MATH 115: HW 11 SOLUTIONS

MARTIN OLSSON

Section 7.8, exercise 6. Notice that we have

$$
n^{2}+(n+1)^{2}=x^{2}
$$

if and only if

$$
(2 n+1)^{2}-2 x^{2}=-1
$$

Therefore to show the exercise it suffices to show that the Pell-equation

$$
u^{2}-2 v^{2}=-1
$$

has infinitely many integer solutions with u odd. Notice that this last condition that u is odd is automatic since the right side of the equation is odd. Therefore it suffices to show that

$$
u^{2}-2 v^{2}=-1
$$

is infinitely many integer solutions. By corollary 7.23 it therefore suffices to show that the period of the continued fraction expansion of $\sqrt{2}$ is odd. By exercise 7.3 (a) we have

$$
1+\sqrt{2}=\langle 2,2,2,2, \ldots\rangle
$$

which shows that the period is 1 .
Section 7.8, problem 7. Notice that if k is an integer, then we have

$$
(|k|)^{2}-\left(k^{2}-1\right) 1^{2}=1
$$

so the equation

$$
x^{2}-\left(k^{2}-1\right) y^{2}=1
$$

has a positive solution $(|k|, 1)$. This solution is necessarily minimal among the (h_{n}, k_{n})'s since the second coordinate is 1 and the k_{n} are increasing. Since the first solution to the equation

$$
x^{2}-\left(k^{2}-1\right) y^{2}=-1
$$

among the $\left(h_{n}, k_{n}\right)$ must occur before the first solution to

$$
x^{2}-\left(k^{2}-1\right) y^{2}=1
$$

this shows that the equation

$$
x^{2}-\left(k^{2}-1\right) y^{2}=-1
$$

has no positive solutions, and therefore no integer solutions.

Section 7.8, problem 8. Notice that the period in this case is 2 so by theorem 7.25 the equation

$$
x^{2}-18 y^{2}=-1
$$

has no solutions, and the first solution to the equation

$$
\begin{gathered}
x^{2}-18 y^{2}=1 \\
1
\end{gathered}
$$

is given by $\left(h_{1}, k_{1}\right)$. Computing we have

$$
\begin{gathered}
h_{0}=a_{0}=4, \quad k_{0}=1 \\
h_{1}=a_{1} h_{0}+h_{-1}=16+1=17, k_{1}=a_{1} k_{0}+k_{-1}=4
\end{gathered}
$$

Therefore the first solution is $(17,4)$. Note that this really does satisfy the equation

$$
(17)^{2}-18(4)^{2}=289-18 \cdot 16=289-288=1
$$

Section 7.9, problem 12. First note that if $p \equiv 1(\bmod 4)$ and we have an integer solution

$$
x^{2}-p y^{2}=1
$$

then x must be odd and y must be even. Indeed if x is even then reducing the equation modulo 4 we get

$$
-y^{2} \equiv 1 \quad(\bmod 4)
$$

and since y^{2} is either 0 or $1 \bmod 4$ this is impossible. Therefore x is odd. Now in this case we $x^{2} \equiv 1(\bmod 4)$ so we get that

$$
-p y^{2} \equiv 0 \quad(\bmod 4)
$$

This implies that y must be even.
Now suppose we have

$$
x_{0}^{2}-p y_{0}^{2}=1
$$

with y_{0} minimal. Then we have x_{0} odd by the previous observation, so 2 divides both $x_{0}+1$ and $x_{0}-1$. On the other hand, we can write 2 as

$$
2=\left(x_{0}+1\right)-\left(x_{0}-1\right)
$$

so 2 must be the greatest common divisor of $x_{0}+1$ and $x_{0}-1$. We therefore get

$$
\left(x_{0}+1\right)\left(x_{0}-1\right)=x_{0}^{2}-1=p y_{0}^{2}
$$

Therefore we find that $2 p$ divides either $x_{0}+1$ or $x_{0}-1$, and that

$$
\operatorname{gcd}\left(\left(x_{0}+1\right) / 2,\left(x_{0}-1\right) / 2\right)=1
$$

We conclude that we are in one of the two cases indicated in the exercise.
Case 1. This is the case when $x_{0}-1=2 p u^{2}$ and $x_{0}+1=2 v^{2}$ for some integers u and v (so $y_{0}=u v$). Notice that $y_{0}=u v$ implies that $|u|<y_{0}$, since we can't have $v=1$ as this would give $x_{0}=0$. Therefore we find that

$$
2 v^{2}-2 p u^{2}=\left(x_{0}+1\right)-\left(x_{0}-1\right)=2
$$

Dividing both sides by 2 we get

$$
v^{2}-p u^{2}=1
$$

which gives a strictly smaller solution that our original $\left(x_{0}, y_{0}\right)$. Therefore this case is impossible.

Case 2. In this case we have $x_{0}-1=2 u^{2}$ and $x_{0}+1=2 p v^{2}$, and we get

$$
2 u^{2}-2 p v^{2}=\left(x_{0}-1\right)-\left(x_{0}+1\right)=-2
$$

which gives

$$
u^{2}-p v^{2}=-1
$$

Therefore if $p \equiv 1(\bmod 4)$ then the equation

$$
x^{2}-p y^{2}=-1
$$

has a solution.

section 7.8 , problem 13.

First note that

$$
x^{2}-34 y^{2}=1
$$

has a solution given by $(35,6)$. Indeed we have

$$
(35)^{2}-34(6)^{2}=1225-34 \cdot 36=1225-1224=1 .
$$

To see that it is minimal it suffices to observe that the numbers

$$
1+34 y^{2}, \quad y=1,2,3,4,5
$$

are not perfect squares. These numbers are

$$
35,137,307,545,851
$$

and this can be checked by calculator (or directly). Since a minimal solution of

$$
x^{2}-34 y^{2}=-1
$$

would have y smaller than 6 , to prove that we have no such solution it suffices to verify that the numbers

$$
-1+34 y^{2}, \quad y=1,2,3,4,5
$$

are not perfect squares. This list is

$$
33,135,305,543,849
$$

and again a simple check with a calculator gives the result.
On the other hand, we have

$$
(5 / 3)^{2}-34(1 / 3)^{2}=(25-34) / 9=-1,
$$

and

$$
(3 / 5)^{2}-34(1 / 5)^{2}=(9-34) / 25=-1
$$

Now observe that for any integer m with $3 \neq m$ it makes sense to reduce the solution $(5 / 3,1 / 3)$ modulo m so this gives that we have a solution modulo all m prime m. Similary we get a solution modulo m from $(3 / 5,1 / 5)$ for all m prime to 5 . Now for any integer m, we can write $m=m_{1} \cdot m_{2}$ with $\left(3, m_{1}\right)=1$ and $\left(5, m_{2}\right)=1$. By the chinese remainder theorem we can find integers a and b such that

$$
\begin{array}{rlll}
a \equiv 5 / 3 & \left(\bmod m_{1}\right), & a \equiv 3 / 5 & \left(\bmod m_{2}\right), \\
b \equiv 1 / 3 & \left(\bmod m_{1}\right), \quad b \equiv 1 / 5 & \left(\bmod m_{2}\right)
\end{array}
$$

The pair (a, b) then gives a solution to

$$
x^{2}-34 y^{2}=-1
$$

modulo m.

