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1. Fields

A field is a set k together with two operations

+ : k × k → k, · : k × k → k.

For (a, b) ∈ k× k we usually write a + b (resp. a · b or just ab) for the image of the pair (a, b)
under the operation + (resp. ·). These two operations are required to satisfy the following:

(F1) For any a, b ∈ k we have

a + b = b + a, ab = ba.

(F2) There exists an element 0 ∈ k (resp. 1 ∈ k) such that for any a ∈ k we have

a + 0 = 0 + a = a, 1 · a = a · 1 = a.

Note that the elements 0 and 1 are unique.
(F3) For any a ∈ k there exists a unique element a′ ∈ k

a + a′ = 0.

We usually write −a for the element a′.
(F4) For any a ∈ k which is not equal to 0, there exists a unique element b ∈ k such that

ab = 1.

We usually write a−1 for this element.
(F5) For any a, b, c ∈ k we have

a + (b + c) = (a + b) + c, a(bc) = (ab)c, a(b + c) = ab + ac.

Example 1.1. Some examples of fields are Q, R, C. If p is a prime then the congruence
classes modulo p form a field under addition and multiplication of congruence classes. This
field is usually denoted Fp (sometimes also written Z/(p)).

We can talk about polynomials F with coefficients in a field k. Such a polynomial (in
variables X1, . . . , Xn say) is simply a finite sum of monomial terms

ai1...inX i1
1 · · ·X in

n ,

with each ij ≥ 0.

Given a vector (s1, . . . , sn) ∈ kn and a polynomial

F =
∑

i

aiX
i1
1 · · ·X in

n

1



2 MARTIN OLSSON

we define
F (s1, . . . , sn) :=

∑
i

ais
i1
1 · · · sin

n ∈ k.

A polynomial F in variables X1, . . . , Xn is called homogeneous of degree r if for each mono-
mial X i1

1 · · ·X in
n occurring in F we have

i1 + · · ·+ in = r.

2. Projective space

Let k be a field, and let n ≥ 0 be an integer. Define n-dimensional projective space Pn(k)
over k as follows. The set Pn(k) is the set of equivalence classes of vectors

(a0, . . . , an)

of elements ai ∈ k, such at least one ai is nonzero. Two vectors (a0, . . . , an) and (a′0, . . . , a
′
n)

are declared equivalent if there exists a nonzero element λ ∈ k such that

ai = λa′i

for all i. We usually write
[a0 : · · · : an]

for the equivalence class of the vector (a0, . . . , an).

We write An(k) ⊂ Pn(k) for the subset of points [a0 : · · · : an] with an 6= 0. Note that we
have a bijection

kn → An(k), (b0, . . . , bn−1) 7→ [b0 : · · · bn−1 : 1].

If F is a homogeneous polynomial of degree r in variables X0, . . . , Xn then for any λ ∈ k
and vector (a0, . . . , an) we have

F (λa0, . . . λan) = λnF (a0, . . . , an).

It therefore makes sense to say that F vanishes on a point [a0 : · · · : an] of Pn(k). If F1, . . . , Ft

are homogeneous polynomials we define

V (F1, . . . , Ft) ⊂ Pn(k)

to be the set

V (F1, . . . , Ft) = {[a0 : · · · : an]|Fj([a0 : · · · : an]) = 0 for all j}.

Example 2.1. Consider the subset

V (X2 + Y 2 − Z2) ⊂ Pn(k).

The intersection of V (X2 + Y 2 − Z2) ∩ A2(k) = k2 is the set of solutions to the equation

X2 + Y 2 = 1.

The points in P2(k)− A2(k) is the set

V (X2 + Y 2) ⊂ P1(k),

where P1(k) is embedded in P2(k) via the map

P1(k) → P2(k), [a : b] 7→ [a : b : 0].
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3. Homogenizing equations

We will often consider the following situation. Let

f =
∑
i,j

ai,jX
iY j

be a polynomial in two variables defining a subset

{(a, b) ∈ k2|f(a, b) = 0} ⊂ k2.

We can extend this zero set to all of P2(k) as follows. Let r be the maximum of the integers
i + j for X iY j a nonzero monomial occurring in f . Then define

F :=
∑
i,j

ai,jX
iY jZr−i−j,

a homogeneous polynomial in three variables. The resulting zero set

V (F ) ⊂ P2(k)

then has the property that V (F ) ∩ A2(k) is the original set of zeros of f . The polynomial F
is called the homogenization of f .

More generally one can consider polynomials in more variables and zero sets of several
polynomials at a time.

Example 3.1. If
f = Y 2 −X3 − aX − b

for some constants a, b ∈ k then the homogenization of f is the polynomial

F = Y 2Z −X3 − aXZ2 − bZ3.

Note that the points at infinity of V (F ) consist of triples [α : β : 0] for which

−α3 = 0.

This implies that α = 0 so the only point at infinite is [0 : 1 : 0]. This is an important
example, and is an example of an elliptic curve.

4. Exercises

Exercise 1. For which integers m is the set of congruence classes modulo m a field (under
addition and scalar multiplication of congruence classes)?

Exercise 2. Let k be a field. Show that there is a natural decomposition

Pn(k) = kn ∪ kn−1 ∪ · · · ∪ k ∪ {∗}.
In particular, show that

Pn(Fp)

consists of
pn + pn−1 + · · ·+ p + 1 = (pn+1 − 1)/(p− 1)

elements.
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Exercise 3. Exhibit a natural bijection between Pn(R) and the set of lines in Rn+1 which
pass through (0, . . . , 0) ∈ Rn+1.


