Worksheet 9

Sections 306 and 310
 MATH 54

September 20, 2018
Exercise 1. Let W be the union of the first and third quadrants of the plane. That is: let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x y \geq 0\right\}$.
(a) If \mathbf{u} is in W and c is any scalar, is $c \mathbf{u}$ in W ? Why?
(b) Can you find specific vectors \mathbf{u} and \mathbf{v} in W such that their sum is not in W.
(c) Is W a vector space?

Exercise 2. For each of the following sets, either use an appropriate theorem to show that the given set is a vector space, or find an specific example to the contrary.

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]: 5 r-1=s+2 t\right\} \\
& \left\{\begin{array}{l}
\left.\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]: \begin{array}{c}
a+3 b=c \\
b+c+a=d
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

c1
Exercise 3. Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. Is \mathbf{w} in Col A? Is it in Nul A?

Exercise 4. Determine which of the following sets are bases for \mathbb{R}^{3}. Justify your answers.

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
-7 \\
5 \\
4
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]\left[\begin{array}{c}
-4 \\
-5 \\
6
\end{array}\right]}
\end{gathered}
$$

Discuss with your group: Do you think that a set of two vectors can form a basis for \mathbb{R}^{3} ? Why or why not? (We will discuss the idea of dimension soon, get excited!!)

Exercise 5. Let W be a vector space. Use the axioms of a vector space to show that $0 \mathbf{u}=\mathbf{0}$ for every vector u in W.

