# MATH 115: NOTES ON CURVE THEORY 1 

MARTIN OLSSON

## 1. Fields

A field is a set $k$ together with two operations

$$
+: k \times k \rightarrow k, \quad \cdot: k \times k \rightarrow k
$$

For $(a, b) \in k \times k$ we usually write $a+b$ (resp. $a \cdot b$ or just $a b$ ) for the image of the pair $(a, b)$ under the operation $+($ resp. $\cdot)$. These two operations are required to satisfy the following:
(F1) For any $a, b \in k$ we have

$$
a+b=b+a, a b=b a
$$

(F2) There exists an element $0 \in k$ (resp. $1 \in k$ ) such that for any $a \in k$ we have

$$
a+0=0+a=a, \quad 1 \cdot a=a \cdot 1=a .
$$

Note that the elements 0 and 1 are unique.
(F3) For any $a \in k$ there exists a unique element $a^{\prime} \in k$

$$
a+a^{\prime}=0
$$

We usually write $-a$ for the element $a^{\prime}$.
(F4) For any $a \in k$ which is not equal to 0 , there exists a unique element $b \in k$ such that

$$
a b=1
$$

We usually write $a^{-1}$ for this element.
(F5) For any $a, b, c \in k$ we have

$$
a+(b+c)=(a+b)+c, \quad a(b c)=(a b) c, \quad a(b+c)=a b+a c
$$

Example 1.1. Some examples of fields are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. If $p$ is a prime then the congruence classes modulo $p$ form a field under addition and multiplication of congruence classes. This field is usually denoted $\mathbb{F}_{p}$ (sometimes also written $\mathbb{Z} /(p)$ ).

We can talk about polynomials $F$ with coefficients in a field $k$. Such a polynomial (in variables $X_{1}, \ldots, X_{n}$ say) is simply a finite sum of monomial terms

$$
a_{i_{1} \ldots i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

with each $i_{j} \geq 0$.
Given a vector $\left(s_{1}, \ldots, s_{n}\right) \in k^{n}$ and a polynomial

$$
F=\sum_{\underline{i}} a_{\underline{i}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

we define

$$
F\left(s_{1}, \ldots, s_{n}\right):=\sum_{\underline{i}} a_{\underline{i}} s_{1}^{i_{1}} \cdots s_{n}^{i_{n}} \in k
$$

A polynomial $F$ in variables $X_{1}, \ldots, X_{n}$ is called homogeneous of degree $r$ if for each monomial $X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ occurring in $F$ we have

$$
i_{1}+\cdots+i_{n}=r .
$$

## 2. Projective space

Let $k$ be a field, and let $n \geq 0$ be an integer. Define $n$-dimensional projective space $\mathbb{P}^{n}(k)$ over $k$ as follows. The set $\mathbb{P}^{n}(k)$ is the set of equivalence classes of vectors

$$
\left(a_{0}, \ldots, a_{n}\right)
$$

of elements $a_{i} \in k$, such at least one $a_{i}$ is nonzero. Two vectors $\left(a_{0}, \ldots, a_{n}\right)$ and $\left(a_{0}^{\prime}, \ldots, a_{n}^{\prime}\right)$ are declared equivalent if there exists a nonzero element $\lambda \in k$ such that

$$
a_{i}=\lambda a_{i}^{\prime}
$$

for all $i$. We usually write

$$
\left[a_{0}: \cdots: a_{n}\right]
$$

for the equivalence class of the vector $\left(a_{0}, \ldots, a_{n}\right)$.
We write $\mathbb{A}^{n}(k) \subset \mathbb{P}^{n}(k)$ for the subset of points $\left[a_{0}: \cdots: a_{n}\right]$ with $a_{n} \neq 0$. Note that we have a bijection

$$
k^{n} \rightarrow \mathbb{A}^{n}(k), \quad\left(b_{0}, \ldots, b_{n-1}\right) \mapsto\left[b_{0}: \cdots b_{n-1}: 1\right] .
$$

If $F$ is a homogeneous polynomial of degree $r$ in variables $X_{0}, \ldots, X_{n}$ then for any $\lambda \in k$ and vector $\left(a_{0}, \ldots, a_{n}\right)$ we have

$$
F\left(\lambda a_{0}, \ldots \lambda a_{n}\right)=\lambda^{n} F\left(a_{0}, \ldots, a_{n}\right)
$$

It therefore makes sense to say that $F$ vanishes on a point $\left[a_{0}: \cdots: a_{n}\right]$ of $\mathbb{P}^{n}(k)$. If $F_{1}, \ldots, F_{t}$ are homogeneous polynomials we define

$$
V\left(F_{1}, \ldots, F_{t}\right) \subset \mathbb{P}^{n}(k)
$$

to be the set

$$
V\left(F_{1}, \ldots, F_{t}\right)=\left\{\left[a_{0}: \cdots: a_{n}\right] \mid F_{j}\left(\left[a_{0}: \cdots: a_{n}\right]\right)=0 \text { for all } j\right\} .
$$

Example 2.1. Consider the subset

$$
V\left(X^{2}+Y^{2}-Z^{2}\right) \subset \mathbb{P}^{n}(k)
$$

The intersection of $V\left(X^{2}+Y^{2}-Z^{2}\right) \cap \mathbb{A}^{2}(k)=k^{2}$ is the set of solutions to the equation

$$
X^{2}+Y^{2}=1
$$

The points in $\mathbb{P}^{2}(k)-\mathbb{A}^{2}(k)$ is the set

$$
V\left(X^{2}+Y^{2}\right) \subset \mathbb{P}^{1}(k),
$$

where $\mathbb{P}^{1}(k)$ is embedded in $\mathbb{P}^{2}(k)$ via the map

$$
\mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{2}(k), \quad[a: b] \mapsto[a: b: 0] .
$$

## 3. Homogenizing equations

We will often consider the following situation. Let

$$
f=\sum_{i, j} a_{i, j} X^{i} Y^{j}
$$

be a polynomial in two variables defining a subset

$$
\left\{(a, b) \in k^{2} \mid f(a, b)=0\right\} \subset k^{2}
$$

We can extend this zero set to all of $\mathbb{P}^{2}(k)$ as follows. Let $r$ be the maximum of the integers $i+j$ for $X^{i} Y^{j}$ a nonzero monomial occurring in $f$. Then define

$$
F:=\sum_{i, j} a_{i, j} X^{i} Y^{j} Z^{r-i-j}
$$

a homogeneous polynomial in three variables. The resulting zero set

$$
V(F) \subset \mathbb{P}^{2}(k)
$$

then has the property that $V(F) \cap \mathbb{A}^{2}(k)$ is the original set of zeros of $f$. The polynomial $F$ is called the homogenization of $f$.

More generally one can consider polynomials in more variables and zero sets of several polynomials at a time.

Example 3.1. If

$$
f=Y^{2}-X^{3}-a X-b
$$

for some constants $a, b \in k$ then the homogenization of $f$ is the polynomial

$$
F=Y^{2} Z-X^{3}-a X Z^{2}-b Z^{3}
$$

Note that the points at infinity of $V(F)$ consist of triples $[\alpha: \beta: 0]$ for which

$$
-\alpha^{3}=0
$$

This implies that $\alpha=0$ so the only point at infinite is $[0: 1: 0]$. This is an important example, and is an example of an elliptic curve.

## 4. ExERCISES

Exercise 1. For which integers $m$ is the set of congruence classes modulo $m$ a field (under addition and scalar multiplication of congruence classes)?

Exercise 2. Let $k$ be a field. Show that there is a natural decomposition

$$
\mathbb{P}^{n}(k)=k^{n} \cup k^{n-1} \cup \cdots \cup k \cup\{*\} .
$$

In particular, show that

$$
\mathbb{P}^{n}\left(\mathbb{F}_{p}\right)
$$

consists of

$$
p^{n}+p^{n-1}+\cdots+p+1=\left(p^{n+1}-1\right) /(p-1)
$$

elements.

Exercise 3. Exhibit a natural bijection between $\mathbb{P}^{n}(\mathbb{R})$ and the set of lines in $\mathbb{R}^{n+1}$ which pass through $(0, \ldots, 0) \in \mathbb{R}^{n+1}$.

