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Section 7.8, exercise 6. Notice that we have

n2 + (n + 1)2 = x2

if and only if
(2n + 1)2 − 2x2 = −1.

Therefore to show the exercise it suffices to show that the Pell-equation

u2 − 2v2 = −1

has infinitely many integer solutions with u odd. Notice that this last condition that u is odd
is automatic since the right side of the equation is odd. Therefore it suffices to show that

u2 − 2v2 = −1

is infinitely many integer solutions. By corollary 7.23 it therefore suffices to show that the
period of the continued fraction expansion of

√
2 is odd. By exercise 7.3 (a) we have

1 +
√

2 = 〈2, 2, 2, 2, . . . 〉
which shows that the period is 1.

Section 7.8, problem 7. Notice that if k is an integer, then we have

(|k|)2 − (k2 − 1)12 = 1,

so the equation
x2 − (k2 − 1)y2 = 1

has a positive solution (|k|, 1). This solution is necessarily minimal among the (hn, kn)’s since
the second coordinate is 1 and the kn are increasing. Since the first solution to the equation

x2 − (k2 − 1)y2 = −1

among the (hn, kn) must occur before the first solution to

x2 − (k2 − 1)y2 = 1,

this shows that the equation
x2 − (k2 − 1)y2 = −1

has no positive solutions, and therefore no integer solutions.

Section 7.8, problem 8. Notice that the period in this case is 2 so by theorem 7.25 the
equation

x2 − 18y2 = −1

has no solutions, and the first solution to the equation

x2 − 18y2 = 1
1
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is given by (h1, k1). Computing we have

h0 = a0 = 4, k0 = 1,

h1 = a1h0 + h−1 = 16 + 1 = 17, k1 = a1k0 + k−1 = 4.

Therefore the first solution is (17, 4). Note that this really does satisfy the equation

(17)2 − 18(4)2 = 289 − 18 · 16 = 289 − 288 = 1.

Section 7.9, problem 12. First note that if p ≡ 1 (mod 4) and we have an integer solution

x2 − py2 = 1,

then x must be odd and y must be even. Indeed if x is even then reducing the equation
modulo 4 we get

−y2 ≡ 1 (mod 4),

and since y2 is either 0 or 1 mod 4 this is impossible. Therefore x is odd. Now in this case
we x2 ≡ 1 (mod 4) so we get that

−py2 ≡ 0 (mod 4).

This implies that y must be even.

Now suppose we have
x2

0 − py2
0 = 1

with y0 minimal. Then we have x0 odd by the previous observation, so 2 divides both x0 + 1
and x0 − 1. On the other hand, we can write 2 as

2 = (x0 + 1) − (x0 − 1)

so 2 must be the greatest common divisor of x0 + 1 and x0 − 1. We therefore get

(x0 + 1)(x0 − 1) = x2
0 − 1 = py2

0.

Therefore we find that 2p divides either x0 + 1 or x0 − 1, and that

gcd((x0 + 1)/2, (x0 − 1)/2) = 1.

We conclude that we are in one of the two cases indicated in the exercise.

Case 1. This is the case when x0 − 1 = 2pu2 and x0 + 1 = 2v2 for some integers u and v
(so y0 = uv). Notice that y0 = uv implies that |u| < y0, since we can’t have v = 1 as this
would give x0 = 0. Therefore we find that

2v2 − 2pu2 = (x0 + 1) − (x0 − 1) = 2.

Dividing both sides by 2 we get
v2 − pu2 = 1,

which gives a strictly smaller solution that our original (x0, y0). Therefore this case is impos-
sible.

Case 2. In this case we have x0 − 1 = 2u2 and x0 + 1 = 2pv2, and we get

2u2 − 2pv2 = (x0 − 1) − (x0 + 1) = −2,

which gives
u2 − pv2 = −1.
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Therefore if p ≡ 1 (mod 4) then the equation

x2 − py2 = −1

has a solution.

section 7.8, problem 13.

First note that
x2 − 34y2 = 1

has a solution given by (35, 6). Indeed we have

(35)2 − 34(6)2 = 1225 − 34 · 36 = 1225 − 1224 = 1.

To see that it is minimal it suffices to observe that the numbers

1 + 34y2, y = 1, 2, 3, 4, 5

are not perfect squares. These numbers are

35, 137, 307, 545, 851

and this can be checked by calculator (or directly). Since a minimal solution of

x2 − 34y2 = −1

would have y smaller than 6, to prove that we have no such solution it suffices to verify that
the numbers

−1 + 34y2, y = 1, 2, 3, 4, 5

are not perfect squares. This list is

33, 135, 305, 543, 849,

and again a simple check with a calculator gives the result.

On the other hand, we have

(5/3)2 − 34(1/3)2 = (25 − 34)/9 = −1,

and
(3/5)2 − 34(1/5)2 = (9 − 34)/25 = −1.

Now observe that for any integer m with 3 6= m it makes sense to reduce the solution (5/3, 1/3)
modulo m so this gives that we have a solution modulo all m prime m. Similary we get a
solution modulo m from (3/5, 1/5) for all m prime to 5. Now for any integer m, we can write
m = m1 · m2 with (3, m1) = 1 and (5, m2) = 1. By the chinese remainder theorem we can
find integers a and b such that

a ≡ 5/3 (mod m1), a ≡ 3/5 (mod m2),

b ≡ 1/3 (mod m1), b ≡ 1/5 (mod m2).

The pair (a, b) then gives a solution to

x2 − 34y2 = −1

modulo m.


