FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES

MARTIN OLSSON

1. STATEMENTS OF RESULTS

The subject of this paper is a generalization to stacks of Fujiwara’s theorem [10, 5.4.5]
(formerly known as Deligne’s conjecture) on the traces of a correspondence acting on the

compactly supported cohomology of a variety over a finite field.
Before discussing the stack-theoretic version, let us begin by reviewing Fujiwara’s theorem.

Let g be a power of a prime p, and let £ = Fq be an algebraic closure of F,. For objects over
F, we use a subscript 0, and unadorned letters denote the base change to k. For example, X
denotes a scheme (or stack) over F, and X denotes the fiber product X Xgpec(r,) Spec(k).

Let X, be a separated finite type F,-scheme. A correspondence on X is a diagram of

separated finite type F,-schemes
Co
RN
XO XO?

or equivalently a morphism ¢ = (¢, ¢2) : Cy — Xo x Xp.
For n > 0 we write
C(n) = ( gn)762) : Cén) — XO X X()

for the correspondence

cgn) OO
PN

;” XO X07

{

Xo

where Fy, : Xo — X, denotes the ¢g-th power Frobenius morphism.
We write Fix(C') (or sometimes Fix(c) if we want to emphasize the reference to the mor-
phism c¢) for the fiber product of the diagram (over k)
C
X 4A> X X Spec(k) X.
1
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If F € D’(X,Qy) we define a C-structure on F to be a map u : eqciF — F in D2(X, Q)
(or equivalently a map ciF — c,F in D%(C,Qy)).

A Weil compler on X is a pair (F, ), where F € DX, Q) and ¢ : FxF — F is an
isomorphism.

If (F, ¢, u) is a Weil complex with C-structure and n > 0, then (F, ¢) has a C™-structure
given by the map

o" u
n)x * T
U,(n) . CQ[C% ) /T‘ = CQ;CT} n)(*./[ — 62!61 — f

Assume now that ¢y is proper and that ¢y is quasi-finite.

For a fixed point = € Fix(C')(k) we get for any Weil complex with C-structure (F, ¢, u) an
endomorphism

Uy - f@(m) - fcg(a:)
defined as follows.

Since ¢ : C' — X is quasi-finite, we have
(2161 F)es(@) = ByFer)s

where the sum is taken over the set of points y € C(k) with c2(y) = c2(x). The map u, is
defined to be the composite

Fer(w) = Fer(a) —— Oy Fer(v) (cnCF)ea(a) — Fea(w)-

Deligne’s conjecture, proven by Fujiwara, is then the following:

Theorem 1.1 (Fujiwara [10, 5.4.5]). There exists an integer ng, independent of (F,p,u),
such that for any integer n > ng all the fized points of ¢™ are isolated, and

(1.1.1) r(™|RL(X,F) = > wr(ul”|Foyw)
z€Fix(C™) (k))

Remark 1.2. Note that the right side of 1.1.1 is a finite sum.

With the recent work on cohomology with compact supports for Artin stacks [13, 14], it
is natural to ask for a generalization of 1.1 to Artin stacks. In this paper we propose a
conjectural generalization for arbitrary stacks, and we prove this conjecture in a number of
cases (in particular for equivariant correspondences).

Fujiwara’s theorem is most naturally viewed in two parts. The first part is a geometric
statement that the fixed points of ¢(™ are isolated and that the sum of the “naive local terms”
D eFi(C (k) tr(uggn) | Fea(z)) is equal to the sum of the “true local terms” as defined in [3, III
§4]. The second part is a reduction to the Lefschetz trace formula [3, I11.4.7], which holds
when X is proper.

Similarly our work on stacks breaks up naturally as a study of the geometry of the stack
of fixed points, and then a study of the global trace formula. Following this breakdown of
the problem we now discuss our results.
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1.3. Statement of local theorem.

1.4. As above, let ¢ denote a power of a prime p, and let & = Fq be an algebraic closure of
F,. Let Z;/F, be an algebraic stack of finite type (but not necessarily separated). As in the
case of schemes, a correspondence on Zj is a diagram of finite type algebraic stacks over F,

o
Zo 2o,

or equivalently a morphism ¢ = (¢, ¢2) : 65 — 2o x Zo, and for an integer n > 0 we write
) — ( gn)’c2) : %O(n) X X

for the correspondence

c(ln) Cgo

;’ 20 2o,
| oo

¥
2o

where Fy, : Zy — Zo denotes the ¢-th power Frobenius morphism. We denote by Fix(%)
(or sometimes Fix(c)) the fiber product of the diagram (over k)

¢
o
X — v X Spec(k) 2.
Note that often the diagonal A is not quasi-finite, and therefore Fix(%’) is usually not quasi-
finite over €.

1.5. If ¢: 6y — Zo x Zo is a correspondence and f : 2y — 2 is a morphism of algebraic
stacks over F,, we define the pullback ¢ : 65 — 2 x Z{ of c along f to be the correspondence
obtained from the top line of the following fiber product diagram

y / /
Co— 2y X Z;

[

(50*0>Vg{0xe/g{0'

For later use it will be convenient to introduce the following non-standard terminology.

Definition 1.6. A morphism f : & — Y from an algebraic stack 2 to a scheme Y is
pseudo-finite if for every algebraically closed field €2 the map

|Z ()] = Y(Q)

is finite-to-one (where | Z°(Q2)| denotes the set of isomorphism classes in Z(2)), and for every
x € Z () the Q-group scheme G, of automorphisms of z is finite of k.
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The main local result is then the following:

Theorem 1.7. Let Zy/F, be an algebraic stack of finite type, and let ¢ : 65 — %o x 2o
be a correspondence with co representable and quasi-finite. Then there exists an integer ng
such that for every n > ng the stack Fix(€'™) is pseudo-finite over Spec(k), and for every
x € Fix(€™)(k) the automorphism group scheme Aty gy (z) is étale over k.

Remark 1.8. The statements that Fix(%(™) is pseudo-finite over Spec(k) and that the
automorphism group schemes Autp;, ) (7) are étale over k, imply that the maximal reduced

closed substack of Fix(%(™) is isomorphic to a disjoint union of classifying stacks BH of finite
groups H.
1.9. Global results and conjectures.

Before stating the stack-theoretic version of Deligne’s conjecture, we need to introduce
some technical results and definitions developed in the body of the paper.

Action of correspondences.

1.10. Let ¢ = (¢4, ¢2) : 6o — 2o X 2o be a correspondence of algebraic stacks of finite type
over [F,, with ¢; proper with finite diagonal and ¢, representable and quasi-finite.

As in the case of schemes (except we now consider possibly unbounded complexes), a
€ -structure on F € D (Z,Qp) is a map u : caciF — F in D, (Z,Qp) (or equivalently
i F — e, F in D7 (€,Qp)).

A Weil complex on 2 is a pair (F,¢), where F € D, (Z,Qp) and ¢ : F3F — F is an
isomorphism. We say that a Weil complex (F, ¢) is bounded if F € D22, Qy).

1.11. Let F € D_(Z",Qy) be a complex and let u : cocfF — F be a €-structure. In order
to obtain an action of u on RI'.(Z", F) we need an isomorphism

1+ F ~ enci F.

In the case of schemes this follows from the fact that c¢; is proper, and the very definition of
cu. In the case of stacks, this is far from obvious, and in fact false for torsion coefficients.
However, in section 5 we prove the following:

Theorem 1.12 (Corollary 5.17). Let f : & — % be a proper morphism with finite diagonal
between algebraic stacks. Then for any F € D_(Z,Qy) there is a canonical isomorphism
f!F — f*F

Convergent complezes.

1.13. Let D_(Qy) denote the bounded above derived category of complexes of Qg-vector
spaces with finite dimensional cohomology groups. Let K € D (Qy) be an object and ¢ :
K — K an endomorphism.

Now fix an embedding ¢ : Q; < C, and for i € Z let Eg'(¢) (or Eg'(¢)) denote the set of
eigenvalues of H'(¢ ®, C) acting on H'(K ®, C).

Definition 1.14. The pair (K, @) is t-convergent (or simply convergent if the reference to ¢

is clear) if the sum
> > W

PEZ A\eEgP ()
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converges.

1.15. If (K, ) is t-convergent, then the sum

> (FD)Pultr(p|HP(K)))

p

converges absolutely. We denote the limit by tr,(¢|K).

Definition of local terms.
1.16. Now consider an algebraic stack 2 of finite type over F,, and a correspondence ¢ =
(c1,02) 1 6o — Zo, with ¢; proper and ¢y quasi-finite and representable.

If (F, p,u) is a Weil complex with &-structure and n > 0, then (F, ¢) has a €' ™-structure
given by the map

e" u
u™ . c2!c§")*f = i FF — caiF — F.

1.17. For a fixed point (z,\) € Fix(%)(k), with x € € (k) and A : c2(x) — ¢(z) an
isomorphism in 2°(k), we get for any F € D_(Z",Q,) with a €-structure u : caciF — F
an endomorphism

Uz * Fes@) = Feala)
defined as follows.

Since ¢y : € — 2 is representable and quasi-finite, we have

<C2!C>{F)cz(x) = By Faw):

where the sum is taken over isomorphism classes of pairs (y, 7) with y € €' (k) and 7 : ca(y) ~
c2(x) an isomorphism in 2" (k). The map u, ) is defined to be the composite

A T * u
Fes@) = Fer(m) = By Fery) == (2l F ) ey(a) — Fes(a)-

1.18. Let (F, ¢, u) be a bounded Weil complex with @-structure, and choose (using 1.7) an
integer ng such that for every n > ng the stack Fix(%™) is pseudo-finite over Spec(k) with
étale stabilizers. In particular, any connected component § of the maximal reduced closed
substack Fix(4™),.q C Fix(¢™) is isomorphic to the classifying stack BH of some finite
group H. For such a component 3, define the naive local term at 3 (or just the local term at
3 if no confusion seems likely to arise) to be

LT.(3,(F,¢,u)) := ‘trb(wz,x) | Fea@))s

1
| Hz )

where (x,\) : Spec(k) — B is any k-valued point and H, ) is the automorphism group of
(z,A). Note that any two k-valued points (z,A) of § are isomorphic, so this definition is
independent of the choice of (z, ).

Statement of conjecture and global results.

Conjecture 1.19. Let (F,@,u) be a bounded Weil complex with € -structure on 2 . Then
there exists an integer ng (independent of (F,p,u)) such that for every n > ng we have:
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(i) The complex of Qq-vector spaces RT.(F) € D7 (Qy) with the endomorphism RT.(u(™)
1S L-convergent.

(ii) Fix(€'™) is pseudo-finite over Spec(k) with étale stabilizers, and

(119.1) tr(RT(u)[REF) = ) LB, (F, 0, u™)).
BCFix(%(n)

Remark 1.20. If r > 1 is an integer, then to verify 1.19 for (F, ¢, u) it suffices to verify 1.19
after making the extension F, — Fg for the Weil sheaves with @j-structure (F,¢", u o ¢’)

defined over Fyr (for j = 0,...,r — 1), where % is the correspondence (F% ocy,c2) : € —
X x Z.

Remark 1.21. In the case of Frobenius acting on an algebraic stack, the trace formula in full
generality follows from the work of Behrend [4], combined with the definition of cohomology
with compact support in [13, 14].

One might hope for a notion of a convergent complex Weil complex (F, ¢) with €-structure
on an algebraic stack 2~ generalizing Behrend’s notion for Frobenius in [4], and then a
generalization of 1.19 to a relative statement saying that the pushforward of a convergent
Weil complex is again a convergent Weil complex (see section 6 for how to push forward Weil
complexes with action of a correspondence). However, we have been unable to find a suitable
notion of convergent complex for actions of correspondences.

1.22. Equivariant correspondences. In this paper we will prove 1.19 in the special case
of equivariant correspondences (as well as a few other cases, see sections 11 and 12).

1.23. Let X(/F, be a separated scheme of finite type, and let Gy be a finite type group
scheme over F, which acts on Xy. Let a : Gy — Gy be a finite homomorphism, and let
c = (c1,c9) : Cp — Xy x Xy be a correspondence such that ¢, is proper, ¢y is quasi-finite.
Assume that Gy also acts on Cjy such that for every scheme-valued point x € Cy and g € G
we have a(g)*cy(z) = c1(g*x) (resp. gxca(x) = ca(g*x)). Let £ (resp. o) denote [Xo/Go|
(resp. [Co/Gy]) so we have a correspondence 6y — 2y x Zp which we again denote by c.

As we explain in 10.1, the map ¢; : 5 — £ is proper with finite diagonal and ¢, : 6y — 2o
is representable and quasi-finite.

Theorem 1.24. Conjecture 1.19 holds for any bounded Weil complex with € -structure on
Z .

1.25. Organization of the paper. In section 2 we prove a group theory result which plays
a key technical role in a number of the results that follow.

In section 3 we prove theorem 1.7.

In sections 4 and 5 we extend some results on trace morphisms from [2, XVII and XVIII]
to stacks, as well as prove the comparison result 1.12 between f, and f, for proper morphisms
with finite diagonal. These results may be of some use elsewhere, so we discuss both torsion
and f-adic coefficients. The main results are 4.1 and 5.1.

In section 6, we make some observations about pushforwards of Weil sheaves with action
of correspondences.
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In sections 7-9 we prove 1.24 in the special case of a classifying stack of a finite type group
scheme and for a correspondence induced by an endomorphism of the group, as well as for
correspondences arising from a diagram of finite groups.

Then in section 10 we prove 1.24 by reducing to the case of the classifying stack of a group.

In sections 11 and 12 we discuss 1.19 for algebraic spaces and Deligne-Mumford stacks.
It is an open question whether there is a version of Nagata’s compactification theorem for
algebraic spaces. Nonetheless, in the case of an automorphism of an algebraic space 1.19 still
holds as we explain in section 11. Furthermore, as we explain in section 12 the validity of 1.19
for a correspondence of Deligne-Mumford stacks is equivalent to the validity for the coarse
moduli spaces (in particular, 1.19 holds when the coarse moduli spaces are schemes, or if the
correspondence arises from an automorphism).

Remark 1.26. Fujiwara and F. Kato have recently announced a proof of Nagata’s theorem
for algebraic spaces. Granting this, one then also has Fujiwara’s theorem for correspondences
on algebraic spaces, and by the discussion in section 12 therefore also for Deligne-Mumford
stacks.

In sections 13 and 14, we illustrate the general theory with examples. The first example
comes from the theory of toric varieties, where in the smooth case the equivariant cohomology
is the so-called Stanley-Reisner ring. The second example is a higher dimensional version of
the formula [4, 6.4.11] of Behrend and Deligne, concerning traces of Hecke operators on
modular forms.

There is also an appendix concerning a technical point about extending Rf, to the un-
bounded below derived category.

1.27. Acknowledgements. I am grateful to Luc Illusie and Yuval Flicker for their questions
which helped initiate this work, and Arthur Ogus for several helpful conversations. Shenghao
Sun and Weizhe Zheng sent me several helpful comments on the first draft of the paper.
Finally I am grateful to Yves Laszlo for a number of helpful communications. This paper is
one aspect of our joint work on the six operations for stacks, and the ideas behind the paper
are very much joint with Laszlo.

The author was partially supported by NSF grants DMS-0714086 and DMS-0748718, and
an Alfred P. Sloan Research Fellowship.

1.28. Notation. By an algebraic stack 2 over a scheme S, we mean a stack over the category
of S-schemes with the étale topology such that the following hold:

(i) The diagonal A : " — 2" xg 2 is representable, quasi-compact, and quasi-separated.
(ii) There exists a smooth surjection X — 2" with X a scheme.

An algebraic stack 2 is called Deligne-Mumford if A is finite, and there exists an étale
surjection X — 2 with X a scheme.

Consider a pair (S, A), where S is a scheme and A is a ring. We say that (S, A) is admissible
if the following hold:

(i) S is an affine excellent scheme of finite Krull dimension.
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(ii) A is either Q or a Gorenstein local ring of dimension 0 with residue characteristic ¢,
where £ is a prime invertible in S.

(iii) There exists a function F' on non-negative integers, such that for any finite type S-
scheme X of dimension d we have cdy(X) < F(d) (see [13, 1.0.1] for more discussion
of this condition).

We remark that (S,Z/(¢")) or (S,Qy) is an admissible pair if S is the spectrum of a finite
or separably closed field, or if S is the spectrum of a complete discrete valuation ring with
residue field either finite or separably closed, and ¢ invertible in S.

If (S,A) is an admissible pair, then for any algebraic stack 27/S of finite type the theory
developed in [13, 14] applies. In particular, there exists a dualizing complex Q4 € D%(2", A)
on 2. We write

Dy :D(Z,N) — D(Z,\)

for the resulting dualizing functor.

2. SOME GROUP THEORY IN POSITIVE CHARACTERISTIC

2.1. Let [F, be a finite field with ¢ = p" elements, and let k be an algebraic closure of F,.
Let F : Spec(k) — Spec(k) denote the ¢g-th power Frobenius morphism, and fix the following
data:

(1) An integer n > 1.
(2) Two group schemes G and G’ of finite type over k.
(3) An open and closed subgroup scheme j : H — G.
(4) A homomorphism a: H — G'.
(5) An isomorphism A : F™*G — G.
Let F" : G — F™G' denote the map induced by the n-th power of the g-power Frobenius
on G'. The morphism F" sends a T-valued point v : T'— G’ (for some k-scheme T') to the
unique dotted arrow filling in the diagram
YoF

T

\\ Fr(v)
~
N

N
F=G' G’
| l
Spec(k) AN Spec(k),
where Fr denotes the g-power Frobenius on T'. Let
o™ H -G
denote the composite map Ao F" o a.

Proposition 2.2. For every element g € G(k) the map of schemes (not necessarily respecting
the group structure)
pg H— G, h o™ (h)gj(h)™

1s étale.
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Proof. For a local ring R with maximal ideal m C R and k > 0, let gr*(R) denote m* /mF+!
and let gr*(R) denote ®p>ogr*(R).

To prove the proposition, it suffices to show that for every v € H(k) the map
Py 8 (Oc.pym) — 81" (Orp)
is an isomorphism.
Lemma 2.3. For any v € G'(k) the map
Fn* . grk<OFn*G/7Fn*(,y)) — grk(OG//y)

is zero for k > 1.
Proof. Tt suffices to prove the result in the case £ = 1, or equivalently that the map on
tangent spaces is zero. This in turn is equivalent to showing that if v € G’(k[e]) is a point

over the ring of dual numbers reducing to the identity in G’(k), then F™(v) € F™G'(k[e]) is
the identity. This is clear because

Fiig: Spec(kle]) — Spec(k[e])
factors through the closed immersion Spec(k) < Spec(kle]) since n > 1. O
Lemma 2.4. For any v € H(k) the map

a* g (Og wim(y) — &t"(On,y)

is zero for k > 1.

Proof. Note that a(™* factors as

TL*

A* a*
grk(OG,a(”)('y)) - grk(OF"*G’,F”(a('y))) - grk(OG’,a(v)) - grk(OH,'y)7

where the middle arrow is the zero map. Il

If X and Y are k-schemes of finite type and = € X (k) and y € Y (k) are points, then the
pullback map
pr; : gt (Oyy) — g (Oxxyaxy)
admits a retraction induced by the morphism
Y - X XY, 2z (z,2).

It follows that there is a canonical decomposition of graded vector spaces

8" (Oxxvoxy) = 8" (Oxxvexy) @ 81" (Oyy).
If f: X — X"and g:Y — Y’ are two morphisms then the pullback

(f x9)" : gr'(Oxxy s (@) xg(m) — & (Oxxvioxy)

respects the decompositions. Furthermore there is a commutative diagram

* * [ ®g” * *
gr (OX’,f(x)) QK gr (OY’,g(y)) et gr (OX,x) O gr (OYJJ)

| |

" (fxg)* N
gr (OX’XY/,f(x)Xg(y)) ar (OXXY,ny)a
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where the vertical arrows are surjective. It follows that if f* : gr*(Ox ()) — gr*(Ox) is
the zero map for k£ > 1 then the map (f x g)* is of the form

0 0 k * * *
(0 g*> - 8r ((/)X’XY’,f(J:)><g(y))]L b gr (OY’,f(y)) — 8gr (OXXY,IX?J>T D gr (OYJJ)'

We apply this discussion with X' =Y’ =G, X =Y = H, and f (resp. g) equal to the
map o™ (resp. g-j(—)71), and the point 2 = y = 7. We conclude that the map
p; : gr*<OG,a(">(7)gj('y)—1) - gr*<0H»7)
factors as
gr*(OG@(")(v)gj(v)*l)

m*

gr*((9G><G’,oz(")(’y)><gj('y)—1)Jr D gr*<0079j(7)_1)
0 O

G 2)

gr*((ngH,yx'y)Jf b gl"* (OH,’Y>

A*

gr*<OH,y)-

To prove that p, is étale at «y it therefore suffices to show that the composites

(z,y)—y

8" (Og atm(1)gi(n-1) —— 8" (Oxc.atm (1) xgitn-1) @ 8 (Oc gjin)-1) —— 8" (Oc gj(1)-1)

and

* 2—(0.2) * * Ar *
er*(Ony) —gr (OHXH{YXW)T © gr*(Op,) —gr"(On )

are isomorphisms. This follows from consideration of the commutative diagrams
G

(™) (7),id) l
GxG2—=(G

o™ (7)-(-)

and
id

/\r

H- 2~ HgxH %
0

Remark 2.5. Proposition 2.2 also holds in the case when n = 0 if the homomorphism « is
nowhere étale (which implies that 2.4 holds also for n = 0).
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3. PROOF OF THEOREM 1.7

Let ¢c: 6y — Zy X Z, be as in 1.7.

Lemma 3.1. Let f : 2] — Zo be a representable and quasi-finite morphism of algebraic
stacks over F,. Then if ¢ : €5 — &y x Z; denotes the pullback of ¢ along f (see 1.5), then
the projection ¢y : 65 — A, is representable and quasi-finite.

Proof. Consider the commutative diagram of algebraic stacks where all squares are cartesian

!
Co

0

|\

¢ pra
Do —Z Xy x X2

L

C —C Do x Xy 22 2.

Cc2

Since ¢y is representable and quasi-finite, the morphism pry o ¢y : Zy — 2 is representable
and quasi-finite, and since f is representable and quasi-finite the morphism a is representable
and quasi-finite. It follows that the composite

Cy =Ppryocgoa
is also representable and quasi-finite. U

3.2. We can in particular apply 3.1 to the morphism f : Zgrea — Zo from the maximal
reduced closed substack of 2. If 65 — Zorea X Zorea denotes the pullback of %, then the
natural map

Fix(‘go/(n)) — Fix((fo(n))
is a closed immersion defined by a nilpotent ideal. Since the notion of a pseudo-finite mor-
phism in 1.6 is insensitive to the infinitesimal structure on %, it therefore suffices to prove
1.7 under the additional assumption that %2 is reduced.

3.3. If %4 C %o is an open substack with complement 2y, and €y o — % x % (resp.
Cro— 2o x 24) is the pullback of 6; to % (resp. Z5), then the two correspondences
(331) %%’0 — %0 X %, %5,0 — % X %

also satisfy the assumptions of 1.7 by 3.1. Moreover, Fix(%(; )) is an open substack of

Fix(4™) with complement FiX(‘@(; )). To prove 1.7 for 6y — Zoy x % it therefore suf-
fices to prove 1.7 for the two correspondences 3.3.1.

3.4. By noetherian induction it therefore suffices to show that 1.7 holds for a nonempty open
substack of our reduced stack 2.

Let %y — 2 be the inertia stack. Since 2 is reduced there exists a dense open substack
U, C %, such that the restriction .#y o — %, is flat. We can then form the rigidification
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of % with respect to .#y ( as for example in [17, §1.5] to get an algebraic space Uy with a
morphism 7 : % — Uy which is universal for morphisms to algebraic spaces. Replacing 2
by %, we may assume that the inertia stack %y — 2 is flat over Zy. Let 7w : Zy — Xq be
the rigidification. Then X is an algebraic space with quasi-compact diagonal, and therefore
by [12, 11.6.7] X, contains a dense open affine subscheme. Replacing 2, by the inverse image
of this open subscheme, we may assume that X, is an affine scheme.

Next observe that we may also assume that the inertia stack .#» o — % is flat over 4.
Indeed note that if 6jea C %) is the maximal reduced closed substack then the correspon-
dence

C50 gred %

also satisfies the assumptions of 1.7 and for every n > 0 the map le((f(")) — Fix(¢™) is a
closed immersion defined by a nilpotent ideal. We may therefore assume that % is reduced.

Furthermore, if %5 C %, is an open substack with complement 75 C %, then the corre-

spondences
Yo — Zox Zo, Ty — Zo X Zo

also satisfy the assumptions of 1.7 and Fix(# (™) is an open substack of Fix(¢'™) with
complement Fix(.7 ™). Stratifying % by substacks over which the inertia stack is flat we
reduce to the case when %y, — %) is flat. Let 4, — () denote the rigidification. After
further shrinking on %, we may assume that Cj is also an affine scheme. We then have a
commutative diagram

P Cy x
2N
X X
This diagram induces for every n > 0 a morphism

p : Fix(¢™) - Fix(C™),

3.5. Fix a point x € Fix(C™)(k). The groupoid p~!(x) C Fix(%¢™)(k) can be described as
follows.

Fix an object £ € %' (k) mapping to the image of z in C(k). Since  maps to the same
element of X (k) under either ¢y or F-cy, it follows that cy(Z) is isomorphic to F-c1(Z). Let
G, (z) be the automorphism group scheme of ¢;(2) € 2°(k), and let P denote the G, s)-torsor
of isomorphisms in 2 (k)

A co(T) — Fye(2).
Let Gz be the automorphism group scheme of & € €' (k). There is an action of Gz on P for
which v € Gz sends A to the composite

c Fg.c
Cg(f) ﬂ Cg(j') 4>\> F{%Cl<i')&l>) Fgfcl(i) .



FUJIWARA’S THEOREM FOR EQUIVARIANT CORRESPONDENCES 13

The groupoid p~!(z) is then isomorphic to the quotient groupoid [P(k)/Gz(k)]. In particular,
the set of isomorphism classes of objects in p~!(x) is equal to the set P(k)/Gz(k).

Proposition 3.6. If n > 1 then the set P(k)/Gz(k) is finite.

Proof. For any A € P(k), let
orx:Gz = P, vi—yxA

be the map of schemes defined by the action. To prove the proposition it suffices to show
that o) is étale. For then the image is open, and since P is quasi-compact there exists finitely
many A, ..., A, € P(k) such that the images o,,(Gz) cover P.

Lemma 3.7. The map ps : Gz — Gey(z) induced by ¢y is an open and closed immersion.

Proof. Since c5 is representable and quasi-finite, the fiber product of the diagram

€

Spec(k) 2@ v

is an affine scheme Spec(A) finite over Spec(k). The maximal reduced closed subscheme
Spec(Areq) C Spec(A) is therefore equal to a disjoint union

Spec(Ared) = H Spec(k)
ses
of copies of Spec(k). The group scheme G, ) acts on Spec(A;eq) and therefore also on the
set S. This defines a homomorphism
u: Geyz) — Aut(S).

The point Z corresponds to a distinguished element sy € S, and G; is the stabilizer in G, )
of this element. From this the lemma follows. Il

We now apply 2.2 with G = Gy, H = Gz, G' = G, ), j : H — G the inclusion defined
by ¢z, and « the map given by ¢;. An element A € P(k) defines an isomorphism F"™G’ ~ G
which we again denote by A. This isomorphism has the property that the composite map

H _ P A G
is equal to the map
H— G, hw jh)a™(h)™L
That oy is étale therefore follows from 2.2. This completes the proof of 3.6. U

Note also that if we fix an isomorphism A : ¢2(Z) — Fj-¢1(Z) so that (Z,\) is an object
of Fix(%™), then the group scheme Autpi ) (Z, A) is equal to the inverse image of the
identity under p. : Gz — Geys). Since p. is ¢étale it follows that the automorphism group
scheme of any object in Fix(%™) is finite étale over k.

To complete the proof of 1.7, it therefore suffices to choose an integer ny such that for any
n > ng the set Fix(C™) is finite. This is possible by [19, 1.2.2]. O
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4. TRACE MAP FOR QUASI-FINITE MORPHISMS OF STACKS

Fix an admissible pair (S,A) as in 1.28 .

The main result of this section is the following.

Theorem 4.1. There exists a unique way to associate to any quasi-finite flat morphism
f: X — % of algebraic stacks and constructible sheaf of A-modules F' on % a morphism

(411) tl"f . flf*F — F
such that the following hold:
(1) (Functoriality) The morphism try is functorial in F'.

(11) (Compatibility with base change) For every cartesian diagram

PRy
ol
a —2 gy
with f flat and quasi-finite, and F' a constructible sheaf on % the diagram
(4‘1‘2> Rof!’f’*g*F:Rof,’g’*f*F*a>g*R0f1f*F

gF

commutes, where the morphism a is the base change isomorphism.
(iii) (Compatibility with composition) Let
g f
X —Y —Z

be a diagram of quasi-finite flat morphisms of algebraic stacks and let F be a constructible
sheaf on % . Then the diagram

(4.1.3) g f*F —2= fif*F

-l

(fon(fgyF —Lv

commutes.

(i) (Normalization) If % =Y is a scheme, and p: W — 2" is a smooth surjection with
constant fiber dimension d, then the diagram

pipt—id

(4.14) o [P — fpp £ F(—d)[~2d) "= o f* F(—d)[~2d] —Ls F(—d)[~2d]

l_ trpf

(pfh(pf) F

commutes, where tr,s is the trace map defined in [2, XVIIL.2.9] and the map t is the map
defined by the isomorphism p* ~ p'(—d)[—2d].
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In the case of a quasi-finite morphism of schemes f : X — Y and F on Y the trace
morphism try agrees with the morphism defined in [2, XVII, 6.2.3].

The proof will be broken into several steps 4.2-4.12.

_ Note that by adjunction giving the morphism 4.1.1 is equivalent to giving a morphism
try: f*F — f'F.

4.2. Some cohomological observations.

Lemma 4.3. (i) For any G € D%, \) we have f'G € D"*(2°, A).

(i1) For any constructible sheaf of A-modules F' on %', we have

Ext'(f*F, f'F)=0 for i<0.

Proof. Statement (ii) follows immediately from (i).

To prove (i), note that the assertion is local in the smooth topology on %, and the Zariski
topology on Z". It follows that it suffices to consider the case when % is a scheme and there
exists a smooth surjection p : W — 2" with W a scheme such that the fibers of p are all of
dimension d, for some integer d. Since p'f'G ~ p* f'G(d)[2d] it therefore suffices to show that
(fp)'G € Dz724(Z") which is [2, XVIIIL, 3.1.7]. O

Lemma 4.4. Let s € Z be an integer. Then for any F € Dﬁ“”’ﬂ(%,/\) we have fiF €
DNy A).

Proof. 1t clearly suffices to consider the case s = 0.

Let d be the maximal integer such that R*f,F" # 0. Then for any constructible sheaf of
A-modules G on # we have

Ext (£iF,G) = Hom(A#(f,F),G).
On the other hand, we have by adjunction
Ext™(fF,G) = Ext™*(F, f'G),
which since f'G € DI®) (2" A) is zero if d > 0. Thus if d > 0 we find that
Hom (% (f,F),G) =0
for every constructible sheaf G. This is a contradiction (take G = S fiF)). O

Remark 4.5. It follows that if I’ is a constructible sheaf of A-modules on %/, then giving a
morphism f,f*F — F is equivalent to giving a morphism R°ff*F — F.

Remark 4.6. Both 4.3 and 4.4 hold without the assumption that f is flat, with the same
proofs.
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4.7. A special case.

Consider first the case when % is a scheme and there exists a scheme W and a smooth
surjection p : W — 2 with constant fiber dimension an integer d. Let Z denote W x oo W
so we have morphisms

pry,pro: Z — W, q: 7 - Z.

The morphisms pr; are smooth of constant relative dimension d and the morphism ¢ is
smooth of relative dimension 2d. To define the map try : f*F — f 'F it suffices to construct
a morphism

e p f'F —pf'F
such that the diagram

%,k Lk prie %,k
(4.7.1) prip* f*F —— prip* f'F

Pk

pr3p” f*F > pryp* f'F
commutes.

To define the map €, note that since p is smooth of relative dimension d we have p*f'F ~
p' f'F(—d)[—2d] ~ (fp)'F(—d)[—2d]. Therefore giving € is equivalent to giving a morphism

(fp)*F — (fp) F(~d)[-2d].
For this we take the map tNrfp defined by the trace map in [2, XVIII, 2.9].

Remark 4.8. The commutativity of the diagram 4.1.4 is equivalent by adjunction to the
commutativity of the diagram

P I F — e P (—d)[-2d) S gl F(—d) 2

(pf)*F.

Thus the normalization condition (iv) is equivalent to the condition that prtr 7 is equal to the
map € defined above.

To verify that 4.7.1 commutes, note that for i = 1,2 the diagram

ﬁfp

pr;p* f*F —= prip* f'F — pri(fp)' F(—d)[—2d]

\L - i {;rpri

(fa)'F (o) F(—2d)[—d

commutes by [2, XVIII, 2.9 (Var 3)] and the map ﬁrpri is an isomorphism. This implies that
prie = prie.
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Lemma 4.9. The induced map ﬁ“f . [*F — f'F is independent of the choice of the covering
p: W — 2.

Proof. Let ﬂf be the map defined usingp : W — 27, and let p’ : W' — 2" be a second smooth
covering of relative dimension d’, and let tNr/f be the map defined using p’. By considering

the product W x o~ W', to show that ‘Evrf = E}} we may assume that there exists a smooth
morphism h : W — W over 2.

Then using [13, 2.3.4] to prove that Ei'f = {;}/f it suffices to show that p’*ﬁ"f = p’*ﬁ"}. This
follows from [2, XVIII, 2.9 (Var 3)] and consideration of the diagram

trfp/

{/ﬂ_\\

P — = P~ () F(~d')[~2d]

lN Tﬁ‘h
tr

Wep* f*F —= h*p f'F —== b*(fp)' F(~d)[~2d].

\'-/

ﬁfp

Lemma 4.10. Property (ii) holds for a morphism of schemes g : %' — % .

Proof. Let p: W — 2 be a smooth morphism of constant fiber dimension d as above, and
let W’ denote 27 x o~ W so we have a commutative diagram

W —L—=w

P,k

X ——Z

b

@

To verify the commutativity of 4.1.2 it suffices to verify the commutativity of the diagram

% % =~ % L% be * *
[*g*F — g"[*F —— f'¢* fif*F

%%

f'g*F,

where “bc” denotes the map induced by adjunction from the base change isomorphism. For
this in turn it suffices to verify that it commutes after applying p*. Consider the following
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diagram
(f)'g*(fon(fp) F
be
p/*f/*g*F = p/*gl*f*F
l&f/ ibc trp
&f/p/ f p/*f/!g*F p'*f’!g*fzf*F

try

(') g F(=d)[=2d] <— (/'P)'g" i F(—d)[-2d].

By [2, XVIII, 2.9 (Var 2)] the big outside diagram commutes, and all the small inside diagrams
commute by the construction of the trace map, except possibly the top square. It follows
that the top square also commutes. Il

4.11. The general case.
Now consider the case of a general quasi-finite flat morphism f : 2" — #.

Let Y — % be a smooth surjection with Y a scheme, such that there exists a smooth
covering W — Zy by a scheme W with constant relative dimension d. We then obtain a
canonical morphism

hf*Fly — Fly

such that the two pullbacks to Y x4 Y agree (by 4.10). Using 4.5 this map over Y descends
uniquely to a morphism try : fif*F — F. As before we let try : f*F — f'F denote the map
obtained by adjunction.

We now verify (i)-(iv). Property (i) is immediate, and property (iv) follows from 4.9.

Let us verify property (iii). To show that 4.1.3 commutes, it suffices to show that the
diagram

(4.11.1) GFF - gl R
o

~ g!f!F

. I

h*F hF

commutes, where we write h := gf. Furthermore, it suffices to verify the commutativity of
this diagram after pulling back along any smooth surjective morphism X — 2.
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Let p : Z — 2 be a smooth morphism with Z a scheme, and set %7 := % X4 Z and
X7 =X Xy Z so we have a commutative diagram

We then get a diagram

/* /*f F g/'p/*f F g/*f/* *F

11 *f*F t}g En! F
g —Dp gf
/*fF

try,

p//* h* F p// g F S g

= ~ = trf/
try,
g* frp F — g f'p*F. (\J

It follows from the construction of the trace map that all the small inside diagrams commute,
except possibly the middle square in the left column. To verify that this last square commutes
it therefore suffices to show that the big outside diagram commutes. This reduces the proof
to the case when & is a scheme.

By a similar argument, one reduces to the case when 2" is also a scheme.

So now consider the case when 2" and 2 are schemes, which we denote by roman letters
X and Z respectively. Let p: Y — % be a smooth morphism of constant relative dimension
d and with Y a scheme. Let Xy denote X x4 Y. Then Xy is an algebraic space. Consider
the commutative diagram

XYHY

\

XH@HZ

~_ 7

h

To verify that 4.11.1 commutes it suffices as mentioned above to verify that it commutes after
pulling back along p’, for if this holds for all smooth (not necessarily surjective) morphisms
Y — % of constant relative dimension, then there exists a smooth surjection X — 2" such
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that it holds after pulling back to X. Now consider the diagram

tr s
g/*p*f*F _ 9 g/'p*f*F

~ ~

Ik ok 5 &g /% | *F t}f,

g fF——=p g f

fry

Py f'F —=g"p f'F(~d)[~2d]
prh*F p*h'F. /

~_

1

try,

Again it follows from the construction of the trace map that all the small inside diagrams
commute except possibly for the bottom-left pentagon and the big outside diagram commutes.
This reduces the proof to the case when X is an algebraic space and Y and Z are schemes.
To verify that 4.11.1 commutes in this case, we may work étale locally on X which finally
reduces to the case of X, Y, and Z all schemes which follows from [2, XVIII, 2.9 (Var 3)].
This completes the verification of property (iii).

As we now explain, the verification of property (ii) proceeds using a similar reduction to
the case of schemes, and the observation that (ii) holds by the construction of the trace map
in the case when %/ — % is a smooth morphism.

Reduction to the case when % is a scheme. Let p : Y — % be a smooth surjection with
Y ascheme, and set Y := %' Xy YV, Zy = Z Xa Y, and 27, := 27 X4 Y’ so we have a
commutative diagram

/ h'

Y/ %Y
q/
A
A ‘/g X w
I Y Ly
p/
/ ft/
g

&’ 4
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We then obtain a diagram
p/*f!lf/*g*F = pl*f!/g/*f*F

/ trf/ lbc

1, I o Ik % trw/ /% % trf /% % *
ww"pr gt F prgF g hfE

l tr,,/ J(
w'/w/*h*p*F h*p*F o h*p*.ﬁf*F
= try
be be
h*ww*p* F,

where the morphisms labelled “bc” are base change isomorphisms.

As usual to verify the commutativity of 4.1.2 it suffices to verify that it commutes after
applying p™, and therefore it suffices to show that the top right square in the preceding
diagram commutes.

It is clear that all the small inside diagrams commute except possibly the top right square
(whose commutativity we are trying to verify), and the bottom left triangle. Since the big
outside diagram commutes by associativity of the base change isomorphism, it therefore
suffices to verify that the bottom left triangle commutes, which reduces the proof to the case
when % =Y is a scheme. We assume this henceforth.

Reduction to the case when %" is a scheme. Let p: Y’ — %' be a smooth surjection with

Y’ a scheme, and set 2y := 2" X4 Y’ so we have a commutative diagram
P’ g
Ay 2 X
\Lf” \LJC/ if
vy Ly,

We then obtain a diagram
p*f!/f/*g*F i> p*f!/gl*f*F
/ itrf/ \Lbc
/ trg

~| p'g'F g hfE
tr e be
\ T f/
f!l/f/l*p*g*F’

where as before we denote a base change isomorphism by “bc”. The big outside pentagon
commutes by the associativity of the base change isomorphisms, and therefore to verify that
the top square commutes it suffices to verify that the bottom triangle commutes. This then
reduces the proof to the case when %’ = Y” is also a scheme.

Reduction to the case of schemes. Finally one reduces to the case when 2" (and hence also
Z") is a scheme, by the same argument used in the proof of 4.10. This completes the proof
that the maps tr; we have constructed satisfy properties (i)-(iv).
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The uniqueness of the maps try follows from the vanishing of the negative &xt-groups as
in the beginning of the proof of 4.1 which reduces the proof of the uniqueness to the case of
schemes.

4.12. Proof of uniqueness. By 4.5, the trace map try : fif*F — F' is determined by the map
Rff*F — F. Therefore the trace map is determined by its restriction to a smooth cover
of . We may therefore assume that % is a scheme and there exists a smooth surjection
p: W — 2 of pure relative dimension d. In this case the uniqueness follows from 4.8.

This completes the proof of 4.1. U
4.13. Theorem 4.1 can be generalized to complexes F' € D (%, A) as follows. The map
try: AN — A
defines by duality a morphism
Qo — fQa,

which by adjunction corresponds to a morphism
tr‘} CQuy — Qo
For F € D_ (%, ), we therefore get a map

(4.13.1) f*Dy(F) —> R om(f*F, Q) v RA#om(f*F,Qy) = Dy (f*F),
where the map « is the canonical map
f*RAom(F,Qy) — RAom(f*F, f*Qu).
By adjunction this defines a morphism
Dy (F) — f.Do (f*F),
and we define
try: if'F — F
to be the map obtained by applying Dy .

4.14. In the case of a constructible sheaf F' on %', we then have two possible definitions of a
trace map fif*F — F. Let try (resp. tr}) denote the map in 4.1 (resp. 4.13).

Proposition 4.15. The maps try and tr} are equal.
Proof. By 4.5 the assertion is local on % in the smooth topology, so we may assume that

% =Y is a scheme, and there exists a smooth surjection p : W — 2 of constant fiber
dimension d. Let ¢ : f*Dy(—) — Dy f*(—) be the transformation 4.13.1. By construction,

the adjoint map ‘&; . f*F — f'F is the composite

(4.15.1) FF—= [*D2(F) -2~ Dy f*Dy (F) — {'F.

Let g : W — Y denote the composite fp. By the same argument as in 4.13, the trace map
tr: g1g*A(d)[2d] — A defined in [2, XVIII.2.9] induces a natural transformation

Yy : 9" Dy (=) — Dwg*(=)(—d)[-2d].
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By 4.1 (iv), the diagram

fAprAprA( 2d]

4 l

trg

g*A —d)|

commutes, where the map 7 is induced by the isomorphism p! = p*(d)[2d]. From this it
follows that p*tr;, which we view as a map ¢*F — ¢'F(—d)[—2d] is equal to the composite

~ g *
g*F — g*DYF — Dywg* Dy (W)(—d)[—2d] == ¢'F (~d)[-2d].

On the other hand, the map g*F — ¢'F(—d)[—2d] obtained by pullback back ’&f is by
the construction of trf equal to trg Proposition 4.15 therefore follows from the following
result. U

Lemma 4.16. Let g: W — Y be a flat morphism of schemes of finite type over S and with
constant fiber dimension d. Then for any constructible sheaf F' on'Y the map try : g*F —
g'F(—d)[—2d] is equal to the composite

GF 2o g*D2F "+ Dyg* Dy F(—d)[~2d] —=> ¢'F(—d)[—2d].
Proof. Using the argument of [2, XVIII, proof of 2.9 (c) and (d)], we may assume there exists
a factorization of g
W —> AL >,
where a is quasi-finite and flat and b is the projection.
By [2, XVIII, 2.9 (Var 3)], the diagram

g A g'A(—d)[—2d]

-, :

a b A " VA (=d)[=2d] —> QA (—d)[~2d]
commutes. This implies that the diagram
Yg *
g9*Dy Dy g*(—d)[—2d]

:i l:

a*b* Dy —= a* Dy b (—d)[~2d] = Dy a*b*(—d)[—2d]

commutes. From this it follows that it suffices to prove the lemma for the morphisms a and

b.

The statement for b is immediate.
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Thus we are reduced to proving the lemma in the case when g is also quasi-finite. In this
case, let k be a separably closed field and ¢ : Spec(k) — Y a geometric point. Then it follows
from the constructions that both tr, and tr; induce the summation map

Do by >~ 99" (F)g — Fy,
where the sum is taken over liftings w : Spec(k) — W of 3. O

5. COMPARISON OF f; AND f,

Fix an admissible pair (S,A). Throughout this section we work with stacks over S and
A-coefficients.

The main result of this section is the following:

Theorem 5.1. (i) Let [ : & — % be a quasi-finite morphism of algebraic stacks with
A — X xXg Z finite. Then for any constructible sheaf of A-modules F' on 2", there is
a canonical morphism

(511) € . le — f*F

(i1) Assume further that f is proper and that one of the following conditions hold:

(a) A= @e;
(b) For every algebraically closed field Q@ and point x : Spec(Q2) — 2 with image y €
Y (Q) the étale part of the group scheme (finite over 0 since the diagonal of f is

finite)
G := Ker(Aut, () — Aut, (y))

has order invertible in k.
Then the map ep : f{F — f.F is an isomorphism.
Remark 5.2. If we wish to emphasize the morphism f we write e? for ep.
Proof of 5.1. Giving the map 5.1.1 is equivalent to giving a map F — f'(f.F). Since
A (f' f.F) =0 for i <0 by 4.6, this is in turn equivalent to a morphism F — JZ°(f'f,F).

Consider first the case when ¢ is a quasi-compact scheme. By Chow’s lemma [16, 1.1]
there exists a proper surjection p: Z — 2 with Z a scheme. Let W denote Z X o Z and let
q: W — Z be the projection. Define sheaves

H:= R%.p'F, G:= R%.¢*F.
We then have an exact sequence on 2
0—F—H—G.
This sequence induces an exact sequence
0— R°f,F - R'f.H — R°f.G
and then an exact sequence (using 4.3)

0 — HAO(fRfF) — H°(f R f.H) — A°(f R £.G).
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Since
AR fH) = A°(f fpp*F), A°f'Rf.G) ~ A°(f fuqq"F),
we obtain an identification
%O(f'f*F) = Ker(%o(f!f*p*p*F) - %0<f!f*Q*q*F))‘

Therefore to define a map s : F' — f'f.F it suffices to define a map s, : F — f'f.p.p*F such
that the two maps

F— f!f*CI*q*F

obtained by composing s, with the two pullbacks

pr; : [ fpp F — [ fuq'F

are equal. We claim that the map s, : ' — f'f.p.p*F defined as the composite
(521) F Hp*p*F ip'p*F — f'f*p*p*Fa

has this property, where the canonical ismorphism p,p*F ~ pp*F is by [13, 5.2.1] using the
fact that p is proper and representable, and the map a is the map obtained by adjunction
from the map

fiop*F = (fop)p™F — (fop)up™F =~ fup.p™F,
where the map (fp); — (fp). is the natural map defined for morphisms of schemes.

To see this note that by a similar construction there is a canonical map s, : F' — f' f.q.q*F
defined as the composite

F—>q.q¢'F —=>qq'F - f fequq .
Lemma 5.3. For i = 1,2 the composite map
F " [ o F s [ foguq' F
is equal to s,.

Proof. Let p : p*F — pr,;,q"F be the morphism induced by adjunction. To prove the lemma
it suffices to show that the following diagram commutes

F——=pp'F ——=pp'F —— f' fp.p*F
@ g v
@ ©)

P Pt g F — f' fuppr, ' F

lw @ lN

Q*q*F = q‘q*F b f'f*Q*q*F
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The small inside diagrams 1 and 3 clearly commute. The commutativity of 2 follows by
noting that we have commutative diagrams of functors

N Propy .
P«sp —————Dpp

%, x PI=Dx * ok
P+Pr; pr;p- —— p1pr, pr;p-,
and

P1=px Tjx =PT;)

pepr; 27 pipr, P pr,

i q«==q1 l

qx q-

The commutativity of 4 follows from noting that the diagram of functors

fip1— fap
JipipTy — [uP«PTys

fra— frqx l
hg ——— fiq.

l Pr;« =PT;

commutes. O

Let sp : F — f'f.F be the resulting morphism, and let ez : iFF — f.F be the map
obtained by adjunction.

In order to define e¢r in the case when % is a stack, we need the following lemma which
we will generalize in 5.5 below.

Lemma 5.4. Let g : %' — % be a smooth morphism of schemes, let 2 denote " Xo X
so we have a cartesian square

L g

.

v —=
Then for any constructible sheaf of A-modules F' on Z  the diagram

flg*F <“— g fiF

EQI*F\L lg*eF

fig"F L g foF

commutes, where the morphisms o and 3 are the base change isomorphisms.
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g [ [F /»\c
can \ ,l

g'F I'g* FF

/ \L Sgl* J/ €F
o rrgr o 1L
J{id—)p;p’* id—p.p* l //

¥

g F _— g* ' fupp*F,

where the map c is the composite

Proof. Consider the diagram

5.2.1 o 1 —id .
FRE == [ fepp™ F = [ f.p.p*F,

and ¢ is the map defined as in 5.2.1.

The small diagrams on the sides commute by definition of s «p and €p, and the bottom
square clearly commutes. To prove the lemma it suffices by adjunction to verify that the top
inside pentagon commutes, and since

%O(f/!fig,*F) N %O(f” f;p;p/*g/*F>

is injective, it therefore suffices to verify that the big outside diagram commutes. This reduces
the proof to the case when 2" is a scheme, where the result is classical. Il

This enables us to define the morphism fiFF — f,F for general f and F' a constructible
sheaf. Indeed as noted earlier such a morphism is specified by a morphism of sheaves F' —
HO(f'f.F), and so it suffices to construct a morphism fiFF — f,F locally in the smooth
topology which is compatible with base change. We therefore have maps ep : fiF — f,F and
sp: F — f'f.F also for general morphisms f and constructible sheaves F.

Lemma 5.5. Let g : %' — % be a morphism of algebraic stacks, and let Z' denote ' xo X
so we have a cartesian square

(%'/ QHI ‘%'
v
v =
Then for any constructible sheaf of A-modules F' on Z  the diagram

(5.5.1) ROflg*F <“— g*Rf,F

EQI*F\L \Lg*eF

ROflg*F <" gROf,F

commutes, where the morphisms o and 3 are the base change morphisms.
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Proof. As usual, we may work locally in the lisse-étale topology on both %" and #’. We may
therefore assume that both % and #” are schemes, and that there exists a proper surjection
p:Z — 2. Let p: Z/ — Z" be the pullback of p so there is a commutative diagram

1

g

7 ——Z
Pl
g
ool
g
Consider the diagram
(5.5.2) fig"F - g hE
uy . w\
gl*F ER
* * * /8 * * *
.p" g F fig"F g f.F g* fipp*F
i'v id—plp"* J/N
fow™g"F 5 9" fipw* F
e(p’g*A e Ep*F

fp" 9" F <—g" fupup™ F,
where the square

* * ’y * %
finp"™ g F <— g* fipp* F

6(p/g/)*F\L iq’*F

[N ANNE W E

DTG ~—— g fupp F,

is the analog of 5.5.1 for the cartesian diagram

1

Z/gHZ

f’p’l J/fp
g
W — X
By the case of schemes and F' concentrated in degree 0 this diagram commutes. Furthermore,

all the small inside diagrams in 5.5.2 clearly commute except the top center square whose
commutativity we are trying to verify. Since the map

A (fog" F) — A (fiplp™g")

is injective, this implies that this top center square also commutes which proves the lemma.
O

Lemma 5.6. Let
7ty oy
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be a diagram of algebraic stacks and let F' be a constructible sheaf on X . Assume that f and
g are quasi-finite with finite diagonals. Then the diagram

Eé‘ eg*F
(5.6.1) g!f!FHQ!f*Ff*>9*f*F
- -
na (9f)F

commutes.

Proof. As usual it suffices to show the result locally on 2. We may therefore assume that
% is a quasi-compact scheme and that there exists a commutative diagram

/

x-L.y
CN AN
q P
f g
vty g

where p and ¢ are proper surjections and X and Y are schemes. By the construction of the

maps eé and the case of schemes the following diagram commutes

ef €4
g!f!F g'f*F Br g*f*F
lidﬂq*q* id—qs«q” id—qsq”
g
* * Gf* xq* F *
g!f!Q*q F g'f*Q*q F = g*f*Q*q F

lq* - id—p.p* id—p.p* \

p*p *fraxq* F

g\ F GpsP" [+ @@ F ——= gupp" f1quq" F ) gt

\ P 14
f 9

6q*F px fha* F

2

where p : p*f.q. — fL is the morphism of functors induced by adjunction from the natural
isomorphism f,q, ~ p.f.. Now to verify that the diagram 5.6.1 commutes it suffices to show
that the composite map

f
f*F id—g«q* « @ 2P [ "
GfiF = g fF 5 g P g Fagug Ffﬂg*p*f’ F

is equal to the composite

gf
id—q«q* * @k Dx %
G fiF —= g fF "2 g, foqug Fiﬂg*p*f’ F.
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This follows from noting that by the construction of e%f the following diagram commutes

9f

€ id—g«q* % *q*ﬁp*fi %
gHF —"— g. f.F G [+Qxq Pﬁﬁg*p*ﬁiq F
id—qsq” i Y
1G5 2P f] . €0sp
g!f!q*q*FtHg!p*f(q F. !

g

Corollary 5.7. Let g : Z' — Z be a universal homeomorphism, and let ' : Z' — &
denote the composite fg. Then for a constructible sheaf of A-modules F' on 2 the map
6{; : hF — f.F is an isomorphism if and only if the map ei;;F : flg*F — flg*F is an
tsomorphism.

Proof. Indeed by 5.6 there is a commutative diagram

f
€F

lidﬂg*fg* lidﬂg*g*
eg*F €hugt F .
flg'g*be'g*g*F;f*g*g F
flgF flg"F,

where the vertical arrows as well as the map eg* 5 are isomorphisms since g is a universal
homeomorphism. O

Q
*

We use this to prove that in the case when f is also proper and one of the conditions in
5.1 (ii) hold the map fiFF — f.F is an isomorphism. Using 5.5 and the base change theorems
[13, 5.5.6] and [16, 1.3] to prove that the map fiF — f.F' is an isomorphism it suffices to
consider the case when % = Spec(k) is the spectrum of an algebraically closed field. We may
also assume that 2" is connected.

Pick a section s € 27 (k) and let G denote the finite automorphism group scheme of s. We
then have a closed immersion j : BG — 2 defined by a nilpotent ideal. By 5.7 it therefore
further suffices to consider the case when 2 = BG for some finite k-group scheme G, which
in the case of torsion coefficients has étale part of order invertible in k.

Let Gieq C G denote the maximal reduced closed subscheme. Then G,.q is an étale sub-
group scheme, and the map BG,.q — BG is a universal homeomorphism. We can therefore
further assume that G is equal to its maximal étale quotient. In this case if F'is a sheaf on
BG corresponding to a G-representation V', then we have canonical isomorphisms fiF' ~ Vg
(coinvariants) and f,F ~ V# (invariants). We claim that with these identifications the map
el becomes identified with the map

> VgV

geG
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induced by the map
V-V UHZQ-U.
geG
This will certainly prove 5.1 (ii).
To see this let p : Spec(k) — BG be the proper étale surjection defined by the trivial
torsor. Then by definition of €/ the following diagram commutes

id—ps«p*

Vir ~ fiIF — fip.p*F —— fipp*F

.
/

Now the representation of G corresponding to the sheaf p.p*F' is the product [] gec V with
action of gy € G given by go * (vy) = (vgg). The map V' — [] .,V corresponding to the
adjunction map is the map v — (g - v). It follows that the following diagram commutes

V

id—p«p*

VH ~ o' —— fup«p*F.

which completes the proof of 5.1. U

Let us also note the following consequence of the proof:

Corollary 5.8. Let f : & — % be a quasi-finite proper morphism of algebraic stacks with
finite diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any
constructible sheaf F' on & we have R1fiFF =0 for q # 0.

Proof. This follows from observing that f,F € DI%)(2° A) and fiFF € DE=(2° A). O

5.9. Let f : 2 — % be a quasi-finite proper morphism of algebraic stacks with finite
diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Taking F' = A in 5.1
we obtain an isomorphism

il LA = fil,
which upon composition with the natural map A — f,A defines a morphism

T:A— fiA

Applying Dg we obtain a morphism

Vit fiQla — Qo

This defines a morphism of functors

Ty Dy (~) — Da(fi(-))
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by taking the composite

fDy (=) —= RA om(f.(=), fz) ——= RA om(f.(~), Qo) = Do (f.(-)),
where the first map is the canonical morphism defined in A.6
(5.9.1) feRAom(—, Qg ) — R om(f.(—), fQ2).

Applying Dy to I'y we obtain for every F' € D;(Z") a canonical morphism (if we want to
emphasize the morphism f we sometimes also write )\é)

Ap o foF — fiF.

By the same argument, using [13, 5.2.2], if g : & — 2" is a proper representable morphism
then we have a morphism v, : ¢.Q22 — €2 which induces a morphism of functors Iy :

g*DQ‘”(_) - D,%g*(_>'

Remark 5.10. In the preceding paragraph and in the discussion that follows, we use the
results of appendix A extending f, to the full unbounded derived category D.(Z", A).

Lemma 5.11. Consider a composite
Py

with g and gf proper and representable, and f proper and quasi-finite satisfying either (a) or
(b) in 5.1 (ii). Then the diagram of functors D} (%) — D, (%)

(5.11.1) gD (=) —2m Dy (g.(=)) — = Dy (fuga(=)

; -

(f9)Dz(-) Dy ((f9)«(=))

Tyg

commutes.

Proof. Consider the diagram
Fg
//’g\
foge R om(—,Qy) —25 f,.RAom(g.(—), .Qs) ———s f,RA om(g.(=), Ly)
can @
®| o Jo
RAom([f.g:(=), f19:Q) L R om(f.g.(—), f*%f) T;

Vfg @iw
R om(fege(—), L),

where the arrows labelled “can” denote the canonical morphisms of functors as in 5.9.1.
By construction the inside diagrams 1 and 3 commute, and the inside diagrams 2 and 5
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clearly commute. Therefore it suffices to show that the inside diagram 4 commutes which is
equivalent to the statement that the diagram

(5.11.2) £.0.0 —s 1.0, —1=Qy

lz /
(f9)«Qz
commutes. Let
Ay : A — g A (resp. A5 : A — fih)
denote the composite

A g A = gA (resp. A [\ 7 ).

Then by duality to show that the diagram 5.11.2 commutes it suffices to show that the
diagram

Ay

A fiA i figiA

Jtq lw
(fohA

commutes. This diagram fits into the larger diagram

¥
ef1
A f*A = f'A
\ f1(F9)
l Sl l (91
\_’/

fg—1
N

From this it follows that it suffices to show that the diagram

f

figA . fig A e, fegiA
\L: 51f\g l’:
(fohA (f9):A

commutes, and for this in turn it suffices to show that the diagram

s9 sf
AN=—=g¢'9 N ——4¢'f'fig.\

(f9)'(fg).A

commutes. This can be verified after making a smooth base change on %', so we may assume
that ¢ is a scheme. The result in this case follows from the construction of the map s at the
beginning of the proof of 5.1. U
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Corollary 5.12. With notation and assumptions as in 5.11, for any constructible sheaf of
A-modules F' on & the diagram

pyA /\ﬁ,F
Jegu ' —— fuglF' —— figlF’

-,k

(fg).F - (fghF

commutes.

Proof. This follows from the commutativity of 5.11.1 applied to D (F'). O
Proposition 5.13. If F' is a constructible sheaf of A-modules on Z , then the map
Ap o foF — [F
is equal to the inverse of ep.
Proof. Since both f,F and fiF' are concentrated in degree 0 (by 5.8), the assertion is local

in the smooth topology on %', so we may assume that % = Y is a scheme, and that there
exists a proper surjection p : Z — %2 with Z a scheme.

Consider the diagrams

2 1
RVf,F —— ROAF Rf,F ———= ROfiF
)\ﬁ*P*F \[ l’\ 6£*_pl*F \£\
R fup.p*F — R fip.p* F R fup.p*F —— R fip.p* F
Mo \ leg*l
\\ | e F
RO fipip* RO fipip* F.

The bottom triangles commute by 5.12 and 5.6 respectively, and the top squares clearly
commute. Since all the vertical arrows are injections, it therefore suffices to show that the
map

Mie: R fpp™ F — R fipp" F
is equal to eﬁfgl. This follows from the following lemma. O

Lemma 5.14. Let f : X — Y be a proper morphism of schemes, and let F' be a constructible
sheaf of A-modules on X. Then A\p : f.F — fiF is equal to ez' (which by the construction is
the classically defined isomorphism fiFF — f.F).

Proof. The isomorphism er is characterized by the fact that the diagram

AF) @ f,Dx(F) —£~Qy

i€F®1 'YfT
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commutes, where P is the Poincaré duality pairing and () is the canonical pairing. It therefore
suffices to show that the diagram

AF) ® f,Dx(F) —£~Qy

)\F®1T 'YfT

[F @ [.Dx(F) —%~ .0y

commutes. This is equivalent to the statement that the diagram

RAom(fDx(F), fif2x)
commutes, which is immediate from the definition of I';. Il

Corollary 5.15. Let f: & — % be a quasi-finite proper morphism of algebraic stacks with
finite diagonal, and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any
Fe D (Z,A) the map

)\F : f*F — fo

s an isomorphism.

Proof. By a standard reduction using the distinguished triangles
T<nF' — F — 7o, F — 1<, F[1]
it suffices to consider the case when F' is a constructible sheaf, where the result follows from

5.13. 0

Remark 5.16. In what follows, we write ep : fiF' — f,F for the inverse of A\p. Proposition
5.13 ensures that this is consistent with our earlier notation.

Corollary 5.17. Let f : & — % be a proper morphism with finite diagonal between algebraic
stacks and assume one of the conditions (a) or (b) in 5.1 (ii) hold. Then for any F €
D_(Z,\) there is a canonical isomorphism fiF — f.F.

Proof. Let
!

¥ T Y
be the relative coarse moduli space of f, as defined for example in [1, §3]. Then 7 is proper

and quasi-finite and satisfies one of the conditions in 5.1 (ii) and g is proper and representable.
By 5.1 we have

mF ~mn,F,
and by the proper representable case [13, 5.2.1] we have g7, F' ~ g, 7. F. U

Finally let us discuss the connection with the trace map of the previous section.
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Lemma 5.18. Let
XOCAX

K

S

be a commutative diagram of schemes with f and fo flat with equidimensional fibers of di-
mension d, and j a closed immersion defined by a nilpotent ideal I such that for every k > 1
the Ox,-module I*/I**1 is locally free of constant rank. Let gri(Ox) denote the locally free
Ox,-module ®y>o(I¥/I*Y). Then for any constructible sheaf of A-modules F' on S the dia-
gram
tr
hITF(d)2d) —~F
if_v ?rank(gr?(ﬁx))

tr
fofs F(d)[2d) —~ F
commutes, where rank(gri(Ox)) denotes the rank of gri(Ox) as an Ox,-module.
Proof. Let
v ["Ds = (Dx f)(=d)[=2d], 70 : fiDs — (Dx,f*)(—d)[-2d]

be the maps defined as in 4.13.1 from the trace map for A. If we prove the lemma for F' = A,
then it follows that for general F' the diagram

f.Dx f*F(=d)[-2d] <—— f.f*DgF
i: T~rank(gr’1‘((}’x))
fouDxo fe F(—d)[—2d] <"~ fo.f3 DsF

commutes. This in turn implies that the diagram

fif*F(d)[2d) —— Ds f.Dx f*F(d)[2d] ——~ Dsf.f*DsF "L p2p =, p
\L: i:‘ T~rank(gr’;(/]’x)) -rank(gry(Ox))
id— foux f¥ ~
foufs F(d)[2d] == Ds fo.Dx, f F(d)[2d] == Ds fo.f3 DsF —='D{F —F

commutes, and by 4.15 the composite along the top row (resp. bottom row) is equal to try
(resp. try,).
It therefore suffices to consider the case when F' = A.

Consider first the case when S = Spec(k) is the spectrum of an algebraically closed field
and f (and hence also fj) is finite. In this case X can be written as

X = H Spec(A”),
CCEXo(k;)

where A” is an artinian local k-algebra. Let I? C A* denote the ideal defining X, X x Spec(A®)

so that
Xo= J] Spec(A®/I%).
mEXo(k)
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Using [2, XVII, 6.2.3.1] to prove the result in this case it suffices to consider the case when
X = Spec(A) has just one component. In this case by [2, XVII, 6.2.3 (Var 4)] the map

try
A= fA=fA—=A
is equal to multiplication by the length of A, and similarly for trs. Since
length(A) = length(@ys0l* /") = length(Ap) - rank(gr}(A)).

this implies the result in this case.

Since the verification of 5.18 can be made after making a base change s — S with § the
spectrum of an algebraically closed field, this also implies the lemma in the case when S is
arbitrary but f is quasi-finite.

We now reduce the general case to this special case. By similar considerations to prove
the general case it suffices to consider the case when S = Spec(k) is the spectrum of an
algebraically closed field. If U C X is a dense open subset and U, denotes U x x Xy then we
have a commutative diagram

forhy —— fiA

fUO!AUO > fO!A

where fy : U — Spec(k) (resp. fy, : Uy — Spec(k)) denotes the restriction of f. By the
same argument used in [2, XVIII, proof of 2.9 part (d)], to prove the lemma we may assume
that there exists a commutative diagram over k

X, x
N
A¢

where o and o( are quasi-finite and flat. By the construction of the trace map in [2, XVIII,
proof of 2.9 (b)] it follows that it suffices to show that the diagram

A —7= A
lw T-rank(gr}‘(ﬁx))
trog

oo —= A
commutes, which follows from the quasi-finite case already considered. O

Lemma 5.19. Consider a commutative diagram of stacks

t%(#%

N

Y,
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where f and fy are quasi-finite and flat, and j is a closed defined by a nilpotent ideal I C Oy
such that gri(Oy) = @p>ol*/I* is a locally free sheaf of finite rank on 2y. Then for any
constructible sheaf of A-modules F' on % the diagram
trf
L F——F
~ T rank(gri(Og))
" trfo
fofoF'—F
commautes.
Proof. As in the proof of 5.18 it suffices to consider the case F' = A. Also, making a base
change on % as in the proof of 5.18, it suffices to consider the case when % = Spec(k) is the

spectrum of an algebraically closed field. Furthermore by adjunction it suffices to show that
the diagram on 2~

(5.19.1) A

afo tTrf

“rank(gr}(02))

folk FA

commutes (where in the bottom line we have identified D.(.Z") with D.(%2)). Letp: X — 2
be a smooth surjection of constant fiber dimension d, and let pg : Xg — 25 be the pullback
of p to Zy. To verify that 5.19.1 commutes it suffices to do so after applying p*. The result
therefore follows from consideration of the diagram, where all but the top triangle are known
to commute,

trfopo tre,
y \
ank ﬁ
& p*f'A
l -rank(gri(Oa)) i
(fopo) A(—d)[~2d] s (fp) AM—d)[~2d]
and 5.18. 0

Let k be an algebraically closed field, and let 2" /k be a quasi-finite connected stack of
finite type with finite diagonal. Choose a point s : Spec(k) — £, and let G denote the
finite automorphism group scheme of s. We then have a closed immersion j : BG; — 2.
Let J C Oy denote the ideal sheaf defining j, and let o7 denote the graded ring gr¥ (&4 ).
Then &7 is a locally free sheaf of finite rank on BG4. We define the length of 2™ to be the
rational number

In(Z") := rank(&) /rank(Gy).

Since any two points of 2 (k) are isomorphic this is independent of the choice of s.

If 2 /k is quasi-finite with finite diagonal, but not necessarily connected, we define the
length of 2" to be the sum of the lengths of the connected components of 2.
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Now let f : & — % be a quasi-finite morphism with finite diagonal of algebraic stacks,
and let y : Spec(k) — ¢ be a morphism with k an algebraically closed field. Let 2, denote
the fiber 2" x4 Spec(k).

Proposition 5.20. If f is flat and proper and % is connected then the number In(Zy) is
independent of y, and for any constructible sheaf of Qp-modules F on % the composite map

FEIL e T e g

is equal to multiplication by In(Z,).

Proof. Note that it suffices to prove the last statement. This statement holds in the case of a
representable morphism by the classical theory. Furthermore, to prove it in general it suffices
to consider the case when % = Spec(k) is the spectrum of an algebraically closed field and
Z is connected. Let s € Z°(k) be a point and let G be the automorphism group scheme. Let
j: BG — % be the resulting closed immersion, and let f, : BG — Spec(k) be the structural
morphism. By 5.19 we then have a commutative diagram

1d~>f*
iy Ry
id— fo« f§ lw e J{N . T'rank(gf}(ﬁ%))
fO*f()F - >fO'foF*% F.

It therefore suffices to consider the case when 2" = BG. Let p : Spec(k) — BG denote the
projection defined by the trivial torsor. The result then follows from the representable case
and consideration of the diagram

rank(G)-try

L E hF

i |

fep" TE - Jopt T
w‘\ \L p—l

f*F

Sipp* [~ Fi)f!f*F,

where the map labelled % is multiplication by rank(G), and all the small inside diagrams
commute by our earlier results. U

F

tI‘f

Remark 5.21. If f is flat, proper, and quasi-finite then we call the rational number occurring
in 5.20 the degree of f, and denote it by deg(f).

Let f: 2 — % be a morphism of k-stacks and let F' (resp. G) be a constructible sheaf of
A-modules on % (resp. Z7). Let u : f*F — G be a morphism of sheaves on 2". Applying
D 4 we obtain a morphism

Dy(G) — Dy (f*F) = f' Doy (F).
We denote by
U fiDy (G) — Dy (F)
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the map obtained by adjunction.
Let
evy : RU(% ,Dy(F)) ® RU(¥,F) — A
and

evy : RU.(Z2,Dy(G)) @ RI'(Z,G) — A

denote the canonical pairings obtained from the identifications RI'.(%', —) = Dgpec(r)oRI'0 Dy
and RFC(%, —) = DSpec(k) oRIo D%.

Lemma 5.22. The diagram

Ux®1

RU.(2 . Dy (G)) @ R, F) %% RO, Dy(F)) @ RO(¥, F)

l 1®u* l evay

R (2 ,D4(G)) @ RT(Z,G) S A

commutes.

Proof. Write also u for the map F' — f.G obtained by adjunction from the map f*F — G,
and to ease notation write Dy for Dgpec(r). Also for any F' € D, (Spec(k), A) write

ev:Dy(F) @ F — A
for the canonical evaluation map.
The map u, : /iDa(G) — Dy (F) is equal to the composite

2

D2, ~id Doy (u)
fiDy(G) == Dy f.D%(G) = Dy f.G ——= Dy (F).

Combining this with consideration of the diagram

2 2

D35, ~id D4, ~id
DIy D%(G) @ Ty (F) —2— D'y D3, £.D%(G) @ Ty (F) 2~ DTy D3 .G ® 'y (F)

1Qu 1®u J{D@/(U)
DiT 9 D% (G) ® F@f*G@DkF@Déf*Dé(G) ® Uy f.G DTy D2, (F) @ Ty (F)

Lo f+=T o D?,.=id \LDEJ:id
DLy D% (G) @ T 2 (G) DTy D% .G @ Ty f.G DLy (F) @ Iy (F)

D?%,.=id D%, =id

Dyl (G) @ T2 (G) S Dil'y f.G @ Ty f.G

\A
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one sees that it suffices to show that the diagram

D (u)®1
DiT £.G @ Ty (F) 22 DTy (F) @ Ty (F)

J1on l

Dily f.G @ Ty f.G = A

commutes, which is immediate. Il

Now assume in addition that f is quasi-finite and flat, and let F' be a constructible sheaf
of A-modules on %'. Let
a: f*Dy(F) — Dy (f*F)
denote the composite map
fr A om(F, Q) — Hom(f*F, f*Qu) — Hom(f*F, f'Qu) = Hom(f*F,Qy),

where the second morphism is induced by the map tr 11 Q9 — f'Qy = Qu. Also define
Uy : iDo (f*F) — Dy (F) to be the map defined as above taking G = f*F and using the
identity map f*F — f*F.

Lemma 5.23. The diagram
tr
f1f* Do (F) —"= Dy (F)

-
fiDa (f*F)
commutes.

Proof. Observe that we have isomorphisms
RAom(fif*Dy(F),Dy(F)) ~ RAom(F, Dy fif*Dy(F))
~ Rsom(F, f.f'F).
Since f'F € D([;O’OO)(%, A) by 4.3, this implies that
Ext' (fif *'Dy(F),Dy(F)) =0

for i < 0. By [13, 2.3.4] this in turn implies that it suffices to prove that the lemma holds
locally in the smooth topology on 2. We may therefore assume that % is a scheme and that
there exists a smooth surjection p : X — 2" of relative dimension d.

To prove the lemma it suffices to show that the diagram obtained by adjunction

(5.23.1) f*Dy(F) i F'Dy (F)

la

Dy (f*F) —== Dy f*D3/(F)

commutes. By the same calculation as above, the sheaf &zt'(f* Dy (F), f'Day (F)), which is
the sheaf associated to the presheaf

(V = 2) > Extiy (f' Dy (F), f' Dy (F)) = Extly (f* Do (F), Do (F)),
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is zero for ¢ < 0. It follows from this and [13, 2.3.4] that to prove that 5.23.1 commutes it
suffices to show that it commutes after applying p*. Now using the canonical isomorphism
p* Qg ~ Qx(—d)[—2d] one is then reduced to showing that the diagram

trpy

(pf) Dy (F) (Pf)' Dy (F)(—d)[-2d]
Dx((fp)*D)(~=d)[~2d] — Dx(fp)* D3 (F)(—d)[-2d]
commutes. This follows from the classical theory. O
Remark 5.24. We will only use 5.23 in the case when F' = A, where the result is immediate.

Corollary 5.25. Let k be an algebraically closed field, and let f : Z — 2 be a quasi-finite
flat and proper endomorphism of a smooth k-stack % of dimension d. Let

A . RFc(%’QZ) — RFC(%aQZ)

be the endomorphism induced by the map

1
Qe — f:Qr — /1 Q.
Then for any i the set of eigenvalues of A on HI(Z ,Qy) is equal to the set {deg(f)/\:i}tier,
where {\; }icr is the set of eigenvalues of f* acting on H*~{( 2 ,Qq(d)) in the usual way.
Proof. The isomorphism Q4 ~ Q,(d)[2d] gives an isomorphism
Hy(2, Q) = (H(2,Qu(d)[2d)))" = H*7(2,Qu(d))".

Now by 5.22, the operator f* on H?¥{(2", Q(d)) has adjoint the map f, : H(2Z, Q) —
H{(Z ,Qu), and by 5.23 the map f. agrees with the map defined by the trace try : fiQ, — Q.
Since the map

1 tr
Q — £.Q, FQe —1> Qy
is equal to multiplication by deg(f), this implies the result. O

Example 5.26. Let k be an algebraically closed field, and let (X, A) be a principally polarized
abelian variety of dimension d over k. Let p be an integer, and let f : X — X be an
endomorphism of degree n such that the diagram

x—1-x

lp)\ i)\
t< Yt
X I X
commutes. Let ¢ be a prime different from the characteristic of &, and let V;(X) denote the
(-adic Tate-module of X. Fix also an embedding Q, «— C. If @ — a' denotes the Rosati
involution on End’(X) := End(X) ® Q, then we have fT =p- f~1. In particular, ffo f = p,
and therefore by [18, 19.3] for any eigenvalue A of f, acting on V,(X) we have [¢()\)] = /.

Now let 2" denote the classifying stack BX, and let also f denote the endomorphism of
2 induced by f. It follows from [4, 6.1.6] that all the odd cohomology groups H' (2", Q)
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vanish, and that H*(.2",Qy) is canonically isomorphic to S*(V;(X)*) (i-th symmetric power).
This identification is compatible with the action of f*, and therefore the eigenvalues of f* on
H*(Z°,Qy) all have t-absolute values p*/2.

Let A: H(Z',Qp) — H(Z,Qy) be the endomorphism defined as in 5.25. Since the
degree of 2" — 2 is equal to 1/n, we find that H:(2", Q) is zero for i odd and i > 2d, and
if 7 is an eigenvalue of A acting on H* (2, Q) (i < d) then [o(7)] = 1/(n - pld=9/2).

6. INTERLUDE: PUSHING FORWARD WEIL COMPLEXES.

6.1. Let (S, A) be an admissible pair, with S the spectrum of a field & of positive characteristic
p, let ¢ be a power of p, and let f : 2" — % be a morphism of finite type algebraic k-stacks.
We then obtain a commutative diagram

Foja -

A ! A
f! J{f

where the square is cartesian, Fi (resp. Fy) is the g-power Frobenius morphism on % (resp.
Z") and Fy y is the relative Frobenius.

Proposition 6.2. For every M € D_(Z",Qy) the adjunction map
FojoFy g M — M

s an isomorphism.

Proof.

Special Case. Consider first the case when f is representable. Let iy : Y — % be a smooth
surjection with Y a scheme. We then obtain a commutative diagram

For 1y oy
(6.2.1) 2y —— 2 2 2y
lb / /
Fojo
Z ! l Z
Fy

where

%y =2 Xay YV, %3; = %y XY, Fy Y.
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Note that the square
Xy ——=Y
)
L —X
is cartesian.

Since a is smooth and surjective, it suffices to show that the map

(6.2.2) a*Fo jonFly 1y M — a*M
is an isomorphism. Since the square
2y
o I
Foya
X —Z

is cartesian and a is smooth, we also have
a*Fo o ~ Fo jy1b*
and
O PR
Thus the morphism 6.2.2 is identified with the adjunction map
Foy i Flyy jya™M — a*M.

Since f is assumed representable, the stack Zy is in fact an algebraic space. This therefore
reduces the proof in this case to the case of algebraic spaces, where the result is immediate.

General Case. By the same argument used in the preceding special case, it suffices to
consider the case when % is a scheme.

Let g : X — 2 be a smooth surjection, and define
X=XxXpp, X, X =X xXop, ¥.

We then have a commutative diagram

Fx o
C/N\d«
X X X' X
\ i l,, l
Forja
A A A

Since p is smooth it suffices, as in the earlier special case, to show that the natural map

did'p*M — p*M
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is an isomorphism. For this consider the commutative diagram
dieyd' p* M —— dyd' p* M A, p*M
\Lﬁ /
(de)(de)' p* M,

where a (resp. 3, ) is the adjunction map ¢c¢' — id (resp. did' — id, (dc),(dc)' — id).

By the representable case already considered applied to X — % (resp. X — 27) the map
v (resp. «) is an isomorphism. We conclude that the map (3 is also an isomorphism. O

Proposition 6.3. (i) There is a natural isomorphism m*Qq =~ Q g,

(i) The map of functors m* Dy — Dy m* defined as the composite

T R om(—,Qy ) —= R om(n*(—), n*Qy) 9, R om(m*(—),Qq9)

s an isomorphism.

Proof. By the gluing lemma [13, 2.3.3], it suffices to construct the isomorphism 7*Q 4 ~ Q4
locally in the smooth topology on 2.

Let y : Y — % be a smooth covering as in the proof of 6.2, and form the diagram 6.2.1.
Let d be the relative dimension of y (a locally constant function on Y'). By [13, 4.6.2], we
then have
and

a*m* Qg ~ w3 Qg (—d)[—2d).
It therefore suffices to construct an isomorphism
W;ngy ~ Qggﬁ{/,
which reduces the proof to the case when % is a scheme.

From this argument we obtain part (i) of the proposition in the case when f is representable.
Using a similar argument one also reduces the proof of (ii) in the representable case to the
case of schemes.

For the general case, choose a smooth surjection ¢ : X — 2" with X a scheme, so we have

a commutative diagram with cartesian squares

X' > X
o
2=
|,
s
If d denotes the relative dimension of ¢, then again by [13, 4.6.2], we have
P Qo ~ Qxi(—=d)[—2d], ¢"Qq ~ Qx(—d)[—2d].
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From the representable case we therefore obtain an isomorphism
p*Qg/ >~ p*T(*QQf,

which again using [13, 2.3.3] descends to an isomorphism 4+ ~ 7*Q 4. This completes the
proof of (i).

Also to verify (ii) it suffices to show that for any M € D_ (%2, Q) the map
P Doy (M) — p*D g (n* M)
is an isomorphism. Using the isomorphisms
p'm Dy (M) ~ my Dx(q"M)(=d)[=2d], p"Dy(m"M) ~ Dx:(mxq"M)(—d)[—2d]
statement (ii) is also reduced to the case of algebraic spaces. U

Corollary 6.4. There is a canonical isomorphism Fj,{y ~ Qg and the induced transforma-
tion F, Dy — Dy F,, is an isomorphism.
Proof. Apply 6.3 with 2" = % and f =id. O

Corollary 6.5. There is a canonical isomorphism of functors Fig{/@w* ~ F.

Proof. Indeed we have
Fi@f/@/ﬁ* = Do FyyDym’
~ Dy Fyym" Dy (by 6.3)
Dy Fy Dy
F3-D%- (by 6.4 applied to 2" /k)
Fi (D% ~id).

12

12

12

Proposition 6.6. For any A € DI (%2 ,Qy), the base change morphism
(6.6.1) Fif A — flr A

s an isomorphism.

Proof. Let y : Y — % be a smooth covering as in the proof of 6.2, and consider the resulting
commutative diagram as in 6.2.2

Y

2 ks v
g
Y

e
A

S
\\J—
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We then have a commutative diagram
6.6.1
yFy A==y fim" A
Fyg.crA—— g.myc* A,

where the bottom horizontal arrow is the morphism 6.6.1 for g : 2y — Y. This therefore
reduces the proof to the case when % =Y is a scheme.

In this case, let p : X — 2" be a smooth surjection with X a quasi-compact scheme, and
let X. be the associated simplicial space. Let f : X. — Y be the composite morphism

X -2 =Y.
We then obtain a commutative diagram
X —X
o o
Y

where X’ := X. Xy g, Y. In this case we have (see for example [8, 5.2.3]) spectral sequences

(6.6.2) EY' = R fo M|y, = R*f.M
and
(6.6.3) Ey' =Rl m*M|x, = R flx*M.

Moreover, the map 6.6.1 extends to a morphism of spectral sequences

Fy(6.6.2) — (6.6.3).
It therefore suffices to show that each of the maps

R fM|x, — R fir"M|x;
is an isomorphism. This reduces the proof to the case when Y is a scheme and X is algebraic
space. In this case the result is classical. Il
6.7. For M € D_ (%), we therefore get isomorphisms
w M = FyDyf.Dy(M)

~ DyF,f.Dy (M) (by 6.4)

~ Dy fir" Dy (M) (by 6.6)

~ Dy fiDgym*M (by 6.3)

= fim"M.
By 6.2 the adjunction map

FojoiFly 1y M — 7*M

is an isomorphism, so we obtain an isomorphism

T M~ f{Fo jonFly 1y M = fiFy 157 M,
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which by 6.5 is isomorphic to
fiF5 M.
Putting it all together we obtain an isomorphism

6.8. Consider now a commutative diagram of algebraic stacks

N

Zo a 20

P Dy P
R
%

where ¢y and dy are quasi-finite and representable and ¢; and d; are proper with finite diag-
onals. Let (F, ¢, u) be a Weil complex with €-structure on 2. Then pF has the structure
of a Weil complex with Z-structure on % as follows.

%,

6.9. Define the Weil structure p;p on piF to be the composite map
EypF ~ pFyF (by 6.7.1)
i> p1.7:.

6.10. Let o : dipF — qicyF denote the composite

dipF — dipc.ciF  (adjunction)
~ diduqciF o (5.17)
— qc;F  (adjunction for dy)

u

— q!c!Q]: .
Then define pyu to be the composite map
dadipF 2 dz[Q]CIQF —— p!cmc;}" ——nF.
We call the Weil complex with Z-structure (pJF, pip, pru) the pushforward of (F, ¢, u).

Remark 6.11. We leave to the reader the verification that for any integer n > 0 we have
()™ = pi(u™).

7. THE CLASSIFYING STACK OF A CONNECTED GROUP

7.1. In the following three sections we prove 1.19 in the case when 2 is the classifying
stack of a finite type group scheme. For technical reasons it will be useful to prove a slightly
stronger statement than 1.19.
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7.2. Let Z,/F, be a finite type algebraic stack, and let ¢ = (¢1,¢2) : 60 — Zo x Zp be a
correspondence with ¢; proper and ¢y quasi-finite and representable. Fix also an embedding
t:Qp — C.

Definition 7.3. A Weil complex with €-structure (F, ¢, u) is t-convergent (or just convergent
if the reference to ¢ is clear) if there exists an integer ng such that for every n > ng and
.(x, A) € Fix(fg(”))(k) the pair (fCQ(x),uE:’)A)) is (-convergent in the sense of 1.14. Here UEZ,),\)
is defined as in 1.17.

Remark 7.4. A bounded Weil complex with ¢-structure (F, ¢, u) is convergent.

Remark 7.5. Note that for a convergent Weil complex with € -structure (F,,u) we can
still define local terms LT, (5, (F, ¢, u)) as in 1.18.

7.6. Let Go/FF, be a group scheme of finite type, and let o : Gyp — G¢ be an endomorphism.
We write Ba : BGy — BG, for the induced endomorphism of the classifying stack. For n > 0
let o™ denote Fé") oa. Let ¢: 6y — BGy x BGy be the correspondence (Ba,id) : BGy —
BGy x BGy. Note that ¢™ : ¢, — BGy x BGy is the correspondence (Ba(™,id).

Theorem 7.7. Let (F,p,u) be a convergent Weil complex with € -structure on 2 . Then
there exists an integer ng, independent of (F,p,u), such that for every n > ng we have:

(i) The compler RU(Z , F) € D7 (Qy) with the endomorphism RT.(u™) is convergent.
(ii) Fix(€™) is pseudo-finite over Spec(k), and

tr(RL(u™)| RO(2 F)) = Y LB, (F 0, u™)).
BCFix(%(n)

For the remainder of this section we prove 7.7 in the case when Gy is geometrically con-
nected. The proof in the general case will be given in section 9.

7.8. For n > 0, let p™ denote the action of the group scheme Gy on the scheme Gy (so p™
does not act through homomorphisms) given by

hxg=a™(h)"'gh.

Lemma 7.9. For n > 0, the stack Fix(€™) is isomorphic to the stack-theoretic quotient
[G/p™)] of the scheme G by the action of G given by p™.

Proof. Replacing a by a(™ it suffices to consider the case n = 0.

Let S be a scheme. An object of Fix(%")(S) is a pair (P,¢), where P is a G-torsor over S
and
L Px9G = P
is an isomorphism of G-torsors. In the case when P is a trivial torsor and we fix a trivialization
e € P, then ¢ is specified by an element g € G characterized by the condition ¢(e) = g - e.
Now if (P’,//,€') is a second object together with a trivialization of P’, then an isomorphism
7:(P,t) — (P',/) is given by an isomorphism of G-torsors 7 : P — P’ such that the diagram

(7.9.1) P xGoG——=PpP

P’ %G _v g P
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commutes. The map 7 is determined by an element h € G such that 7(e) = he’, and then
the commutativity of 7.9.1 is equivalent to the equality

a(h)g’ = gh,

or equivalently ¢ = a(h)~'gh (here ¢’ € G’ is characterized by /(¢/) = ¢’¢’). This implies the
lemma. ]

Remark 7.10. Note that the proof of 7.9 does not use the fact that GG is connected, and 7.9
holds without this assumption.

7.11. By 2.2 for any g € G(k) and n > 1 the morphism of schemes
G — G, hw— a™(h)lgh

is étale, and therefore surjective (since G is geometrically connected). It follows that for n > 1
the category Fix(%™)(k) has up to isomorphism only one object, and that the automorphism
group scheme of this object is equal to the scheme of fixed points Fix(a(™) of a™ (note that
this is a group scheme). Note that taking g = e it follows that for all n > 1 the group scheme
Fix(a(™) is finite and étale over Spec(k).

7.12. Let G, C Gy be the maximal reduced closed subscheme, and write 3 : G, — Gj, for
the endomorphism induced by «. Let H (resp. H') denote the inverse image of the identity
under the map G — G (resp. G' — G') sending h to o™ (h)~'h (vesp. 3™ (h)~'h). We then
have a cartesian diagram

H/C_> G’

!

H——G.

On the other hand, H is étale so H C G’ which implies that H = H’. It follows that if
¢, — BG{ x BGY is the correspondence induced by 3, then for n > 1 the functor

Fix(¢'™) — Fix(¢™)
is an equivalence of categories.

Lemma 7.13. The morphism Bj : BG' — BG induced by the inclusion j : G' — G 1is
representable and radicial.

Proof. That Bj is representable is clear since j is a closed immersion so Bj is faithful.

To verify that Bj is radicial, note that since Spec(k) — BG is flat and surjective, it suffices
to show that the fiber product P := BG’ X gg Spec(k) is radicial over Spec(k). This is clear
because P(k) is the set of G'-invariant closed subschemes Z C G such that the action of G’
on Z is torsorial. Since k is algebraically closed, Z (k) # () and therefore Z is reduced. Thus
Z C G" and since both are G'-torsors Z = G'. We conclude that P(k) consists of one element.
Since P is of finite type over k it follows that P is equal to the spectrum of an artinian local
ring with residue field k. U

7.14. It follows that
B]* . Dg(BC;7 Qg) — DC_(BG/,QK)
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is an equivalence of categories and that Bj = Bj,. This gives a canonical isomorphism
RT.(BG,F) ~ RTU'.(BG', Bj*F)

compatible with the actions of the correspondences. We conclude that to prove 7.7 in the
present situation it suffices to consider the case when G is reduced, and hence smooth.

7.15. To prove the theorem for smooth G, consider first the case when F = Q. Let d be the
dimension of G, and let M, denote the degree of o™ : G — G. Then the degree of the map
Ba™ : BG — BG is equal to 1/M,. As in 5.25 the space H:*(BG, Qy) is isomorphic to the
dual of H=?!(BG, Q,)(—d), and the trace of o™ on H;*(BG,Qy) is equal to

Mitr((a<n>*)1yﬁi2d(BG, Qi(—d))),

n

where a™* 1 H=2(BG, Q,(—d)) — H"2(BG,Qy(—d)) is the usual pullback on cohomology.

7.16. By Borel’s theorem [4, 6.1.6], there exists a graded vector space N = @,>1 /N9 concen-
trated in even degrees and a canonical surjection of graded Q-vector spaces

m: H*(BG,Q;) — N
such that any section s : N — H*(BG,Qy) of 7 induces an isomorphism

p(s): Sym'N — H*(BG,Qy).

Fix an integer i, and let I; denote the set of tuples (q,...,¢q,) of even positive integers
such that ¢ > ¢ > -+ > q., ¢1 + -+ + ¢- = i, and such that N% # 0 for all j = 1,...,r.
Note that [; is a finite set. The set I; becomes an ordered set with the lexicographical order.
For g e I, let G1 C Sym’(N) denote the subpace generated by monomials

ng Q- Qn,
with n; € N*™) and (w(ns),...,w(n,)) < ¢. This gives an I-graded filtration on Sym'N.

This also defines a filtration on H'(BG,Q,). Namely, choose a section s of m, and for
q € I define F on H'(BG,Qy) to be the image under p(s) of G2 Then this filtration on

H'(BG,Qy) is independent of the choice of section s, since for a second section s’ we have

(p(s) — p(s))(GY) C F?

for some ¢’ < ¢. In particular we obtain a canonical isomorphism

gro(Sym'(N)) ~ grp(H'(BG, Qy)).

7.17. Let A: N — N denote the endomorphism induced by the automorphism (a*)~! on
H*(BG,Qy), and let & : N — N denote the map induced by arithmetic Frobenius. Then
we see from the above that the eigenvalues of o™ acting on H:*(BG, Q) ®, C are equal to
1/M,, times the eigenvalues of ®"*% o A acting on the dual space Sym™™¢(N)* ®, C.

Since the endomorphism Ba of BG is defined over F,, the endomorphisms A and ® acting
on Sym™(N)* commute. By [7, 3.3.5], there exists a collection of negative integers {w;}
such that any eigenvalue of ® acting on N ®, C has absolute value p*+/? for some i. Therefore
the eigenvalues of @790 A acting on N all have absolute value p®/?|)|, where w is a negative
integer and A is an eigenvalue of A acting on N ®, C.
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It follows that there exists a collection of triples {(¢;,w;, \;)};es with ¢; a positive integer,
w; anegative integer, and \; € C, such that the eigenvalues of o™ acting on H(BG,Qy)®,C
all have absolute value

1 wim,(n
Syl | ER i)

where the product is taken over collections m = (my,...,m,);es of natural numbers with
Z mjtj = 1.
In particular if we choose n so that ¢

(7.17.1) S,(H*(BG, Q) Z > A

" k>p AcEgk(onoA)

wimi(n+d)/2|\ .| < 1, then the sequence of sums

of the absolute values of the eigenvalues of o™ on H*(BG,Q,) converges to

1
M, H 1 — quin 2|\
In particular, RI'.(BG, Q) with the endomorphism a(™ is convergent.

The same argument shows that if 'ﬁn), e ,77« ) denote the eigenvalues of " o A acting on
N ®, C, then

tr, ()| (BG, Q1)) Mﬂl_%

Now recall also (again by Borel’s theorem [4, 6.1.6]) that H*(G,Qy) ~ A (N[1]).

Lemma 7.18. Let W be a vector space of finite dimension over an algebraically closed field
K, and let B: W — W be an endomorphism. Let aq,...,a,. € K be the eigenvalues of B.
Then the trace of A'(B) acting on A" (W) is equal to

[1a-ay.

Proof. This is an elementary exercise. O
7.19. From this we conclude that
tr,(®" 0 AJH*(G, Qp)) = [ (1 — 7).

%

On the other hand, applying 5.25 to o™ : G — G and Fujiwara’s theorem 1.1, there exists
an integer ng such that

#Fix(a™) = M,tr, (9" o (o) H*(G, Q) = M, H(1

for n > ng. Therefore for n > ny we have by 7.18

1
#Fix(a)’
It follows from 2.2 that this completes the proof in the case F' = Q.

tr, (o™ |H(BG,Qy)) =
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More generally, if F' is concentrated in degree 0, then since GG is connected the sheaf F is
isomorphic to the constant sheaf associated to a finite-dimensional Q,-vector space V', and u
is induced by an automorphism U : V — V of this vector space.

The proof in this case then proceeds by a similar argument to the one for F = Q,.
01,...,0s denotes the eigenvalues of U acting on V ®, C, then the sum of the absolute values
of the eigenvalues in 7.17.1 gets replaced by

S,(H;(BG, F)) MZ\MZ > I
k>p \eEghk(®noA)

and we have

1 1
tr,(a™|H}(BG, F)) = 7 vy - [ > LT.(B,F).
" ' BCFix(¢™)

This completes the proof in the case when F is concentrated in a single degree.

Now consider the case of a general Weil complex with @-structure (F, p, u).

Lemma 7.20. Let p : 2 — Spec(k) be an algebraic stack of finite type. Then there ezists
an integer t such that for all k € Z we have

pr: DM, Q) — DIoR(Qy).

Proof. Since the dualizing complex of 2" has finite quasi-injective dimension, there exists an
integer ¢ such that

Dy : DI>M(27,Qp) — DEFU(27,Qy).

Therefore we have a commutative diagram

—00 D{/ — [ee) b+« — o0
DEH(2, Q) —> D (2, Q) —— DM@y

gl
\ l DSpcc(k)

DEM(Qy).

Proposition 7.21. Suppose that the sum
(7.21.1) >N > |
ik AeEgt(u(™|H}(BG,#i(F)))
converges. Then the sum
A= 2 W
k  AeBEgh(u(™|Hz(BG,F))

converges and

nF) = 3t )
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Proof. As before, let

Se(mF) = Z Z Al

k>q \eEgF(pF)

and define similarly S,(pi7>xF).
By 7.20 there exists an integer ¢ such that

Sk—t(0F) = Sp—t(p>1F).
By induction on k& and using the distinguished triangles
HONF) k] = 1o F = mopn F — H5(F) |-k + 1]

one sees that for all ¢ we have

Sq(P!Tzkf) < qu—i(p!%i(Tzk}_))-
1>q

It follows that
Skt (D F) <> Seii(puit'(F)),

i>k—t
and therefore S(pF) converges. Set
ek = Y _(=1)'tr, (ul | Hi (210 F)).
i<k

Lemma 7.22. The sequence €, converges to zero absolutely as k — —oo.

Proof. For a convergent complex (K, ) with K € D_ (Qy), set

T(K):= >

i<q \eEg'(K)

Then certainly |ex| < Ti(Tsx_+F), so it suffices to show that the sequence T (T>,_+F) con-
verges to zero.

For this note that by a similar argument to the above using the distinguished triangles
HO(F)|=s] = 15sF — o511 F — H°(F)[—s + 1],

one sees that

T (tsk—tF) < ZTk—i(p!«%m(Tzk—tf))~

i<k

From this and the convergence of 7.21.1 the result follows. U
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We then have

tr, (u™|pF) = limy oo 0y (—1)tr, (u™ | HI(BG, F))
= limyg oo 30,y (1) tr, (u™ [ HIABG, 7551 F))
= i oo Y en (= 1) tr (ul™ | HYBG, o1 F)) — e
= limy o Ziez(—l)"trL(u(")lHé(BG, Tsip—tF))

O
Next let us verify that the sum 7.21.1 indeed converges. Let F' € D_(Qy) denote the

pullback of F along Spec(k) — BG, and for i € Z let Eg’(u™|F) denote the set of eigenvalues
of u™ acting on H*(F). By assumption there exists an integer ny such that the sum

Y Nl

i yeBg! (uM|F)

converges. After possibly replacing ng by a bigger integer, we may also assume that for n > ng

the sum
DD DR

€L NeEg' (u™|p1Qr)

converges, that Fix(%™) consists of a single component which is an étale gerbe over Spec(k),
and that

r,(u™pQ) = > LT.(B, Q).

BCFix(¢™)
Then

Zi Zk Z/\eEgk(uW|H§(BG,;2”Z‘(I))) |/\|
= Zz nyeEgi(u("HF) |7|(Zk ZAeEgk(u(nan(BG,@Z)) |)\|)

= S(u™|pQy) - (> Z’yeEgi(u(n”F) 1)
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We therefore find that p/F is convergent and that

tr, (u™ |pF) = St (uM™ s (F))  (by 7.21)
= Zz ZBCFix(%(M) LTL<B7 (ﬁl(‘}t.)v ¥ u(n)))
= ZﬁCFiX(f(TL)) ZZ LTL(ﬁ? (%l("f)> 12 u(n)))

- > serineoy KT8, (F, o, u™)).

This completes the proof of 7.7 in the case when Gy is geometrically connected. U

8. CLASSIFYING STACKS OF FINITE GROUPS
Throughout this section we work with Q-coefficients.

8.1. Let G be a finite group and consider the classifying stack BG over Spec(k). The category
of constructible sheaves of QQ,-modules on BG is then equivalent to the category of finite type
representations of G over Qy. Let p : Spec(k) — BG be the étale projection corresponding
to the trivial torsor. Since p is étale, we have p* = p' and this functor is given by the functor
sending a representation V' of G to the underlying Q,-module. This functor has left adjoint
the functor sending a Q,-module F' to Q,[G] ®q, F' and right adjoint the functor sending F'
to Hom(G, F'). It follows that if F' is a finite type Q,-module then the map € : pF' — p,F' is
given by a map

' 1 Q[G] ®q, F — Hom(G, F).

Lemma 8.2. Let go € G and f € F be elements. Then €'(gy ® f) is the function G — F
sending go to f and g # go to 0.

Proof. Tt suffices to consider the case when F' = Q,. By construction of the map € in the
proper representable case [13, 5.2.1], the map €' is induced by the canonical isomorphism
f1Qp — f.Qy, where f : G — Spec(k) is the structure morphism. We leave to the reader the
verification this classically constructed isomorphism is the one indicated in the lemma. [

8.3. Now consider a morphism of finite groups a: H — G, which induces a diagram

Spec(k) —= BH —*= BG,

where s is the projection defined by the trivial H-torsor. Let M be an H-representation,
with underlying Q,-module M, and associated sheaf M on BG. Let M, denote s*M (the
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constant sheaf defined by Mj). We then have a commutative diagram

M~ M
€
Jid—ns*s* \[\id—w*s*

S Mo <—— s M,

€

(Ozs)!/\/lo i> Oé;S]Mg.

In terms of representations, this diagram can be rewritten as

et

) ]

Hom(G, My) << Z[G] ®z(n Hom(H, My)

EO‘STT 1®€STT

Z|G) @z My —— Z|G) @z (Z[H] ® M),

57

where a is the natural inclusion and b is the map induced by the map M — Hom(H, M)

sending m to the function h — h - m.

Lemma 8.4. (i) Let go € G and f € M be elements, and let g0 ® f € Z|G] Qgmy M be the

resulting tensor. Then €*1(gy ® f) is equal to the function
Yoot 1 G— M, g Z h-m,
{heH|g=a(h)-go}

with the convention that a sum over the empty set s 0.

(i1) Let V be a constructible sheaf of Qq-modules on BG corresponding to a G-representation

V. Then the map
V — Z[G] ®Z[H] V
corresponding to the composite

id—asa™* ex—1
YV —> a,a*V —— qa*V

sends v € V to the element

y—;ﬂzgéb(gv)-

geG

Proof. Statement (ii) follows immediately from (i).

To prove (i), it suffices to show that the image of €*T(gy ® f) in Hom(G, M) is equal to

Yges- Now observe that b(gy ® f) is by 8.2 equal to

go ® esT(Z h ® hm).

heH
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Therefore T
€ b(go® f) = GQST(Z a(h) - go ® hm).

heH
By 8.2 this implies the result. U

8.5. Let H and G be finite groups and let o, 5 : H — G be two homomorphisms with (3
injective. Let %, (resp. %) denote the classifying stack BH (resp. BG) over F,, and let
c1: G — Ao (resp. co: 6o — Zp) be the map induced by « (resp. ).

Theorem 8.6. Let (F,p,u) be a convergent Weil complex with € -structure on 2 . Then
there exists an integer ng, independent of (F,p,u), such that for every n > ng we have:

(i) The compler RU(Z , F) € D7 (Qy) with the endomorphism RT.(u™) is convergent.
(ii) Fix(€™) is pseudo-finite over Spec(k), and

tr, (RT.(u™)|RT (2, F)) > LTU(B, (F,eu™)).
BCFix(¢(™)

8.7. The proof occupies the remainder of this section.

As mentioned above, the category D (2, Q) is canonically equivalent to the bounded
above derived category D_ (Repg,(G)) of complexes of G-representations over Q, with finite-
dimensional cohomology groups, and with this identification the functor

RU.: D (X, Q) — D, (Qy)
is identified with the coinvariants functor
(—)a : D (Repg, (G)) — D (Qu).

8.8. Consider first the case of a Weil complex F concentrated in degree 0. Let F' € Repg, (G)
denote the object corresponding to F, and let F,, (resp. Fj) denote the object of Repg, (H)
obtained by pulling back along « (resp. ). Then the %-structure u on F corresponds to a
morphism F, — Fj in Repg,(H). The endomorphism RI'.(u(™) on RT'.(F) corresponds to
the map

ul™

(8.8.1) Fo—2>F,yg*—Fsy "= Fg,

where 7 : F3 g — F{ is the canonical projection, and by 8.4 (ii) the map a is the map induced
by the map

ﬁZg:FﬁF.

geG
Consideration of the commutative diagram

T 2geG 9 n
| £4g€G w(m) H
Jaciy o1 F!

Lk T
ﬁ/ZgGGg w(m)

F F F \
Fog—">Fon

Fﬂ,H ul FG

o)
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then shows that the trace of 8.8.1 is equal to the trace of the map

1
EZU(”)OQ:FHF
geG

8.9. The fixed point stack Fix(%™) can be described as follows. Since any torsor over Spec(k)
is trivial, a similar argument to the one proving 7.9 shows that Fix(%™) is isomorphic to the
quotient of G' by the action of H given by

hxg = pB(h)ga(h)™".
From this it follows that
1
>o ) F) = tn(m Yout o g, F).
z€Fix(€(M) (k) | |
This proves 8.6 in the case when F' is concentrated in degree 0.
8.10. Next consider a general bounded Weil complex with @ -structure (F, ¢, u) on 2y, and
let F € D’(Repg ,(G)) denote the corresponding complex of G-representations. The condition

that (F, p,u) is convergent means that there exists an integer ng such that for any n > ny
and any g € G the sum of the eigenvalues

(8.10.1) ) P
ko AeEg (ulmog|F)

converges. The following proposition now completes the proof of 8.6.

Proposition 8.11. For any n > ng the sum
(8.11.1) R P
ko AeEgF (u™|pF)

converges and

trb(u(”) ’plf) = Z LTL(ﬁ? (fa 2 U))
BCFix(#(")

Proof. For the convergence of 8.11.1, note that

>, W= >

A€EgF (ul™) |p F) AeEg(ulM |H*(F)c)

>

AeEg(ul™|HF(F))

= >

AeEgF (u(™)|F)

IN

The convergence of 8.11.1 therefore follows from the convergence of 8.10.1. The statement
about the traces follows from the case of a complex concentrated in a single degree and from
noting that

tr, (u™ |pF) = Ztn(u(n”p!%k(}—))v
!
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and

Y LB (Feu) =Y > LT.(B, (HMF),¢,u)).

5CFiX($a”(">) k  BcFix(# ™)

9. THE CLASSIFYING STACK OF A GENERAL GROUP SCHEME

In this section we prove 7.7 in general.

9.1. As in 7.7, let G¢/F, be a finite type group scheme, and let o : Gy — Gy be a finite
endomorphism. Let 2, denote BG,.

9.2. Let

1—>G8—>G0—>H0—>1
be the connected-étale sequence of Gy. To verify 7.7 we may by 1.20 make a finite extension
F, — F,, and therefore we may assume that Hy is a constant group scheme. After perhaps
maklng a further extension we may also assume that the map Go(F,) — Hj is surjective. Fix

a set {gn}nen of elements of Gy(F,), with g, a lifting of h. We further assume that g. is the
identity in Gj.

Let ag (resp. ago) be the endomorphism of Hy (resp. Gf) induced by a.

Recall that by 7.10 the stack Fix(%™) is isomorphic to the stack quotient of G by the
action of G given by

hxg=a™(h)gh™t.
For h € H let P, denote the inverse image in G of h so that P, is a G°-torsor.
Lemma 9.3. Forn > 1 and h € H, the map
(9.3.1) GY = P, 2z a"(2)gpz?
18 surjective.

Proof. The element g;, defines an isomorphism G° — Pj,. Under this identification the map
9.3.1 becomes identified with the map

G -G 2 a(")(z)ghz_lg;I

The result therefore follows from 2.2 (applied with j the map z — g,2g; ') which implies that
9.3.1 is étale, and the fact that G° is connected. Il

It follows that every connected component of Fix(% ”)) can be represented by the point
[9] € Fix(€¢™)(F,) defined by an element g € G(F,) (since by assumption the map G(F,) —
H is surjective), and that any two liftings g € G(Fq of a given h € H define the same
connected component.

For any element ¢ € G let ¢, : G — G and ¢, : G — G be the maps given by conjugation
by g.
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The induced functor Bey : BG — BG is canonically isomorphic to the identity. Indeed if
P is a G-torsor then translation by g defines an isomorphism P x%¢ G — P. We therefore
have a 2-commutative diagram

Cg

BG° BG°
BG.
In particular, if 7 € D, (BG,Qy) and if F° € D (BG° Qy) denotes the restriction, then
there is a canonical isomorphism t, : ¢;F? — F°.
For h € H let 6}' denote the correspondence on BGY given by
(¢qy © ao,id) : BG) — BGy x BGY.
If (F,p,u) is a Weil complex with &-structure on BG, then we obtain for every h € H a
Weil complex with ¢"*-structure (F°, p,uot,,) on BG.

Lemma 9.4. The Weil complex with € -structure (F,p,u) on BG is convergent if and only
if for every h € H the Weil complex with €"-structure (F°, p,uot,,) is convergent on BGP.

Proof. As mentioned in 9.2, for n > 1 the points of Fix(%™) are all represented by the points
defined by the gj,. Now if F,, denotes the pullback along g, : Spec(k) — €™ of F to D (Qy)
and if 7, € D (Qy) denotes the pullback along e : Spec(k) — €™, then the action of u(™
on F,, is given by the composite

~ gy, w(m)
th er «/Te fe::/tgha

where we have used the canonical isomorphism F,, ~ F.. Thus (F, ¢, u) is convergent if and
only if there exists an integer ng such that the complexes with endomorphisms (F, u™ o ton)
are convergent. This implies the lemma. U
Let p: BG — BH be the projection and consider the diagram
BG
I

BG p BG

D BH D
R
BH BH.
Let h € H be an element defining a fixed point [h] of ag). Then the local term of
(0 F, prp, pru™) at [h] € Fix(a™) is given by the trace of the map

u™ o ton RI.(BG°, F) — RT.(BG°, F°).

From the case of a connected group, we conclude that (pF, pip, piu) is convergent, and then
by the case of a finite group we conclude that (RI'.F, Rl'.p, R['.u) is also convergent.
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To prove the statement about local terms, observe
tr,(u™|RT.(BG, F)) = tr,(pu™|RT(BH,pF))

1
- ﬁ Z tr,(pu™ o h|(pF)n)  (case of finite group)
heH

1
= T Z tr,(u™ ot,, |RT.(BG®, F°))
heH

1 1 .
= T Z W Z tr,(u™ o gy, - g|F,,4) (connected case)
heH geGI(Fy)

1
= Gy Xt eglF).
GE 2=
This completes the proof of 7.7.

10. PROOF OF 1.24

Lemma 10.1. The map ¢ : 6o — Zo is proper with finite diagonal and ¢y : 6o — Zy is
quasi-finite.
Proof. That ¢, is quasi-finite is clear since the diagram
Co — %o
Xo —= Zo
is cartesian.

For the properness of ¢{, note that the fiber product &, of the diagram
[Co/ Gl

Xo — [Xo/Gol,
is isomorphic to
[CO X GQ/GO],
where h € Gy acts on Cy X Gy by
(z,9) = (ha, ga(h)™).
To verify that the diagonal of &, over X| is finite it therefore suffices to show that the map
(Co x Go) X Go — (Cy x Go) xx, (Co X Go), (x,9,h) — (x,9) x (hx,ga(h)_l)

is a finite morphism, which is clear since « is finite.
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To verify the properness of &, — X, we may base change to the algebraic closure % of F,,
in which case there exist points z1,...,z, € G(k) such that the map

]:[G — @G,
i=1

which on the i-th component is given by g — z; - a(g), is surjective.

The induced map
[Tc—Icxaa,

i=1
which on the i-th component sends z € C to (z, x;), is then a surjection. We therefore obtain
a commutative diagram

b

/\

H;:1C*a»<@*c>xj

where a is surjective, b is proper, and c is separated. It follows that the map ¢ is also
proper. Il

Write Ba™ : BGy — BG for the endomorphism defined by a(™.

Let p: Xo — 20 (resp. q : Cy — %) be the projection. Choose ng as in 1.19 for convergent
Weil-complexes with a-structure on BG. By 1.20 it suffices to prove 1.19 after making a finite
extension I, — F,-. We may therefore assume that if Gy — Hj is the maximal étale quotient
of Gy, then Hj is a constant group scheme and the map Go(F,) — Hy is surjective. This
implies that there exists gi,...,9, € G(F,) such that the components of Fix(Ba™) are
represented by the components {[g;]} of Fix(Ba™) corresponding to these elements, and the
same holds after replacing n by a larger integer (see the discussion after 9.3).

Fori=1,...,r let ¢ : C§ — Xy x X, denote the correspondence
(tg, 0 c1,c2) 1 Co — Xo x X,
where ¢, : Xy — Xj denotes the action of g; on Xj. Let ot Gy — Gy denote cg, © o, where
cg, denotes conjugation by g;. Then ¢} : Cj — X is compactible with the Gy-actions in the
sense that for any z € C and h € G we have
ci(h*z)=a'(h)-c(z).
We therefore obtain a correspondence

ci:%oie%xc%”o.

After possible replacing ng by a larger integer, we may assume that Deligne’s conjecture
holds for any bounded Weil complex with C{-structure on Xy. We claim that with these
assumptions the conclusions (i) and (ii) in 1.19 hold for any Weil complex (F,¢,u) with
¢ -structure on 2" and F bounded.

Let F' € D% X,Qy) be the restriction of F to X, and let o : 25 — BGy be the canonical
morphism.
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Lemma 10.2. The map
o™+ (01 F)jg) = (01 F )
is canonically identified with the map
RT.(u®™) : RT (X, F) — RI (X, F),
where [g;] : Spec(k) — Fix(a(él)) is the point defined by g;. In particular (o\F,o1p, ovu) is
convergent (since RU.(X, F) is a bounded complez).

Proof. This follows from the definition of the local terms. O

Let Gé?) denote the group scheme
Gy = {h € Gl giad (h) = g:}.

Then the connected components of Fix(Ba™) are all of the form BGgf) for some 1.

Fix an integer ng such that Fujiwara’s theorem holds for F' with respect to each of the
C'-structures. From 10.2 we also find that for n > n,

tr,(u™|RT (2, F)) = —Ltr, (u"M|RT(X, F))

2 lglerin(al”) G5
(10.2.1)

1 i,(n
Z[gi}EFix(BagL)) 1G5 erFix(cMn)) tr, (u™l )|Fcz(w))-

Let
7 Fix(€™) — FiX(Bag))
be the projection. For any ¢, let &; denote the fiber product
Fix(€™) x : BG.

Fix(Ba}

This fiber product can be described as follows. There is an action of fof) on Fix(C*™) for

which an element h € G4 sends a fixed point 2 € Fix(C*(™) to the point haz. Note that this
is again a fixed point as

" (hx) = g (hx) = g:al (h)el™ (x) = h(h g0y () () = h(gic\” (x)) = ea(ha).

Lemma 10.3. There is a canonical isomorphism 2; ~ [Fix(C*™)/G{").

Proof. The stack &Z; is equal to the stack associated to the prestack which to any scheme T'
associates the following category:

Objects: Pairs (x,g), where x : T'— C'is a morphism and g € G(T) is an element in the
Pam-orbit of g;, such that the diagram

xT

tgocgn)
c2

X

T

C

commutes.
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Morphisms: A morphism (z,g) — (2, ¢’) of objects over T is an element h € G(T') such
that

g = agl)(h)gh_l, ¥ =h-ux.

It follows that every object of &2;(T) is locally on T represented by a pair (z,g;), where
x € Fix(C*™). From this the lemma follows. d

Lemma 10.3 implies that
1 1 ,
Z —trL(ﬁ’f) = Z —trL(u%(n)’RFc(X F))
(n) ’
?; |Stab(/6)| IEFIX(CZ’(TL)) ’Ggl ’
Combining this with 10.2.1 we obtain 1.24. O

11. AUTOMORPHISMS OF ALGEBRAIC SPACES

11.1. In general the validity of 1.19 is additive in the following sense. Consider a correspon-
dence ¢ : 6y — Zy X Zp as in 1.19. If 2y — %, is any morphism of algebraic stacks, then
as discussed in 1.5 the correspondence ¢ induces a correspondence on % given by

co: Cro =G0 X(gpxay) (2o X 2) —— 2 x %,

If 25 — 2, is the inclusion of a locally closed substack, then we say that 2 is c-invariant
if the maximal reduced closed substacks of ¢;'(2’) and ¢, '(Z) in € are equal.

Lemma 11.2. Let 2 C % be a c-invariant substack, and let €y o C €y denote ¢, (20)red =
3 (20)rea- Then coy : Cwo — 25 is proper and cy o : Cxo— 20 is quasi-finite.

Proof. The quasi-finiteness follows from noting that there is a commutative diagram

Co 2

G —> %

|

2
(KO % ’

where the vertical arrows are immersions and ¢; is quasi-finite (note also that this doesn’t
require 2 to be c-invariant).

The properness of c; can be seen by consider the commutative diagram

Cr o

(goxe%foxag?f()(%X%)*)%X%&)%

| .

pry

Cgo %X%H%éb

Cc1



66 MARTIN OLSSON

where the squares are cartesian and k is a closed immersion defined by a nilpotent ideal since
%, is c-invariant. O

11.3. Let j : Zy — Z( be a c-invariant substack. We then have a commutative diagram

Co 2

k
Co,2 — 60 X1, 20,5 20— 25

P b

%0 = %7

where the square is cartesian and the map k is a closed immersion defined by a nilpotent
ideal. By the base change theorem [14, 12.1], for any F' € D~ (%,Qy) we have a canonical
base change isomorphism

JreaF ~ cy 0 k*q"F.

In particular, if F' € D™(2",Qy) is a complex with a @-structure u : cycfF — F, then the
pullback j*F to 2 has a €#-structure given by

Ju cxacy 7 F ~ copak™q* I F ~ j caci F—j" F.

Since j : Z5 — A is defined over F, it is also clear that if ¢ is a Weil-structure on
F € D=(Z,Qy) then j*F has a natural Weil structure j*¢. Finally for every n there is a

natural immersion Fix(‘ﬁg )} < Fix(¢™). It follows that if (F,¢p,u) is a convergent Weil
complex with @-structure on 2" then (j*F, j*¢, j*u) is a convergent Weil complex with €s-
structure on Z.

Proposition 11.4. Let j : % — %o be a c-invariant open substack, and let i : Zy — Zg be
the complement (with the reduced structure). Let (F,p,u) be a convergent Weil complex with
€ -structure on 2. If 1.19 holds for (j*F, j*p, j*u) on % and (i*F,i*p,i*u) on &, then 1.19
also holds for (F,p,u).

Proof. Let ng # (resp. no ) be an integer as in 1.19 for 2 (resp. %), and let ny denote the
maximum of the two. Taking cohomology of the distinguished triangle

Jj*F — F — i, 0"F — jij"F[1]
we obtain a distinguished triangle
RU(%,j*F) — RU.(%Z ,F) — RU.(%,i"F) — RU.(%,j F)[1].

Applying the following 11.5, it follows that for every n > ng the complex RI'.(:Z", F) with
the endomorphism RI'.(u(™) is convergent.
For the equality of tr, (u™|RT.(2", F)) with the sum of local terms, note that Fix(¢™) =

Fix(‘@([n)) I Fix(%@(; )). Therefore the equality 1.19.1 follows from the corresponding equality
for 2 and Z and the following lemma. O
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Lemma 11.5. Let

K’ K K" K'[1]
@ l l‘P l @ lsﬂ’[l}
K’ K K" K'[1]

be an endomorphism of a distinguished triangle K' — K — K" — K'[1] in D;(Qy). If
(K',¢") and (K", ¢") are t-convergent, then so is (K, ) and

(11.5.1) tr, (| K') + tr,(@"|K") = tr,(p| K).

Proof. For p € Z define
k2p \eEg(y)
For every p we have an exact sequence
H'(K') — H"(K) — H"(K") — H""/(K") — -+,
which implies that
Sp(K) = Sp(K") + Sp(K") + €,
where 0 < €, < >\ cpar(or) [Al- Since the sequence of partial sums {S,(K’)} converges we
have lime, = 0. It follows that the sequence {S,(K)} also converges.

The equality of traces 11.5.1 follows from noting that the sum » (—1)Pc(tr(p|HP(K)))
converges absolutely and therefore we can rearrange the terms, and write

D (FLPuu(plHP(K))) = Y (1) u(tr(p| HP(K')) Z L(tr(pl HP(K™))).

p p

0

Now consider a separated algebraic space X of finite type over F, and an automorphism
o : Xo — Xj defining a correspondence ¢ : Cy — Xy X Xg (so Cy = Xy with ¢; = ¢ and
=id).

Theorem 11.6. Congjecture 1.19 holds for any bounded Weil complex with C-structure (F, ¢, u)
on X.

Proof. Let Uy C Xy denote the maximal open subspace of X, which is a scheme, and let
Zy C Xo be the complement of Uy (with the reduced structure). Then o(Uy) = Uy. The
result therefore follows from 11.4, the case of schemes, and noetherian induction. Il

12. DELIGNE-MUMFORD STACKS

12.1. Let c: 6y — Zo x Zo be a correspondence over I, with ¢, and 2 Deligne-Mumford
stacks, and ¢y (resp. ¢y) proper (resp. quasi-finite). Let p : Zy — Xy and ¢ : 65 — Cj be the
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coarse moduli spaces so we have a commutative diagram

o

2o a 2o

P Co P
VN
Xo Xo,
where ¢, is proper and ¢, is quasi-finite. Let
7 : Fix(¢™) — Fix(C™)
be the projection.

12.2. Let 7 € Fix(C™)(k) be a point and let x € ¢'(k) be a lifting of #. Note that x is unique
up to noncanonical isomorphism. The fiber 77!(Z) can be described as follows. Giving x the
structure of an object of Fix(%'™) is equivalent to specifying an isomorphism

o () = ()

in 2 (k). Fix one such isomorphism oy (which exists since cﬁ") (x) and ¢y(x) map to the same
element of X (k)), and let

o™ G, — Gey()
denote the map induced by oy o ¢1, where G, (resp. G62(x)) denotes the stabilizer group of x
(resp. ca(x)). Let B : Gy — Geyiz) be the map induced by c;. An isomorphism between two
pairs (x,0) and (z,0’) in Fix(%™) is an element h € G, such that the diagram

o (z) == ea()

lci’”(h) iczw)

" (z) = ca(x)

commutes. From this it follows that 7~!(Z) is isomorphic to the stack quotient of G, by
the action of GG, given by

hxg=a™(h)gB(h)".
It follows that
1
|G|

S LL([e.0], (F,u)) =

[z,0len—1(z)

Z trL (u(n) |"TI7’YOUO )7

VEG ey ()

where the left sum is over isomorphism classes of objects in 7~*(z)(k). By the discussion in
section 8 this is also equal to

tr, (@ | (nF)a).

From this we obtain the following.
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Theorem 12.3. Conjecture 1.19 holds for a bounded convergent Weil complex (F,p,u) on
2 if and only if 1.19 holds for (pF, prp, pru). In particular, 1.19 holds for 2 if either

(i) Xo is a scheme;

(i1) 6o is induced by an automorphism of Zy.

13. AN EXAMPLE FROM TORIC VARIETIES

13.1. Fix a prime number p.

Let X be a free abelian group of rank r, and let ) C Xy be an integral polytope. Let P
denote the integral points of Cg := Cone(1,Q)) C R x Xg, and let

Vo := Proj(F,[P])

be the corresponding toric variety over F,, with torus Tj := Spec(F,[X]).

Let D € GL(X) be an automorphism of X such that the induced automorphism of Xg
takes () to (). This map D then induces automorphisms

a:Ty—Ty, 6:Vog— VW

which are compatible in the sense that the diagram

Ty x Vo —2=Vjy

s s

Ty x Vo —2=Vjy

commutes, where p denotes the action of 7Tj on Vj.
Let ¥, denote the stack [Vy/Tp], and let

c=(0,id) : € =¥ — Yo X N

be the correspondence obtained by passing to the quotient by the Ty-action.

For a face F' C Q of @ let P C P denote the integral points of C'r := Cone(1, F') C Rx Xg.
Since F' is a face there is a map of graded rings

Fy[P] — Fp[Pr]

sending an element e, € F,[P] (the generator defined by p) to 0 if p ¢ Pp and e, otherwise.
This defines a closed subscheme Vo C Vy which is Tp-invariant. Let T C T denote the
stabilizer of the generic point of Viy. The inclusion Tx C T' corresponds to a surjection of
free abelian groups X — Yr. The kernel My of this map is the subgroup of degree 0 elements
in PEP. Let Up := D(MF) be the torus corresponding to Mp.

If furthermore F' is stable under D, then D induces an automorphism Dgp : Mp — Mp.
Let Ap(t), A(t) € Z[t] denote the absolute values of the characteristic polynomials

Ap(t) == |det(1 — tDp|Mg)|, A(t) := |det(1 — tD|X)|.
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Theorem 13.2. There exists an integer ng such that for all n > ng the complex RTU (7, Qy)
with the endomorphism 6™ is convergent, and

Z M = tr,(0™|RT (¥, Q).

FCQ,D(F)=F Alp)
Proof. Let ¥po C % denote the locally closed substack [Vio/To] C [Vo/To], and let Y2, C Yo
denote the open substack defined by the maximal torus orbit Vz(v),o C Vpp.
By 10.3, we have Fix(%™) ~ [Fix(6™)/H®)], where H™ C T is the kernel of the map
T —T, m—a™(m) m"

In particular, for any object 2 € Fix(%™)(k), there exists a unique face F' C @Q such that
D(F) = F and such that = can be represented by an element & € Fix(6™) with & € V2.

Let 5%") : V& — Vi be the map induced by 6, let
ozgf) Up — Up
be the map induced by o™, and let H}") be the kernel of the map
Up = Up, u— a?(u)u’l.
If we fix a point zy € V2(k), then any other element of V2(k) can be written uniquely as
uzg, with u € Up (k). Write 6™ (zp) = w - 29, where w € Up(k)
An element uzy € V2(k) is in Fix(6™) NV if and only if
6™ (uzy) = ag”) (u)d™ (z) = ozgf)(u)wzo
is equal to uzg. Equivalently, if and only if

w = o™ (u) tu.

Since the map
Up — Up, uw— agl)(u)_lu
is étale and surjective, it follows that the number of points in Fix(6() N V2 is equal to the
order of H.

From this it follows that

H(”)
ST LTB, (@i can, o)) = i
BCFix(€¢(™) (k) FeQ.DiF)=F

On the other hand, H}n) (resp. H (")) is equal to the diagonalizable group scheme associated
to the cokernel of the map

1—p"Dp: Mp — Mg, (resp. 1—p"D:X — X),

and therefore
#H = Ap(p"), #H™ = A@p").
This implies the theorem. U
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Remark 13.3. A more detailed analysis of the proof of 1.24 shows that in 13.2 we can take
Nng = 1.

13.4. If V is a smooth variety over [F, then we can rewrite the theorem as follows. Note
first of all that Frobenius on Vj is flat, and therefore 6 : V' — V is also a flat morphism of
degree equal to p™". This number is also equal to the order of K™ := Ker(a™ : T"— T).
Since we have a cartesian diagram

J/(s(n) ié(")
1% v,

it follows that the degree of 6™ : ¥ — ¥ is equal to 1. From this and 5.25 we obtain the
following:

Theorem 13.5. With notation as in 13.2, assume in addition that V is smooth over k. Then
the complex RT (¥, Qy) with the endomorphism (§™*)~1 is convergent and

(13.5.1) > if(%) = tr,((6™*) 7 RT(¥,Qy)).
FCQ,D(F)=F

Remark 13.6. In the case when V' is smooth, there is a well-known description of H*(7", Qy)
in terms of the so-called Stanley-Reisner ring R (see for example [5, §4]). This ring Ry is
defined as follows. Let S denote the set of vertices of @ (so @ is the convex hull of the set of
points s € S). Then Ry is defined as a quotient of the free polynomial algebra on S

Rg = Qu[rd]ses/Ig,
where I is the ideal generated by [], ¢ =5 and the monomials z, - - - 7, for which the simplex
spanned by s1,...,s; is not a face of Q).

Any element s € S is a fact of @) and the corresponding closed subscheme V; C V is a
T-equivariant divisor. There is a map

Qf{xs]ses - H*(AV, QZ)

which sends x4 to the equivariant Chern class of the divisor V5. It is shown for example in [5,
Theorem 8] that this map induces an isomorpishm

R — H*(¥,Qu).
Since the Frobenius pullback of a line bundle is its p-th power, it follows that under this
isomorphism the action of (60*)~! is given by the automorphism
p™ : Rq — Rq
induced by the map

Ty (1/p")a:D(S).
Thus the formula 13.5.1 can be rewritten as

Ar(p") (n)
(13.6.1) > A0 = tr,(p™|Rg).
FCQ,D(F)=F
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Example 13.7. Let (Q C R? be the polytope
(0,1)

(0,0) (1,0)

and let D : Z? — Z? be the endomorphism

0 1
D= (1 0) .
The associated toric variety V; is then P?.

Write zgo (resp. o1, 210) for o) (resp. (1), (1,0)), so the Stanley-Reisner ring in this
case is equal to
RQ = @€[x007 Zo1, xlo]/(xOOxOwa)-
The endomorphism p™ is given by
1 1 1

Zoo /— —ZLoo, <Lo1 7 —Ti0, Lio > —To1-
pn pn 23

Let ﬁ(”) be the endomorphism of the polynomial ring Qy[zgo, Zo1, Z10] given by the same
formula. Setting y = g1 + x19 and z = zg; — 219 we can also view this as Q[zgo, y, 2] with
p™ acting on xgy and y by multiplication by 1/p" and on z by multiplication by —1/p".
Using this one sees that

_(n B 1
Qb o) = = ()

Consideration of the exact sequence

Z00T01T10
S

0 —— Qelzoo, Zo1, T10) Q¢[00 Zo1, T10] Rg 0

and the fact that 5™ acts on zgxg 219 by multiplication by 1/p*™ gives

R 1 B (1/p*)
PR = e+ () (0= (Upm)20 + (1)

On the other hand, let L C @ denote the line segment connecting (0, 1) and (1,0). Then
{F CQID(F) = F} ={Q, L, (0,0)},

with corresponding Ag(t)’s equal to

11— 2,1 +¢,1.
It follows that
Ap(p" 1+p" 1
I e
FCQ,D(F)=F
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Thus the formula 13.6.1 in this cases amounts to the elementary identity

RS L S 1 3 (1/p™)
1 1 (- WP ) (- ()P ()

Remark 13.8. The toric variety V) has an integral model given by
Vz = Proj(Z[P]).

Let V¢ denote the base change to C. For any integer m, multiplication by m on the monoid
P induces an endomorphism 7,, : Vz — Vz. If m = p' for some prime p, then the reduction
modulo p of ~,, is equal to the t-power of the Frobenius morphism on V;. Similarly, T, and
¥, have integral models Ty, and 77. By a standard argument using base change for compactly
supported cohomology, one can deduce that for n > 1 we have

Z AF(p ) — trL(Vp" e} (5|RFC(/7/(C7 Qf))
FCQ,D(F)=F Alp")

From this one might speculate that for arbitrary m > 1 we have

S A (o SIRTL(6, Q)

A(m)
FCQ,D(F)=F

and in particular the right side is convergent.

This is in fact not hard to show using the same argument as above. First let p be a prime
dividing m, and write m = p-m/. Then look at the reduction modulo p, but instead of §
consider the endomorphism ~,,, 0 §. We leave the details to the reader.

14. TRACES OF HECKE OPERATORS

14.1. Fix pairwise distinct primes p, ¢, and m. Let o7 r @) be the moduli stack over F,
classifying principally polarized abelian varieties of dimension g with I'g(m)-level structure.
The fiber of the stack o7 () over a scheme S is by definition the groupoid of collections

{(A,N), (B,7), [},
where (A, \) and (B, 7) are principally polarized abelian schemes of dimension g over S and
f A — B is an isogeny such that the diagram

(14.1.1) A-1.p
m)\l \LT

At i Bt

commutes. Note that the degree of f is equal to m9.

If o7, /IF, denotes the moduli stack of principally polarized abelian varieties, we obtain a
correspondence

€ Ay ro(m) = Dy X
given by
Cl((Av )‘>7 (B7T>7f) = (B7T)a 02((147 >‘)7 (B’T)vf) = (Av/\)

Lemma 14.2. The map ¢ is proper and quasi-finite, and ¢y 1s quasi-finite and representable.
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Proof. If S is a scheme and ((A4, ), (B,7), f) € g r,m)(S) is an object, then an automor-
phism of this object is given by an automorphism « of (A, A) such that if H; C A[m] denotes
the kernel of f then o(Hy) = Hy. From this it follows that ¢, is representable. Moreover,
if S = Spec(k) is the spectrum of an algebraically closed field k& of characteristic p, and
z = [(A,\)] € (k) is a point, then c;'(z)(k) is in bijection with the set of rank m9 sub-
groups H C A|m| which are isotropic with respect to the Weil pairing induced by A (see for
example [9, 1.7]). From this it follows that ¢, is also quasi-finite.

To verify the properness of ¢;, we check the valuative criterion. Let S = Spec(V) be
the spectrum of a discrete valuation ring with generic point n € S and closed point s € S.
Let (B, T) be a principally polarized abelian scheme over S, and assume given a principally
polarized abelian scheme (A,, \,)) over 7, and a morphism f : A, — B, defining an object

((Am )‘77)7 (Bm 7_77)7 fn) € %,Fo(m)(n)'

We need to show that after possible replacing V' by a finite extension, this objects extends to
an object of & 1y (m)(S) (which since .27 is separated will automatically map to (B, 7) under
Cg).

After replacing V' by a finite extension, we may assume that A,[m] is a constant group
scheme. Let H C A,[m] be the kernel of f,, and fix an isomorphism H ~ (Z/(m))9. This
identifies A, with a (Z/(m))9-torsor over B,. If g : B — S denotes the structure morphism,
then since the étale cohomology sheaf R'g.(Z/(m))¢ is locally constant on S, we can, after
possibly replacing V' by another finite extension, extend A, to a (Z/(m))’-torsor P — B.
Since P is proper, the identity section e : n — A, extends uniquely to a section S — P. This
gives P the structure of an abelian scheme over S, which we denote by A. This then gives an
extension f: A — B of f,: Ay — B,. Furthermore, since the relative Picard scheme Pic, ¢
is proper, we get also a unique extension A of A, to a principal polarization over S (at least
after making another extension of S). Furthermore, the diagram

A-1.p

)

At <— B!

commutes, as this can be verified over 7. This completes the verification that ¢; is proper.

For the quasi-finiteness of ¢y, let k be an algebraically closed field and let =z = [(B,7)] €
,(k) be an object. If ((A,N),(B,7),f) € ¢;'(z)(k) is an object, then after choosing an
isomorphism

Ker(f) = (Z/(m))’

we obtain a (Z/(m))%-torsor m : P — B together with an element p € 7 1(e). Since
HY(B,(Z/(m))?) is a finite set, the set of isomorphism classes of such pairs (7 : P — B, p)
is a finite set. It follows that there are only finitely many possibilities for the pair (A, f).
Furthermore, given f : A — B, the set of possible A’s such that 14.1.1 commutes is equal to
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the set of dotted arrows filling in the diagram
A
Y 7 \LftOTOf
£
ey
This set is a torsor under the finite set
Hom(A, A'fm]),
which implies that ¢, (z)(k) is finite. O

14.3. For an object (B, 7) € 7,(S) over a scheme S, let (B™, 7)) be the pullback of (B,7)
along the n-th power Frobenius morphism S — S. For any n > 0 the fixed point stack
Fix(c™) has fiber over a scheme S the category of quadruples

A= ((AN),(B,7), f0),
where ((A,\), (B,7), f) € &y r,m)(S) and
v (BM™ 1My ~ (A, \)
is an isomorphism of principally polarized abelian schemes over S. For such a fixed point let
xa:A— A

be the composite morphism
Fn
A # B i> B(n) . A7

where F : B — B™ is the map induced by the n-th power Frobenius morphism on B (the
relative Frobenius of B/S). The map ya has degree (mp™)? and the diagram

A5 4
|
At & At
commutes.

Remark 14.4. Note that Aut(A) is an étale group scheme since it is a subgroup scheme of
Aut(A, N), and Ker(xa — id) is an étale group scheme when n > 1 by 2.2 and 2.5.

14.5. Let V denote the smooth sheaf on 7, given by R'h,Qy, where h: X — 47, is the uni-
versal principally polarized abelian scheme, and for & > 0 let S¥V denote the k-th symmetric
power of V.

Let

XQ ! Xl
N7
A Lo(m)

denote the universal isogeny over % r,(m). By the proper base change theorem we have
Vo~ R'h;.Qy.
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The finite morphism ¢ therefore induces a map
u:cV— Vv,
which when composed with the trace map ¢V — ¢,V gives a map u : ¢;V — ¢, V.

The sheaf V also has a natural Weil-sheaf structure as it is defined over F,,. For every n > 0
let

T . RT.(,, S*V) — RT.(<,, S*V)
be the endomorphism defined by the twist u(™.

Theorem 14.6. There exists an integer ng such that for every n > ng the series

(14.6.1) 3 Wp;tr(T}n”)]RFc(%, SHVY)

n)g(k—H)
k>0

converges absolutely to

1
2 (#Aut(A)(k)) - #Ker(xa —id)(k)’

A€|Fix(c(m) (k)|

where the sum is taken over isomorphism classes of objects A = ((A,N), (B, 1), f,t) in
Fix(c™)(k) and Aut(A) denotes the automorphism group scheme of /.

Proof. First note that for A = ((A4, ), (B, 1), f,¢) we have
1 —

#Ker(xa —id)(k)

where we write Bya : BA — BA for the map defined by ya.

tr(BXA‘RFc(BAa Qé))»

The map Bxa has degree equal to 1/(mp™)?, and therefore by 5.25 we have
tr(Bxal RT(BA, Q) = (1/(mp")?)tx(Bxs [ (BA, Q1))
On the other hand, by Borel’s theorem [4, 5.6], we have
H*(BA, Q) ~ S H'(A,Qy).
Therefore we have

tr(Bxa|RT(BA, Qy)) = (1/(mp")*) > tr(S*xA|SFH' (A, Qy)).

k>0

As in 5.25 and 5.26, one sees that we have

tr(BYAIRL(BA.Q)) = Y (oot

= (mp")?

tr(S*(xA) T ISTH (A, Qo).

where x% : H'(A,Q;) — H'(A, Q) is the map induced by pullback. Furthermore, by the
discussion in 5.26 this sum converges absolutely.

Now recall (see for example [15, Theorem 4, page 180]) that the characteristic polynomial
of x on H'(A, Q) lies in Q[X], and all the eigenvalues of x4 acting on H'(A,Q,) ®, C have
absolute value (mp™)9/2. It follows that the set of eigenvalues of y’ acting on H'(A,Q,) ®, C
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is equal to (1/p"m)J times the set of eigenvalues of i ' acting on H'(A,Q,) ®, C. We
conclude that
1

3 (m;n)gtr(Sk(X*A)‘l|S"“‘H1(A,QZ)) =Y (SIS H (A, Q).

k>0 k>0 (mp”)

We therefore get

tr(ByalRT(BA,Qp) = >

k>0

Gy (S XA IS H (4, Q).

and the right side converges absolutely.

Now choose n big enough so that Deligne’s conjecture holds for «7 and n > ny,. We then
have

(TS| RD (e, SFV)) = >
Ae|Fix(c(™)(k)]|

1 k. x| ok 1yl
MU(S X|STH (A, Qyp)).

From this the absolutely convergence of 14.6.1 follows, and in addition we get

1 . N
2 (mp")g(kzﬂ)tr(TvS@ '|RT (7, S*V))

k>0

1 1 k. x| Qk rrl
T i o, TR 2 Gy TN (4,@0)

A€|Fix(c(™)(k k>0

1
-3 mtr(BXA\RFC(BA, Qo))

A€|Fix(c(™) (k)|

1
= > , (FAUE(A)(R)) - #Ker(xa —id) (k)

A€|Fix(c(™)(k

APPENDIX A. Rf, FOR UNBOUNDED COMPLEXES

Let (S, A) be an admissible pair as in 1.28, and let f : 2" — % be a morphism of finite
type S-stacks. In general, the functor

Rf.: DI (2 .A) — Df(F,A)

does not extend to a well-behaved functor on the whole D.(Z",A). As we now explain,
however, it does extend if the following finiteness condition holds:

(*) There exists an integer ng such that for every constructible sheaf of A-modules F' on
Z we have R"f,F = 0 for n > ny.

Lemma A.1. Let [ : 2" — % be a morphism of finite type S-stacks, and assume condition
(*) holds.

(i) If F € D2 ), then Rf,F € D™V (@ A).
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(11) Suppose p : F' — G is a morphism in DI (2", ) such that for some integer r the map
HI(F) — A7(G) is an isomorphism for j > r. Then the map

A (Rf.F) — A(RL.G)
s an isomorphism for j > r + ng.
Proof. For (i) we proceed by induction on e := b — a. The case e = 1 is by assumption. For
the inductive step, consider the distinguished triangle
HUF)—a] — F — 1ogps F — H(F)[—a+ 1,
which induces a long exact sequence
= R ANF) = RLF — RiTsqn B — -

By induction we have
RiTsqi 1 F =0
for 5 > b+ ng, and
R~ f, #(F)=0
for j —a > ng. It follows that R/ f,F = 0 for j > b+ ny.

For (ii), let C' be the cone of p. Then 5#7(C) = 0 for j > r, and therefore by (i) we have
Rf.C € DI 071 Consideration of the long exact sequence

= RO - RIfF — Rf,G— -
then gives (ii). d

Theorem A.2. Let f : 2 — % be a morphism of finite type S-stacks, and assume condition
(*) holds. Then the functor

[*: DU, ) = DX, A)
has a right adjoint
Rf.: D (Z,A) — D.(¥,A\),
and for every integer j and M € D.(Z", ) the natural map
R f .M = A" (Rf.M) — R f,r>_,M

s an tsomorphism for n >> 0.

Proof. The key point is the following lemma. Recall [6, 2.3] that if
o Myr — My — My — -,

is a projective system in the derived category D.(Z",A) of a finite type S-stack, then the
homotopy limit holim M. is by definition the mapping fiber of the map

1—shift:HMn—>HMn.
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Lemma A.3. (i) Let
o  Mysr — My — My g — -

)

be a projective system of objects of DI (A) (the derived category of bounded below complexes of
A-modules with cohomology groups finitely generated over A). Assume that for every j there
exists an integer ng such that the map

Hj(Mn—H) — H’ (M)

1s an isomorphism for every n > ng. Then for every j there exists an integer ng such that
the natural map

HY (holim,, M,,) — H?(M,,)
s an isomorphism for all n > ny.
(ii) Let 2" /S be an algebraic stack of finite type, and suppose given a projective system of
objects M, € DF (2", A)
oMy — My — My_q — -,
such that for every j there exists an integer ng such that the map

H (M) — A (M)

1s an isomorphism for every n > ng. Then for every j there exists an integer ng such that
the natural map

7 (holim,, M,,) — 7 (M,,)

s an isomorphism for all n > ny.
Proof. For (i), note that by the definition of holim,, M,, there is a distinguished triangle

holimy, M, — [, My —> [1,, M,, — holim, M, [1],

where s : [[, M,, — [[,, M, is the shifting map induced by the maps M, 1, — M,. Now an
elementary calculation (using the assumptions on the M,,) shows that the map

1—s: [[H (M) — []H# (M.,)

is surjective, and that the kernel is isomorphic to lim H’(7M,). This implies (i).

For (ii), observe first that for any smooth morphism U — £~ of finite type with U a scheme
there exists an integer ng such that for any F' € Dga’b](U, A) we have

RT(U, F) € D@btmol(A),

This follows from A.1 (i) applied to U — S and the definition of an admissible pair in 1.28.
Note that by our assumptions on (S, A), we can choose ng such for any étale quasi-compact

morphism j : V — U and G € DE?(V, A) we also have
RT(V,G) € D"*l(A),

as the bound ngy can be chosen to be a function of the dimension of U.



80 MARTIN OLSSON

Asin A.1 (ii) this implies that for any smooth morphism U — 2~ with U a quasi-compact
scheme, the system RI'(U, M,, ;) satisfies the assumptions of (i), where M, 1y is the restriction
of M,, to Uy. Therefore applying RI'(U, —) to the distinguished triangle

holim,, M,, — [],, M 1 I1,, M;, — holim,, M,,[1]

and using (i) together with the fact that RI'(U, —) commutes with products and hence ho-
motopy limits, we find that for every j the sequence

0 — HI(U, (holim, M, )y) — HI (U, [] M) = H (U ][ Ma) — 0

is exact, and that there exists an integer ng depending only on j, the system {M,,}, and the
dimension of U, such that the projection map

HY(U, (holim,, M,,)y) — H? (U, M,,)
is an isomorphism for n > ng. Sheafifying the presheaves
U +— H?(U, holim, M,,)

and
U H’(U, M,)
we obtain (ii). O

For M € D.(Z",A) let M,, denote 7>_,M. Then by A.3 the natural map
M — holim,, M,
is an isomorphism.

Now by A.1 (ii) the system Rf.M, € DI (%, A) satisfies the assumptions of A.3 (ii). We
define
Rf.M := holim, Rf.M,.

By A.3 for any j € Z there exists an integer ngy such that the map
R f.M — R f,M,

is an isomorphism for all n > ng. In particular, Rf.M € D.(%,A) and the last statement in
A.2 holds.

Now fix G € D.(#,A). Since the functor RHom(G,—) commutes with products, one
deduces from the distinguished triangle

Rf.M — ] Rf*MnllfH Rf.M, — Rf.M[1]

that
RHom(G, Rf.M) ~ holim, RHom(G, Rf.M,)
holim, RHom(f*G, M,,) (adjunction)
RHom(f*G, holim,, M,)
RHom(f*G, M) (since M ~ holim, M,,).

These isomorphisms realize Rf, as a right adjoint to f*. O

12

12

12
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A.4. With assumptions as in A.2, note that if M € D_ (2", A), then also Rf.M € D_ (%, \),
and that for every integer m there exists an integer ny such that

TZme*M = TZme*TZ*nM

for every n > ngy. This also implies that if A € DI (%, A) then for every m there exists an
integer ng such that

TemRIAom(Rf M, A) ~ 7< R om (R fm>_n M, A)

for all n > ny.
Since by [13, 4.3.2]

R#om(Rf. M, A) ~ hocolim,,7<,, R om(Rf.M, A)
this implies that
(A.4.1) R om(Rf. M, A) ~ hocolim, R om(Rf.r>_,M, A).
A.5. Now suppose B € D} (2, A) is an object and M € D (2Z",A). Then

RA#om(M, B) € DX (X, \)
and we can define Rf.R7om(M, B) in the usual way. Again by [13, 4.3.2] we have
R om(M, B) ~ hocolim,, R om(1>_, M, B).
If B € D™ (%, \) then the cone of the morphism
R om(r>_n,M,B) — R om(r>_,,—1M, B)

is isomorphic to

RAom (7" (M)[n], B) ~ R om (7" (M), B)[—n]
which is in D£a+n’oo)(<% ,A\). Tt follows that that for every integer j, there exists an integer
ng such that the natural map

R f.RA om(1>_oM, B) — R f,R# om(r>_n,_1M, B)
is an isomorphism for all n > ngy. From this it follows that the natural map
(A.5.1) Rf.R7om(M, B) < hocolim, R f, R om(1>_, M, B)
is an isomorphism.

Corollary A.6. With assumptions as in A.2, for any M € D_(Z",\) and B € DF(Z",\)
there is a canonical map

Rf.R7#om(M,B) — R om(Rf. M, Rf.B)
defined as the composite
Rf.R7#om(M,B) =~ hocolim,Rf.R7#om(r>_,M,B) (A.5.1)

—  hocolim, R7€om(Rf.m>_,M, Rf.B) (canonical map)
~ RAom(Rf.M,Rf.B) (A.4.1).
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