may assume that X0 is an affine scheme.

Next observe that we may also assume that the inertia stack IC ,0 → C0 is flat over C0.
Indeed note that if C0,red ⊂ C0 is the maximal reduced closed substack then the correspon-
dence

C0,red →X0

also satisfies the assumptions of 1.7 and for every n ≥ 0 the map Fix(C (n)
red )→ Fix(C (n)) is a

closed immersion defined by a nilpotent ideal. We may therefore assume that C0 is reduced.

Furthermore, if V0 ⊂ C0 is an open substack with complement T0 ⊂ C0, then the corre-
spondences

V0 →X0 ×X0, T0 →X0 ×X0

also satisfy the assumptions of 1.7 and Fix(V (n)) is an open substack of Fix(C (n)) with
complement Fix(T (n)). Stratifying C0 by substacks over which the inertia stack is flat we
reduce to the case when IC ,0 → C0 is flat. Let C0 → C0 denote the rigidification. After
further shrinking on C0 we may assume that C0 is also an affine scheme. We then have a
commutative diagram

C0

c1

}}||
||

||
|| c2

!!C
CC

CC
CC

C

πC

��

X0

πX

��

X0

πX

��

C0

c̄1

}}||
||

||
|| c̄2

!!C
CC

CC
CC

C

X0 X0.

This diagram induces for every n ≥ 0 a morphism

ρ : Fix(C (n))→ Fix(C(n)).

3.5. Fix a point x ∈ Fix(C(n))(k). The groupoid ρ−1(x) ⊂ Fix(C (n))(k) can be described as
follows.

Fix an object x̃ ∈ C (k) mapping to the image of x in C(k). Since x̃ maps to the same
element of X(k) under either c2 or F n

X c1, it follows that c2(x̃) is isomorphic to F n
X c1(x̃). Let

Gc2(x̃) be the automorphism group scheme of c2(x̃) ∈X (k), and let P denote the Gc2(x̃)-torsor
of isomorphisms in X (k)

λ : c2(x̃)→ F n
X c1(x̃).

Let Gx̃ be the automorphism group scheme of x̃ ∈ C (k). There is an action of Gx̃ on P for
which γ ∈ Gx̃ sends λ to the composite

c2(x̃)
c2(γ)

// c2(x̃)
λ // F n

X c1(x̃)
Fn

X c1(γ)−1

// F n
X c1(x̃) .
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The groupoid ρ−1(x) is then isomorphic to the quotient groupoid [P (k)/Gx̃(k)]. In particular,
the set of isomorphism classes of objects in ρ−1(x) is equal to the set P (k)/Gx̃(k).

Proposition 3.6. If n ≥ 1 then the set P (k)/Gx̃(k) is finite.

Proof. For any λ ∈ P (k), let

σλ : Gx̃ → P, γ 7→ γ ∗ λ
be the map of schemes defined by the action. To prove the proposition it suffices to show
that σλ is étale. For then the image is open, and since P is quasi-compact there exists finitely
many λ1, . . . , λr ∈ P (k) such that the images σλi

(Gx̃) cover P .

Lemma 3.7. The map p2 : Gx̃ → Gc2(x̃) induced by c2 is an open and closed immersion.

Proof. Since c2 is representable and quasi-finite, the fiber product of the diagram

C

c2

��
Spec(k)

c2(x̃)
// X

is an affine scheme Spec(A) finite over Spec(k). The maximal reduced closed subscheme
Spec(Ared) ⊂ Spec(A) is therefore equal to a disjoint union

Spec(Ared) =
∐
s∈S

Spec(k)

of copies of Spec(k). The group scheme Gc2(x̃) acts on Spec(Ared) and therefore also on the
set S. This defines a homomorphism

u : Gc2(x̃) → Aut(S).

The point x̃ corresponds to a distinguished element s0 ∈ S, and Gx̃ is the stabilizer in Gc2(x̃)

of this element. From this the lemma follows. �

We now apply 2.2 with G = Gc2(x̃), H = Gx̃, G
′ = Gc1(x̃), j : H ↪→ G the inclusion defined

by c2, and α the map given by c1. An element λ ∈ P (k) defines an isomorphism F n∗G′ ' G
which we again denote by λ. This isomorphism has the property that the composite map

H
σλ // P

λ // G

is equal to the map

H → G, h 7→ j(h)α(n)(h)−1.

That σλ is étale therefore follows from 2.2. This completes the proof of 3.6. �

Note also that if we fix an isomorphism λ : c2(x̃) → F n
X c1(x̃) so that (x̃, λ) is an object

of Fix(C (n)), then the group scheme AutFix(C (n))(x̃, λ) is equal to the inverse image of the
identity under ρe : Gx̃ → Gc2(x̃). Since ρe is étale it follows that the automorphism group

scheme of any object in Fix(C (n)) is finite étale over k.

To complete the proof of 1.7, it therefore suffices to choose an integer n0 such that for any
n ≥ n0 the set Fix(C(n)) is finite. This is possible by [19, 1.2.2]. �
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4. Trace map for quasi-finite morphisms of stacks

Fix an admissible pair (S,Λ) as in 1.28 .

The main result of this section is the following.

Theorem 4.1. There exists a unique way to associate to any quasi-finite flat morphism
f : X → Y of algebraic stacks and constructible sheaf of Λ-modules F on Y a morphism

(4.1.1) trf : f!f
∗F → F

such that the following hold:

(i) (Functoriality) The morphism trf is functorial in F .

(ii) (Compatibility with base change) For every cartesian diagram

X ′

f ′

��

g′ // X

f

��
Y ′ g // Y

with f flat and quasi-finite, and F a constructible sheaf on Y the diagram

(4.1.2) R0f ′!f
′∗g∗F

trf ′ ''PPPPPPPPPPPPP
R0f ′! g

′∗f ∗F
a // g∗R0f!f

∗F

trfwwooooooooooooo

g∗F

commutes, where the morphism a is the base change isomorphism.

(iii) (Compatibility with composition) Let

X
g // Y

f // Z

be a diagram of quasi-finite flat morphisms of algebraic stacks and let F be a constructible
sheaf on Z . Then the diagram

(4.1.3) f!g!g
∗f ∗F

trg //

'
��

f!f
∗F

trf

��
(fg)!(fg)

∗F
trfg // F

commutes.

(iv) (Normalization) If Y = Y is a scheme, and p : W → X is a smooth surjection with
constant fiber dimension d, then the diagram

(4.1.4) f!p!p
∗f ∗F

'
��

t // f!p!p
!f ∗F (−d)[−2d]

p!p
!→id// f!f

∗F (−d)[−2d]
trf // F (−d)[−2d]

(pf)!(pf)∗F

trpf

11cccccccccccccccccccccccccccccccccccccccccccccccccccccc

commutes, where trpf is the trace map defined in [2, XVIII.2.9] and the map t is the map
defined by the isomorphism p∗ ' p!(−d)[−2d].
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In the case of a quasi-finite morphism of schemes f : X → Y and F on Y the trace
morphism trf agrees with the morphism defined in [2, XVII, 6.2.3].

The proof will be broken into several steps 4.2-4.12.

Note that by adjunction giving the morphism 4.1.1 is equivalent to giving a morphism
t̃rf : f ∗F → f !F .

4.2. Some cohomological observations.

Lemma 4.3. (i) For any G ∈ D[0,∞)
c (Y ,Λ) we have f !G ∈ D[0,∞)

c (X ,Λ).

(ii) For any constructible sheaf of Λ-modules F on Y , we have

E xti(f ∗F, f !F ) = 0 for i < 0.

Proof. Statement (ii) follows immediately from (i).

To prove (i), note that the assertion is local in the smooth topology on Y , and the Zariski
topology on X . It follows that it suffices to consider the case when Y is a scheme and there
exists a smooth surjection p : W → X with W a scheme such that the fibers of p are all of
dimension d, for some integer d. Since p!f !G ' p∗f !G(d)[2d] it therefore suffices to show that
(fp)!G ∈ D≥−2d

c (X ) which is [2, XVIII, 3.1.7]. �

Lemma 4.4. Let s ∈ Z be an integer. Then for any F ∈ D
(−∞,s]
c (X ,Λ) we have f!F ∈

D
(−∞,s]
c (Y ,Λ).

Proof. It clearly suffices to consider the case s = 0.

Let d be the maximal integer such that Rdf!F 6= 0. Then for any constructible sheaf of
Λ-modules G on Y we have

Ext−d(f!F,G) = Hom(H d(f!F ), G).

On the other hand, we have by adjunction

Ext−d(f!F,G) = Ext−d(F, f !G),

which since f !G ∈ D[0,∞)(X ,Λ) is zero if d > 0. Thus if d > 0 we find that

Hom(H d(f!F ), G) = 0

for every constructible sheaf G. This is a contradiction (take G = H d(f!F )). �

Remark 4.5. It follows that if F is a constructible sheaf of Λ-modules on Y , then giving a
morphism f!f

∗F → F is equivalent to giving a morphism R0f!f
∗F → F .

Remark 4.6. Both 4.3 and 4.4 hold without the assumption that f is flat, with the same
proofs.
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4.7. A special case.

Consider first the case when Y is a scheme and there exists a scheme W and a smooth
surjection p : W → X with constant fiber dimension an integer d. Let Z denote W ×X W
so we have morphisms

pr1, pr2 : Z → W, q : Z →X .

The morphisms pri are smooth of constant relative dimension d and the morphism q is
smooth of relative dimension 2d. To define the map t̃rf : f ∗F → f !F it suffices to construct
a morphism

ε : p∗f ∗F → p∗f !F

such that the diagram

(4.7.1) pr∗1p
∗f ∗F

pr∗1ε //

'
��

pr∗1p
∗f !F

'
��

pr∗2p
∗f ∗F

pr∗2ε // pr∗2p
∗f !F

commutes.

To define the map ε, note that since p is smooth of relative dimension d we have p∗f !F '
p!f !F (−d)[−2d] ' (fp)!F (−d)[−2d]. Therefore giving ε is equivalent to giving a morphism

(fp)∗F → (fp)!F (−d)[−2d].

For this we take the map t̃rfp defined by the trace map in [2, XVIII, 2.9].

Remark 4.8. The commutativity of the diagram 4.1.4 is equivalent by adjunction to the
commutativity of the diagram

p∗f ∗F

'
��

' // p!f ∗F (−d)[−2d]
p! etrf // p!f !F (−d)[−2d]

(pf)∗F.
etrpf

22fffffffffffffffffffffffffffff

Thus the normalization condition (iv) is equivalent to the condition that p∗t̃rf is equal to the
map ε defined above.

To verify that 4.7.1 commutes, note that for i = 1, 2 the diagram

pr∗i p
∗f ∗F

pr∗i ε //

etrfp

))

'
��

pr∗i p
∗f !F

' // pr∗i (fp)
!F (−d)[−2d]

etrpri
��

(fq)∗F
etrfq // (fq)!F (−2d)[−4d]

commutes by [2, XVIII, 2.9 (Var 3)] and the map t̃rpri
is an isomorphism. This implies that

pr∗1ε = pr∗2ε.
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Lemma 4.9. The induced map t̃rf : f ∗F → f !F is independent of the choice of the covering
p : W →X .

Proof. Let t̃rf be the map defined using p : W →X , and let p′ : W ′ →X be a second smooth

covering of relative dimension d′, and let t̃r
′
f be the map defined using p′. By considering

the product W ×X W ′, to show that t̃rf = t̃r
′
f we may assume that there exists a smooth

morphism h : W ′ → W over X .

Then using [13, 2.3.4] to prove that t̃rf = t̃r
′
f it suffices to show that p′∗t̃rf = p′∗t̃r

′
f . This

follows from [2, XVIII, 2.9 (Var 3)] and consideration of the diagram

p′∗f ∗F

'
��

etr′f //

etrfp′

((

p′∗f !F
' // (fp′)!F (−d′)[−2d′]

h∗p∗f ∗F
etrf //

etrfp

66
h∗p∗f !F

' // h∗(fp)!F (−d)[−2d].

etrh

OO

�

Lemma 4.10. Property (ii) holds for a morphism of schemes g : Y ′ → Y .

Proof. Let p : W → X be a smooth morphism of constant fiber dimension d as above, and
let W ′ denote X ′ ×X W so we have a commutative diagram

W ′ g′′ //

p′

��

W

p

��
X ′ g′ //

f ′

��

X

f

��
Y ′ g // Y .

To verify the commutativity of 4.1.2 it suffices to verify the commutativity of the diagram

f ′∗g∗F
' //

etrf ′ $$J
JJJJJJJJ
g′∗f ∗F

bc // f ′!g∗f!f
∗F

trfxxrrrrrrrrrr

f ′!g∗F,

where “bc” denotes the map induced by adjunction from the base change isomorphism. For
this in turn it suffices to verify that it commutes after applying p′∗. Consider the following
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diagram

(f ′p′)!g∗(fp)!(fp)
∗F

trp

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{

p′∗f ′∗g∗F
' //

etrf ′p′

&&

etrf ′
��

bc

11ddddddddddddddddddddddddddddddddddddddddddd
p′∗g′∗f ∗F

bc
��

p′∗f ′!g∗F

etrp′
��

p′∗f ′!g∗f!f
∗F

trf

oo

etrp′
��

(f ′p′)!g∗F (−d)[−2d] (f ′p′)!g∗f!f
∗F (−d)[−2d].

trf

oo

By [2, XVIII, 2.9 (Var 2)] the big outside diagram commutes, and all the small inside diagrams
commute by the construction of the trace map, except possibly the top square. It follows
that the top square also commutes. �

4.11. The general case.

Now consider the case of a general quasi-finite flat morphism f : X → Y .

Let Y → Y be a smooth surjection with Y a scheme, such that there exists a smooth
covering W → XY by a scheme W with constant relative dimension d. We then obtain a
canonical morphism

f!f
∗F |Y → F |Y

such that the two pullbacks to Y ×Y Y agree (by 4.10). Using 4.5 this map over Y descends
uniquely to a morphism trf : f!f

∗F → F . As before we let t̃rf : f ∗F → f !F denote the map
obtained by adjunction.

We now verify (i)-(iv). Property (i) is immediate, and property (iv) follows from 4.9.

Let us verify property (iii). To show that 4.1.3 commutes, it suffices to show that the
diagram

(4.11.1) g∗f ∗F
etrg //

'

��

g!f ∗F

etrf

��
g!f !F

'
��

h∗F
etrh // h!F

commutes, where we write h := gf . Furthermore, it suffices to verify the commutativity of
this diagram after pulling back along any smooth surjective morphism X →X .



FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES 19

Let p : Z → Z be a smooth morphism with Z a scheme, and set YZ := Y ×Z Z and
XZ := X ×Z Z so we have a commutative diagram

XZ

g′ //

h′

!!

p′′

��

YZ

p′

��

f ′ // Z

p

��
X

g //

h

<<Y
f // Z .

We then get a diagram

g′∗p′∗f ∗F
etrg′ //

'
��

g′!p′∗f ∗F

etrf

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

'
��

' // g′∗f ′∗p∗F

etrf ′

mm

p′′∗g∗f ∗F
etrg //

'
��

p′′∗g!f ∗F

etrf

��
p′′∗h∗F

'
��

etrh // p′′∗g!f !F
' //

'
��

g′!p′∗f !F

g′∗f ′∗p∗F
etrh′ // g′!f ′!p∗F.

It follows from the construction of the trace map that all the small inside diagrams commute,
except possibly the middle square in the left column. To verify that this last square commutes
it therefore suffices to show that the big outside diagram commutes. This reduces the proof
to the case when Z is a scheme.

By a similar argument, one reduces to the case when X is also a scheme.

So now consider the case when X and Z are schemes, which we denote by roman letters
X and Z respectively. Let p : Y → Y be a smooth morphism of constant relative dimension
d and with Y a scheme. Let XY denote X ×Y Y . Then XY is an algebraic space. Consider
the commutative diagram

XY

g′ //

p′

��

h′

��

Y
f ′

  A
AA

AA
AA

A

p

��
X

g //

h

==Y
f // Z.

To verify that 4.11.1 commutes it suffices as mentioned above to verify that it commutes after
pulling back along p′, for if this holds for all smooth (not necessarily surjective) morphisms
Y → Y of constant relative dimension, then there exists a smooth surjection X → X such
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that it holds after pulling back to X. Now consider the diagram

g′∗p∗f ∗F
etrg′ //

'
��

g′!p∗f ∗F

etrf ′

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

'
��

p′∗g∗f ∗F
etrg //

'

��

p′∗g!f ∗F

etrf

��
p′∗g!f !F

' //

'
��

g′!p!f !F (−d)[−2d]

p′∗h∗F
etrh //

etrh′

EE

p′∗h!F.

'
66mmmmmmmmmmmmm

Again it follows from the construction of the trace map that all the small inside diagrams
commute except possibly for the bottom-left pentagon and the big outside diagram commutes.
This reduces the proof to the case when X is an algebraic space and Y and Z are schemes.
To verify that 4.11.1 commutes in this case, we may work étale locally on X which finally
reduces to the case of X, Y , and Z all schemes which follows from [2, XVIII, 2.9 (Var 3)].
This completes the verification of property (iii).

As we now explain, the verification of property (ii) proceeds using a similar reduction to
the case of schemes, and the observation that (ii) holds by the construction of the trace map
in the case when Y ′ → Y is a smooth morphism.

Reduction to the case when Y is a scheme. Let p : Y → Y be a smooth surjection with
Y a scheme, and set Y ′ := Y ′ ×Y Y , XY := X ×Y Y , and X ′

Y ′ := X ′ ×Y ′ Y ′ so we have a
commutative diagram

X ′
Y ′

q′

||yy
yy

yy
yy

w′

��

h′ // XY

w

��

q
}}{{

{{
{{

{{

X ′

f ′

��

g′ // X

f
��

Y ′

p′

||xxxxxxxx

h // Y

p
||zzzzzzzz

Y ′ g // Y .
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We then obtain a diagram

p′∗f ′!f
′∗g∗F

'

wwnnnnnnnnnnnn
trf ′

��

' // p′∗f ′! g
′∗f ∗F

bc
��

w′
!w

′∗p′∗g∗F

'
��

trw′ // p′∗g∗F

'
��

p′∗g∗f!f
∗F

trfoo

'
��

w′
!w

′∗h∗p∗F
trw′ //

'

((PPPPPPPPPPPP
h∗p∗F h∗p∗f!f

∗F

bcwwnnnnnnnnnnnntrf

oo

h∗w!w
∗p∗F,

bc

hhPPPPPPPPPPPP
trw

OO

where the morphisms labelled “bc” are base change isomorphisms.

As usual to verify the commutativity of 4.1.2 it suffices to verify that it commutes after
applying p′∗, and therefore it suffices to show that the top right square in the preceding
diagram commutes.

It is clear that all the small inside diagrams commute except possibly the top right square
(whose commutativity we are trying to verify), and the bottom left triangle. Since the big
outside diagram commutes by associativity of the base change isomorphism, it therefore
suffices to verify that the bottom left triangle commutes, which reduces the proof to the case
when Y = Y is a scheme. We assume this henceforth.

Reduction to the case when Y ′ is a scheme. Let p : Y ′ → Y ′ be a smooth surjection with
Y ′ a scheme, and set XY ′ := X ′ ×Y ′ Y ′ so we have a commutative diagram

XY ′
p′ //

f ′′

��

X ′

f ′

��

g′ // X

f

��
Y ′ p // Y ′ g // Y.

We then obtain a diagram

p∗f ′!f
′∗g∗F

' //

trf ′

��
'

��

p∗f ′! g
′∗f ∗F

bc
��

p∗g∗F p∗g∗f!f
∗F

trfoo

f ′′! f
′′∗p∗g∗F,

trf ′′

OO
bc

77nnnnnnnnnnnn

where as before we denote a base change isomorphism by “bc”. The big outside pentagon
commutes by the associativity of the base change isomorphisms, and therefore to verify that
the top square commutes it suffices to verify that the bottom triangle commutes. This then
reduces the proof to the case when Y ′ = Y ′ is also a scheme.

Reduction to the case of schemes. Finally one reduces to the case when X (and hence also
X ′) is a scheme, by the same argument used in the proof of 4.10. This completes the proof
that the maps trf we have constructed satisfy properties (i)-(iv).
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The uniqueness of the maps trf follows from the vanishing of the negative E xt-groups as
in the beginning of the proof of 4.1 which reduces the proof of the uniqueness to the case of
schemes.

4.12. Proof of uniqueness. By 4.5, the trace map trf : f!f
∗F → F is determined by the map

R0f!f
∗F → F . Therefore the trace map is determined by its restriction to a smooth cover

of Y . We may therefore assume that Y is a scheme and there exists a smooth surjection
p : W →X of pure relative dimension d. In this case the uniqueness follows from 4.8.

This completes the proof of 4.1. �

4.13. Theorem 4.1 can be generalized to complexes F ∈ D−
c (Y ,Λ) as follows. The map

trf : f!Λ→ Λ

defines by duality a morphism
ΩY → f∗ΩX ,

which by adjunction corresponds to a morphism

trtf : f ∗ΩY → ΩX .

For F ∈ D−
c (Y ,Λ), we therefore get a map

(4.13.1) f ∗DY (F )
α // RH om(f ∗F, f∗ΩY )

trt
f // RH om(f ∗F,ΩX ) = DX (f ∗F ),

where the map α is the canonical map

f ∗RH om(F,ΩY )→ RH om(f ∗F, f∗ΩY ).

By adjunction this defines a morphism

DY (F )→ f∗DX (f ∗F ),

and we define
trf : f!f

∗F → F

to be the map obtained by applying DY .

4.14. In the case of a constructible sheaf F on Y , we then have two possible definitions of a
trace map f!f

∗F → F . Let trf (resp. tr∗f ) denote the map in 4.1 (resp. 4.13).

Proposition 4.15. The maps trf and tr∗f are equal.

Proof. By 4.5 the assertion is local on Y in the smooth topology, so we may assume that
Y = Y is a scheme, and there exists a smooth surjection p : W → X of constant fiber
dimension d. Let ψf : f ∗DY (−)→ DX f

∗(−) be the transformation 4.13.1. By construction,

the adjoint map t̃r
∗
f : f ∗F → f !F is the composite

(4.15.1) f ∗F
' // f ∗D2

Y (F )
ψf // DX f

∗DY (F ) f !F.

Let g : W → Y denote the composite fp. By the same argument as in 4.13, the trace map
tr : g!g

∗Λ(d)[2d]→ Λ defined in [2, XVIII.2.9] induces a natural transformation

ψg : g∗DY (−)→ DWg
∗(−)(−d)[−2d].
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By 4.1 (iv), the diagram

p∗f ∗Λ

'
��

etrf // p∗f !Λ
γ // p!f !Λ(−d)[−2d]

'
��

g∗Λ
etrg // g!Λ(−d)[−2d]

commutes, where the map γ is induced by the isomorphism p! = p∗(d)[2d]. From this it

follows that p∗t̃r
∗
f , which we view as a map g∗F → g!F (−d)[−2d] is equal to the composite

g∗F
' // g∗D2

Y F
ψg // DWg

∗DY (W )(−d)[−2d] g!F (−d)[−2d].

On the other hand, the map g∗F → g!F (−d)[−2d] obtained by pullback back t̃rf is by

the construction of t̃rf equal to t̃rg. Proposition 4.15 therefore follows from the following
result. �

Lemma 4.16. Let g : W → Y be a flat morphism of schemes of finite type over S and with
constant fiber dimension d. Then for any constructible sheaf F on Y the map t̃rg : g∗F →
g!F (−d)[−2d] is equal to the composite

g∗F
' // g∗D2

Y F
ψg // DWg

∗DY F (−d)[−2d]
' // g!F (−d)[−2d].

Proof. Using the argument of [2, XVIII, proof of 2.9 (c) and (d)], we may assume there exists
a factorization of g

W
a // Ad

Y
b // Y,

where a is quasi-finite and flat and b is the projection.

By [2, XVIII, 2.9 (Var 3)], the diagram

g∗Λ

'
��

etrg // g!Λ(−d)[−2d]

'
��

a∗b∗Λ
etrb // a∗b!Λ(−d)[−2d]

etra // a!b!Λ(−d)[−2d]

commutes. This implies that the diagram

g∗DY

ψg //

'
��

DWg
∗(−d)[−2d]

'
��

a∗b∗DY

ψb // a∗DAd
Y
b∗(−d)[−2d]

ψa // DWa
∗b∗(−d)[−2d]

commutes. From this it follows that it suffices to prove the lemma for the morphisms a and
b.

The statement for b is immediate.
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Thus we are reduced to proving the lemma in the case when g is also quasi-finite. In this
case, let k be a separably closed field and ȳ : Spec(k)→ Y a geometric point. Then it follows
from the constructions that both trg and tr∗g induce the summation map

⊕w̄Fȳ ' g!g
∗(F )ȳ → Fȳ,

where the sum is taken over liftings w̄ : Spec(k)→ W of ȳ. �

5. Comparison of f! and f∗

Fix an admissible pair (S,Λ). Throughout this section we work with stacks over S and
Λ-coefficients.

The main result of this section is the following:

Theorem 5.1. (i) Let f : X → Y be a quasi-finite morphism of algebraic stacks with
∆ : X →X ×Y X finite. Then for any constructible sheaf of Λ-modules F on X , there is
a canonical morphism

(5.1.1) εF : f!F → f∗F.

(ii) Assume further that f is proper and that one of the following conditions hold:

(a) Λ = Q`,
(b) For every algebraically closed field Ω and point x : Spec(Ω) → X with image y ∈

Y (Ω) the étale part of the group scheme (finite over Ω since the diagonal of f is
finite)

G := Ker(AutX (x)→ AutY (y))

has order invertible in k.

Then the map εF : f!F → f∗F is an isomorphism.

Remark 5.2. If we wish to emphasize the morphism f we write εfF for εF .

Proof of 5.1. Giving the map 5.1.1 is equivalent to giving a map F → f !(f∗F ). Since
H i(f !f∗F ) = 0 for i < 0 by 4.6, this is in turn equivalent to a morphism F →H 0(f !f∗F ).

Consider first the case when Y is a quasi-compact scheme. By Chow’s lemma [16, 1.1]
there exists a proper surjection p : Z →X with Z a scheme. Let W denote Z ×X Z and let
q : W →X be the projection. Define sheaves

H := R0p∗p
∗F, G := R0q∗q

∗F.

We then have an exact sequence on X

0→ F → H → G.

This sequence induces an exact sequence

0→ R0f∗F → R0f∗H → R0f∗G

and then an exact sequence (using 4.3)

0→H 0(f !R0f∗F )→H 0(f !R0f∗H)→H 0(f !R0f∗G).
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Since

H 0(f !R0f∗H) 'H 0(f !f∗p∗p
∗F ), H 0(f !R0f∗G) 'H 0(f !f∗q∗q

∗F ),

we obtain an identification

H 0(f !f∗F ) ' Ker(H 0(f !f∗p∗p
∗F )→H 0(f !f∗q∗q

∗F )).

Therefore to define a map s : F → f !f∗F it suffices to define a map sp : F → f !f∗p∗p
∗F such

that the two maps

F → f !f∗q∗q
∗F

obtained by composing sp with the two pullbacks

pr∗i : f !f∗p∗p
∗F → f !f∗q∗q

∗F

are equal. We claim that the map sp : F → f !f∗p∗p
∗F defined as the composite

(5.2.1) F // p∗p
∗F

' // p!p
∗F

a // f !f∗p∗p
∗F,

has this property, where the canonical ismorphism p∗p
∗F ' p!p

∗F is by [13, 5.2.1] using the
fact that p is proper and representable, and the map a is the map obtained by adjunction
from the map

f!p!p
∗F ' (f ◦ p)!p

∗F → (f ◦ p)∗p∗F ' f∗p∗p
∗F,

where the map (fp)! → (fp)∗ is the natural map defined for morphisms of schemes.

To see this note that by a similar construction there is a canonical map sq : F → f !f∗q∗q
∗F

defined as the composite

F // q∗q
∗F

' // q!q
∗F

b // f !f∗q∗q
∗F.

Lemma 5.3. For i = 1, 2 the composite map

F
sp // f !f∗p∗p

∗F
pr∗i // f !f∗q∗q

∗F

is equal to sq.

Proof. Let ρ : p∗F → pri∗q
∗F be the morphism induced by adjunction. To prove the lemma

it suffices to show that the following diagram commutes

F
/.-,()*+1

��2
22

22
22

22
22

22
22

22
// p∗p

∗F

/.-,()*+2
ρ

��

' // p!p
∗F

/.-,()*+3
ρ

��

a
// f !f∗p∗p

∗F

ρ

��
p!pri∗q

∗F

'
��

a
//

/.-,()*+4

f !f∗p∗pri∗q
∗F

'
��

q∗q
∗F

' // q!q
∗F

b
// f !f∗q∗q

∗F.
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The small inside diagrams 1 and 3 clearly commute. The commutativity of 2 follows by
noting that we have commutative diagrams of functors

p∗p
∗ p!'p∗ //

ρ

��

p!p
∗

ρ

��
p∗pri∗pr∗i p

∗ p!'p∗ // p!pri∗pr∗i p
∗,

and

p∗pri∗

'
��

p!'p∗ // p!pri∗
pri∗'pri!// p!pri!

'
��

q∗
q∗'q! // q!.

The commutativity of 4 follows from noting that the diagram of functors

f!p!pri∗
f!p!→f∗p∗//

pri∗'pri!

��

f∗p∗pri∗

'
��

f!q!
f!q!→f∗q∗ // f∗q∗

commutes. �

Let sF : F → f !f∗F be the resulting morphism, and let εF : f!F → f∗F be the map
obtained by adjunction.

In order to define εF in the case when Y is a stack, we need the following lemma which
we will generalize in 5.5 below.

Lemma 5.4. Let g : Y ′ → Y be a smooth morphism of schemes, let X ′ denote Y ′ ×Y X
so we have a cartesian square

X ′ g′ //

f ′

��

X

f

��
Y ′ g // Y .

Then for any constructible sheaf of Λ-modules F on X the diagram

f ′! g
′∗F

εg′∗F

��

g∗f!F

g∗εF
��

αoo

f ′∗g
′∗F g∗f∗F

βoo

commutes, where the morphisms α and β are the base change isomorphisms.
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Proof. Consider the diagram

g′∗f !f!F
'

''OOOOOOOOOOO c

��

g′∗F

sg′∗F

��
c′

##

can
77oooooooooooo

f ′!g∗f!F

εF
��

f ′!f ′∗g
′∗F

id→p′∗p
′∗

��

f ′!g∗f∗F
canoo

id→p∗p∗

��
f ′!f ′∗p

′
∗p
′∗g′∗F g′∗f !f∗p∗p

∗F,can
oo

where the map c is the composite

f !f!F
5.2.1 // f !f!f

!f∗p∗p
∗F

f!f
!→id// f !f∗p∗p

∗F,

and c′ is the map defined as in 5.2.1.

The small diagrams on the sides commute by definition of sg′∗F and εF , and the bottom
square clearly commutes. To prove the lemma it suffices by adjunction to verify that the top
inside pentagon commutes, and since

H 0(f ′!f ′∗g
′∗F )→H 0(f ′!f ′∗p

′
∗p
′∗g′∗F )

is injective, it therefore suffices to verify that the big outside diagram commutes. This reduces
the proof to the case when X is a scheme, where the result is classical. �

This enables us to define the morphism f!F → f∗F for general f and F a constructible
sheaf. Indeed as noted earlier such a morphism is specified by a morphism of sheaves F →
H 0(f !f∗F ), and so it suffices to construct a morphism f!F → f∗F locally in the smooth
topology which is compatible with base change. We therefore have maps εF : f!F → f∗F and
sF : F → f !f∗F also for general morphisms f and constructible sheaves F .

Lemma 5.5. Let g : Y ′ → Y be a morphism of algebraic stacks, and let X ′ denote Y ′×Y X
so we have a cartesian square

X ′ g′ //

f ′

��

X

f

��
Y ′ g // Y .

Then for any constructible sheaf of Λ-modules F on X the diagram

(5.5.1) R0f ′! g
′∗F

εg′∗F

��

g∗R0f!F

g∗εF
��

αoo

R0f ′∗g
′∗F g∗R0f∗F

βoo

commutes, where the morphisms α and β are the base change morphisms.
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Proof. As usual, we may work locally in the lisse-étale topology on both Y and Y ′. We may
therefore assume that both Y and Y ′ are schemes, and that there exists a proper surjection
p : Z →X . Let p′ : Z ′ →X ′ be the pullback of p so there is a commutative diagram

Z ′ g′′ //

p′

��

Z

p

��
X ′ g′ //

f ′

��

X

f

��
Y ′ g // Y .

Consider the diagram

(5.5.2) f ′! g
′∗F

εg′∗F

��

id→p′∗p
′∗

wwooooooooooo
g∗f!Fα

oo

εF

��

id→p∗p∗

''NNNNNNNNNNNN

f ′!p
′
∗p
′∗g′∗F

'
��

f ′∗g
′∗F

id→p′∗p
′∗

��

g∗f∗F
βoo

id→p∗p∗

��

g∗f!p∗p
∗F

'
��

f ′!p
′
!p
′∗g′∗F

ε(p′g′)∗F ''OOOOOOOOOOO
g∗f!p!p

∗Fγ
oo

εp∗Fwwpppppppppppp

f ′∗p
′
∗p
′∗g′∗F g∗f∗p∗p

∗F,
δ
oo

where the square

f ′!p
′
!p
′∗g′∗F

ε(p′g′)∗F

��

g∗f!p!p
∗F

γoo

εp∗F

��
f ′∗p

′
∗p
′∗g′∗F g∗f∗p∗p

∗F,
δ
oo

is the analog of 5.5.1 for the cartesian diagram

Z ′

f ′p′

��

g′′ // Z

fp

��
Y ′ g // Y .

By the case of schemes and F concentrated in degree 0 this diagram commutes. Furthermore,
all the small inside diagrams in 5.5.2 clearly commute except the top center square whose
commutativity we are trying to verify. Since the map

H 0(f ′∗g
′∗F )→H 0(f ′∗p

′
∗p
′∗g′∗)

is injective, this implies that this top center square also commutes which proves the lemma.
�

Lemma 5.6. Let

X
f // Y

g // Z
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be a diagram of algebraic stacks and let F be a constructible sheaf on X . Assume that f and
g are quasi-finite with finite diagonals. Then the diagram

(5.6.1) g!f!F
εfF //

'
��

g!f∗F
εgf∗F // g∗f∗F

'
��

(gf)!F
εgf
F // (gf)∗F

commutes.

Proof. As usual it suffices to show the result locally on Z . We may therefore assume that
Z is a quasi-compact scheme and that there exists a commutative diagram

X
f ′ //

q

��

Y
g′

  A
AA

AA
AA

p

��
X

f // Y
g // Z,

where p and q are proper surjections and X and Y are schemes. By the construction of the
maps εfF and the case of schemes the following diagram commutes

g!f!F
εfF //

id→q∗q∗

��

g!f∗F

id→q∗q∗

��

εgf∗F // g∗f∗F

id→q∗q∗

��
g!f!q∗q

∗F
εf //

q∗'q!
��

g!f∗q∗q
∗F

εg
f∗q∗q∗F //

id→p∗p∗

��

g∗f∗q∗q
∗F

id→p∗p∗

��
f∗q∗'p∗f ′∗

xx

g!p∗f
′
! q
∗F

εg
′f ′

q∗F

==

εf
′

q∗F
''PPPPPPPPPPPP

g!p∗p
∗f∗q∗q

∗F

ρ

��

εg
p∗p∗f∗q∗q∗F// g∗p∗p

∗f∗q∗q
∗F

ρ

��
g!p∗f

′
∗q
∗F

εg
p∗f ′∗q∗F // g∗p∗f

′
∗q
∗F,

where ρ : p∗f∗q∗ → f ′∗ is the morphism of functors induced by adjunction from the natural
isomorphism f∗q∗ ' p∗f

′
∗. Now to verify that the diagram 5.6.1 commutes it suffices to show

that the composite map

g!f!F
εfF // g!f∗F

εgf∗F // g∗f∗F
id→q∗q∗// g∗f∗q∗q

∗F
f∗q∗'p∗f ′∗// g∗p∗f

′
∗q
∗F

is equal to the composite

g!f!F
εgf
F // g∗f∗F

id→q∗q∗// g∗f∗q∗q
∗F
f∗q∗'p∗f ′∗// g∗p∗f

′
∗q
∗F.
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This follows from noting that by the construction of εgfF the following diagram commutes

g!f!F

id→q∗q∗

��

εgf
F // g∗f∗F

id→q∗q∗ // g∗f∗q∗q
∗F
f∗q∗'p∗f ′∗// g∗p∗f

′
∗q
∗F

g!f!q∗q
∗F
f!q∗'p∗f ′!// g!p∗f

′
! q
∗F.

εg
′f ′

q∗F

33gggggggggggggggggggggg

�

Corollary 5.7. Let g : X ′ → X be a universal homeomorphism, and let f ′ : X ′ → Y
denote the composite fg. Then for a constructible sheaf of Λ-modules F on X the map

εfF : f!F → f∗F is an isomorphism if and only if the map εf
′

g∗F : f ′! g
∗F → f ′∗g

∗F is an
isomorphism.

Proof. Indeed by 5.6 there is a commutative diagram

f!F

id→g∗g∗

��

εfF // f∗F

id→g∗g∗

��
f!g!g

∗F
εg
g∗F //

'
��

f!g∗g
∗F

εf
g∗g∗F // f∗g∗g

∗F

'
��

f ′! g
∗F

εf
′

g∗F // f ′∗g
∗F,

where the vertical arrows as well as the map εgg∗F are isomorphisms since g is a universal
homeomorphism. �

We use this to prove that in the case when f is also proper and one of the conditions in
5.1 (ii) hold the map f!F → f∗F is an isomorphism. Using 5.5 and the base change theorems
[13, 5.5.6] and [16, 1.3] to prove that the map f!F → f∗F is an isomorphism it suffices to
consider the case when Y = Spec(k) is the spectrum of an algebraically closed field. We may
also assume that X is connected.

Pick a section s ∈X (k) and let G denote the finite automorphism group scheme of s. We
then have a closed immersion j : BG ↪→ X defined by a nilpotent ideal. By 5.7 it therefore
further suffices to consider the case when X = BG for some finite k-group scheme G, which
in the case of torsion coefficients has étale part of order invertible in k.

Let Gred ⊂ G denote the maximal reduced closed subscheme. Then Gred is an étale sub-
group scheme, and the map BGred → BG is a universal homeomorphism. We can therefore
further assume that G is equal to its maximal étale quotient. In this case if F is a sheaf on
BG corresponding to a G-representation V , then we have canonical isomorphisms f!F ' VH
(coinvariants) and f∗F ' V H (invariants). We claim that with these identifications the map

εfF becomes identified with the map ∑
g∈G

: VH → V H
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induced by the map

V → V H , v 7→
∑
g∈G

g · v.

This will certainly prove 5.1 (ii).

To see this let p : Spec(k) → BG be the proper étale surjection defined by the trivial
torsor. Then by definition of εf the following diagram commutes

VH ' f!F

εF

��

id→p∗p∗// f!p∗p
∗F

' // f!p!p
∗F

'

##G
GGGGGGGG

V

V H ' f∗F
id→p∗p∗// f∗p∗p

∗F.

'

44jjjjjjjjjjjjjjjjjjjj

Now the representation of G corresponding to the sheaf p∗p
∗F is the product

∏
g∈G V with

action of g0 ∈ G given by g0 ∗ (vg) = (vg0g). The map V →
∏

g∈G V corresponding to the

adjunction map is the map v 7→ (g · v). It follows that the following diagram commutes

VH

P
g∈G //

εF
��

V

id

��
V H � � // V

which completes the proof of 5.1. �

Let us also note the following consequence of the proof:

Corollary 5.8. Let f : X → Y be a quasi-finite proper morphism of algebraic stacks with
finite diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any
constructible sheaf F on X we have Rqf!F = 0 for q 6= 0.

Proof. This follows from observing that f∗F ∈ D[0,∞)(X ,Λ) and f!F ∈ D(−∞,0](X ,Λ). �

5.9. Let f : X → Y be a quasi-finite proper morphism of algebraic stacks with finite
diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Taking F = Λ in 5.1
we obtain an isomorphism

ε−1
Λ : f∗Λ→ f!Λ,

which upon composition with the natural map Λ→ f∗Λ defines a morphism

τ : Λ→ f!Λ.

Applying DY we obtain a morphism

γf : f∗ΩX → ΩY .

This defines a morphism of functors

Γf : f∗DX (−)→ DY (f∗(−))
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by taking the composite

f∗DX (−) // RH om(f∗(−), f∗ΩX )
γ // RH om(f∗(−),ΩY ) = DY (f∗(−)),

where the first map is the canonical morphism defined in A.6

(5.9.1) f∗RH om(−,ΩX )→ RH om(f∗(−), f∗ΩX ).

Applying DY to Γf we obtain for every F ∈ D−
c (X ) a canonical morphism (if we want to

emphasize the morphism f we sometimes also write λfF )

λF : f∗F → f!F.

By the same argument, using [13, 5.2.2], if g : Z →X is a proper representable morphism
then we have a morphism γg : g∗ΩZ → ΩX which induces a morphism of functors Γg :
g∗DZ (−)→ DX g∗(−).

Remark 5.10. In the preceding paragraph and in the discussion that follows, we use the
results of appendix A extending f∗ to the full unbounded derived category Dc(X ,Λ).

Lemma 5.11. Consider a composite

Z
g // X

f // Y ,

with g and gf proper and representable, and f proper and quasi-finite satisfying either (a) or
(b) in 5.1 (ii). Then the diagram of functors D+

c (Z )→ D−
c (Y )

(5.11.1) f∗g∗DZ (−)

'
��

Γg // f∗DX (g∗(−))
Γf // DY (f∗g∗(−))

'
��

(fg)∗DZ (−)
Γfg // DY ((fg)∗(−))

commutes.

Proof. Consider the diagram

/.-,()*+1
f∗g∗RH om(−,ΩZ )

can //

can

**VVVVVVVVVVVVVVVVVV

Γg

))
f∗RH om(g∗(−), g∗ΩZ )

/.-,()*+5
/.-,()*+2

can

��

γg // f∗RH om(g∗(−),ΩZ )

can

��
Γf

tt

RH om(f∗g∗(−), f∗g∗ΩZ )
γfg

++VVVVVVVVVVVVVVVVVVV

γg // RH om(f∗g∗(−), f∗ΩX )

γf

��
/.-,()*+4

/.-,()*+3

RH om(f∗g∗(−),ΩZ ),

where the arrows labelled “can” denote the canonical morphisms of functors as in 5.9.1.
By construction the inside diagrams 1 and 3 commute, and the inside diagrams 2 and 5
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clearly commute. Therefore it suffices to show that the inside diagram 4 commutes which is
equivalent to the statement that the diagram

(5.11.2) f∗g∗ΩZ

γg //

'
��

f∗ΩX

γf // ΩY

(fg)∗ΩZ

γfg

55jjjjjjjjjjjjjjjjjj

commutes. Let
γ̃g : Λ→ g!Λ (resp. γ̃f : Λ→ f!Λ)

denote the composite

Λ // g∗Λ
εg−1

// g!Λ (resp. Λ // f∗Λ
εf−1

// f!Λ).

Then by duality to show that the diagram 5.11.2 commutes it suffices to show that the
diagram

Λ

γ̃fg ((QQQQQQQQQQQQQQQQ
γ̃f // f!Λ

γ̃g // f!g!Λ

'
��

(fg)!Λ

commutes. This diagram fits into the larger diagram

Λ

γ̃f

$$
//

""D
DD

DD
DD

DD
f∗Λ

��

εf−1
Λ // f!Λ

f!(γ̃g)

$$H
HHHHHHHH

��
f∗g∗Λ

εfg−1
Λ

99

εf−1
g∗Λ // f!g∗Λ

εg−1
Λ // f!g!Λ.

From this it follows that it suffices to show that the diagram

f!g!Λ
εgΛ //

'
��

f!g∗Λ
εfg∗Λ // f∗g∗Λ

'
��

(fg)!Λ
εfg
Λ // (fg)∗Λ

commutes, and for this in turn it suffices to show that the diagram

Λ
sfg

))TTTTTTTTTTTTTTTTTTT
sg
// g!g∗Λ

sf
// g!f !f∗g∗Λ

'
��

(fg)!(fg)∗Λ

commutes. This can be verified after making a smooth base change on Y , so we may assume
that Y is a scheme. The result in this case follows from the construction of the map s at the
beginning of the proof of 5.1. �
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Corollary 5.12. With notation and assumptions as in 5.11, for any constructible sheaf of
Λ-modules F on Z the diagram

f∗g∗F

'
��

λg
F // f∗g!F

λf
g!F // f!g!F

'
��

(fg)∗F
λfg

F // (fg)!F

commutes.

Proof. This follows from the commutativity of 5.11.1 applied to DZ (F ). �

Proposition 5.13. If F is a constructible sheaf of Λ-modules on X , then the map

λF : f∗F → f!F

is equal to the inverse of εF .

Proof. Since both f∗F and f!F are concentrated in degree 0 (by 5.8), the assertion is local
in the smooth topology on Y , so we may assume that Y = Y is a scheme, and that there
exists a proper surjection p : Z →X with Z a scheme.

Consider the diagrams

R0f∗F
λf

F //
� _

��

R0f!F� _

��

R0f∗F
εf−1
F //

� _

��

R0f!F� _

��
R0f∗p∗p

∗F
λf

p∗p∗F//

λfp
p∗F ''OOOOOOOOOOO

R0f!p∗p
∗F

λp
p∗F

��

R0f∗p∗p
∗F

εf−1
p∗p∗F //

εfp−1
p∗F ''OOOOOOOOOOO

R0f!p∗p
∗F

εp−1
p∗F
��

R0f!p!p
∗F R0f!p!p

∗F.

The bottom triangles commute by 5.12 and 5.6 respectively, and the top squares clearly
commute. Since all the vertical arrows are injections, it therefore suffices to show that the
map

λfpp∗F : R0f∗p∗p
∗F → R0f!p!p

∗F

is equal to εfp−1
p∗F . This follows from the following lemma. �

Lemma 5.14. Let f : X → Y be a proper morphism of schemes, and let F be a constructible
sheaf of Λ-modules on X. Then λF : f∗F → f!F is equal to ε−1

F (which by the construction is
the classically defined isomorphism f!F → f∗F ).

Proof. The isomorphism εF is characterized by the fact that the diagram

f!(F )⊗ f∗DX(F )

εF⊗1

��

P // ΩY

f∗F ⊗ f∗DX(F )
Q // f∗ΩX

γf

OO
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commutes, where P is the Poincaré duality pairing and Q is the canonical pairing. It therefore
suffices to show that the diagram

f!(F )⊗ f∗DX(F )
P // ΩY

f∗F ⊗ f∗DX(F )

λF⊗1

OO

Q // f∗ΩX

γf

OO

commutes. This is equivalent to the statement that the diagram

f∗F
Γf //

can

��

DY f∗DX(F )

RH om(f∗DX(F ), f∗ΩX)

γf

44jjjjjjjjjjjjjjjj

commutes, which is immediate from the definition of Γf . �

Corollary 5.15. Let f : X → Y be a quasi-finite proper morphism of algebraic stacks with
finite diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any
F ∈ D−

c (X ,Λ) the map

λF : f∗F → f!F

is an isomorphism.

Proof. By a standard reduction using the distinguished triangles

τ≤nF → F → τ>nF → τ≤nF [1]

it suffices to consider the case when F is a constructible sheaf, where the result follows from
5.13. �

Remark 5.16. In what follows, we write εF : f!F → f∗F for the inverse of λF . Proposition
5.13 ensures that this is consistent with our earlier notation.

Corollary 5.17. Let f : X → Y be a proper morphism with finite diagonal between algebraic
stacks and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any F ∈
D−
c (X ,Λ) there is a canonical isomorphism f!F → f∗F .

Proof. Let

X
π //

f

!!
X

g // Y

be the relative coarse moduli space of f , as defined for example in [1, §3]. Then π is proper
and quasi-finite and satisfies one of the conditions in 5.1 (ii) and g is proper and representable.
By 5.1 we have

π!F ' π∗F,

and by the proper representable case [13, 5.2.1] we have g!π∗F ' g∗π∗F . �

Finally let us discuss the connection with the trace map of the previous section.
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Lemma 5.18. Let

X0

f0   B
BB

BB
BB

B
� � j // X

f

��
S

be a commutative diagram of schemes with f and f0 flat with equidimensional fibers of di-
mension d, and j a closed immersion defined by a nilpotent ideal I such that for every k ≥ 1
the OX0-module Ik/Ik+1 is locally free of constant rank. Let gr∗I(OX) denote the locally free
OX0-module ⊕k≥0(I

k/Ik+1). Then for any constructible sheaf of Λ-modules F on S the dia-
gram

f!f
∗F (d)[2d]

trf //

'
��

F

f0!f
∗
0F (d)[2d]

trf0 // F

·rank(gr∗I (OX))

OO

commutes, where rank(gr∗I(OX)) denotes the rank of gr∗I(OX) as an OX0-module.

Proof. Let

γ : f ∗DS → (DXf
∗)(−d)[−2d], γ0 : f ∗0DS → (DX0f

∗)(−d)[−2d]

be the maps defined as in 4.13.1 from the trace map for Λ. If we prove the lemma for F = Λ,
then it follows that for general F the diagram

f∗DXf
∗F (−d)[−2d]

'
��

f∗f
∗DSF

γoo

f0∗DX0f
∗
0F (−d)[−2d] f0∗f

∗
0DSF

γ0oo

·rank(gr∗I (OX))

OO

commutes. This in turn implies that the diagram

f!f
∗F (d)[2d]

'
��

DSf∗DXf
∗F (d)[2d]

γ //

'
��

DSf∗f
∗DSF

id→f∗f∗// D2
SF

' // F

f0!f
∗
0F (d)[2d] DSf0∗DX0f

∗
0F (d)[2d]

γ0 // DSf0∗f
∗
0DSF

·rank(gr∗I (OX))

OO

id→f0∗f∗0// D2
SF

' // F

·rank(gr∗I (OX))

OO

commutes, and by 4.15 the composite along the top row (resp. bottom row) is equal to trf
(resp. trf0).

It therefore suffices to consider the case when F = Λ.

Consider first the case when S = Spec(k) is the spectrum of an algebraically closed field
and f (and hence also f0) is finite. In this case X can be written as

X =
∐

x∈X0(k)

Spec(Ax),

where Ax is an artinian local k-algebra. Let Ix ⊂ Ax denote the ideal defining X0×XSpec(Ax)
so that

X0 =
∐

x∈X0(k)

Spec(Ax/Ix).



FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES 37

Using [2, XVII, 6.2.3.1] to prove the result in this case it suffices to consider the case when
X = Spec(A) has just one component. In this case by [2, XVII, 6.2.3 (Var 4)] the map

Λ = f∗Λ = f!Λ
trf // Λ

is equal to multiplication by the length of A, and similarly for trf0 . Since

length(A) = length(⊕k≥0I
k/Ik+1) = length(A0) · rank(gr∗I(A)).

this implies the result in this case.

Since the verification of 5.18 can be made after making a base change s̄ → S with s̄ the
spectrum of an algebraically closed field, this also implies the lemma in the case when S is
arbitrary but f is quasi-finite.

We now reduce the general case to this special case. By similar considerations to prove
the general case it suffices to consider the case when S = Spec(k) is the spectrum of an
algebraically closed field. If U ⊂ X is a dense open subset and U0 denotes U ×X X0 then we
have a commutative diagram

fU !ΛU
//

'
��

f!Λ

'
��

fU0!ΛU0
// f0!Λ

where fU : U → Spec(k) (resp. fU0 : U0 → Spec(k)) denotes the restriction of f . By the
same argument used in [2, XVIII, proof of 2.9 part (d)], to prove the lemma we may assume
that there exists a commutative diagram over k

X0
� � j //

σ0

  B
BB

BB
BB

B X

σ
��

Ad
k,

where σ and σ0 are quasi-finite and flat. By the construction of the trace map in [2, XVIII,
proof of 2.9 (b)] it follows that it suffices to show that the diagram

σ!Λ
trσ //

'
��

Λ

σ0!Λ
trσ0 // Λ

·rank(gr∗I (OX))

OO

commutes, which follows from the quasi-finite case already considered. �

Lemma 5.19. Consider a commutative diagram of stacks

X0
� � j //

f0 !!C
CC

CC
CC

C X

f
��

Y ,
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where f and f0 are quasi-finite and flat, and j is a closed defined by a nilpotent ideal I ⊂ OX

such that gr∗I(OX ) := ⊕k≥0I
k/Ik+1 is a locally free sheaf of finite rank on X0. Then for any

constructible sheaf of Λ-modules F on Y the diagram

f!f
∗F

trf //

'
��

F

f0!f
∗
0F

trf0 // F

·rank(gr∗I (OX ))

OO

commutes.

Proof. As in the proof of 5.18 it suffices to consider the case F = Λ. Also, making a base
change on Y as in the proof of 5.18, it suffices to consider the case when Y = Spec(k) is the
spectrum of an algebraically closed field. Furthermore by adjunction it suffices to show that
the diagram on X

(5.19.1) Λetrf0

~~}}
}}

}}
}} etrf

  A
AA

AA
AA

A

f !
0Λ

·rank(gr∗I (OX ))
// f !Λ

commutes (where in the bottom line we have identifiedDc(X ) withDc(X0)). Let p : X →X
be a smooth surjection of constant fiber dimension d, and let p0 : X0 → X0 be the pullback
of p to X0. To verify that 5.19.1 commutes it suffices to do so after applying p∗. The result
therefore follows from consideration of the diagram, where all but the top triangle are known
to commute,

Λetrf0

wwooooooooooooo etrf

&&NNNNNNNNNNNN

etrf0p0

��

etrfp

��

p∗0f
!
0Λ

·rank(gr∗I (OX ))
//

'
��

p∗f !Λ

'
��

(f0p0)
!Λ(−d)[−2d]

·rank(gr∗I (OX ))
// (fp)!Λ(−d)[−2d]

and 5.18. �

Let k be an algebraically closed field, and let X /k be a quasi-finite connected stack of
finite type with finite diagonal. Choose a point s : Spec(k) → X , and let Gs denote the
finite automorphism group scheme of s. We then have a closed immersion j : BGs ↪→ X .
Let J ⊂ OX denote the ideal sheaf defining j, and let A denote the graded ring gr∗J(OX ).
Then A is a locally free sheaf of finite rank on BGs. We define the length of X to be the
rational number

ln(X ) := rank(A )/rank(Gs).

Since any two points of X (k) are isomorphic this is independent of the choice of s.

If X /k is quasi-finite with finite diagonal, but not necessarily connected, we define the
length of X to be the sum of the lengths of the connected components of X .
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Now let f : X → Y be a quasi-finite morphism with finite diagonal of algebraic stacks,
and let y : Spec(k)→ Y be a morphism with k an algebraically closed field. Let Xy denote
the fiber X ×Y Spec(k).

Proposition 5.20. If f is flat and proper and Y is connected then the number ln(Xy) is
independent of y, and for any constructible sheaf of Q`-modules F on Y the composite map

F
id→f∗f∗// f∗f

∗F
ε−1
f∗F // f!f

∗F
trf // F

is equal to multiplication by ln(Xy).

Proof. Note that it suffices to prove the last statement. This statement holds in the case of a
representable morphism by the classical theory. Furthermore, to prove it in general it suffices
to consider the case when Y = Spec(k) is the spectrum of an algebraically closed field and
X is connected. Let s ∈X (k) be a point and let G be the automorphism group scheme. Let
j : BG ↪→X be the resulting closed immersion, and let f0 : BG→ Spec(k) be the structural
morphism. By 5.19 we then have a commutative diagram

F
id→f∗f∗//

id→f0∗f∗0 ""F
FF

FF
FF

FF
f∗f

∗F
ε−1
f∗F //

'
��

f!f
∗F

'
��

trf // F

f0∗f
∗
0F

ε−1
f∗0 F
// f0!f

∗
0F

trf0 // F.

·rank(gr∗J (OX ))

OO

It therefore suffices to consider the case when X = BG. Let p : Spec(k)→ BG denote the
projection defined by the trivial torsor. The result then follows from the representable case
and consideration of the diagram

F

$$J
JJJJJJJJJ
// f∗f

∗F
ε−1
f∗F //

��

f!f
∗F

��

rank(G)·trf //

k

��;
;;

;;
;;

;;
;;

;;
;;

;;
; F

f∗p∗p
∗f ∗F

εfp,−1
(fp)∗F

''OOOOOOOOOOO
f!p∗p

∗f ∗F

εp,−1
p∗f∗F
��

f!p!p
∗f ∗F

trp
f∗F // f!f

∗F,

trf

OO

where the map labelled k is multiplication by rank(G), and all the small inside diagrams
commute by our earlier results. �

Remark 5.21. If f is flat, proper, and quasi-finite then we call the rational number occurring
in 5.20 the degree of f , and denote it by deg(f).

Let f : X → Y be a morphism of k-stacks and let F (resp. G) be a constructible sheaf of
Λ-modules on Y (resp. X ). Let u : f ∗F → G be a morphism of sheaves on X . Applying
DX we obtain a morphism

DX (G)→ DX (f ∗F ) = f !DY (F ).

We denote by
u∗ : f!DX (G)→ DY (F )
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the map obtained by adjunction.

Let

evY : RΓc(Y , DY (F ))⊗RΓ(Y , F )→ Λ

and

evX : RΓc(X , DX (G))⊗RΓ(X , G)→ Λ

denote the canonical pairings obtained from the identificationsRΓc(Y ,−) = DSpec(k)◦RΓ◦DY

and RΓc(X ,−) = DSpec(k) ◦RΓ ◦DX .

Lemma 5.22. The diagram

RΓc(X , DX (G))⊗RΓ(Y , F )
u∗⊗1 //

1⊗u∗
��

RΓc(Y , DY (F ))⊗RΓ(Y , F )

evY

��
RΓc(X , DX (G))⊗RΓ(X , G)

evX // Λ

commutes.

Proof. Write also u for the map F → f∗G obtained by adjunction from the map f ∗F → G,
and to ease notation write Dk for DSpec(k). Also for any F ∈ D−

c (Spec(k),Λ) write

ev : Dk(F )⊗ F → Λ

for the canonical evaluation map.

The map u∗ : f!DX (G)→ DY (F ) is equal to the composite

f!DX (G) DY f∗D
2
X (G)

D2
X 'id

// DY f∗G
DY (u)

// DY (F ).

Combining this with consideration of the diagram

DkΓX D
2
X (G)⊗ ΓY (F )

1⊗u
��

D2
Y 'id

// DkΓY D
2
Y f∗D

2
X (G)⊗ ΓY (F )

D2
X 'id

//

1⊗u
��

DkΓY D
2
Y f∗G⊗ ΓY (F )

DY (u)
��

DkΓX D
2
X (G)⊗ ΓY f∗G

D2
Y 'id
//

ΓY f∗=ΓX

��

DkΓY D
2
Y f∗D

2
X (G)⊗ ΓY f∗G

D2
X =id

��

DkΓY D
2
Y (F )⊗ ΓY (F )

D2
Y =id

��
DkΓX D

2
X (G)⊗ ΓX (G)

D2
X =id

��

DkΓY D
2
Y f∗G⊗ ΓY f∗G

D2
Y =id

��

DkΓY (F )⊗ ΓY (F )

ev

wwooooooooooooooooooooooooooooooo

DkΓX (G)⊗ ΓX (G)

ev

++WWWWWWWWWWWWWWWWWWWWWWWWW

ΓX =ΓY f∗ // DkΓY f∗G⊗ ΓY f∗G

ev

��
Λ
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one sees that it suffices to show that the diagram

DkΓY f∗G⊗ ΓY (F )
Dk(u)⊗1

//

1⊗u
��

DkΓY (F )⊗ ΓY (F )

ev

��
DkΓY f∗G⊗ ΓY f∗G

ev // Λ

commutes, which is immediate. �

Now assume in addition that f is quasi-finite and flat, and let F be a constructible sheaf
of Λ-modules on Y . Let

α : f ∗DY (F )→ DX (f ∗F )

denote the composite map

f ∗H om(F,ΩY )→H om(f ∗F, f∗ΩY )→H om(f ∗F, f !ΩY ) = H om(f ∗F,ΩX ),

where the second morphism is induced by the map t̃rf : f ∗ΩY → f !ΩY = ΩX . Also define
u∗ : f!DX (f ∗F ) → DY (F ) to be the map defined as above taking G = f ∗F and using the
identity map f ∗F → f ∗F .

Lemma 5.23. The diagram

f!f
∗DY (F )

trf //

α

��

DY (F )

f!DX (f ∗F )

u∗
88pppppppppp

commutes.

Proof. Observe that we have isomorphisms

RH om(f!f
∗DY (F ), DY (F )) ' RH om(F,DY f!f

∗DY (F ))

' RH om(F, f∗f
!F ).

Since f !F ∈ D[0,∞)
c (X ,Λ) by 4.3, this implies that

E xti(f!f
∗DY (F ), DY (F )) = 0

for i < 0. By [13, 2.3.4] this in turn implies that it suffices to prove that the lemma holds
locally in the smooth topology on Y . We may therefore assume that Y is a scheme and that
there exists a smooth surjection p : X →X of relative dimension d.

To prove the lemma it suffices to show that the diagram obtained by adjunction

(5.23.1) f ∗DY (F )
etrf //

α

��

f !DY (F )

DX (f ∗F )
' // DX f

∗D2
Y (F )

commutes. By the same calculation as above, the sheaf E xti(f ∗DY (F ), f !DY (F )), which is
the sheaf associated to the presheaf

(V →X ) 7→ ExtiX (f ∗DY (F ), f !DY (F )) = ExtiY (f!f
∗DY (F ), DY (F )),
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is zero for i < 0. It follows from this and [13, 2.3.4] that to prove that 5.23.1 commutes it
suffices to show that it commutes after applying p∗. Now using the canonical isomorphism
p∗ΩX ' ΩX(−d)[−2d] one is then reduced to showing that the diagram

(pf)∗DY (F )

α

��

etrpf // (pf)!DY (F )(−d)[−2d]

'
��

DX((fp)∗D)(−d)[−2d]
' // DX(fp)∗D2

Y (F )(−d)[−2d]

commutes. This follows from the classical theory. �

Remark 5.24. We will only use 5.23 in the case when F = Λ, where the result is immediate.

Corollary 5.25. Let k be an algebraically closed field, and let f : X →X be a quasi-finite
flat and proper endomorphism of a smooth k-stack X of dimension d. Let

A : RΓc(X ,Q`)→ RΓc(X ,Q`)

be the endomorphism induced by the map

Q`
// f∗Q`

ε−1
// f!Q`.

Then for any i the set of eigenvalues of A on H i
c(X ,Q`) is equal to the set {deg(f)/λi}i∈I ,

where {λi}i∈I is the set of eigenvalues of f ∗ acting on H2d−i(X ,Q`(d)) in the usual way.

Proof. The isomorphism ΩX ' Q`(d)[2d] gives an isomorphism

H i
c(X ,Q`) ' (H−i(X ,Q`(d)[2d]))

∗ = H2d−i(X ,Q`(d))
∗.

Now by 5.22, the operator f ∗ on H2d−i(X ,Q`(d)) has adjoint the map f∗ : H i
c(X ,Q`) →

H i
c(X ,Q`), and by 5.23 the map f∗ agrees with the map defined by the trace trf : f!Q` → Q`.

Since the map

Q`
// f∗Q`

ε−1
// f!Q`

trf // Q`

is equal to multiplication by deg(f), this implies the result. �

Example 5.26. Let k be an algebraically closed field, and let (X,λ) be a principally polarized
abelian variety of dimension d over k. Let p be an integer, and let f : X → X be an
endomorphism of degree n such that the diagram

X
f //

pλ
��

X

λ
��

X t X t
f t
oo

commutes. Let ` be a prime different from the characteristic of k, and let V`(X) denote the
`-adic Tate-module of X. Fix also an embedding Q` ↪→ C. If α 7→ α† denotes the Rosati
involution on End0(X) := End(X)⊗Q, then we have f † = p · f−1. In particular, f † ◦ f = p,
and therefore by [18, 19.3] for any eigenvalue λ of f∗ acting on V`(X) we have |ι(λ)| = √p.

Now let X denote the classifying stack BX, and let also f denote the endomorphism of
X induced by f . It follows from [4, 6.1.6] that all the odd cohomology groups H i(X ,Q`)



FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES 43

vanish, and that H2i(X ,Q`) is canonically isomorphic to Si(V`(X)∗) (i-th symmetric power).
This identification is compatible with the action of f ∗, and therefore the eigenvalues of f ∗ on
H2i(X ,Q`) all have ι-absolute values pi/2.

Let A : H∗
c (X ,Q`) → H∗

c (X ,Q`) be the endomorphism defined as in 5.25. Since the
degree of X →X is equal to 1/n, we find that H i

c(X ,Q`) is zero for i odd and i > 2d, and
if τ is an eigenvalue of A acting on H2i

c (X ,Q`) (i ≤ d) then |ι(τ)| = 1/(n · p(d−i)/2).

6. Interlude: Pushing forward Weil complexes.

6.1. Let (S,Λ) be an admissible pair, with S the spectrum of a field k of positive characteristic
p, let q be a power of p, and let f : X → Y be a morphism of finite type algebraic k-stacks.
We then obtain a commutative diagram

X
FX /Y //

f !!C
CC

CC
CC

C X ′

f ′

��

π // X

f
��

Y
FY // Y ,

where the square is cartesian, FY (resp. FX ) is the q-power Frobenius morphism on Y (resp.
X ) and FX /Y is the relative Frobenius.

Proposition 6.2. For every M ∈ D−
c (X ′,Q`) the adjunction map

FX /Y !F
!
X /Y M →M

is an isomorphism.

Proof.

Special Case. Consider first the case when f is representable. Let y : Y → Y be a smooth
surjection with Y a scheme. We then obtain a commutative diagram

(6.2.1) XY

FXY /Y
//

b
��

X ′
Y

πY //

��

a}}zz
zz

zz
zz

XY

}}{{
{{

{{
{{

��

X
FX /Y //

��3
33

33
33

33
33

33
33

3 X ′ //

��

X

��

Y
FY //

||yy
yy

yy
yy

y
Y

}}zz
zz

zz
zz

Y // Y ,

where

XY := X ×Y Y, X ′
Y := XY ×Y,FY

Y.
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Note that the square

X ′
Y

a

��

// Y

y

��
X ′ // Y

is cartesian.

Since a is smooth and surjective, it suffices to show that the map

(6.2.2) a∗FX /Y !F
!
X /Y M → a∗M

is an isomorphism. Since the square

XY

FXY /Y
//

b

��

X ′
Y

a

��
X

FX /Y // X ′

is cartesian and a is smooth, we also have

a∗FX /Y ! ' FXY /Y !b
∗

and

b∗F !
X /Y ' F !

XY /Y
a∗.

Thus the morphism 6.2.2 is identified with the adjunction map

FXY /Y !F
!
XY /Y

a∗M → a∗M.

Since f is assumed representable, the stack XY is in fact an algebraic space. This therefore
reduces the proof in this case to the case of algebraic spaces, where the result is immediate.

General Case. By the same argument used in the preceding special case, it suffices to
consider the case when Y is a scheme.

Let q : X →X be a smooth surjection, and define

X̃ := X ×X ,FX
X , X ′ := X ×Y ,FY

Y .

We then have a commutative diagram

X
c //

  A
AA

AA
AA

A

FX/Y

!!

X̃

��

d // X ′

ρ

��

// X

��
X

FX /Y //

!!D
DD

DD
DD

D X ′

��

// X

��
Y

FY // Y .

Since ρ is smooth it suffices, as in the earlier special case, to show that the natural map

d!d
!ρ∗M → ρ∗M
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is an isomorphism. For this consider the commutative diagram

d!c!c
!d!ρ∗M

α //

'
��

d!d
!ρ∗M

β // ρ∗M

(dc)!(dc)
!ρ∗M,

γ

44hhhhhhhhhhhhhhhhhhhhhh

where α (resp. β, γ) is the adjunction map c!c
! → id (resp. d!d

! → id, (dc)!(dc)
! → id).

By the representable case already considered applied to X → Y (resp. X →X ) the map
γ (resp. α) is an isomorphism. We conclude that the map β is also an isomorphism. �

Proposition 6.3. (i) There is a natural isomorphism π∗ΩX ' ΩX ′ .

(ii) The map of functors π∗DX → DX ′π∗ defined as the composite

π∗RH om(−,ΩX ) // RH om(π∗(−), π∗ΩX )
(i)
// RH om(π∗(−),ΩX ′)

is an isomorphism.

Proof. By the gluing lemma [13, 2.3.3], it suffices to construct the isomorphism π∗ΩX ' ΩX ′

locally in the smooth topology on X ′.

Let y : Y → Y be a smooth covering as in the proof of 6.2, and form the diagram 6.2.1.
Let d be the relative dimension of y (a locally constant function on Y ). By [13, 4.6.2], we
then have

a∗ΩX ′ ' ΩX ′
Y
(−d)[−2d],

and
a∗π∗ΩX ' π∗Y ΩXY

(−d)[−2d].

It therefore suffices to construct an isomorphism

π∗Y ΩXY
' ΩX ′

Y
,

which reduces the proof to the case when Y is a scheme.

From this argument we obtain part (i) of the proposition in the case when f is representable.
Using a similar argument one also reduces the proof of (ii) in the representable case to the
case of schemes.

For the general case, choose a smooth surjection q : X →X with X a scheme, so we have
a commutative diagram with cartesian squares

X ′ πX //

ρ

��

X

q

��
X ′ π //

��

X

��
Y

FY // Y .

If d denotes the relative dimension of q, then again by [13, 4.6.2], we have

ρ∗ΩX ′ ' ΩX′(−d)[−2d], q∗ΩX ' ΩX(−d)[−2d].
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From the representable case we therefore obtain an isomorphism

ρ∗ΩX ′ ' ρ∗π∗ΩX ,

which again using [13, 2.3.3] descends to an isomorphism ΩX ′ ' π∗ΩX . This completes the
proof of (i).

Also to verify (ii) it suffices to show that for any M ∈ D−
c (X ,Q`) the map

ρ∗π∗DX (M)→ ρ∗DX ′(π∗M)

is an isomorphism. Using the isomorphisms

ρ∗π∗DX (M) ' π∗XDX(q∗M)(−d)[−2d], ρ∗DX ′(π∗M) ' DX′(π∗Xq
∗M)(−d)[−2d]

statement (ii) is also reduced to the case of algebraic spaces. �

Corollary 6.4. There is a canonical isomorphism F ∗
Y ΩY ' ΩY and the induced transforma-

tion F ∗
Y DY → DY F

∗
Y is an isomorphism.

Proof. Apply 6.3 with X = Y and f = id. �

Corollary 6.5. There is a canonical isomorphism of functors F !
X /Y π

∗ ' F ∗
X .

Proof. Indeed we have

F !
X /Y π

∗ = DX F
∗
X /Y DX ′π∗

' DX F
∗
X /Y π

∗DX (by 6.3)

' DX F
∗
X DX

' F ∗
X D

2
X (by 6.4 applied to X /k)

' F ∗
X (D2

X ' id).

�

Proposition 6.6. For any A ∈ D+
c (X ,Q`), the base change morphism

(6.6.1) F ∗
Y f∗A→ f ′∗π

∗A

is an isomorphism.

Proof. Let y : Y → Y be a smooth covering as in the proof of 6.2, and consider the resulting
commutative diagram as in 6.2.2

X ′
Y

πY //

a

}}zz
zz

zz
zz g′

��

XY

g

��

c

}}{{
{{

{{
{{

X ′ π //

f ′

��

X
f

��

Y
FY //

y
||yy

yy
yy

yy
y

Y

y
||yyyyyyyy

Y
FY // Y .
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We then have a commutative diagram

y∗F ∗
Y f∗A

6.6.1 //

'
��

y∗f ′∗π
∗A

'
��

F ∗
Y g∗c

∗A // g′∗π
∗
Y c

∗A,

where the bottom horizontal arrow is the morphism 6.6.1 for g : XY → Y . This therefore
reduces the proof to the case when Y = Y is a scheme.

In this case, let p : X → X be a smooth surjection with X a quasi-compact scheme, and
let X· be the associated simplicial space. Let f· : X· → Y be the composite morphism

X· →X → Y.

We then obtain a commutative diagram

X ′
·

//

f ′·
��

X·

f·
��

Y
FY // Y,

where X ′
· := X· ×Y,FY

Y . In this case we have (see for example [8, 5.2.3]) spectral sequences

(6.6.2) Est
1 = Rtfs∗M |Xs =⇒ Rs+tf∗M

and

(6.6.3) Est
1 = Rtf ′s∗π

∗M |X′
s

=⇒ Rs+tf ′∗π
∗M.

Moreover, the map 6.6.1 extends to a morphism of spectral sequences

F ∗
Y (6.6.2)→ (6.6.3).

It therefore suffices to show that each of the maps

F ∗
YR

tf∗M |Xs → Rtf ′∗π
∗M |X′

s

is an isomorphism. This reduces the proof to the case when Y is a scheme and X is algebraic
space. In this case the result is classical. �

6.7. For M ∈ D−
c (X ), we therefore get isomorphisms

F ∗
Y f!M = F ∗

Y DY f∗DX (M)

' DY F
∗
Y f∗DX (M) (by 6.4)

' DY f
′
∗π

∗DX (M) (by 6.6)

' DY f
′
∗DX ′π∗M (by 6.3)

= f ′!π
∗M.

By 6.2 the adjunction map

FX /Y !F
!
X /Y π

∗M → π∗M

is an isomorphism, so we obtain an isomorphism

f ′!π
∗M ' f ′!FX /Y !F

!
X /Y π

∗M = f!F
!
X /Y π

∗M,
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which by 6.5 is isomorphic to

f!F
∗
X M.

Putting it all together we obtain an isomorphism

(6.7.1) F ∗
Y f!M ' f!F

∗
X M.

6.8. Consider now a commutative diagram of algebraic stacks

C0

c1

}}||
||

||
|| c2

!!C
CC

CC
CC

C

q

��

X0

p

��

X0

p

��

D0

d1

}}||
||

||
|| d2

!!B
BB

BB
BB

B

Y0 Y0,

where c2 and d2 are quasi-finite and representable and c1 and d1 are proper with finite diag-
onals. Let (F , ϕ, u) be a Weil complex with C -structure on X . Then p!F has the structure
of a Weil complex with D-structure on Y as follows.

6.9. Define the Weil structure p!ϕ on p!F to be the composite map

F ∗
Y p!F ' p!F

∗
XF (by 6.7.1)

ϕ→ p!F .

6.10. Let α : d∗1p!F → q!c
!
2F denote the composite

d∗1p!F → d∗1p!c1∗c
∗
1F (adjunction)

' d∗1d1∗q!c
∗
1F (5.17)

→ q!c
∗
1F (adjunction for d1)

u→ q!c
!
2F .

Then define p!u to be the composite map

d2!d
∗
1p!F α // d2!q!c

!
2F p!c2!c

!
2F // p!F .

We call the Weil complex with D-structure (p!F , p!ϕ, p!u) the pushforward of (F , ϕ, u).

Remark 6.11. We leave to the reader the verification that for any integer n ≥ 0 we have
(p!u)

(n) = p!(u
(n)).

7. The classifying stack of a connected group

7.1. In the following three sections we prove 1.19 in the case when X is the classifying
stack of a finite type group scheme. For technical reasons it will be useful to prove a slightly
stronger statement than 1.19.
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7.2. Let X0/Fq be a finite type algebraic stack, and let c = (c1, c2) : C0 → X0 ×X0 be a
correspondence with c1 proper and c2 quasi-finite and representable. Fix also an embedding
ι : Q` ↪→ C.

Definition 7.3. A Weil complex with C -structure (F , ϕ, u) is ι-convergent (or just convergent
if the reference to ι is clear) if there exists an integer n0 such that for every n ≥ n0 and

(x, λ) ∈ Fix(C (n))(k) the pair (Fc2(x), u
(n)
(x,λ)) is ι-convergent in the sense of 1.14. Here u

(n)
(x,λ)

is defined as in 1.17.

Remark 7.4. A bounded Weil complex with C -structure (F , ϕ, u) is convergent.

Remark 7.5. Note that for a convergent Weil complex with C -structure (F , ϕ, u) we can
still define local terms LTι(β, (F , ϕ, u)) as in 1.18.

7.6. Let G0/Fq be a group scheme of finite type, and let α : G0 → G0 be an endomorphism.
We write Bα : BG0 → BG0 for the induced endomorphism of the classifying stack. For n ≥ 0

let α(n) denote F
(n)
G ◦ α. Let c : C0 → BG0 × BG0 be the correspondence (Bα, id) : BG0 →

BG0 ×BG0. Note that c(n) : C0 → BG0 ×BG0 is the correspondence (Bα(n), id).

Theorem 7.7. Let (F , ϕ, u) be a convergent Weil complex with C -structure on X . Then
there exists an integer n0, independent of (F , ϕ, u), such that for every n ≥ n0 we have:

(i) The complex RΓc(X ,F) ∈ D−
c (Q`) with the endomorphism RΓc(u

(n)) is convergent.

(ii) Fix(C (n)) is pseudo-finite over Spec(k), and

trι(RΓc(u
(n))|RΓc(X ,F)) =

∑
β⊂Fix(C (n))

LTι(β, (F , ϕ, u(n))).

For the remainder of this section we prove 7.7 in the case when G0 is geometrically con-
nected. The proof in the general case will be given in section 9.

7.8. For n ≥ 0, let ρ(n) denote the action of the group scheme G0 on the scheme G0 (so ρ(n)

does not act through homomorphisms) given by

h ∗ g = α(n)(h)−1gh.

Lemma 7.9. For n ≥ 0, the stack Fix(C (n)) is isomorphic to the stack-theoretic quotient
[G/ρ(n)] of the scheme G by the action of G given by ρ(n).

Proof. Replacing α by α(n) it suffices to consider the case n = 0.

Let S be a scheme. An object of Fix(C )(S) is a pair (P, ι), where P is a G-torsor over S
and

ι : P ×G,α G→ P

is an isomorphism of G-torsors. In the case when P is a trivial torsor and we fix a trivialization
e ∈ P , then ι is specified by an element g ∈ G characterized by the condition ι(e) = g · e.
Now if (P ′, ι′, e′) is a second object together with a trivialization of P ′, then an isomorphism
τ : (P, ι)→ (P ′, ι′) is given by an isomorphism of G-torsors τ : P → P ′ such that the diagram

(7.9.1) P ×G,α G
α∗τ

��

ι // P

τ

��
P ′ ×G,α G ι′ // P ′
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commutes. The map τ is determined by an element h ∈ G such that τ(e) = he′, and then
the commutativity of 7.9.1 is equivalent to the equality

α(h)g′ = gh,

or equivalently g′ = α(h)−1gh (here g′ ∈ G′ is characterized by ι′(e′) = g′e′). This implies the
lemma. �

Remark 7.10. Note that the proof of 7.9 does not use the fact that G is connected, and 7.9
holds without this assumption.

7.11. By 2.2 for any g ∈ G(k) and n ≥ 1 the morphism of schemes

G→ G, h 7→ α(n)(h)−1gh

is étale, and therefore surjective (since G is geometrically connected). It follows that for n ≥ 1
the category Fix(C (n))(k) has up to isomorphism only one object, and that the automorphism
group scheme of this object is equal to the scheme of fixed points Fix(α(n)) of α(n) (note that
this is a group scheme). Note that taking g = e it follows that for all n ≥ 1 the group scheme
Fix(α(n)) is finite and étale over Spec(k).

7.12. Let G′
0 ⊂ G0 be the maximal reduced closed subscheme, and write β : G′

0 → G′
0 for

the endomorphism induced by α. Let H (resp. H ′) denote the inverse image of the identity
under the map G→ G (resp. G′ → G′) sending h to α(n)(h)−1h (resp. β(n)(h)−1h). We then
have a cartesian diagram

H ′ � � //
� _

��

G′
� _

��
H

� � // G.

On the other hand, H is étale so H ⊂ G′ which implies that H = H ′. It follows that if
C ′

0 → BG′
0 ×BG′

0 is the correspondence induced by β, then for n ≥ 1 the functor

Fix(C ′(n))→ Fix(C (n))

is an equivalence of categories.

Lemma 7.13. The morphism Bj : BG′ → BG induced by the inclusion j : G′ ↪→ G is
representable and radicial.

Proof. That Bj is representable is clear since j is a closed immersion so Bj is faithful.

To verify that Bj is radicial, note that since Spec(k)→ BG is flat and surjective, it suffices
to show that the fiber product P := BG′ ×BG Spec(k) is radicial over Spec(k). This is clear
because P (k) is the set of G′-invariant closed subschemes Z ⊂ G such that the action of G′

on Z is torsorial. Since k is algebraically closed, Z(k) 6= ∅ and therefore Z is reduced. Thus
Z ⊂ G′ and since both are G′-torsors Z = G′. We conclude that P (k) consists of one element.
Since P is of finite type over k it follows that P is equal to the spectrum of an artinian local
ring with residue field k. �

7.14. It follows that

Bj∗ : D−
c (BG,Q`)→ D−

c (BG′,Q`)
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is an equivalence of categories and that Bj! = Bj∗. This gives a canonical isomorphism

RΓc(BG,F) ' RΓc(BG
′, Bj∗F)

compatible with the actions of the correspondences. We conclude that to prove 7.7 in the
present situation it suffices to consider the case when G is reduced, and hence smooth.

7.15. To prove the theorem for smooth G, consider first the case when F = Q`. Let d be the
dimension of G, and let Mn denote the degree of α(n) : G→ G. Then the degree of the map
Bα(n) : BG→ BG is equal to 1/Mn. As in 5.25 the space H−i

c (BG,Q`) is isomorphic to the
dual of H i−2d(BG,Q`)(−d), and the trace of α(n) on H−i

c (BG,Q`) is equal to

1

Mn

tr((α(n)∗)−1|H i−2d(BG,Q`(−d))),

where α(n)∗ : H i−2d(BG,Q`(−d))→ H i−2d(BG,Q`(−d)) is the usual pullback on cohomology.

7.16. By Borel’s theorem [4, 6.1.6], there exists a graded vector space N = ⊕q≥1N
q concen-

trated in even degrees and a canonical surjection of graded Q`-vector spaces

π : H∗(BG,Q`)→ N

such that any section s : N → H∗(BG,Q`) of π induces an isomorphism

ρ(s) : Sym·N → H∗(BG,Q`).

Fix an integer i, and let Ii denote the set of tuples (q1, . . . , qr) of even positive integers
such that q1 ≥ q2 ≥ · · · ≥ qr, q1 + · · · + qr = i, and such that N qj 6= 0 for all j = 1, . . . , r.
Note that Ii is a finite set. The set Ii becomes an ordered set with the lexicographical order.
For q ∈ I, let Gq ⊂ Symi(N) denote the subpace generated by monomials

n1 ⊗ · · · ⊗ nr
with nj ∈ Nw(nj) and (w(n1), . . . , w(nr)) ≤ q. This gives an I-graded filtration on SymiN .

This also defines a filtration on H i(BG,Q`). Namely, choose a section s of π, and for
q ∈ I define F q on H i(BG,Q`) to be the image under ρ(s) of Gq. Then this filtration on

H i(BG,Q`) is independent of the choice of section s, since for a second section s′ we have

(ρ(s)− ρ(s′))(Gq) ⊂ F q′

for some q′ < q. In particular we obtain a canonical isomorphism

grG(Symi(N)) ' grF (H i(BG,Q`)).

7.17. Let A : N → N denote the endomorphism induced by the automorphism (α∗)−1 on
H∗(BG,Q`), and let Φ : N → N denote the map induced by arithmetic Frobenius. Then
we see from the above that the eigenvalues of α(n) acting on H−i

c (BG,Q`)⊗ι C are equal to
1/Mn times the eigenvalues of Φn+d ◦ A acting on the dual space Symi+2d(N)∗ ⊗ι C.

Since the endomorphism Bα of BG is defined over Fq, the endomorphisms A and Φ acting
on Symi+2d(N)∗ commute. By [7, 3.3.5], there exists a collection of negative integers {wi}
such that any eigenvalue of Φ acting on N ⊗ιC has absolute value pwi/2 for some i. Therefore
the eigenvalues of Φn+d ◦A acting on N all have absolute value pw/2|λ|, where w is a negative
integer and λ is an eigenvalue of A acting on N ⊗ι C.
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It follows that there exists a collection of triples {(tj, wj, λj)}j∈J with tj a positive integer,
wj a negative integer, and λj ∈ C, such that the eigenvalues of α(n) acting onH−i

c (BG,Q`)⊗ιC
all have absolute value

{ 1

Mn

∏
m

qwjmj(n+d)/2|λj|}

where the product is taken over collections m = (m1, . . . ,mr)j∈J of natural numbers with∑
mjtj = i.

In particular if we choose n so that qwjmj(n+d)/2|λj| < 1, then the sequence of sums

(7.17.1) Sp(H
∗
c (BG,Q`)) =

1

Mn

∑
k≥p

∑
λ∈Egk(Φn◦A)

|λ|

of the absolute values of the eigenvalues of α(n) on H∗
c (BG,Q`) converges to

1

Mn

∏ 1

1− qwj(n+d)/2|λj|
.

In particular, RΓc(BG,Q`) with the endomorphism α(n) is convergent.

The same argument shows that if γ
(n)
1 , . . . , γ

(n)
r denote the eigenvalues of Φn ◦A acting on

N ⊗ι C, then

trι(α
(n)|H∗

c (BG,Q`)) =
1

Mn

∏
i

1

1− γi
.

Now recall also (again by Borel’s theorem [4, 6.1.6]) that H∗(G,Q`) ' Λ·(N [1]).

Lemma 7.18. Let W be a vector space of finite dimension over an algebraically closed field
K, and let B : W → W be an endomorphism. Let α1, . . . , αr ∈ K be the eigenvalues of B.
Then the trace of Λ·(B) acting on Λ·(W ) is equal to∏

(1− αj).

Proof. This is an elementary exercise. �

7.19. From this we conclude that

trι(Φ
n ◦ A|H∗(G,Q`)) =

∏
i

(1− γ(n)
i ).

On the other hand, applying 5.25 to α(n) : G → G and Fujiwara’s theorem 1.1, there exists
an integer n0 such that

#Fix(α(n)) = Mntrι(Φ
n ◦ (α∗)−1|H∗(G,Q`)) = Mn

∏
i

(1− γ(n)
i ).

for n ≥ n0. Therefore for n ≥ n0 we have by 7.18

trι(α
(n)|H∗

c (BG,Q`)) =
1

#Fix(α(n))
.

It follows from 2.2 that this completes the proof in the case F = Q`.
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More generally, if F is concentrated in degree 0, then since G is connected the sheaf F is
isomorphic to the constant sheaf associated to a finite-dimensional Q`-vector space V , and u
is induced by an automorphism U : V → V of this vector space.

The proof in this case then proceeds by a similar argument to the one for F = Q`. If
δ1, . . . , δs denotes the eigenvalues of U acting on V ⊗ι C, then the sum of the absolute values
of the eigenvalues in 7.17.1 gets replaced by

Sp(H
∗
c (BG,F)) =

1

Mn

∑
e

|δe|(
∑
k≥p

∑
λ∈Egk(Φn◦A)

|λ|),

and we have

trι(α
(n)|H∗

c (BG,F)) =
1

Mn

trι(U |V ) ·
∏ 1

1− γi
=

∑
β⊂Fix(C (n))

LTι(β,F).

This completes the proof in the case when F is concentrated in a single degree.

Now consider the case of a general Weil complex with C -structure (F , ϕ, u).

Lemma 7.20. Let p : X → Spec(k) be an algebraic stack of finite type. Then there exists
an integer t such that for all k ∈ Z we have

p! : D[−∞,k]
c (X ,Q`)→ D[−∞,k−t]

c (Q`).

Proof. Since the dualizing complex of X has finite quasi-injective dimension, there exists an
integer t such that

DX : D[−∞,k]
c (X ,Q`)→ D[−k+t,∞]

c (X ,Q`).

Therefore we have a commutative diagram

D
[−∞,k]
c (X ,Q`)

DX //

p!

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY D
[−k+t,∞]
c (X ,Q`)

p∗ // D
[−k+t,∞]
c (Q`)

DSpec(k)

��

D
[−∞,k−t]
c (Q`).

�

Proposition 7.21. Suppose that the sum

(7.21.1)
∑
i

∑
k

∑
λ∈Egk(u(n)|H∗

c (BG,H i(F)))

|λ|

converges. Then the sum

S(p!F) =
∑
k

∑
λ∈Egk(u(n)|H∗

c (BG,F))

|λ|

converges and

trι(u
(n)|p!F) =

∑
i

trι(u
(n)|p!H

i(F)).



54 MARTIN OLSSON

Proof. As before, let

Sq(p!F) :=
∑
k≥q

∑
λ∈Egk(p!F)

|λ|,

and define similarly Sq(p!τ≥kF).

By 7.20 there exists an integer t such that

Sk−t(p!F) = Sk−t(p!τ≥kF).

By induction on k and using the distinguished triangles

H k(F)[−k]→ τ≥kF → τ≥k+1F →H k(F)[−k + 1]

one sees that for all q we have

Sq(p!τ≥kF) ≤
∑
i≥q

Sq−i(p!H
i
c (τ≥kF)).

It follows that

Sk−t(p!F) ≤
∑
i≥k−t

Sk−t−i(p!H
i(F)),

and therefore S(p!F) converges. Set

εk :=
∑
i<k

(−1)itrι(u
(n)|H i

c(τ≥k−tF)).

Lemma 7.22. The sequence εk converges to zero absolutely as k → −∞.

Proof. For a convergent complex (K,ϕ) with K ∈ D−
c (Q`), set

Tq(K) :=
∑
i<q

∑
λ∈Egi(K)

|λ|.

Then certainly |εk| < Tk(τ≥k−tF), so it suffices to show that the sequence Tk(τ≥k−tF) con-
verges to zero.

For this note that by a similar argument to the above using the distinguished triangles

H s(F)[−s]→ τ≥sF → τ≥s+1F →H s(F)[−s+ 1],

one sees that

Tk(τ≥k−tF) ≤
∑
i<k

Tk−i(p!H
i(τ≥k−tF)).

From this and the convergence of 7.21.1 the result follows. �
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We then have

trι(u
(n)|p!F) = limk→−∞

∑
i≥k(−1)itrι(u

(n)|H i
c(BG,F))

= limk→−∞
∑

i≥k(−1)itrι(u
(n)|H i

c(BG, τ≥k−tF))

= limk→−∞
∑

i∈Z(−1)itrι(u
(n)|H i

c(BG, τ≥k−tF))− εk

= limk→−∞
∑

i∈Z(−1)itrι(u
(n)|H i

c(BG, τ≥k−tF))

=
∑

i trι(u
(n)|p!H i(F)).

�

Next let us verify that the sum 7.21.1 indeed converges. Let F ∈ D−
c (Q`) denote the

pullback of F along Spec(k)→ BG, and for i ∈ Z let Egi(u(n)|F ) denote the set of eigenvalues
of u(n) acting on H i(F ). By assumption there exists an integer n0 such that the sum∑

i

∑
γ∈Egi(u(n)|F )

|γ|

converges. After possibly replacing n0 by a bigger integer, we may also assume that for n ≥ n0

the sum ∑
i∈Z

∑
λ∈Egi(u(n)|p!Q`)

|λ|

converges, that Fix(C (n)) consists of a single component which is an étale gerbe over Spec(k),
and that

trι(u
(n)|p!Q`) =

∑
β⊂Fix(C (n))

LTι(β,Q`).

Then ∑
i

∑
k

∑
λ∈Egk(u(n)|Hk

c (BG,H i(F))) |λ|

=
∑

i

∑
γ∈Egi(u(n)|F ) |γ|(

∑
k

∑
λ∈Egk(u(n)|Hk

c (BG,Q`))
|λ|)

= S(u(n)|p!Q`) · (
∑

i

∑
γ∈Egi(u(n)|F ) |γ|).
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We therefore find that p!F is convergent and that

trι(u
(n)|p!F) =

∑
i trι(u

(n)|p!H i(F)) (by 7.21)

=
∑

i

∑
β⊂Fix(C (n)) LTι(β, (H i(F), ϕ, u(n)))

=
∑

β⊂Fix(C (n))

∑
i LTι(β, (H i(F), ϕ, u(n)))

=
∑

β⊂Fix(C (n)) LTι(β, (F , ϕ, u(n))).

This completes the proof of 7.7 in the case when G0 is geometrically connected. �

8. Classifying stacks of finite groups

Throughout this section we work with Q`-coefficients.

8.1. Let G be a finite group and consider the classifying stack BG over Spec(k). The category
of constructible sheaves of Q`-modules on BG is then equivalent to the category of finite type
representations of G over Q`. Let p : Spec(k) → BG be the étale projection corresponding
to the trivial torsor. Since p is étale, we have p∗ = p! and this functor is given by the functor
sending a representation V of G to the underlying Q`-module. This functor has left adjoint
the functor sending a Q`-module F to Q`[G] ⊗Q`

F and right adjoint the functor sending F
to Hom(G,F ). It follows that if F is a finite type Q`-module then the map ε : p!F → p∗F is
given by a map

ε† : Q`[G]⊗Q`
F → Hom(G,F ).

Lemma 8.2. Let g0 ∈ G and f ∈ F be elements. Then ε†(g0 ⊗ f) is the function G → F
sending g0 to f and g 6= g0 to 0.

Proof. It suffices to consider the case when F = Q`. By construction of the map ε in the
proper representable case [13, 5.2.1], the map ε† is induced by the canonical isomorphism
f!Q` → f∗Q`, where f : G→ Spec(k) is the structure morphism. We leave to the reader the
verification this classically constructed isomorphism is the one indicated in the lemma. �

8.3. Now consider a morphism of finite groups α : H → G, which induces a diagram

Spec(k)
s // BH

α // BG,

where s is the projection defined by the trivial H-torsor. Let M be an H-representation,
with underlying Q`-module M0 and associated sheaf M on BG. Let M0 denote s∗M (the
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constant sheaf defined by M0). We then have a commutative diagram

α∗M� _
id→s∗s∗

��

α!Mεα
oo

� _

id→s∗s∗

��
α∗s∗M0 α!s∗M0εα

oo

(αs)!M0
' //

εαs

OO

α!s!M0.

εs

OO

In terms of representations, this diagram can be rewritten as

HomH(G,M)
� _

a

��

Z[G]⊗Z[H] M
εα†oo

� _

b
��

Hom(G,M0) Z[G]⊗Z[H] Hom(H,M0)
εα†oo

Z[G]⊗Z M0

εαs†

OO

' // Z[G]⊗Z[H] (Z[H]⊗M0),

1⊗εs†
OO

where a is the natural inclusion and b is the map induced by the map M → Hom(H,M0)
sending m to the function h 7→ h ·m.

Lemma 8.4. (i) Let g0 ∈ G and f ∈ M be elements, and let g0 ⊗ f ∈ Z[G] ⊗Z[H] M be the
resulting tensor. Then εα†(g0 ⊗ f) is equal to the function

ψg0⊗f : G→M, g 7→
∑

{h∈H|g=α(h)·g0}

h ·m,

with the convention that a sum over the empty set is 0.

(ii) Let V be a constructible sheaf of Q`-modules on BG corresponding to a G-representation
V . Then the map

V → Z[G]⊗Z[H] V

corresponding to the composite

V
id→α∗α∗// α∗α

∗V εα−1
// α!α

∗V

sends v ∈ V to the element
1

|H|
∑
g∈G

g ⊗ (gv).

Proof. Statement (ii) follows immediately from (i).

To prove (i), it suffices to show that the image of εα†(g0 ⊗ f) in Hom(G,M0) is equal to
ψg0⊗f . Now observe that b(g0 ⊗ f) is by 8.2 equal to

g0 ⊗ εs†(
∑
h∈H

h⊗ hm).



58 MARTIN OLSSON

Therefore
εα

†
b(g0 ⊗ f) = εαs†(

∑
h∈H

α(h) · g0 ⊗ hm).

By 8.2 this implies the result. �

8.5. Let H and G be finite groups and let α, β : H → G be two homomorphisms with β
injective. Let C0 (resp. X0) denote the classifying stack BH (resp. BG) over Fp, and let
c1 : C0 →X0 (resp. c2 : C0 →X0) be the map induced by α (resp. β).

Theorem 8.6. Let (F , ϕ, u) be a convergent Weil complex with C -structure on X . Then
there exists an integer n0, independent of (F , ϕ, u), such that for every n ≥ n0 we have:

(i) The complex RΓc(X ,F) ∈ D−
c (Q`) with the endomorphism RΓc(u

(n)) is convergent.

(ii) Fix(C (n)) is pseudo-finite over Spec(k), and

trι(RΓc(u
(n))|RΓc(X ,F)) =

∑
β⊂Fix(C (n))

LTι(β, (F , ϕ, u(n))).

8.7. The proof occupies the remainder of this section.

As mentioned above, the category D−
c (X ,Q`) is canonically equivalent to the bounded

above derived category D−
c (RepQ`

(G)) of complexes of G-representations over Q` with finite-
dimensional cohomology groups, and with this identification the functor

RΓc : D−
c (X ,Q`)→ D−

c (Q`)

is identified with the coinvariants functor

(−)G : D−
c (RepQ`

(G))→ D−
c (Q`).

8.8. Consider first the case of a Weil complex F concentrated in degree 0. Let F ∈ RepQ`
(G)

denote the object corresponding to F , and let Fα (resp. Fβ) denote the object of RepQ`
(H)

obtained by pulling back along α (resp. β). Then the C -structure u on F corresponds to a
morphism Fα → Fβ in RepQ`

(H). The endomorphism RΓc(u
(n)) on RΓc(F) corresponds to

the map

(8.8.1) FG
a // Fα,H

u(n)
// Fβ,H

π // FG,

where π : Fβ,H → FG is the canonical projection, and by 8.4 (ii) the map a is the map induced
by the map

1

|H|
∑
g∈G

g : F → F.

Consideration of the commutative diagram

FG

1
|H|

P
g∈G g
//

� _

��

FH
α

u(n)
//

� _

��

FH
β� _

��
F

<<z
z

z
z

z1|H|
P

g∈G g
//

����

F

����

u(n)
// F

���� "" ""E
EE

EE
EE

EE

FG
a // Fα,H

u(n)
// Fβ,H

π // FG
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then shows that the trace of 8.8.1 is equal to the trace of the map

1

|H|
∑
g∈G

u(n) ◦ g : F → F.

8.9. The fixed point stack Fix(C (n)) can be described as follows. Since any torsor over Spec(k)
is trivial, a similar argument to the one proving 7.9 shows that Fix(C (n)) is isomorphic to the
quotient of G by the action of H given by

h ∗ g = β(h)gα(h)−1.

From this it follows that ∑
x∈Fix(C (n))(k)

trι(u
(n),Fx) = trι(

1

|H|
∑
g∈G

u(n) ◦ g, F ).

This proves 8.6 in the case when F is concentrated in degree 0.

8.10. Next consider a general bounded Weil complex with C -structure (F , ϕ, u) on X0, and
let F ∈ Db

c(RepQ`
(G)) denote the corresponding complex of G-representations. The condition

that (F , ϕ, u) is convergent means that there exists an integer n0 such that for any n ≥ n0

and any g ∈ G the sum of the eigenvalues

(8.10.1)
∑
k

∑
λ∈Egk(u(n)◦g|F )

|λ|

converges. The following proposition now completes the proof of 8.6.

Proposition 8.11. For any n ≥ n0 the sum

(8.11.1)
∑
k

∑
λ∈Egk(u(n)|p!F)

|λ|

converges and

trι(u
(n)|p!F) =

∑
β⊂Fix(C (n))

LTι(β, (F , ϕ, u)).

Proof. For the convergence of 8.11.1, note that∑
λ∈Egk(u(n)|p!F)

|λ| =
∑

λ∈Eg(u(n)|Hk(F )G)

|λ|

≤
∑

λ∈Eg(u(n)|Hk(F ))

|λ|

=
∑

λ∈Egk(u(n)|F )

|λ|.

The convergence of 8.11.1 therefore follows from the convergence of 8.10.1. The statement
about the traces follows from the case of a complex concentrated in a single degree and from
noting that

trι(u
(n)|p!F) =

∑
k

trι(u
(n)|p!H

k(F)),
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and ∑
β⊂Fix(C (n))

LTι(β, (F , ϕ, u)) =
∑
k

∑
β⊂Fix(C (n))

LTι(β, (H
k(F), ϕ, u)).

�

9. The classifying stack of a general group scheme

In this section we prove 7.7 in general.

9.1. As in 7.7, let G0/Fq be a finite type group scheme, and let α : G0 → G0 be a finite
endomorphism. Let X0 denote BG0.

9.2. Let

1→ G0
0 → G0 → H0 → 1

be the connected-étale sequence of G0. To verify 7.7 we may by 1.20 make a finite extension
Fq → Fqr , and therefore we may assume that H0 is a constant group scheme. After perhaps
making a further extension we may also assume that the map G0(Fq)→ H0 is surjective. Fix
a set {gh}h∈H of elements of G0(Fq), with gh a lifting of h. We further assume that ge is the
identity in G0.

Let αH (resp. αG0) be the endomorphism of H0 (resp. G0
0) induced by α.

Recall that by 7.10 the stack Fix(C (n)) is isomorphic to the stack quotient of G by the
action of G given by

h ∗ g = α(n)(h)gh−1.

For h ∈ H let Ph denote the inverse image in G of h so that Ph is a G0-torsor.

Lemma 9.3. For n ≥ 1 and h ∈ H, the map

(9.3.1) G0 → Ph, z 7→ α(n)(z)ghz
−1

is surjective.

Proof. The element gh defines an isomorphism G0 → Ph. Under this identification the map
9.3.1 becomes identified with the map

G0 → G0, z 7→ α(n)(z)ghz
−1g−1

h .

The result therefore follows from 2.2 (applied with j the map z 7→ ghzg
−1
h ) which implies that

9.3.1 is étale, and the fact that G0 is connected. �

It follows that every connected component of Fix(C (n)) can be represented by the point
[g] ∈ Fix(C (n))(Fq) defined by an element g ∈ G(Fq) (since by assumption the map G(Fq)→
H is surjective), and that any two liftings g ∈ G(Fq) of a given h ∈ H define the same
connected component.

For any element c ∈ G let cg : G→ G and cg : G0 → G0 be the maps given by conjugation
by g.
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The induced functor Bcg : BG → BG is canonically isomorphic to the identity. Indeed if
P is a G-torsor then translation by g defines an isomorphism P ×G,cg G → P . We therefore
have a 2-commutative diagram

BG0

##G
GG

GG
GG

GG

cg // BG0

{{www
ww

ww
ww

BG.

In particular, if F ∈ D−
c (BG,Q`) and if F0 ∈ D−

c (BG0,Q`) denotes the restriction, then
there is a canonical isomorphism tg : c∗gF0 → F0.

For h ∈ H let C h
0 denote the correspondence on BG0

0 given by

(cgh
◦ αG0 , id) : BG0

0 → BG0
0 ×BG0

0.

If (F , ϕ, u) is a Weil complex with C -structure on BG, then we obtain for every h ∈ H a
Weil complex with C h-structure (F0, ϕ, u ◦ tgh

) on BG0.

Lemma 9.4. The Weil complex with C -structure (F , ϕ, u) on BG is convergent if and only
if for every h ∈ H the Weil complex with C h-structure (F0, ϕ, u ◦ tgh

) is convergent on BG0.

Proof. As mentioned in 9.2, for n ≥ 1 the points of Fix(C (n)) are all represented by the points
defined by the gh. Now if Fgh

denotes the pullback along gh : Spec(k)→ C (n) of F to D−
c (Q`)

and if Fe ∈ D−
c (Q`) denotes the pullback along e : Spec(k) → C (n), then the action of u(n)

on Fgh
is given by the composite

Fgh

' // Fe
tgh // Fe

u(n)
// Fe ' Fgh

,

where we have used the canonical isomorphism Fgh
' Fe. Thus (F , ϕ, u) is convergent if and

only if there exists an integer n0 such that the complexes with endomorphisms (Fe, u(n) ◦ tgh
)

are convergent. This implies the lemma. �

Let p : BG→ BH be the projection and consider the diagram

BG
α

{{xxxxxxxx
id

##G
GG

GG
GG

GG

p

��

BG

p

��

BG

p

��

BH
αH

{{xxxxxxxx
αH

##G
GG

GG
GG

GG

BH BH.

Let h ∈ H be an element defining a fixed point [h] of α
(n)
H . Then the local term of

(p!F , p!ϕ, p!u
(n)) at [h] ∈ Fix(α(n)) is given by the trace of the map

u(n) ◦ tgh
: RΓc(BG

0,F0)→ RΓc(BG
0,F0).

From the case of a connected group, we conclude that (p!F , p!ϕ, p!u) is convergent, and then
by the case of a finite group we conclude that (RΓcF , RΓcϕ,RΓcu) is also convergent.
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To prove the statement about local terms, observe

trι(u
(n)|RΓc(BG,F)) = trι(p!u

(n)|RΓc(BH, p!F))

=
1

|H|
∑
h∈H

trι(p!u
(n) ◦ h|(p!F)h) (case of finite group)

=
1

|H|
∑
h∈H

trι(u
(n) ◦ tgh

|RΓc(BG
0,F0))

=
1

|H|
∑
h∈H

1

|G0(Fq)|
∑

g∈G0(Fq)

trι(u
(n) ◦ gh · g|Fghg) (connected case)

=
1

|G(Fq)|
∑

g∈G(Fq)

trι(u
(n) ◦ g|Fg).

This completes the proof of 7.7.

10. Proof of 1.24

Lemma 10.1. The map c1 : C0 → X0 is proper with finite diagonal and c2 : C0 → X0 is
quasi-finite.

Proof. That c2 is quasi-finite is clear since the diagram

C0

c2
��

// C0

c2
��

X0
// X0

is cartesian.

For the properness of c1, note that the fiber product P0 of the diagram

[C0/G0]

c1
��

X0
// [X0/G0],

is isomorphic to

[C0 ×G0/G0],

where h ∈ G0 acts on C0 ×G0 by

(x, g) 7→ (hx, gα(h)−1).

To verify that the diagonal of P0 over X0 is finite it therefore suffices to show that the map

(C0 ×G0)×G0 → (C0 ×G0)×X0 (C0 ×G0), (x, g, h) 7→ (x, g)× (hx, gα(h)−1)

is a finite morphism, which is clear since α is finite.
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To verify the properness of P0 → X0 we may base change to the algebraic closure k of Fq,
in which case there exist points x1, . . . , xr ∈ G(k) such that the map

r∐
i=1

G→ G,

which on the i-th component is given by g 7→ xi · α(g), is surjective.

The induced map
r∐
i=1

C → [C ×G/G],

which on the i-th component sends z ∈ C to (z, xi), is then a surjection. We therefore obtain
a commutative diagram

∐r
i=1C

a // //

b

##
P

c // X,

where a is surjective, b is proper, and c is separated. It follows that the map c is also
proper. �

Write Bα(n) : BG0 → BG0 for the endomorphism defined by α(n).

Let p : X0 →X0 (resp. q : C0 → C0) be the projection. Choose n0 as in 1.19 for convergent
Weil-complexes with α-structure on BG. By 1.20 it suffices to prove 1.19 after making a finite
extension Fq → Fqr . We may therefore assume that if G0 → H0 is the maximal étale quotient
of G0, then H0 is a constant group scheme and the map G0(Fq) → H0 is surjective. This
implies that there exists g1, . . . , gr ∈ G(Fq) such that the components of Fix(Bα(n)) are
represented by the components {[gi]} of Fix(Bα(n)) corresponding to these elements, and the
same holds after replacing n by a larger integer (see the discussion after 9.3).

For i = 1, . . . , r, let ci : Ci
0 → X0 ×X0 denote the correspondence

(tgi
◦ c1, c2) : C0 → X0 ×X0,

where tgi
: X0 → X0 denotes the action of gi on X0. Let αi : G0 → G0 denote cgi

◦ α, where
cgi

denotes conjugation by gi. Then ci1 : Ci
0 → X0 is compactible with the G0-actions in the

sense that for any z ∈ Ci
0 and h ∈ G we have

ci1(h ∗ z) = αi(h) · ci1(z).

We therefore obtain a correspondence

ci : C i
0 →X0 ×X0.

After possible replacing n0 by a larger integer, we may assume that Deligne’s conjecture
holds for any bounded Weil complex with Ci

0-structure on X0. We claim that with these
assumptions the conclusions (i) and (ii) in 1.19 hold for any Weil complex (F , ϕ, u) with
C -structure on X and F bounded.

Let F ∈ Db
c(X,Q`) be the restriction of F to X, and let σ : X0 → BG0 be the canonical

morphism.
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Lemma 10.2. The map

σ!u
(n) : (σ!F)[gi] → (σ!F)[gi]

is canonically identified with the map

RΓc(u
i,(n)) : RΓc(X,F )→ RΓc(X,F ),

where [gi] : Spec(k) → Fix(α
(n)
G ) is the point defined by gi. In particular (σ!F , σ!ϕ, σ!u) is

convergent (since RΓc(X,F ) is a bounded complex).

Proof. This follows from the definition of the local terms. �

Let G
(n)
gi denote the group scheme

G(n)
gi

:= {h ∈ G|h−1giα
(n)
G (h) = gi}.

Then the connected components of Fix(Bα(n)) are all of the form BG
(n)
gi for some i.

Fix an integer n0 such that Fujiwara’s theorem holds for F with respect to each of the
Ci-structures. From 10.2 we also find that for n ≥ n0

(10.2.1)

trι(u
(n)|RΓc(X ,F)) =

∑
[gi]∈Fix(α

(n)
G )

1

|G(n)
gi

|
trι(u

i,(n)|RΓc(X,F ))

=
∑

[gi]∈Fix(Bα
(n)
G )

1

|G(n)
gi

|

∑
x∈Fix(Ci,(n)) trι(u

i,(n)|Fc2(x)).

Let

π : Fix(C (n))→ Fix(Bα
(n)
G )

be the projection. For any i, let Pi denote the fiber product

Fix(C (n))×
Fix(Bα

(n)
G )

BG(n)
gi
.

This fiber product can be described as follows. There is an action of G
(n)
gi on Fix(Ci,(n)) for

which an element h ∈ G(n)
gi sends a fixed point x ∈ Fix(Ci,(n)) to the point hx. Note that this

is again a fixed point as

c
i,(n)
1 (hx) = gic

(n)
1 (hx) = giα

(n)
G (h)c

(n)
1 (x) = h(h−1giα

(n)
G (h))c

(n)
1 (x) = h(gic

(n)
1 (x)) = c2(hx).

Lemma 10.3. There is a canonical isomorphism Pi ' [Fix(Ci,(n))/G
(n)
gi ].

Proof. The stack Pi is equal to the stack associated to the prestack which to any scheme T
associates the following category:

Objects: Pairs (x, g), where x : T → C is a morphism and g ∈ G(T ) is an element in the
ρα(n)-orbit of gi, such that the diagram

T
x //

c2   @
@@

@@
@@

C
tg◦c(n)

1

~~~~
~~

~~
~

X

commutes.
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Morphisms: A morphism (x, g) → (x′, g′) of objects over T is an element h ∈ G(T ) such
that

g′ = α
(n)
G (h)gh−1, x′ = h · x.

It follows that every object of Pi(T ) is locally on T represented by a pair (x, gi), where
x ∈ Fix(Ci,(n)). From this the lemma follows. �

Lemma 10.3 implies that∑
β⊂Pi

1

|Stab(β)|
trι(β|F) =

∑
x∈Fix(Ci,(n))

1

|G(n)
gi |

trι(u
i,(n)|RΓc(X,F )).

Combining this with 10.2.1 we obtain 1.24. �

11. Automorphisms of algebraic spaces

11.1. In general the validity of 1.19 is additive in the following sense. Consider a correspon-
dence c : C0 → X0 ×X0 as in 1.19. If Z0 → X0 is any morphism of algebraic stacks, then
as discussed in 1.5 the correspondence c induces a correspondence on Z0 given by

cZ : CZ ,0 := C0 ×(X0×X0) (Z0 ×Z0)
pr−−−→ Z0 ×Z0.

If Z0 →X0 is the inclusion of a locally closed substack, then we say that Z0 is c-invariant
if the maximal reduced closed substacks of c−1

1 (Z ) and c−1
2 (Z ) in C are equal.

Lemma 11.2. Let Z0 ⊂X0 be a c-invariant substack, and let CZ ,0 ⊂ C0 denote c−1
1 (Z0)red =

c−1
2 (Z0)red. Then cZ ,1 : CZ ,0 → Z0 is proper and cZ ,2 : CZ ,0 → Z0 is quasi-finite.

Proof. The quasi-finiteness follows from noting that there is a commutative diagram

CZ ,0� _

��

cZ ,2 // Z0� _

��
C0

c2 // X0,

where the vertical arrows are immersions and c2 is quasi-finite (note also that this doesn’t
require Z0 to be c-invariant).

The properness of cZ ,1 can be seen by consider the commutative diagram

CZ ,0

k
��

C0 ×X0×X0 (Z0 ×X0)

cZ ,1

''

��

// Z0 ×X0� _

��

pr1 // Z0� _

��
C0

c1

66
// X0 ×X0

pr1 // X0,
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where the squares are cartesian and k is a closed immersion defined by a nilpotent ideal since
Z0 is c-invariant. �

11.3. Let j : Z0 ↪→X0 be a c-invariant substack. We then have a commutative diagram

C0,Z
k //

cZ ,2

&&
C0 ×c1,X0,j Z0

//

q

��

Z0� _

j

��
C0

c2 // X0,

where the square is cartesian and the map k is a closed immersion defined by a nilpotent
ideal. By the base change theorem [14, 12.1], for any F ∈ D−(C ,Q`) we have a canonical
base change isomorphism

j∗c2!F ' cZ ,2!k
∗q∗F.

In particular, if F ∈ D−(X ,Q`) is a complex with a C -structure u : c2!c
∗
1F → F , then the

pullback j∗F to Z has a CZ -structure given by

j∗u : cZ 2!c
∗
Z 1j

∗F ' cZ 2!k
∗q∗c∗1F ' j∗c2!c

∗
1F

u→j∗F.

Since j : Z0 ↪→ X0 is defined over Fq it is also clear that if ϕ is a Weil-structure on
F ∈ D−(X ,Q`) then j∗F has a natural Weil structure j∗ϕ. Finally for every n there is a

natural immersion Fix(C (n)
Z ) ↪→ Fix(C (n)). It follows that if (F, ϕ, u) is a convergent Weil

complex with C -structure on X then (j∗F, j∗ϕ, j∗u) is a convergent Weil complex with CZ -
structure on Z .

Proposition 11.4. Let j : U0 ↪→X0 be a c-invariant open substack, and let i : Z0 ↪→X0 be
the complement (with the reduced structure). Let (F, ϕ, u) be a convergent Weil complex with
C -structure on X . If 1.19 holds for (j∗F, j∗ϕ, j∗u) on U and (i∗F, i∗ϕ, i∗u) on Z , then 1.19
also holds for (F, ϕ, u).

Proof. Let n0,Z (resp. n0,U ) be an integer as in 1.19 for Z (resp. U ), and let n0 denote the
maximum of the two. Taking cohomology of the distinguished triangle

j!j
∗F → F → i∗i

∗F → j!j
∗F [1]

we obtain a distinguished triangle

RΓc(U , j∗F )→ RΓc(X , F )→ RΓc(Z , i∗F )→ RΓc(U , j∗F )[1].

Applying the following 11.5, it follows that for every n ≥ n0 the complex RΓc(X , F ) with
the endomorphism RΓc(u

(n)) is convergent.

For the equality of trι(u
(n)|RΓc(X , F )) with the sum of local terms, note that Fix(C (n)) =

Fix(C (n)
U )

∐
Fix(C (n)

Z ). Therefore the equality 1.19.1 follows from the corresponding equality
for U and Z and the following lemma. �
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Lemma 11.5. Let

K ′ //

ϕ′

��

K //

ϕ

��

K ′′

ϕ′′

��

// K ′[1]

ϕ′[1]
��

K ′ // K // K ′′ // K ′[1]

be an endomorphism of a distinguished triangle K ′ → K → K ′′ → K ′[1] in D−
c (Q`). If

(K ′, ϕ′) and (K ′′, ϕ′′) are ι-convergent, then so is (K,ϕ) and

(11.5.1) trι(ϕ
′|K ′) + trι(ϕ

′′|K ′′) = trι(ϕ|K).

Proof. For p ∈ Z define

Sp(K) :=
∑
k≥p

∑
λ∈Egk(ϕ)

|λ|.

For every p we have an exact sequence

Hp(K ′)→ Hp(K)→ Hp(K ′′)→ Hp+1(K ′)→ · · · ,

which implies that

Sp(K) = Sp(K
′) + Sp(K

′′) + εp,

where 0 ≤ εp ≤
∑

λ∈Egp(ϕ′) |λ|. Since the sequence of partial sums {Sp(K ′)} converges we

have lim−→ εp = 0. It follows that the sequence {Sp(K)} also converges.

The equality of traces 11.5.1 follows from noting that the sum
∑

p(−1)pι(tr(ϕ|Hp(K)))
converges absolutely and therefore we can rearrange the terms, and write∑

p

(−1)pι(tr(ϕ|Hp(K))) =
∑
p

(−1)pι(tr(ϕ|Hp(K ′))) +
∑
p

(−1)pι(tr(ϕ|Hp(K ′′))).

�

Now consider a separated algebraic space X0 of finite type over Fq and an automorphism
σ : X0 → X0 defining a correspondence c : C0 → X0 × X0 (so C0 = X0 with c1 = σ and
c2 = id).

Theorem 11.6. Conjecture 1.19 holds for any bounded Weil complex with C-structure (F, ϕ, u)
on X.

Proof. Let U0 ⊂ X0 denote the maximal open subspace of X0 which is a scheme, and let
Z0 ⊂ X0 be the complement of U0 (with the reduced structure). Then σ(U0) = U0. The
result therefore follows from 11.4, the case of schemes, and noetherian induction. �

12. Deligne-Mumford stacks

12.1. Let c : C0 →X0 ×X0 be a correspondence over Fq with C0 and X0 Deligne-Mumford
stacks, and c1 (resp. c2) proper (resp. quasi-finite). Let p : X0 → X0 and q : C0 → C0 be the
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coarse moduli spaces so we have a commutative diagram

C0

c1

}}||
||

||
|| c2

!!C
CC

CC
CC

C

q

��

X0

p

��

X0

p

��

C0

c̄1

}}||
||

||
|| c̄2

!!C
CC

CC
CC

C

X0 X0,

where c̄1 is proper and c̄2 is quasi-finite. Let

π : Fix(C (n))→ Fix(C(n))

be the projection.

12.2. Let x̄ ∈ Fix(C(n))(k) be a point and let x ∈ C (k) be a lifting of x̄. Note that x is unique
up to noncanonical isomorphism. The fiber π−1(x̄) can be described as follows. Giving x the
structure of an object of Fix(C (n)) is equivalent to specifying an isomorphism

σ : c
(n)
1 (x)→ c2(x)

in X (k). Fix one such isomorphism σ0 (which exists since c
(n)
1 (x) and c2(x) map to the same

element of X(k)), and let

α(n) : Gx → Gc2(x)

denote the map induced by σ0 ◦ c1, where Gx (resp. Gc2(x)) denotes the stabilizer group of x
(resp. c2(x)). Let β : Gx → Gc2(x) be the map induced by c2. An isomorphism between two

pairs (x, σ) and (x, σ′) in Fix(C (n)) is an element h ∈ Gx such that the diagram

c
(n)
1 (x)

σ //

c
(n)
1 (h)
��

c2(x)

c2(h)

��

c
(n)
1 (x)

σ′ // c2(x)

commutes. From this it follows that π−1(x̄) is isomorphic to the stack quotient of Gc2(x) by
the action of Gx given by

h ∗ g = α(n)(h)gβ(h)−1.

It follows that ∑
[x,σ]∈π−1(x̄)

LTι([x, σ], (F , u(n))) =
1

|Gx|
∑

γ∈Gc2(x)

trι(u
(n)|Fx,γ◦σ0),

where the left sum is over isomorphism classes of objects in π−1(x̄)(k). By the discussion in
section 8 this is also equal to

trι(ū
(n)|(p!F)x̄).

From this we obtain the following.
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Theorem 12.3. Conjecture 1.19 holds for a bounded convergent Weil complex (F , ϕ, u) on
X if and only if 1.19 holds for (p!F , p!ϕ, p!u). In particular, 1.19 holds for X if either

(i) X0 is a scheme;

(ii) C0 is induced by an automorphism of X0.

13. An example from toric varieties

13.1. Fix a prime number p.

Let X be a free abelian group of rank r, and let Q ⊂ XR be an integral polytope. Let P
denote the integral points of CQ := Cone(1, Q) ⊂ R×XR, and let

V0 := Proj(Fp[P ])

be the corresponding toric variety over Fp, with torus T0 := Spec(Fp[X]).

Let D ∈ GL(X) be an automorphism of X such that the induced automorphism of XR
takes Q to Q. This map D then induces automorphisms

α : T0 → T0, δ : V0 → V0

which are compatible in the sense that the diagram

T0 × V0

α×δ
��

ρ // V0

δ
��

T0 × V0

ρ // V0

commutes, where ρ denotes the action of T0 on V0.

Let V0 denote the stack [V0/T0], and let

c = (δ, id) : C := V0 → V0 × V0

be the correspondence obtained by passing to the quotient by the T0-action.

For a face F ⊂ Q of Q let PF ⊂ P denote the integral points of CF := Cone(1, F ) ⊂ R×XR.
Since F is a face there is a map of graded rings

Fp[P ]→ Fp[PF ]

sending an element ep ∈ Fp[P ] (the generator defined by p) to 0 if p /∈ PF and ep otherwise.
This defines a closed subscheme VF,0 ⊂ V0 which is T0-invariant. Let TF ⊂ T denote the
stabilizer of the generic point of VF,0. The inclusion TF ⊂ T corresponds to a surjection of
free abelian groups X → YF . The kernel MF of this map is the subgroup of degree 0 elements
in P gp

F . Let UF := D(MF ) be the torus corresponding to MF .

If furthermore F is stable under D, then D induces an automorphism DF : MF → MF .
Let AF (t), A(t) ∈ Z[t] denote the absolute values of the characteristic polynomials

AF (t) := |det(1− tDF |MF )|, A(t) := |det(1− tD|X)|.
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Theorem 13.2. There exists an integer n0 such that for all n ≥ n0 the complex RΓc(V ,Q`)
with the endomorphism δ(n) is convergent, and∑

F⊂Q,D(F )=F

AF (pn)

A(pn)
= trι(δ

(n)|RΓc(V ,Q`)).

Proof. Let VF,0 ⊂ V0 denote the locally closed substack [VF,0/T0] ⊂ [V0/T0], and let V 0
F,0 ⊂ VF,0

denote the open substack defined by the maximal torus orbit V 0
F,0 ⊂ VF,0.

By 10.3, we have Fix(C (n)) ' [Fix(δ(n))/H(n)], where H(n) ⊂ T is the kernel of the map

T → T, m 7→ α(n)(m) ·m−1.

In particular, for any object x ∈ Fix(C (n))(k), there exists a unique face F ⊂ Q such that
D(F ) = F and such that x can be represented by an element x̃ ∈ Fix(δ(n)) with x̃ ∈ V 0

F .

Let δ
(n)
F : VF → VF be the map induced by δ(n), let

α
(n)
F : UF → UF

be the map induced by α(n), and let H
(n)
F be the kernel of the map

UF → UF , u 7→ α
(n)
F (u)u−1.

If we fix a point z0 ∈ V 0
F (k), then any other element of V 0

F (k) can be written uniquely as
uz0, with u ∈ UF (k). Write δ(n)(z0) = w · z0, where w ∈ UF (k)

An element uz0 ∈ V 0
F (k) is in Fix(δ(n)) ∩ V 0

F if and only if

δ(n)(uz0) = α
(n)
F (u)δ(n)(z0) = α

(n)
F (u)wz0

is equal to uz0. Equivalently, if and only if

w = α(n)(u)−1u.

Since the map

UF → UF , u 7→ α
(n)
F (u)−1u

is étale and surjective, it follows that the number of points in Fix(δ(n)) ∩ V 0
F is equal to the

order of H
(n)
F .

From this it follows that∑
β⊂Fix(C (n))(k)

LTι(β, (Q`, can, α(n))) =
∑

F⊂Q,D(F )=F

#H
(n)
F

#H(n)
.

On the other hand, H
(n)
F (resp. H(n)) is equal to the diagonalizable group scheme associated

to the cokernel of the map

1− pnDF : MF →MF , (resp. 1− pnD : X → X),

and therefore

#H
(n)
F = AF (pn), #H(n) = A(pn).

This implies the theorem. �
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Remark 13.3. A more detailed analysis of the proof of 1.24 shows that in 13.2 we can take
n0 = 1.

13.4. If V0 is a smooth variety over Fq then we can rewrite the theorem as follows. Note
first of all that Frobenius on V0 is flat, and therefore δ(n) : V → V is also a flat morphism of
degree equal to pnr. This number is also equal to the order of K(n) := Ker(α(n) : T → T ).
Since we have a cartesian diagram

[V/K(n)] //

δ(n)

��

V

δ(n)

��
V // V ,

it follows that the degree of δ(n) : V → V is equal to 1. From this and 5.25 we obtain the
following:

Theorem 13.5. With notation as in 13.2, assume in addition that V is smooth over k. Then
the complex RΓ(V ,Q`) with the endomorphism (δ(n)∗)−1 is convergent and

(13.5.1)
∑

F⊂Q,D(F )=F

AF (pn)

A(pn)
= trι((δ

(n)∗)−1|RΓ(V ,Q`)).

Remark 13.6. In the case when V is smooth, there is a well-known description of H∗(V ,Q`)
in terms of the so-called Stanley-Reisner ring RQ (see for example [5, §4]). This ring RQ is
defined as follows. Let S denote the set of vertices of Q (so Q is the convex hull of the set of
points s ∈ S). Then RQ is defined as a quotient of the free polynomial algebra on S

RQ := Q`[xs]s∈S/IQ,

where IQ is the ideal generated by
∏

s∈S xs and the monomials xs1 · · ·xst for which the simplex
spanned by s1, . . . , st is not a face of Q.

Any element s ∈ S is a fact of Q and the corresponding closed subscheme Vs ⊂ V is a
T -equivariant divisor. There is a map

Q`[xs]s∈S → H∗(V ,Q`)

which sends xs to the equivariant Chern class of the divisor Vs. It is shown for example in [5,
Theorem 8] that this map induces an isomorpishm

RQ
' // H∗(V ,Q`).

Since the Frobenius pullback of a line bundle is its p-th power, it follows that under this
isomorphism the action of (δ(n)∗)−1 is given by the automorphism

ρ(n) : RQ → RQ

induced by the map
xs 7→ (1/pn)xD(s).

Thus the formula 13.5.1 can be rewritten as

(13.6.1)
∑

F⊂Q,D(F )=F

AF (pn)

A(pn)
= trι(ρ

(n)|RQ).
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Example 13.7. Let Q ⊂ R2 be the polytope

(0, 1)

• •

•IIIIIIIIIIIIIIIIIIIIIIIIII(0, 0) (1, 0)

and let D : Z2 → Z2 be the endomorphism

D =

(
0 1
1 0

)
.

The associated toric variety V0 is then P2.

Write x00 (resp. x01, x10) for x(0,0) (resp. x(0,1), x(1,0)), so the Stanley-Reisner ring in this
case is equal to

RQ = Q`[x00, x01, x10]/(x00x01x10).

The endomorphism ρ(n) is given by

x00 7→
1

pn
x00, x01 7→

1

pn
x10, x10 7→

1

pn
x01.

Let ρ̃(n) be the endomorphism of the polynomial ring Q`[x00, x01, x10] given by the same
formula. Setting y = x01 + x10 and z = x01 − x10 we can also view this as Q`[x00, y, z] with
ρ̃(n) acting on x00 and y by multiplication by 1/pn and on z by multiplication by −1/pn.
Using this one sees that

tr(ρ̃(n)|Q`[x00, x01, x10]) =
1

(1− (1/pn))2(1 + (1/pn))
.

Consideration of the exact sequence

0 −−−→ Q`[x00, x01, x10]
x00x01x10−−−−−→ Q`[x00, x01, x10] −−−→ RQ −−−→ 0

and the fact that ρ̃(n) acts on x00x01x10 by multiplication by 1/p3n gives

tr(ρ(n)|RQ) =
1

(1− (1/pn))2(1 + (1/pn))
− (1/p3n)

(1− (1/pn))2(1 + (1/pn))
.

On the other hand, let L ⊂ Q denote the line segment connecting (0, 1) and (1, 0). Then

{F ⊂ Q|D(F ) = F} = {Q,L, (0, 0)},

with corresponding AF (t)’s equal to

|1− t2|, |1 + t|, 1.

It follows that ∑
F⊂Q,D(F )=F

AF (pn)

A(pn)
= 1 +

1 + pn

p2n − 1
+

1

p2n − 1
.
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Thus the formula 13.6.1 in this cases amounts to the elementary identity

1 +
1 + pn

p2n − 1
+

1

p2n − 1
=

1

(1− (1/pn))2(1 + (1/pn))
− (1/p3n)

(1− (1/pn))2(1 + (1/pn))
.

Remark 13.8. The toric variety V0 has an integral model given by

VZ := Proj(Z[P ]).

Let VC denote the base change to C. For any integer m, multiplication by m on the monoid
P induces an endomorphism γm : VZ → VZ. If m = pt for some prime p, then the reduction
modulo p of γm is equal to the t-power of the Frobenius morphism on V0. Similarly, T0 and
V0 have integral models TZ and VZ. By a standard argument using base change for compactly
supported cohomology, one can deduce that for n ≥ 1 we have∑

F⊂Q,D(F )=F

AF (pn)

A(pn)
= trι(γpn ◦ δ|RΓc(VC,Q`)).

From this one might speculate that for arbitrary m > 1 we have∑
F⊂Q,D(F )=F

AF (m)

A(m)
= trι(γm ◦ δ|RΓc(VC,Q`)),

and in particular the right side is convergent.

This is in fact not hard to show using the same argument as above. First let p be a prime
dividing m, and write m = p · m′. Then look at the reduction modulo p, but instead of δ
consider the endomorphism γm′ ◦ δ. We leave the details to the reader.

14. Traces of Hecke operators

14.1. Fix pairwise distinct primes p, `, and m. Let Ag,Γ0(m) be the moduli stack over Fp
classifying principally polarized abelian varieties of dimension g with Γ0(m)-level structure.
The fiber of the stack Ag,Γ0(m) over a scheme S is by definition the groupoid of collections

{(A, λ), (B, τ), f},
where (A, λ) and (B, τ) are principally polarized abelian schemes of dimension g over S and
f : A→ B is an isogeny such that the diagram

(14.1.1) A

mλ
��

f // B

τ

��
At Bt

f t

oo

commutes. Note that the degree of f is equal to mg.

If Ag/Fp denotes the moduli stack of principally polarized abelian varieties, we obtain a
correspondence

c : Ag,Γ0(m) → Ag ×Ag

given by
c1((A, λ), (B, τ), f) = (B, τ), c2((A, λ), (B, τ), f) = (A, λ).

Lemma 14.2. The map c1 is proper and quasi-finite, and c2 is quasi-finite and representable.
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Proof. If S is a scheme and ((A, λ), (B, τ), f) ∈ Ag,Γ0(m)(S) is an object, then an automor-
phism of this object is given by an automorphism α of (A, λ) such that if Hf ⊂ A[m] denotes
the kernel of f then α(Hf ) = Hf . From this it follows that c2 is representable. Moreover,
if S = Spec(k) is the spectrum of an algebraically closed field k of characteristic p, and
x = [(A, λ)] ∈ Ag(k) is a point, then c−1

2 (x)(k) is in bijection with the set of rank mg sub-
groups H ⊂ A[m] which are isotropic with respect to the Weil pairing induced by λ (see for
example [9, 1.7]). From this it follows that c2 is also quasi-finite.

To verify the properness of c1, we check the valuative criterion. Let S = Spec(V ) be
the spectrum of a discrete valuation ring with generic point η ∈ S and closed point s ∈ S.
Let (B, τ) be a principally polarized abelian scheme over S, and assume given a principally
polarized abelian scheme (Aη, λη) over η, and a morphism f : Aη → Bη defining an object

((Aη, λη), (Bη, τη), fη) ∈ Ag,Γ0(m)(η).

We need to show that after possible replacing V by a finite extension, this objects extends to
an object of Ag,Γ0(m)(S) (which since Ag is separated will automatically map to (B, τ) under
c2).

After replacing V by a finite extension, we may assume that Aη[m] is a constant group
scheme. Let H ⊂ Aη[m] be the kernel of fη, and fix an isomorphism H ' (Z/(m))g. This
identifies Aη with a (Z/(m))g-torsor over Bη. If g : B → S denotes the structure morphism,
then since the étale cohomology sheaf R1g∗(Z/(m))g is locally constant on S, we can, after
possibly replacing V by another finite extension, extend Aη to a (Z/(m))g-torsor P → B.
Since P is proper, the identity section e : η → Aη extends uniquely to a section S → P . This
gives P the structure of an abelian scheme over S, which we denote by A. This then gives an
extension f : A→ B of fη : Aη → Bη. Furthermore, since the relative Picard scheme PicA/S
is proper, we get also a unique extension λ of λη to a principal polarization over S (at least
after making another extension of S). Furthermore, the diagram

A

mλ
��

f // B

τ

��
At Bt

f t

oo

commutes, as this can be verified over η. This completes the verification that c1 is proper.

For the quasi-finiteness of c1, let k be an algebraically closed field and let x = [(B, τ)] ∈
Ag(k) be an object. If ((A, λ), (B, τ), f) ∈ c−1

1 (x)(k) is an object, then after choosing an
isomorphism

Ker(f) ' (Z/(m))g

we obtain a (Z/(m))g-torsor π : P → B together with an element p ∈ π−1(e). Since
H1(B, (Z/(m))g) is a finite set, the set of isomorphism classes of such pairs (π : P → B, p)
is a finite set. It follows that there are only finitely many possibilities for the pair (A, f).
Furthermore, given f : A→ B, the set of possible λ’s such that 14.1.1 commutes is equal to
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the set of dotted arrows filling in the diagram

A

}}{
{

{
{

f t◦τ◦f
��

At
×m // At.

This set is a torsor under the finite set

Hom(A,At[m]),

which implies that c−1
1 (x)(k) is finite. �

14.3. For an object (B, τ) ∈ Ag(S) over a scheme S, let (B(n), τ (n)) be the pullback of (B, τ)
along the n-th power Frobenius morphism S → S. For any n ≥ 0 the fixed point stack
Fix(c(n)) has fiber over a scheme S the category of quadruples

∆ = ((A, λ), (B, τ), f, ι),

where ((A, λ), (B, τ), f) ∈ Ag,Γ0(m)(S) and

ι : (B(n), τ (n)) ' (A, λ)

is an isomorphism of principally polarized abelian schemes over S. For such a fixed point let

χ∆ : A→ A

be the composite morphism

A
f // B

Fn
B // B(n)

ι // A,

where F n
B : B → B(n) is the map induced by the n-th power Frobenius morphism on B (the

relative Frobenius of B/S). The map χ∆ has degree (mpn)g and the diagram

A
χ∆ //

mpnλ
��

A

λ
��

At At
χt

∆oo

commutes.

Remark 14.4. Note that Aut(∆) is an étale group scheme since it is a subgroup scheme of
Aut(A, λ), and Ker(χ∆ − id) is an étale group scheme when n ≥ 1 by 2.2 and 2.5.

14.5. Let V denote the smooth sheaf on Ag given by R1h∗Q`, where h : X → Ag is the uni-
versal principally polarized abelian scheme, and for k ≥ 0 let SkV denote the k-th symmetric
power of V.

Let

X2

g //

h2

##H
HHHHHHHH X1

h1

{{vvvvvvvvv

Ag,Γ0(m)

denote the universal isogeny over Ag,Γ0(m). By the proper base change theorem we have

c∗iV ' R1hi∗Q`.
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The finite morphism g therefore induces a map

ũ : c∗1V→ c∗2V,

which when composed with the trace map c∗2V→ c!2V gives a map u : c∗1V→ c!2V.

The sheaf V also has a natural Weil-sheaf structure as it is defined over Fp. For every n ≥ 0
let

T (n)
m : RΓc(Ag, S

kV)→ RΓc(Ag, S
kV)

be the endomorphism defined by the twist u(n).

Theorem 14.6. There exists an integer n0 such that for every n ≥ n0 the series

(14.6.1)
∑
k≥0

1

(mpn)g(k+1)
tr(T (n)

m |RΓc(Ag, S
kV))

converges absolutely to ∑
∆∈|Fix(c(n))(k)|

1

(#Aut(∆)(k)) ·#Ker(χ∆ − id)(k)
,

where the sum is taken over isomorphism classes of objects ∆ = ((A, λ), (B, τ), f, ι) in
Fix(c(n))(k) and Aut(∆) denotes the automorphism group scheme of ∆.

Proof. First note that for ∆ = ((A, λ), (B, τ), f, ι) we have

1

#Ker(χ∆ − id)(k)
= tr(Bχ∆|RΓc(BA,Q`)),

where we write Bχ∆ : BA→ BA for the map defined by χ∆.

The map Bχ∆ has degree equal to 1/(mpn)g, and therefore by 5.25 we have

tr(Bχ∆|RΓc(BA,Q`)) = (1/(mpn)g)tr(Bχ∗−1
∆ |H

∗(BA,Q`)).

On the other hand, by Borel’s theorem [4, 5.6], we have

H∗(BA,Q`) ' S·H1(A,Q`).

Therefore we have

tr(Bχ∆|RΓc(BA,Q`)) = (1/(mpn)g)
∑
k≥0

tr(Skχ∗−1
∆ |S

kH1(A,Q`)).

As in 5.25 and 5.26, one sees that we have

tr(Bχ∆|RΓc(BA,Q`)) =
∑
k≥0

1

(mpn)g
tr(Sk(χ∗∆)−1|SkH1(A,Q`)),

where χ∗∆ : H1(A,Q`) → H1(A,Q`) is the map induced by pullback. Furthermore, by the
discussion in 5.26 this sum converges absolutely.

Now recall (see for example [15, Theorem 4, page 180]) that the characteristic polynomial
of χ∗∆ on H1(A,Q`) lies in Q[X], and all the eigenvalues of χ∗∆ acting on H1(A,Q`)⊗ι C have
absolute value (mpn)g/2. It follows that the set of eigenvalues of χ∗∆ acting on H1(A,Q`)⊗ιC
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is equal to (1/pnm)g times the set of eigenvalues of χ∗−1
∆ acting on H1(A,Q`) ⊗ι C. We

conclude that∑
k≥0

1

(mpn)g
tr(Sk(χ∗∆)−1|SkH1(A,Q`)) =

∑
k≥0

1

(mpn)k+1
tr(Sk(χ∗∆)|SkH1(A,Q`)).

We therefore get

tr(Bχ∆|RΓc(BA,Q`)) =
∑
k≥0

1

(mpn)g(k+1)
tr(Skχ∗∆|SkH1(A,Q`)),

and the right side converges absolutely.

Now choose n0 big enough so that Deligne’s conjecture holds for Ag and n ≥ n0. We then
have

tr(T (n)
m |RΓ(Ag, S

kV)) =
∑

∆∈|Fix(c(n))(k)|

1

#Aut(∆)(k)
tr(Skχ∗|SkH1(A,Q`)).

From this the absolutely convergence of 14.6.1 follows, and in addition we get∑
k≥0

1

(mpn)g(k+1)
tr(T (n)

m |RΓc(Ag, S
kV))

=
∑

∆∈|Fix(c(n))(k)|

1

#Aut(∆)(k)

∑
k≥0

1

(mpn)g(k+1)
tr(Skχ∗|SkH1(A,Q`))

=
∑

∆∈|Fix(c(n))(k)|

1

#Aut(∆)(k)
tr(Bχ∆|RΓc(BA,Q`))

=
∑

∆∈|Fix(c(n))(k)|

1

(#Aut(∆)(k)) ·#Ker(χ∆ − id)(k)
.

�

Appendix A. Rf∗ for unbounded complexes

Let (S,Λ) be an admissible pair as in 1.28, and let f : X → Y be a morphism of finite
type S-stacks. In general, the functor

Rf∗ : D+
c (X ,Λ)→ D+

c (Y ,Λ)

does not extend to a well-behaved functor on the whole Dc(X ,Λ). As we now explain,
however, it does extend if the following finiteness condition holds:

(*) There exists an integer n0 such that for every constructible sheaf of Λ-modules F on
X we have Rnf∗F = 0 for n ≥ n0.

Lemma A.1. Let f : X → Y be a morphism of finite type S-stacks, and assume condition
(*) holds.

(i) If F ∈ D[a,b]
c (X ,Λ), then Rf∗F ∈ D[a,b+n0]

c (Y ,Λ).
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(ii) Suppose ρ : F → G is a morphism in D+
c (X ,Λ) such that for some integer r the map

H j(F )→H j(G) is an isomorphism for j ≥ r. Then the map

H j(Rf∗F )→H j(Rf∗G)

is an isomorphism for j > r + n0.

Proof. For (i) we proceed by induction on e := b− a. The case e = 1 is by assumption. For
the inductive step, consider the distinguished triangle

H a(F )[−a]→ F → τ≥a+1F →H a(F )[−a+ 1],

which induces a long exact sequence

· · · → Rj−af∗H
a(F )→ Rjf∗F → Rjτ≥a+1F → · · · .

By induction we have

Rjτ≥a+1F = 0

for j > b+ n0, and

Rj−af∗H
a(F ) = 0

for j − a > n0. It follows that Rjf∗F = 0 for j > b+ n0.

For (ii), let C be the cone of ρ. Then H j(C) = 0 for j ≥ r, and therefore by (i) we have

Rf∗C ∈ D(−∞,r+n0−1]
c . Consideration of the long exact sequence

· · · → Rj−1f∗C → Rjf∗F → Rjf∗G→ · · ·

then gives (ii). �

Theorem A.2. Let f : X → Y be a morphism of finite type S-stacks, and assume condition
(*) holds. Then the functor

f ∗ : Dc(Y ,Λ)→ Dc(X ,Λ)

has a right adjoint

Rf∗ : Dc(X ,Λ)→ Dc(Y ,Λ),

and for every integer j and M ∈ Dc(X ,Λ) the natural map

Rjf∗M := H j(Rf∗M)→ Rjf∗τ≥−nM

is an isomorphism for n >> 0.

Proof. The key point is the following lemma. Recall [6, 2.3] that if

· · ·Mn+1 →Mn →Mn−1 → · · · ,

is a projective system in the derived category Dc(X ,Λ) of a finite type S-stack, then the
homotopy limit holim M· is by definition the mapping fiber of the map

1− shift :
∏
n

Mn →
∏
n

Mn.
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Lemma A.3. (i) Let

· · ·Mn+1 →Mn →Mn−1 → · · · ,
be a projective system of objects of D+

c (Λ) (the derived category of bounded below complexes of
Λ-modules with cohomology groups finitely generated over Λ). Assume that for every j there
exists an integer n0 such that the map

Hj(Mn+1)→ Hj(Mn)

is an isomorphism for every n ≥ n0. Then for every j there exists an integer n0 such that
the natural map

Hj(holimnMn)→ Hj(Mn)

is an isomorphism for all n ≥ n0.

(ii) Let X /S be an algebraic stack of finite type, and suppose given a projective system of
objects Mn ∈ D+

c (X ,Λ)

· · ·Mn+1 →Mn →Mn−1 → · · · ,
such that for every j there exists an integer n0 such that the map

H j(Mn+1)→H j(Mn)

is an isomorphism for every n ≥ n0. Then for every j there exists an integer n0 such that
the natural map

H j(holimnMn)→H j(Mn)

is an isomorphism for all n ≥ n0.

Proof. For (i), note that by the definition of holimnMn there is a distinguished triangle

holimnMn
//
∏

nMn
1−s //

∏
nMn

// holimnMn[1],

where s :
∏

nMn →
∏

nMn is the shifting map induced by the maps Mn+1 → Mn. Now an
elementary calculation (using the assumptions on the Mn) shows that the map

1− s :
∏
n

Hj(Mn)→
∏
n

Hj(Mn)

is surjective, and that the kernel is isomorphic to lim←−H
j(Mn). This implies (i).

For (ii), observe first that for any smooth morphism U →X of finite type with U a scheme

there exists an integer n0 such that for any F ∈ D[a,b]
c (U,Λ) we have

RΓ(U, F ) ∈ D[a,b+n0]
c (Λ).

This follows from A.1 (i) applied to U → S and the definition of an admissible pair in 1.28.
Note that by our assumptions on (S,Λ), we can choose n0 such for any étale quasi-compact

morphism j : V → U and G ∈ D[a,b]
c (V,Λ) we also have

RΓ(V,G) ∈ D[a,b+n0]
c (Λ),

as the bound n0 can be chosen to be a function of the dimension of U .
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As in A.1 (ii) this implies that for any smooth morphism U →X with U a quasi-compact
scheme, the system RΓ(U,Mn,U) satisfies the assumptions of (i), where Mn,U is the restriction
of Mn to Uet. Therefore applying RΓ(U,−) to the distinguished triangle

holimnMn
//
∏

nMn
1−s //

∏
nMn

// holimnMn[1]

and using (i) together with the fact that RΓ(U,−) commutes with products and hence ho-
motopy limits, we find that for every j the sequence

0→ Hj(U, (holimnMn)U)→ Hj(U,
∏
n

Mn)
1−s→Hj(U,

∏
n

Mn)→ 0

is exact, and that there exists an integer n0 depending only on j, the system {Mn}, and the
dimension of U , such that the projection map

Hj(U, (holimnMn)U)→ Hj(U,Mn)

is an isomorphism for n ≥ n0. Sheafifying the presheaves

U 7→ Hj(U, holimnMn)

and
U 7→ Hj(U,Mn)

we obtain (ii). �

For M ∈ Dc(X ,Λ) let Mn denote τ≥−nM . Then by A.3 the natural map

M → holimnMn

is an isomorphism.

Now by A.1 (ii) the system Rf∗Mn ∈ D+
c (Y ,Λ) satisfies the assumptions of A.3 (ii). We

define
Rf∗M := holimnRf∗Mn.

By A.3 for any j ∈ Z there exists an integer n0 such that the map

Rjf∗M → Rjf∗Mn

is an isomorphism for all n ≥ n0. In particular, Rf∗M ∈ Dc(Y ,Λ) and the last statement in
A.2 holds.

Now fix G ∈ Dc(Y ,Λ). Since the functor RHom(G,−) commutes with products, one
deduces from the distinguished triangle

Rf∗M →
∏
n

Rf∗Mn
1−s→

∏
n

Rf∗Mn → Rf∗M [1]

that

RHom(G,Rf∗M) ' holimnRHom(G,Rf∗Mn)

' holimnRHom(f ∗G,Mn) (adjunction)

' RHom(f ∗G, holimnMn)

' RHom(f ∗G,M) (since M ' holimnMn).

These isomorphisms realize Rf∗ as a right adjoint to f ∗. �
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A.4. With assumptions as in A.2, note that if M ∈ D−
c (X ,Λ), then also Rf∗M ∈ D−

c (Y ,Λ),
and that for every integer m there exists an integer n0 such that

τ≥mRf∗M = τ≥mRf∗τ≥−nM

for every n ≥ n0. This also implies that if A ∈ D+
c (Y ,Λ) then for every m there exists an

integer n0 such that

τ≤mRH om(Rf∗M,A) ' τ≤mRH om(Rf∗τ≥−nM,A)

for all n ≥ n0.

Since by [13, 4.3.2]

RH om(Rf∗M,A) ' hocolimmτ≤mRH om(Rf∗M,A)

this implies that

(A.4.1) RH om(Rf∗M,A) ' hocolimnRH om(Rf∗τ≥−nM,A).

A.5. Now suppose B ∈ D+
c (X ,Λ) is an object and M ∈ D−

c (X ,Λ). Then

RH om(M,B) ∈ D+
c (X ,Λ)

and we can define Rf∗RH om(M,B) in the usual way. Again by [13, 4.3.2] we have

RH om(M,B) ' hocolimnRH om(τ≥−nM,B).

If B ∈ D[a,∞)
c (X ,Λ) then the cone of the morphism

RH om(τ≥−nM,B)→ RH om(τ≥−n−1M,B)

is isomorphic to

RH om(H −n(M)[n], B) ' RH om(H −n(M), B)[−n]

which is in D
[a+n,∞)
c (X ,Λ). It follows that that for every integer j, there exists an integer

n0 such that the natural map

Rjf∗RH om(τ≥−nM,B)→ Rjf∗RH om(τ≥−n−1M,B)

is an isomorphism for all n ≥ n0. From this it follows that the natural map

(A.5.1) Rf∗RH om(M,B)← hocolimnRf∗RH om(τ≥−nM,B)

is an isomorphism.

Corollary A.6. With assumptions as in A.2, for any M ∈ D−
c (X ,Λ) and B ∈ D+

c (X ,Λ)
there is a canonical map

Rf∗RH om(M,B)→ RH om(Rf∗M,Rf∗B)

defined as the composite

Rf∗RH om(M,B) ' hocolimnRf∗RH om(τ≥−nM,B) (A.5.1)

→ hocolimnRH om(Rf∗τ≥−nM,Rf∗B) (canonical map)

' RH om(Rf∗M,Rf∗B) (A.4.1).
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