MATH 115: NOTES ON CURVE THEORY 2

MARTIN OLSSON

1. Lines

As usual let k be a field, and consider 2-dimensional projective space $\mathbb{P}^{n}(k)$ with coordinates X_{0}, \ldots, X_{2}. A line in $\mathbb{P}^{2}(k)$ is a subset of the form

$$
V(L) \subset \mathbb{P}^{2}(k)
$$

where S is a nonzero homogeneous linear polynomial

$$
S=\alpha_{0} X_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}
$$

Let us verify some basic properties of lines.
Lemma 1.1. Let $A, B \in \mathbb{P}^{2}(k)$ be two distinct points. Then there exists a unique line L through A and B.

Proof. Write

$$
A=\left[a_{0}: a_{1}: a_{2}\right], \quad B=\left[b_{0}: b_{1}: b_{2}\right] .
$$

If S defines a line through A and B then we must have

$$
\begin{equation*}
\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}=0, \quad \alpha_{0} b_{0}+\alpha_{1} b_{1}+\alpha_{2} b_{2}=0 \tag{1.1.1}
\end{equation*}
$$

We claim that these two equations have a unique solution $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ up to multiplication by an element of $k-\{0\}$. If your linear algebra course developed linear algebra over a general field this is immediate, as vectors $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ satisfying the two equations correspond to elements of the nullspace of the matrix

$$
\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

and since the two points are distinct the two rows are linearly independent which implies that the null space has dimension 1.

But we can also proceed directly as follows. To see that the two equations 1.1.1 have a unique solution up to scalar, note first that after relabeling the coordinates we may assume that $a_{0} \neq 0$, in which case we may even assume that $a_{0}=1$. Then from the first equation we get

$$
\alpha_{0}=-\alpha_{1} a_{1}-\alpha_{2} a_{2}
$$

Plugging this into the second equation we get

$$
\left(-\alpha_{1} a_{1}-\alpha_{2} a_{2}\right) b_{0}+\alpha_{1} b_{1}+\alpha_{2} b_{2}=0
$$

which is equivalent to the equation

$$
\left(b_{1}-a_{1} b_{0}\right) \alpha_{1}+\left(b_{2}-a_{2} b_{0}\right) \alpha_{2}=0
$$

Since the two points are distinct, the left side of this equation is not identically zero, and therefore there exists a unique solution $\left(\alpha_{1}, \alpha_{2}\right)$ up to scalar.

2. Tangent lines

Now consider a homogeneous polynomial F in variables X_{0}, X_{1}, X_{2} defining

$$
V:=V(F) \subset \mathbb{P}^{2}(k)
$$

For a point $P=\left[a_{0}: a_{1}: a_{2}\right]$, define the tangent line to V at P to be the line defined by the equation

$$
\frac{\partial F}{\partial X_{0}}\left(a_{0}, a_{1}, a_{2}\right) X_{0}+\frac{\partial F}{\partial X_{1}}\left(a_{0}, a_{1}, a_{2}\right) X_{1}+\frac{\partial F}{\partial X_{1}}\left(a_{0}, a_{1}, a_{2}\right) X_{2}=0 .
$$

Note that this is not always well-defined as all the partial derivatives might be zero. Let $T_{P} V$ denote this tangent line. Note that it is independent of the choice of the representative [$a_{0}: a_{1}: a_{2}$] for P.
Lemma 2.1. Let F be a homogeneous polynomial of degree r in variables X_{0}, \ldots, X_{n}. Then

$$
\sum_{i=0}^{n} \frac{\partial F}{\partial X_{i}} \cdot X_{i}=r F
$$

Proof. Both sides of the stated equality commute with taking linear combinations of polynomials, so it suffices to consider the case when

$$
F=X_{0}^{i_{0}} \cdots X_{n}^{i_{n}}
$$

with $i_{0}+\cdots+i_{n}=r$. In this case we have

$$
\frac{\partial F}{\partial X_{s}} \cdot X_{s}=i_{s} X_{0}^{i_{0}} \cdots X_{n}^{i_{n}}
$$

Summing over all indices s we therefore get

$$
\sum_{s=0}^{n} \frac{\partial F}{\partial X_{s}} \cdot X_{s}=\left(\sum_{s=0}^{n} i_{s}\right) F=r F
$$

Corollary 2.2. The tangent line $T_{P} V$ passes through P.
Proof. We have

$$
\sum_{i=0}^{2} \frac{\partial F}{\partial X_{i}}\left(a_{0}, a_{1}, a_{2}\right) a_{i}=(\operatorname{deg} F) F\left(a_{0}, a_{1}, a_{2}\right)=0
$$

Definition 2.3. A point $P=\left[a_{0}: a_{1}: a_{2}\right] \in V$ is called nonsingular if at least one of the numbers

$$
\frac{\partial F}{\partial X_{0}}\left(a_{0}, a_{1}, a_{2}\right), \frac{\partial F}{\partial X_{1}}\left(a_{0}, a_{1}, a_{2}\right), \frac{\partial F}{\partial X_{2}}\left(a_{0}, a_{1}, a_{2}\right)
$$

is nonzero.

Example 2.4. Consider $V \subset \mathbb{P}^{2}(k)$ defined by the equation

$$
F=X^{2}-d Y^{2}-Z^{2}
$$

The the partial derivatives are

$$
\frac{\partial F}{\partial X}=2 X, \quad \frac{\partial F}{\partial Y}=-2 d Y, \frac{\partial F}{\partial Z}=-2 Z
$$

If $2 d$ is not zero in the field k, then the only simultaneous solutions of these equations are given by the point $(0,0,0)$ which does not define a point of projective space, so in this case V is nonsingular at every point. If $2=0$ in the field, however, then all these partial derivatives are zero, and so there are no nonsingular points. Finally if $2 \neq 0$ in k, but $d=0$ in k, then the only simultaneous solution of the equations of the partial derivatives is given by $[0: 1: 0]$, which is also a solution of F, so in this case all points except $[0: 1: 0]$ are nonsingular.
Example 2.5. Consider $V \subset \mathbb{P}^{2}(k)$ defined by the equation

$$
F=Y^{2} Z-X^{3}+A X Z^{2}+B Z^{3}
$$

and assume that $6 \neq 0$ in k. The condition that V is nonsingular at every point can then be ensured by the condition that the disciminant

$$
\Delta:=16\left(4 A^{3}-27 B^{2}\right)
$$

is nonzero. This can be seen as follows. First we compute the partial derivatives

$$
\frac{\partial F}{\partial X}=-3 X^{2}+A Z^{2}, \frac{\partial F}{\partial Y}=2 Y Z, \quad \frac{\partial F}{\partial Z}=Y^{2}+2 A X Z+3 B Z^{2}
$$

Let $P=[x, y, z]$ be a point of V which is singular. Then from the vanishing of $\frac{\partial F}{\partial Y}$ we get that either y or z is zero. We consider each of these cases separately.

For the case $z=0$, note that then we have (since P is a point of V)

$$
-x^{3}=0
$$

which implies that $x=0$. We are therefore looking at the point $[0: 1: 0]$. But for this point we have $\frac{\partial F}{\partial Z}(0,1,0) \neq 0$ so this case provides no singular points.

In the case when $y=0$, we may assume that $P=[x: 0: 1]$, where x is a simultaneous solution of the equations

$$
X^{3}-A X-B=0,-3 X^{2}+A=0,2 A X+3 B=0
$$

Now if these equations are satisfied, then we get that

$$
-3 B=2 A X
$$

which upon squaring gives

$$
9 B^{2}=4 A^{2} X^{2} .
$$

Also from the second equation we get

$$
A=3 X^{2}
$$

so we get that

$$
27 B^{2}=4 A^{3}
$$

which contradicts our assumption that $\Delta \neq 0$.

Exercise 4. Let k be a field and let L_{1} and L_{2} be two distinct lines in $\mathbb{P}^{2}(k)$. What are the possibilities for the number of points in the intersection $L_{1} \cap L_{2}$?

Exercise 5. The Euclidian algorithm for polynomials works over any field. In this exercise verify this and some of the basic consequences as follows. Throughout k is a field.
(a) Show that if f and g are polynomials, then there exist unique polynomials h and r with $\operatorname{deg}(r)<\operatorname{deg}(g)$ such that

$$
f=g h+r
$$

(b) Show that if $a \in k$ is an element and f is a polynomial with $f(a)=0$, then

$$
f=(x-a) g
$$

for some polynomial g.
(c) Let f be a polynomial of degree d, and suppose f has $d-1$ roots a_{1}, \ldots, a_{d-1} in k. Show that then in fact f has d roots in k and f factors into a product of linear factors.
(d) Let f be a polynomial of degree d. Show that f has at most d roots in k.

Exercise 6. Let s be a complex variable (but if you have not taken any complex analysis you can just assume s is a real variable), and let

$$
\zeta(s):=\sum_{n=1}^{\infty} n^{-s} .
$$

(a) Show that $\zeta(s)$ converges for s whose real part $\operatorname{Re}(s)$ is >1.
(b) Makes sense of the infinite product (taken over all primes p)

$$
\prod_{p}\left(1-(1 / p)^{s}\right)^{-1}
$$

and show in particular that this infinite product converges for $\operatorname{Re}(s)>1$.
(c) Show that for $\operatorname{Re}(s)>1$ we have

$$
\zeta(s)=\prod_{p}\left(1-(1 / p)^{s}\right)^{-1}
$$

