## BONUS PROBLEM

MARTIN C. OLSSON

Let $k$ be a field and let $X=\mathbb{P}_{k}^{n}$. The purpose of this exercise is to give an alternate construction of the exact sequence

$$
\begin{equation*}
0 \rightarrow \Omega_{X / k}^{1} \rightarrow \mathscr{O}_{X}^{n+1}(-1) \rightarrow \mathscr{O}_{X} \rightarrow 0 \tag{0.0.1}
\end{equation*}
$$

(a) Let $T_{X}$ denote $\mathscr{H} \operatorname{om}\left(\Omega_{X / k}^{1}, \mathscr{O}_{X}\right)$. Show that giving the sequence 0.0 .1 is equivalent to giving a sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{O}_{X}(1)^{n+1} \rightarrow T_{X} \rightarrow 0 \tag{0.0.2}
\end{equation*}
$$

Let $\pi: \mathscr{O}_{X}^{n+1} \rightarrow \mathscr{O}_{X}(1)$ denote the the tauotological surjection over $X$, and let $\mathscr{O}_{X}(-1) \rightarrow$ $\mathscr{O}_{X}^{n+1}$ be the inclusion obtained by applying $\mathscr{H} O m\left(-, \mathscr{O}_{X}\right)$ to $\pi$. Tensoring with $\mathscr{O}_{X}(1)$ we obtain an inclusion $\alpha: \mathscr{O}_{X} \hookrightarrow \mathscr{O}_{X}(1)^{n+1}$. Let $Q$ be the cokernel. We show that $Q \simeq T_{X}$.
(b) Let $T_{0} \hookrightarrow T$ be a square-zero closed immersion defined by an ideal $J \subset \mathscr{O}_{T}$, and let $x_{0}: T_{0} \rightarrow X$ be a morphism corresponding to a surjection $\mathscr{O}_{T_{0}}^{n+1} \rightarrow L_{0}$. Show that the set of dotted arrows $x$ filling in the following diagram

is canonically in bijection with the set of isomorphism classes of commutative diagrams of $\mathscr{O}_{T}$-modules

where $L$ is an invertible sheaf of $\mathscr{O}_{T}$-modules, and the horizontal arrows are surjections.
(c) Suppose $U \subset X$ is an affine open subset such that $\left.\mathscr{O}_{X}(1)\right|_{U}$ is trivial, and let $F$ be a quasi-coherent sheaf on $U$. Show that for any commutative diagram

as in (b), the invertible $\mathscr{O}_{U[F]}$-module $L$ is trivial.
(d) With notation and assumptions as in (c), let $L_{0}[F]$ denote $L_{0} \otimes_{\mathscr{O}_{U}} \mathscr{O}_{U[F]}$ (so as an $\mathscr{O}_{U}$-module we have $\left.L_{0}[F] \simeq L_{0} \oplus L_{0} \otimes F\right)$. Show that there is a canonical bijection between dotted arrows filling in the following diagram

and $L_{0}^{n+1} \otimes F=\left.\mathscr{O}_{X}(1)^{n+1}\right|_{U} \otimes F$.
(e) Continuing with the notation as in (d) show that the group of automorphisms of $L_{0}[F]$ inducing the identity on $L_{0}$ is canonically in bijection with $F$. Show that if $f \in F$ is an element with corresponding automorphism $a_{f}$, and if $\gamma: \mathscr{O}_{U[F]}^{n+1} \rightarrow L_{0}[F]$ is a surjection corresponding to $\left.v \in \mathscr{O}_{X}(1)^{n+1}\right|_{U} \otimes F$ then the composite surjection

$$
\mathscr{O}_{U[F]}^{n+1} \xrightarrow{\gamma} L_{0}[F] \xrightarrow{a_{f}} L_{0}[F]
$$

corresponds to $v$ plus the image of $f$ under the map

$$
F \xrightarrow{\simeq} \mathscr{O}_{U} \otimes F \xrightarrow{\alpha \otimes 1} L_{0}^{n+1} \otimes F .
$$

Deduce from this a canonical isomorphism $Q \otimes F \simeq T_{X / k} \otimes F$ over $U$. In particular, a canonical isomorphism $\epsilon_{U}:\left.\left.Q\right|_{U} \simeq T_{X}\right|_{U}$.
(f) Show that if $U, V \subset X$ are two open subsets as in (c), then the two isomorphisms $\epsilon_{U}, \epsilon_{V}:\left.\left.Q\right|_{U \cap V} \rightarrow T_{X}\right|_{U \cap V}$ are equal, so we obtain a global isomorphism $\epsilon: Q \simeq T_{X}$.

