MATH 115: NOTES ON CURVE THEORY 3

MARTIN OLSSON

1. CONICS

Let k be a field with $2 \neq 0$ in k, and consider an equation of the form

$$
y^{2}=f(x)
$$

where $f(x)$ is a polynomial over k of degree $d \geq 2$, say

$$
f(x)=\sum_{i=0}^{d} a_{i} x^{i}
$$

Consider the corresponding homogenized equation

$$
F=Y^{2} Z^{d-2}-\sum_{i=0}^{d} a_{i} X^{i} Z^{d-i}
$$

defining

$$
V:=V(F) \subset \mathbb{P}^{2}(k)
$$

Notice that if $d \geq 3$ then the points at infinity of V is exactly the point $[0: 1: 0]$. Also the partial derivatives of F are given by

$$
\frac{\partial F}{\partial X}=\sum_{i=0}^{d} i a_{i} X^{i-1} Z^{d-i}, \quad \frac{\partial F}{\partial Y}=2 Y Z^{d-2}, \quad \frac{\partial F}{\partial Z}=(d-2) Y^{2} Z^{d-3}-\sum_{i=0}^{d}(d-i) a_{i} X^{i} Z^{d-i-1}
$$

In particular if $d \geq 4$ then [0:1:0] is a singular point of V.
On the other hand for $d=2$ we can give a more detailed analysis as follows (the case $d=3$ was discussed last time). Write

$$
f(x)=a x^{2}+b x+c
$$

The equations of the partial derivatives in this case become

$$
\frac{\partial F}{\partial X}=2 a X+b Z, \quad \frac{\partial F}{\partial Y}=2 Y, \quad \frac{\partial F}{\partial Z}=b X+2 c Z
$$

At infinity we have points $[\alpha: \beta: 0]$, where

$$
\beta^{2}=a \alpha^{2}
$$

Therefore there exists a point at infinity if and only if a is a square in k, and in this case there are exactly two points with both α and β nonzero. Therefore all the points at infinity are nonsingular.

Furthermore if $[\alpha: \beta: 1] \in V$ is some other point which is singular, then we must have

$$
\beta^{2}=a \alpha^{2}+b \alpha+c, \quad 2 a \alpha+b=0, \quad 2 \beta=0, \quad b \alpha+2 c=0
$$

From this we get that $\beta=0$, and that

$$
f(\alpha)=0
$$

Furthermore we get that $\alpha=-b /(2 a)$. Plugging into the third equation we get that

$$
-b^{2} /(2 a)=2 c,
$$

or equivalently that the discriminant

$$
\Delta:=b^{2}-4 a c
$$

is zero. Conversely, if $\Delta=0$ then we find that $[-b / 2 a: 0: 1]$ is a singular point.

2. Parametrizing points on a conic

Consider again a field k with $2 \neq 0$, and let

$$
y^{2}=a x^{2}+b x+c
$$

be an equation defining a conic $V \subset \mathbb{P}^{2}(k)$, and assume that the discriminant $b^{2}-4 a c$ is nonzero.

In this case there are two cases.
Case 1: V is empty. There is not much to say in this case except that this can happen! For example consider

$$
Y^{2}=-X^{2}-Z^{2}
$$

in $\mathbb{P}^{2}(\mathbb{R})$.
Case 2: V is nonempty. In this case if $P_{0} \in V$ is a point then we can use P_{0} to define a bijection between V and $\mathbb{P}^{1}(k)$.

In this case we can define a bijection between V and $\mathbb{P}^{1}(k)$ as follows. Let

$$
P_{0}=\left[u_{0}: v_{0}: w_{0}\right],
$$

and consider a line L in $\mathbb{P}^{2}(k)$ given by an equation

$$
\begin{equation*}
A_{0} X+A_{1} Y+A_{2} Z=0 \tag{2.0.1}
\end{equation*}
$$

The condition that this line passes through P_{0} is then that

$$
A_{0} u_{0}+A_{1} v_{0}+A_{2} w_{0}=0
$$

Note that the vector space of such vectors $\left(A_{0}, A_{1}, A_{2}\right)$ is two dimensional. Fix two linearly independent vectors $\underline{\alpha}=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ and $\alpha^{\prime}=\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ defining lines through P_{0}. For any point $M=[s: t] \in \mathbb{P}^{\underline{1}}(k)$, define the line L_{M} through P_{0} to be the line

$$
\left(s \alpha_{0}+t \alpha_{0}^{\prime}\right) X+\left(s \alpha_{1}+t \alpha_{1}^{\prime}\right) Y+\left(s \alpha_{2}+t \alpha_{2}^{\prime}\right) Z=0
$$

Note that the line L_{M} depends only on the point M and not the representative $[s: t]$.
Proposition 2.1. Let L be a line in $\mathbb{P}^{2}(k)$. Then $L \cap V$ is either empty, consists of two distinct points, or one point and the last case occurs only if L is a tangent line of V.

Proof. If L is the line at infinity of $\mathbb{P}^{2}(k)$ then the intersection $L \cap V$ is clearly either 0 or 2 points. Note that this is the line given by

$$
Z=0
$$

Next consider a line L given by an equation of the form

$$
X-\alpha Z=0
$$

In this case the intersection $L \cap V$ is given by solutions to the equation

$$
y^{2}=a(\alpha Z)^{2}+b \alpha z^{2}+c z^{2}=\left(a \alpha^{2}+b \alpha+c\right) z^{2}
$$

Note that $L \cap V$ has no points at infinity, for if $z=0$, then we have both $x=\alpha z=0$ and $y=0$. So there are no intersection points at infinity. On the other hand if $z=1$ then we are looking at solutions to the equation

$$
y^{2}=\left(a \alpha^{2}+b \alpha+c\right)
$$

If α is not a root of the equation $a x^{2}+b x+c$ then this has either no solutions or two solutions. On the other hand, if α is a root of $a x^{2}+b x+c$ then we have only 1 solution given by the point $[\alpha: 0: 1]$. The tangent line at this point is given by

$$
-(2 a \alpha+b \alpha) X-(2 c+b \alpha) Z=0
$$

Now observe that

$$
\alpha=\frac{b \alpha+2 c}{-2 a \alpha-b} .
$$

Indeed

$$
-2 a \alpha^{2}-b \alpha=2(b \alpha+c)-b \alpha=b \alpha+2 c
$$

Therefore L is the tangent line in this case.
Finally we have to consider a line given by an equation

$$
y=m x+B z .
$$

Making a linear change of variable $x \mapsto x-(b / m) z$ we may assume that $B=0$. In this case we are looking at solutions to the equation

$$
m^{2} x^{2}=a x^{2}+b x z+c z^{2} .
$$

If $z=0$, then this has a solution if and only if $m^{2}=a$ in which case there is exactly one solution and a is a square in k.

If $b=0$ and $m^{2}=a$ then L is the tangent line at the point $[1: m: 0]$. Indeed the tangent line at this point is given by

$$
-2 a X+2 m Y=0
$$

which can also be written as

$$
Y=m X
$$

If b is not equal to zero but $m^{2}=a$ then there is exactly one point of intersection with $z=1$.

Finally if $m^{2} \neq a$, then we get either two or no solutions since we are solving a quadratic equation for x.

